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Abstract

We investigate a noisy signaling game, in which nature adds random

noise to the (costly) message chosen. Theoretically, with an unfavorable

prior the separating equilibrium vanishes for low noise. It reappears for

intermediate levels of noise, where messages increase with noise. A pooling

equilibrium always exists. In our experiment, noise works as an empirical

equilibrium selection device. When noise increases, the separating equi-

librium loses ground to the pooling equilibrium. Subjects separate for low

noise where no separating equilibrium exists. Conditional on aiming for sep-

aration, high-quality senders choose messages that increase monotonically

with noise. A simple behavioral explanation organizes the data well.

Keywords: signaling games, noise, separation, experiments

1 Introduction

Sometimes people choose very costly signals to deliver their messages in a credible

way. For instance, during the 2005 Superbowl, �rms paid 2.4 million dollars for

broadcasting a 30-second spot. These costs came on top of the costs of producing

the commercial, that amounted to an average of 350.000 dollars.1 If consumers

infer the quality of a �rm�s product from its expenditure on advertising, high-

quality �rms have an incentive to distinguish themselves from low-quality sellers by

spending money on otherwise useless advertising (Nelson, 1970; 1974; Kihlstrom

and Riordan, 1984; Milgrom and Roberts, 1986). As a somewhat more peculiar

�de Haan, O¤erman, Sloof: Amsterdam School of Economics, Roetersstraat 11, 1018 WB
Amsterdam, The Netherlands. We are grateful to CREED-programmer Jos Theelen for program-
ming the experiment. The research of Theo O¤erman has been made possible by a fellowship of
the Royal Netherlands Academy of Arts and Sciences.

1These numbers are reported on http://www.gaebler.com/Television-Advertising-Costs.htm.
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example, the Yanomamö, a contemporary tribe of about twenty thousand Indians

living in the Amazon rainforest on the border between Brazil and Venezuela,

sometimes risk their lives in their vigorous pursuit of a �erce image (Chagnon,

1992). Disputes about women occasionally culminate in a club �ght, where two

males take turns striking each other on the head with a club of eight to ten feet

long. The men are very proud of their heads that are covered with deep scars.

Some men have a tonsure shaved on the top of their heads and they rub red

pigment on their scars to make sure that nobody misses them. Regularly, people

get killed in club �ghts or other outbursts of violence. Having a �erce image pays

o¤ among the Yanomamö. Chagnon (1988) reports that men who killed had on

average two and half times as many wives and three times as many children than

men who did not.

What these signaling examples have in common besides the high signaling

costs, is that it is very hard for receivers to precisely judge the actual costs of the

signal. A signal may be noisy because the production technology is noisy, as in

the club �ght example, where the deepness of a scar may be a¤ected by incidental

factors such as the angle in which the club hit the head. A signal may also be

noisy because of imperfect knowledge of the receiver. This is likely to apply in

the advertisement example, where most consumers only have an imprecise notion

that the costs must be high. In fact, the assumption that there is no noise at

all in the signal seems to be too strong in most real world applications. In this

paper, we investigate theoretically and experimentally what happens when the

assumption of no noise is dropped. Our results show that a noisy signaling game

di¤ers profoundly from a standard signaling game without noise, both in terms of

theoretical predictions and in terms of experimental outcomes.

In his seminal paper, Spence (1973) provides the �rst game theoretic analysis

of a signaling game in which a job applicant�s investment in education does not

improve her productivity. Like Spence, we focus on a pure signaling game in

which signaling is completely wasteful. In our game a seller o¤ers a product for

sale that is either of high quality or of low quality. Nature �rst determines the

quality of his product.2 Only the seller learns the actual quality. Then the seller

chooses his level of signal costs, i.e. we equate the message he chooses with its

costs. To these signal costs nature adds a random noise term. The buyer observes

the resulting overall signal, but not the original signal costs, and decides whether

or not to buy. Preferences are such that the buyer prefers to buy if and only if

2In our model we use the convention that sellers are males and buyers are females. In the
experiment, of course, men and women were randomly assigned to the two roles.
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quality is high. Moreover, a sale is more valuable to a high-quality seller than to

a low-quality seller. In this game signaling is completely wasteful, because both

seller types would prefer to pool on zero signal costs if the buyer would ignore the

seller�s signal.

In our theoretical analysis we consider both the case of an unfavorable prior

belief about quality, where the prior belief is not su¢ cient to support a sale, and

the opposite case of a favorable prior. Here (and in the experiment) we focus on

the more interesting case of an unfavorable prior where information transmission

is necessary to realize the e¢ ciency gains from trade. The introduction of noise

greatly reduces the number of equilibria. There is always a pooling equilibrium

where both types of sellers refrain from signaling whereas pooling on positive

levels of signal costs cannot occur. Remarkably, for low levels of noise a pure

strategy separating equilibrium ceases to exist. In a separating equilibrium, the

buyer buys if and only if she receives a signal higher than a cuto¤. With a low

level of noise, this cuto¤ is much lower than the one used in the case without

noise. It therefore becomes attractive for the low-quality seller to jump from

providing zero signal costs to his interior optimum. This undermines the logic

of the separating equilibrium in which the low-quality seller should refrain from

signaling. The separating equilibrium only reappears for intermediate levels of

noise, where the signal costs chosen by the high-quality type increase with the

noise up to a ceiling. High noise levels force (high-quality) sellers to choose high

signal costs, just as in the examples mentioned above. For very high levels of

noise, the separating equilibrium disappears forever.

In our experimental design we vary the level of noise between our four treat-

ments: from no noise to low noise (without a separating equilibrium) to interme-

diate noise (with a unique separating equilibrium based on an intermediate level

of signal costs) to high noise (with a unique separating equilibrium based on a

high level of signal costs). Our design allows us to address three questions: (i)

Do subjects indeed refrain from separating for a low level of noise that prevents

separation in theory?, (ii) Do the signal costs chosen by the (high-quality) seller

increase with noise and, if so, do these costs increase monotonically or only for

intermediate and high noise as predicted by theory?, and (iii) Does noise work

as an empirical selection device? Regarding the last question, our conjecture was

that noise works in favor of pooling, because separation becomes relatively less

attractive when the noise in the signal increases.

We obtain the following experimental results. For no, low, and intermediate

noise, subjects tend to separate. For high levels of noise some matching groups still
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play according to the logic of a separating equilibrium, but the majority switches

to pooling on no signal costs. Conditional on aiming for separation, high-quality

sellers�signal costs increase monotonically with the noise in the signal. Very high

signal costs are occasionally observed when the noise in the signal is large.

To the extent that our results are not predicted by theory, we propose a sensible

behavioral explanation. In particular, the intuitive anomaly that subjects sepa-

rate in the low noise treatment where according to theory separation cannot be

supported in equilibrium, can be understood as follows. With only a low amount

of noise buyers initially behave as if there is no noise and thus use a higher cuto¤

than prescribed by equilibrium play. Sellers best respond and choose separating

signal costs. Buyers feel no pressure to change their disequilibrium behavior, be-

cause the noise in the signal smoothes their expected payo¤s and best responding

does not noticeably increase their payo¤s. Therefore, separation does not unravel.

Although a large literature on signaling games exists, noisy signaling has re-

ceived little attention up till now. The path-breaking paper here is by Matthews

and Mirman (1983), who include noisy signals in a (signaling) model of limit pric-

ing. Within this context they show that the introduction of noise has substantial

implications for the equilibrium predictions. Another important contribution is

by Carlsson and Dasgupta (1997), who propose using vanishing noise as an equi-

librium selection device in signaling games without noise. We consider the e¤ect

of noise in Spence�s original pure signaling model in which signaling constitutes a

pure social waste. In this noisy signaling game separating and pooling equilibria

coexist, in contrast to the noisy signaling games of Matthews and Mirman and

Carlsson and Dasgupta that only allow for separating equilibria. An important

result is that only in the setup of Spence the existence of a separating equilibrium

depends on the amount of (non-vanishing) noise in the signal. We are therefore

able to study an issue that these earlier papers did not address, viz. how the

occurrence of di¤erent types of equilibria (i.e. pooling vs. separating) varies with

the level of noise. In the next section we will elaborate further on the distinctive

features of our theoretical analysis.

Previous experimental papers on signaling have also searched for empirical

equilibrium selection devices (in a noise-free context). Miller and Plott (1985)

investigated signaling in a rich market institution, where sellers chose prices as

well as costly quality increments to the product. In markets where the signaling

costs were relatively low, market outcomes tended to converge to the separating

equilibrium. Usually, high-quality sellers started with ine¢ ciently high signaling

costs before they converged to the minimum level that distinguished them from
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the low-quality types. Brandts and Holt (1992) studied the predictive power of

belief-based equilibrium re�nements in a game that modelled workers� choices

for education and employers�subsequent hiring decisions. In early sessions, they

found that play converged to the intuitive pooling equilibrium. Having studied

the dynamics in the sessions, they were able to alter the parameters such that play

tended to converge to the unintuitive pooling equilibrium. Cooper, Garvin and

Kagel (1997a, 1997b) investigated a limit pricing game where low-cost monopolists

had incentives to deter entry by high-cost monopolists. Subjects started at their

�myopic optima�, which allowed entrants to infer the monopolist�s actual type

and to act accordingly. This encouraged high-type monopolists to pool with the

low-cost types. If no pooling equilibrium existed, initial attempts at pooling were

shattered and play converged to a separating equilibrium. None of these papers

considered the possibility that noise in the signal might function as a selection

device.3

The remainder of our paper is organized in the following way. Section 2 pro-

vides a detailed description of the game and the theoretical analysis. Section 3

describes the experimental design and procedures. Section 4 presents the experi-

mental results and section 5 concludes.

2 Theory

2.1 The noisy signaling game

We consider a simple signaling game between an informed seller and an uninformed

buyer. The seller can be of two types, either good or bad; p � Pr(good), with

0 < p < 1, denotes the buyer�s prior belief that the seller is of the good type.

The seller �rst chooses his message m 2 [0;1) at signal costs m. The buyer then
observes a noisy signal z 2 R, i.e. we assume that she observes m with some

additive noise:

z = m+ � � ":
3There are, however, experimental papers that investigated noisy communication in other

games. Güth, Müller and Spiegel (2006) investigate the e¤ects of noisy leadership in a sequen-
tial duopoly game. Aoyagi and Fréchette (2006) study collusion in a repeated prisoners�dilemma
game where the opponent�s past actions are imperfectly revealed in a noisy public signal. Fel-
tovich, Harbaugh and To (2002) consider a signaling game experiment in which the receiver (in
contrast to our setup) does perfectly observe the message chosen by the sender, but also receives
some exogenous noisy information.
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Here " is a random variable with distribution function F : R ! [0; 1] and � � 0
re�ects a scaling parameter to account for changes in the amount of noise. In line

with Matthews and Mirman (1983) and Carlsson and Dasgupta (1997), we assume

that the density f is continuous and strictly positive everywhere. Moreover, like

them we also assume that the conditional density of z given m satis�es the strict

monotone likelihood ratio property (MLRP).4 Intuitively, this means that higher

signal costs m become more likely when the observed signal z increases.

Having observed signal z, the buyer decides whether to buy or refrain from

buying the product. The latter yields her 0, irrespective of the seller�s type. If the

buyer decides to buy she obtains a payo¤ equal to x > 0 when the seller is of the

good type and �y < 0 when he is of the bad type. The seller always bears the

signal costs of his message choice m: Apart from that, the good (bad) type seller

obtains a gross payo¤ of g (b) from a sale. We assume that g > b > 0, i.e. the

sorting condition is satis�ed. Table 1 summarizes these payo¤s. Both seller and

buyer are assumed to be risk-neutral.

[ Insert Table 1 about here ]

Note that our setup is isomorphic to the original one of Spence (1973) when we

divide the seller�s payo¤s by his type t 2 fb; gg; i.e. the seller obtains 1� m
t
when

the buyer buys and �m
t
if she does not. In this alternative speci�cation the two

seller types do not di¤er in their bene�ts of a sale, but rather in their (marginal)

costs of producing message m (which corresponds to the level of education in

Spence�s original formulation). Because this is just a normalization, equilibrium

predictions are exactly the same.

2.2 Equilibrium analysis

From Spence (1973) it is well-known that without noise (� = 0) there are many

Perfect Bayesian equilibria. Among these are pooling equilibria in which both
4These assumptions facilitate the equilibrium analysis, because they imply that the buyer

necessarily uses a cuto¤ strategy in any non-pooling equilibrium (cf. the Appendix). The im-
portant assumption here is that each possible signal comes from each type with strictly positive
probability. As long as this assumption remains ful�lled, the analysis may be generalized to the
case where signals have bounded support. In applications where negative signals are problem-
atic, one may then choose to normalize the game such that only positive signals are possible.
Alternatively, negative signals may be natural in applications where the costs are not exclusively
monetary. As Spence (1973, p. 359) already noticed: �Signaling costs are to be interpreted
broadly to include psychic and other costs...�Negative signals are also less problematic when
one takes the seller�s consumption good value of signaling into account: �The signal cost function
does, in principle, capture education as a consumption good, an e¤ect that simply reduces the
cost of education�(cf. Spence, 1973, p. 364).
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seller types choose m = 0 and separating equilibria in which the bad type chooses

m = 0 and the good type chooses some level of signal costs mg 2 [b; g]: All these
equilibria exist independent of prior belief p. Moreover, when the buyer would

buy in the absence of additional information �i.e., p > �� � y
x+y

�also pooling

on any m 2 (0; b] can be supported as equilibrium.
Introducing noise by letting � > 0 narrows down the equilibrium set consider-

ably. First, pooling on some m > 0 cannot occur any longer. If both seller types

choose the same signal costs m, then the buyer�s posterior belief necessarily equals

her prior for any signal z observed. Her buying decision is then fully determined

by her prior belief and independent of the signal received. Given this, the seller

lacks any incentive to (stochastically) increase the signal and therefore only pool-

ing on m = 0 can occur. Second, adding noise also severely restricts the set of

separating equilibria. We illustrate this by focusing on the case considered in the

experiment where F equals the standard normal distribution N(0; 1) (which will

be denoted by �). In the Appendix we show that all the results discussed here

generalize to any distribution function F that satis�es the assumptions made in

the previous subsection. Proofs of propositions are relegated to this Appendix as

well.

We �rst consider pure strategy equilibria before we deal with mixed strategy

equilibria. Proposition 1 below characterizes the set of separating equilibria that

may exist besides pooling on m = 0.

Proposition 1. Let F = � and assume that players are restricted to use pure

strategies. (i) A pooling equilibrium in which both seller types choose m = 0

always exists. In this equilibrium the buyer never [always] buys when p < [>

]�� � y
x+y
. Pooling on some m > 0 cannot occur. (ii) Generically, i.e. for all

p 6= ���g
(1���)�b+���g , it holds that in any separating equilibrium the bad type of seller

chooses m = 0 whereas the good type chooses some positive level of signal costs

m = mg > 0. The buyer buys if z > z� and refrains from buying otherwise. Signal

costs mg and cuto¤ signal z� are given by:

mg = z
� +

s
2�2 �

�
ln

�
g

�
p
2�

��
(1)

z� = z�h �

s
2�2 �

�
ln

�
g

�
p
2�

�
� ln

�
p(1� ��)
(1� p)��

��
if p � �� (2)
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z� = z�h or z� = z�l � �z�h if p > �� (3)

Note that Proposition 1 only characterizes the set of pure strategy equilibria.

Conditions under which the separating equilibria indeed do exist will be discussed

shortly.

The intuition behind the separating equilibria of Proposition 1 is as follows.

Given that the noise distribution satis�es MLRP, the buyer necessarily uses a cut-

o¤ strategy; the seller�s product is bought if and only if a signal larger than some

cuto¤ level z� is observed. For a given value of z�, the equilibrium level of signal

costs mg the good type seller chooses then follows from equalizing the marginal

bene�ts of raising m with the marginal costs (equal to one) of doing so. This

yields expression (1).5 The exact value of cuto¤ z� subsequently follows from the

requirement that the buyer�s posterior belief after observing z� should make her

indi¤erent between buying or not. Because posterior beliefs are determined by

Bayes�rule everywhere, this requirement puts some strong characterizing restric-

tions on the player�s equilibrium strategies. Expressions (2) and (3) follow from

these. As the latter expression makes clear, for p > �� there are two solutions for

z�, so actually two separating equilibria may potentially exist side by side.

Our next proposition concerns the actual existence of a separating equilibrium.

In this regard we are particularly interested in how the amount of noise � as

re�ected by parameter � �a¤ects existence.

Proposition 2. Let F = � and assume that players are restricted to use pure

strategies. A necessary condition for a separating equilibrium to exist is that � �
gp
2�
�min

n
(1�p)��
p(1���) ; 1

o
� �. Assuming � � �, it holds that:

(i) p � ��: a separating equilibrium does not exist if � becomes su¢ ciently small;

(ii) �� < p < ���g
(1���)�b+���g : a separating equilibrium always exists. For this equi-

librium it holds that lim�#0mg = 0;

(iii) p > ���g
(1���)�b+���g : a separating equilibrium does not exist.

Two main observations follow from Proposition 2. First, when there is a lot of

noise separation cannot occur; for � > � separating simply becomes too di¢ cult

5In fact, this expression incorporates the second order condition as well; from the SOC it
follows that mg necessarily exceeds z�:
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or too costly for the good type seller. Formally this can be understood from

expressions (1) and (2). The terms within square brackets become negative for �

su¢ ciently large and no sensible solutions for mg and z� exist.

Second, a separating equilibrium also fails to exist when only a small amount

of noise is introduced in the unfavorable prior case p � ��. A priori the buyer then
refrains from buying, but observing a small positive signal would already induce

her to change her mind. (Formally, cuto¤ z�h as given by (2) is low when � is

small.) But given that the buyer is persuaded so easily, the bad type seller may

want to deviate from m = 0. Similar to (1) above, his best candidate deviation

level equals:

mb = z
� +

s
2�2 �

�
ln

�
b

�
p
2�

��
(4)

One requirement for a separating equilibrium to exist is thus that m = mb should

yield the bad type seller weakly less than m = 0. This reduces to:6

b �
�
�

�
z�

�

�
� �

�
z� �mb

�

��
� mb (5)

Because this condition depends on �; no closed form expression for the cuto¤

value on � can be obtained. But it can be shown that it is necessarily violated for

� small enough.7

The prediction that just a small amount of noise destroys separation is a priori

somewhat counter-intuitive. To better understand the underlying driving force,

let the payo¤ parameters be such as in the experiment (where p = 0:5 < 0:6 = ��,

see Table 2) and consider �rst the least cost separating equilibrium of the no noise

game. In this so-called Riley outcome the bad type seller chooses m = 0 and the

good type m = 90 (= b):The buyer buys only if a signal of z = 90 or higher is

observed. Figure 1a re�ects both the densities of the signals generated by the two

6The mirror image requirement for the good type seller is that he should not have an incentive

to deviate frommg towardsm = 0, i.e. g �
�
�
�
z�

�

�
� �

�
z��mg

�

��
� mg is needed. This actually

has a bite in case (i) of Proposition 2. There a separating equilibrium may not exist when �
becomes large within the relevant interval (0; �].

7Also in part (ii) where �� < p < ���g
(1���)�b+���g the separating equilibrium based on z�h

vanishes for � su¢ ciently small. In that case, however, an equilibrium based on z�l < 0 always
exists (given that � � �). In this equilibrium the buyer a priori intends to buy and even
receiving a moderately negative signal does not lead her to behave di¤erently. The bad type
seller therefore does not have an incentive to deviate from m = 0. Part (iii) of Proposition 2 can
be intuitively understood from considering how cuto¤ level z� (either equal to z�l or z

�
h) varies

with prior belief p: Because z� is close to zero when p is high, the bad type seller obtains a
strong incentive to deviate from m = 0, i.e. no-deviation condition (5) is violated. This upsets
the separating equilibria.
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seller types (labelled fB and fG) and the buyer�s posterior belief �(z). The signal

densities are degenerate at z = 0 and z = 90; respectively. This implies that

�(z) is determined by Bayes�rule only for these two values of z. To support the

equilibrium, out-of-equilibrium beliefs must be such that �(z) � �� for z < 90.

The �gure depicts the equilibrium where �(z) = 0 in that case. Importantly, for

any signal between 0 and 90 the buyer may hold skeptical beliefs that the signal

quite likely came from the bad type seller, even when it is close to 90.

[ Insert Figure 1 about here ]

Now consider what happens if some noise is added, of size � = 10 say. Naively

one would then expect that the good type seller simply moves up his signal cost

a bit, to 100 say, while the bad type stays put. Figure 1b depicts this situation.

In contrast to the no noise case, the two signal densities are now non-degenerate

and posterior beliefs �(z) for in between signals 0 < z < 100 now follow from

Bayes�rule. Given the highly concentrated signal densities, signals closest to 0

most likely come from the bad type while signals closest to 100 most likely come

from the good type. The actual cuto¤ for which �(z�) = �� is roughly in the

middle at z� � 50:4. But if the buyer uses this cuto¤ value, the bad type seller

wants to jump away from m = 0 towards mb � 66:4 (cf. expression (4)). This

destroys the separation outcome. Another destabilizing factor is that for z� � 50:4
the good type seller also wants to deviate from 100 to mg � 73:9.
From the above it follows that crucial for separation to unravel when some

noise is introduced, is that the buyer realizes that she should set a (much) lower

cuto¤ level above which she decides to buy. If she does not do so and keeps the

cuto¤ at z� = 90 (or somewhat higher), the two seller types still have an incentive

to separate.

[ Insert Table 2 about here ]

The overall comparative statics in � are illustrated in Table 2. For � roughly

below 24 separation cannot occur. The same holds for high amounts of noise (viz.

� roughly above 142) whereas for in between levels a separating equilibrium exists

besides the pooling one.8 In these separating equilibria the level of signal costs

chosen by the good type increases with noise (for � not too high). This level mg

8Note that standard belief-based equilibrium re�nements (like the intuitive criterion of Cho
and Kreps, 1987) are ine¤ective in our setup, because for � > 0 there are no out-of-equilibrium
beliefs.
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can actually become quite large relative to g and b, as the case with � = 120

illustrates. The good type thus may be �forced�to use very costly signals.

Mixed strategy equilibria Up till now we have assumed that seller and buyer

may only use pure strategies. Theorem 3 in the Appendix shows that if we al-

low them to use mixed strategies as well, two additional types of equilibria may

potentially exist as well. In the �rst type of mixed equilibrium the bad type

seller mixes between m = 0 and signal costs mb as given in (4), whereas the good

type chooses mg from expression (1) for sure. The bad type�s mixing probability

qb � Pr(m = mb) follows from the requirement that observing z� should make

the buyer indi¤erent (i.e. �(z�) = ��). For the bad type to be willing to mix,

condition (5) now has to hold with equality. Given the appearance of � here, the

resulting equilibrium values of z�, mb and mg have to be calculated numerically.

Table 3 provides an overview for some relevant parameter values. For the values of

� considered in the experiment, this mixed equilibrium appears to exist for � = 10

only.9 It exists for smaller amounts of noise as well. In fact, it holds that mg and

mb tend to b as � tends to 0 and that lim�#0 qb > 0. When the noise vanishes

this equilibrium thus converges to a mixed equilibrium of the no noise game that

is insu¢ ciently revealing; with strictly positive probability the buyer takes the

opposite decision of what she would do under complete information.10

In the other mixed strategy equilibrium the good type seller mixes between

m = 0 and m = mg; while the bad type chooses m = 0 for sure. For the good

type to be indi¤erent it now must hold that g �
�
�
�
z�

�

�
� �

�
z��mg

�

��
= mg,

so also here closed form expressions cannot be obtained. What can be shown

theoretically, however, is that this equilibrium converges to a pooling (on m = 0)

equilibrium when the noise becomes small, i.e. lim�#0 qg = 0. Moreover, signal

costs mg become large for low values of �: lim�#0mg = lim�#0 z
� = g. The

parametric examples in Table 3 illustrate this.

[ Insert Table 3 about here ]

The �rst mixed strategy equilibrium discussed above challenges the prediction

that for low values of � separation will not occur. In the other mixed equilibrium

the positive signal costsmg decrease with �. Because these predictions run counter

to the main predictions based on pure strategy equilibria only, we explicitly check

9When � becomes too large, the de�ning equation of qb results in a negative value.
10In this particular case the buyer always buys if z = b is observed, although with positive

(but small) probability the seller is of the bad type.
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in our empirical analysis whether actual behavior is consistent with these mixed

strategy equilibria.

2.3 Related theoretical literature

Matthews and Mirman (1983) consider a limit pricing model with a potential

entrant and an incumbent monopolist who is privately informed about industry

conditions. The actual price the incumbent charges depends on both his output

choice and a random demand shock that occurs after the output decision. Owing

to this noise, equilibria are obtained that di¤er from standard signaling game

equilibria in three ways: (i) there is a great reduction in the number of equilibria,

(ii) (separating) equilibrium strategies now directly depend on prior beliefs, and

(iii) di¤erent amounts of information are revealed in di¤erent separating equilibria,

leading to richer comparative statics.11

These three features apply in our setting as well. First, with noise (generically)

only �ve di¤erent equilibria exist at most, as opposed to the continuum of equilib-

ria in the no noise case. For a range of parameter values (e.g. p su¢ ciently high)

the equilibrium is even unique. Second, as expressions (1) through (3) reveal,

separating equilibrium strategies directly vary with prior belief p. For instance,

cuto¤ value z�h decreases with p; implying that the buyer is more easily persuaded

to buy if she is already more inclined to do so a priori. This seems a much more in-

tuitive prediction than the irrelevance of p for the required level of separation that

the no-noise case predicts. Similar remarks apply to variations in g. Third, with

noise even a separating equilibrium is insu¢ ciently revealing. Di¤erent separating

equilibria may therefore lead to di¤erent amounts of information being revealed.

In our setting two di¤erent separating equilibria may actually exist side by side

when the prior is favorable. In the one based on z�h the signal costs that the two

seller types choose are more dispersed and the buyer obtains more information

than in the one based on z�l (cf. Proposition 1).

Carlsson and Dasgupta (1997) focus on equilibrium selection in signaling games

11The introduction of noise may have profound implications in complete information contexts
as well. Bagwell (1995) studies a noisy leader game in which a follower observes the actual choice
a leader made with some noise. The striking result he obtains is that the standard �rst-mover
advantage then completely disappears. As pointed out by van Damme and Hurkens (1997), this
conclusion depends on the restriction to pure strategies. When the noise is small, there always
exists a mixed strategy equilibrium that approximates the standard Stackelberg outcome of the
game without noise. Also the assumption of complete information is crucial. Maggi (1999) shows
that the value of commitment reappears when the leader�s choice is based on private information
that is payo¤-irrelevant for the follower. The latter assumption allows Maggi to abstract away
from signaling considerations, which are the main focus of this paper.
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without noise, by studying the limiting set of �noise-proof� equilibria that results

from letting the noise vanish. Among other things, they show that every noise-

proof equilibrium of the no noise game is necessarily insu¢ ciently revealing. Our

theoretical analysis replicates this �nding for our setup. In particular, by letting

� go to zero Theorems 2 and 3 in the Appendix show that there exist only two

noise proof equilibria in the no noise game, viz. pooling on m = 0 and the mixed

equilibrium described before in which only the bad type mixes betweenm = 0 and

mb = b. Both are insu¢ ciently revealing, as with positive probability the buyer

takes a decision that she will regret ex post.12

Despite these similarities, our theoretical �ndings di¤er in some other impor-

tant respects from these two earlier studies. In both Matthews and Mirman (1983)

and Carlsson and Dasgupta (1997) the equilibria of the noisy signaling games they

study are always separating.13 In contrast, our setup allows for pooling equilibria

as well. At the same time, only in our game the existence of a separating equilib-

rium is not guaranteed and depends on the amount of noise in the signal. Unlike

these previous authors, therefore, we are able to study the question of how the

existence of di¤erent types of equilibria varies with noise.

The main driving force why we obtain results that di¤er from both Matthews

and Mirman (1983) and Carlsson and Dasgupta (1997) is that in these earlier

papers the seller�s (message) choice actually serves two purposes. Besides a pure

signaling function geared towards in�uencing the behavior of the receiver, the

seller�s choice also allows him to optimally adapt to changing circumstances. In

Matthews and Mirman this adaptation purpose for example follows from the fact

that the output choice (message) of the incumbent monopolist (seller) varies with

industry conditions (type), even when the receiver (potential entrant) is fully in-

12Some other main �ndings of Carlsson and Dasgupta (1997) do not carry over to our setting.
For example, by Proposition 1(a) it follows that pooling on m = 0 is noise-proof. But for
p < �� this equilibrium does not survive the never-a-weak-best response (NWBR) re�nement in
the game without noise. Unlike in Carlsson and Dasgupta (1997), therefore, in our setup not
every noise-proof equilibrium satis�es NWBR. Likewise, we do not �nd a unique noise proof
equilibrium whereas in Carlsson and Dasgupta it �often�is.
13The same holds for the noisy signaling model used by Kanodia, Singh and Spero (2005)

to study a �rm�s optimal investment in the presence of capital market imperfections. Calveras
(2003) embeds a noisy signaling game in a model of a bank that can manipulate the noisy
information a regulator observes. His signaling subgame allows for both pooling and separating
equilibria (see his Proposition 3). Apart from his model being much more speci�c than ours,
Calveras does not study how the existence of the di¤erent types of equilibria varies with the
amount of noise nor does he consider mixed strategy equilibria. The latter also applies to
Hetzendorf�s (1993) analysis of noisy advertising in the multi-dimensional signaling model of
Milgrom and Roberts (1986). The purpose of his study is to show that in the presence of
noise, no separating equilibrium exists in which prices and advertising are simultaneously used
as informative signals.
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formed on these industry conditions. Optimal output is higher the more favorable

industry conditions are. The seller�s output choice therefore does not perform a

pure signaling function alone. The same applies for the setup in Carlsson and

Dasgupta (1997).14 The important consequence of this two-folded purpose is that

(in the noisy games) the seller�s best response correspondence is strictly monotonic

in his type (cf. Proposition 3.1 in Carlsson and Dasgupta, 1997). Loosely put, the

two purposes together pull sellers towards separation.

In our setup the seller�s message choice only serves a pure signaling function,

such that (costly) signaling constitutes a pure social waste.15 If in our game the

seller�s type would be public information, the seller�s (�message�) choice would be

independent of his type and equalm = 0 for both types.16 As a result, sellers�best

responses are only weakly monotonic in types (cf. the proof of Lemma 1 in the

Appendix). The pull towards separation is therefore much weaker. This implies

in turn that our setup allows for pooling equilibria as well while at the same time

the existence of a separating equilibrium is not guaranteed.

3 Experimental design and procedures

The computerized experiment was run at the University of Amsterdam where

subjects were recruited from the student population. Subjects read the on-screen

instructions at their own pace. At the end of the instructions, subjects had to

answer some test questions correctly before they could proceed. They also received

a summary of the instructions on paper.17 Subjects knew that the experiment

consisted of two parts. Part 1 lasted for 40 periods. In part 2 subjects formulated a

14Let � denote the probability with which the buyer buys and u(t;m; �) the sender�s utility.
Carlsson and Dasgupta (1997) assume that @u(t;m;�)@m = 0 has a unique (interior) solution m�(t);
with m�(t) strictly increasing in t (cf. Assumptions (U3) through (U5) on p. 443). Note that
in our setup we have u(t;m; �) = t � � �m, so @u(t;m;�)

@m = �1 and this assumption is not met.
15By focusing on costly signaling our setup di¤ers from "cheap talk" games in which messages

are costless. See Blume, Board and Kawamura (2007) for an analysis of the impact of introducing
noise on the amount of information transmission in the cheap talk model of Crawford and Sobel
(1982). Landeras and Pérez de Villarreal (2005) introduce noise into a screening model in which
the uninformed party moves �rst.
16Our di¤erent results are thus not due to the fact that in our setup the marginal costs of

raising m are independent of the seller�s type, as one a priori might have expected. As explained
in the main text, our setup is completely isomorphic to the case where seller�s utility equals
u(t;m; �) = � � m

t , with � the probability with which the buyer buys. Just as in Carlsson and
Dasgupta (1997), in this speci�cation marginal costs are type dependent.
17The instructions are available at the following url:

http://www1.fee.uva.nl/creed/pd¢ les/INSTRUCTIONsignal.pdf. The instructions �le
also contains the �gures that were used to explain the normal distribution of the noise term to
the subjects (see below).
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strategy that automatically determined their play in another 10 periods. Subjects

received instructions for the second part only after the �rst part was �nished.

At the beginning of the experiment, subjects received a starting capital of 5000

points. Their period earnings (losses) were added to (subtracted from) this starting

capital. At the end of the experiment, points were exchanged into euros at a rate

of 1 euro for 250 points. In 1.5 to 2 hours, a total of 184 subjects earned on average

37.05 euros with a standard error of 10.89.

At the start of the �rst part subjects were assigned to the role of seller or

the role of buyer. Throughout the whole experiment subjects kept the same role.

Each period, sellers and buyers were randomly matched in pairs within a (�xed)

matching group of 8 subjects. Subjects knew that they were never matched with

the same subject twice in a row. In most sessions, we ran 2 matching groups

simultaneously. At the start of a period, the seller was privately informed of

the quality of his product. In each matching group, 4 products had high quality

and 4 products had low quality. Thus, the prior probability of a high-quality

product was 0.5, a fact that was communicated to all subjects. The quality of the

product of a seller in a given period was independent of the quality of his product

in another period. After observing the quality of his product, the seller chose a

signal cost, an integer amount between 0 and 400. The computer added a noise

term, an independent draw from a N(0; �2) distribution to the signal cost, and

communicated the resulting signal, but not the signal cost nor the noise term,

to the buyer. We communicated the density of the normal distribution with the

help of a �gure and some explanatory remarks about symmetry and con�dence

intervals. The buyer decided whether or not to buy the product, after which the

payo¤s of the pair were determined. The payo¤ table was common information to

the subjects.

At the end of a period, both players were informed of the quality, the signal

cost and the signal. In addition, subjects could view a social history window

at the bottom of the screen that showed the results of all pairs in their own

matching group for the last 10 periods. For buyers, the screen was ordered on

signal (from high to low), quality (from high to low), signal cost (from high to

low) and buy-decision (from yes to no), respectively. Subjects could recognize

their own previous results as these were printed against a di¤erent, light-gray

background. Figure 2a shows a snapshot of this window. Figure 2b shows the

social history window for sellers, which was ordered on signal cost (from high

to low), signal (from high to low), buy-decision (from yes to no) and quality

(from high to low), respectively. We provided this information because it allows
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subjects to learn faster. Our paper deals with the topic of equilibrium selection

and the comparative statics of the equilibrium predictions with respect to the

amount of noise. To address these issues play must converge to equilibrium in

the �rst place. We think that, compared to the world outside of the laboratory,

the superior information provided to subjects balances their lack of experience

with the game. A similar social history (on black board) was �rst provided in

a signaling experiment of Miller and Plott (1985), who introduced it in the later

sessions to help subjects recognize the relationship between types and choices.18

The variance of the error term in the signal (�2) was the only variable that

varied between the 4 treatments. We refer to the treatments as �0, �10, �40 and

�120. Table 4 summarizes the details of the experimental design. Each subject

participated in one treatment only. We correctly anticipated that behavior would

become more volatile for higher noise levels in the signals. Therefore, we decided

to collect a larger number of observations for the treatments with the higher noise

levels.

[ Insert Figure 2 about here ]

[ Insert Table 4 about here ]

In the second part of the experiment, we asked subjects to formulate a strat-

egy for periods 41-50. Buyers were asked to provide a cuto¤ level for the signal

received, at and above (below) which they would (not) buy the product. They

could also indicate that they would never or always buy the product, independent

of the signal. Sellers were asked to choose a signal cost for high-quality products

as well as for low-quality products. We explicitly mentioned that it was up to the

seller to decide whether he wanted to choose the same signal costs for high and

low quality or di¤erent amounts. We emphasized that otherwise the game was

exactly the same as the one they played in the �rst 40 periods. When all subjects

had chosen their strategies, the computer automatically played out the �nal 10

periods.

4 Experimental results

We present the experimental results in two parts. First, we deal with the results

at the aggregate level. We delve into the question how noise a¤ects the equilibria
18Other papers have used role reversion to accomplish this. After senders have become re-

ceivers, it becomes easier for them to interpret the meaning of a signal (e.g., Brandts and Holt,
1992).
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selected and the level of signal costs chosen. In the second part, we zoom in on the

behavior of our subjects and provide a coherent explanation of the main results.

4.1 Equilibrium selection and increasing noise

We anticipated that it would take a while before subjects would converge to equi-

librium, because of confusion and out-of equilibrium play in the early periods. For

instance, confusion may cause low-quality sellers to choose dominated signal costs

above 90. In periods 1-10, 4.3% of the low type sellers do so versus 1.5% after

period 20. This suggests that even in the early periods confusion played only a

minor role. Nevertheless, we decided to stick to our original plan and focus on

the data of the second half of part 1 (periods 21-40). It turns out that the results

for the strategy method con�rm the results of part 1 to a large extent. We have

chosen to limit the report of the results on the strategy method to the extent that

they provide additional insight.

First we take a look at how sellers behaved. Figures 3a-3h present his-

tograms of the signal costs chosen by high-quality sellers and low-quality sellers.

In treatment �0, high-quality sellers most often chose a signal cost of 100, followed

by 91. A large majority of 93.2% of submitted signal costs lied between 90 and

100. A total of 88.8% of the signal-costs submitted by low-quantity sellers in �0
equaled exactly 0. In this treatment, sellers�behavior provides clean evidence for

separation.

[ Insert Figures 3a-3h about here ]

Also in treatment �10 low-quality sellers overwhelmingly chose 0, while high-

quality sellers chose to separate. The latter tended to send higher signal costs,

also at a higher variance than in �0: 86.5% of the submitted signal costs were in

between 90 and 130. This pattern of higher and more volatile signal costs extends

to treatment �40, where high-quality sellers separated with 79.6% of the signal

costs lying between 100 and 160, while low-quality sellers stuck to 0. The picture

looks very di¤erent for treatment �120, though. With 40.9 % of the high-quality

sellers choosing a signal cost of exactly 0, the focus of sellers�attention seemed to

be on pooling. Still a considerable fraction of 41.6% of the signal costs was at 90

or above. High signal costs were very spread out. In contrast, low-quality sellers

by and large chose a signal cost of 0, like in the other treatments.

Very high signal costs were observed occasionally. In treatments �40 and

�120, high-quality sellers chose signal costs of at least 230 in 4.2% and 5.6% of
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the cases, respectively. In the other treatments such high signal costs were never

observed.

A key-prediction of the theoretical analysis is that conditional on the existence

of a separating equilibrium, the signal costs should increase with noise as long as

subjects coordinate on separating. Table 5 splits the submitted signal costs into

pooling (below 90) and separating (at and above 90), for low-quality sellers as

well as high-quality sellers.19 Conditional on a separating signal cost being sent,

the signal cost indeed increased monotonically from on average 97.9 in �0 to 158.3

in �120. Using Mann-Whitney rank tests we �nd that the di¤erences in signal

costs between the treatments are all signi�cant or weakly signi�cant, except for

the comparison between �40 and �120.

[ Insert Table 5 about here ]

The table foreshadows the main result regarding equilibrium selection. The

relative frequency of pooling signals increases with noise. In treatments �0, �10,

�40 and �120, high-quality senders submitted pooling signal costs in 0.6%, 2.0%,

7.5% and 58.4% of the cases, respectively. In all treatments the overwhelming

majority of low-quality sellers submitted signal costs of 0. Thus, sellers aimed for

separation in treatments �0, �10 and �40, while the results are mixed for treatment

�120, where the pooling equilibrium attracted sellers more than the separating

equilibrium did.

Table 5 also reveals two di¤erences between equilibrium predictions and

submitted signal costs. The �rst di¤erence is that the submitted signal cost in-

creased on average monotonically with noise, while theoretically a separating equi-

librium does not exist in treatment �10. The second di¤erence is that high-quality

sellers�signal costs did not increase as rapidly with noise (from �40 to �120) as

equilibrium predicts.

Of course, it only makes sense for sellers to play equilibrium when buyers

play equilibrium. Therefore, a more relevant question is to what extent sellers

chose best responses to the actual behavior of the buyers. We describe the latter

by means of an empirical cuto¤ value bz�. In particular, we determined in each
matching-group and each period which cuto¤ level bz� for the buyers minimized
the sum of the buyers� errors against that cuto¤ level in the 10 most recently

19This classi�cation follows from the observation that in a separating equilibrium (if it exists),
the good type seller always chooses a signal cost that exceeds 90 (see the case p < �� in Table
2). Positive signal costs below 90 thus cannot be interpreted as an attempt to separate and are
therefore labelled pooling.
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completed periods of that particular group.20 We subsequently set the seller�s

empirical best response equal to the signal cost that maximized expected payo¤

given this cuto¤ level bz� of the buyers.21 Often, there was a range of cuto¤ levels
that �tted the data equally well. In those cases, we determined the best response

to the maximum cuto¤ level in the optimal range and the best response to the

average cuto¤ level in the optimal range. It turns out that the best response on

the basis of the maximum cuto¤ level was closer to the actual signal cost than the

one based on the average. Therefore, we report statistics based on the maximum.

Table 5 includes a column that reports the sellers�best responses. In agreement

with the actual data, the best responses of high-quality sellers increased monoton-

ically with noise, with lesser increments than the equilibrium-predictions. Note

that the high-quality sellers�best response in treatment �10 equaled 117.9, quite

close to the actual data, despite the fact that a separating equilibrium does not

exist here. We will come back to this remarkable �nding in Subsection 4.2.

To assess whether subjects coordinated on a pooling or separating equilibrium,

buyers and sellers�behavior have to be scrutinized simultaneously. First, we deal

with the possibility that subjects played in accordance with the logic of a mixed

equilibrium. As explained in Section 2, there are two types of mixed equilibria.

The one where the good type mixes has two features that are incompatible with

the data. The �rst one is that the comparative statics prediction is violated.

According to this equilibrium, the positive signal cost chosen by the high-quality

seller should decrease with (increasing) noise, while it actually increased. Second,

in �120, the good type should mix between 0 with probability 0.75 and 290.95

with probability 0.25. High-quality sellers submitted signal costs higher than 250

in only 2.2% of the cases, however. In all other treatments, the mixed equilibrium

is observationally indistinguishable from pure pooling equilibria and we will deal

with those later.

The next type of mixed equilibrium is the one where the low-quality seller

mixes. This equilibrium exists in �10, but not in �40 nor in �120 (see Table 3).

In �10, in 6 out of 200 cases low-quality sellers chose a signal cost larger than 0,

three times 70 and three times 80. According to the mixed equilibrium, bad type

sellers should choose a signal cost 85 with probability 0.15 and 0 otherwise. So

the positive signal costs are below the theoretically expected level. Moreover, the

proportion of positive signal costs (3%) falls considerably short of the theoretically

20Remember, sellers had access to a social history screen of 10 periods deep of their own
matching-group, which also listed the behavior of the buyers.
21Depending on the level of bz�, the best response of the good [bad] type seller equals either

signal costs of mg [mb] as given by expression (1) [(4)], or zero signal costs.
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expected level (15%). In fact, a binomial test rejects the hypothesis that the

proportion of positive observations is in line with the theoretical prediction (p =

0:00). Choosing positive signal costs was not a great idea for bad type sellers: 5 out

of these 6 positive signal costs led to signals above the equilibrium cuto¤ level of

buyers, but only 3 actually led to a sale. Thus, sending these positive signal costs

led to an average loss of 30. These 6 observations are probably best interpreted as

unsuccessful attempts of low-quality sellers to fool the buyers, or simply mistakes,

instead of mixed-equilibrium play. We conclude that mixed equilibria do not

organize the data well. In the remainder, we will focus on the pure strategy

equilibria.

For each matching group, we computed the number of outcomes consistent with

the pooling equilibrium and the number of outcomes consistent with the separating

equilibrium. An outcome is consistent with the pooling equilibrium if and only

if there was no sale. An outcome is consistent with the separating equilibrium if

and only if the buyer�s decision whether or not to buy was in accordance with the

separating prediction that depended on the quality of the seller and the actual

noise term in the signal.22 (Thus, an outcome may be consistent with both types

of equilibria and also with neither type.) Table 6 lists for each matching group the

extent to which actual play agreed with either of the equilibria in periods 21-40.

In treatments �0, �10 and �40, the outcomes of all groups agreed much better with

the separating equilibrium than with the pooling equilibrium. In treatment �120,

the results were less clear-cut; either equilibrium attracted half of the groups. The

results based on the strategy method in periods 41-50 were the same as the ones

reported for periods 21-40, except that two of the groups (#4 and #5 in treatment

�120) that were playing in accordance with separating in periods 21-40 switched

to pooling in periods 41-50. In fact, in periods 21-40, for these two groups the

separating equilibrium only predicted marginally more outcomes than the pooling

equilibrium. Our interpretation is that these groups had not yet converged to

equilibrium in periods 21-40. After unsuccessfully trying to establish separating

play, subjects in these groups switched to pooling in the �nal 10 periods. Thus, in

�120, at the end of the experiment 6 of the 8 matching-groups agreed with pooling

and the 2 others with separating.

[ Insert Table 6 about here ]

22For � = 10 we de�ned an outcome consistent with separation if either (i) the seller is of the
bad type and there is no sale, or (ii) the seller is of the good type and trade takes place. Here
the de�nition of a separating outcome thus corresponds with the � = 0 case.
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Table 6 also shows how and to what extent actual results deviate from best

responses. The procedure to calculate best responses for sellers was already ex-

plained above. For buyers we used the following procedure. In each matching-

group and each period, we determined the average signal cost chosen by the good

type sellers (cmg) and the average signal cost chosen by the bad type sellers (cmb)

in the last 10 periods. Then we computed the best response cuto¤ level zBR given

these average signal costs.23 This cuto¤ level and the received signal together de-

termined the buyer�s best response decision to buy or not. It is noteworthy that in

most groups of the treatments with noisy signals high-quality sellers chose lower

signal costs than the best response prediction. We will come back to this result in

Subsection 4.2. Note also that buyers bought less than the best response model

predicted in treatments �0, �10 and �40, but more than the best response model in

treatment �120. This limits the scope for an explanatory role of risk-aversion. Risk

averse buyers should use higher cuto¤ levels than risk neutral buyers and therefore

buy less often. The data in �0, �10 and �40 deviate in the direction expected by

risk aversion. In �120, the data deviate in the opposite direction, however.

We now take a closer look at buyers� behavior. For each individual buyer,

we estimated her personal cuto¤ signal bz� below which she did not buy. The

cuto¤ level was set such that the number of errors against the cuto¤ level was

minimized. Table 7 presents the data separately for the groups that were classi�ed

as pooling and the ones that were classi�ed as separating in Table 6. In �120,

subjects in pooling groups employed much larger cuto¤ levels than subjects in

separating groups. For the separating groups, subjects used higher cuto¤ levels

than predicted by best response and equilibrium in treatments �0, �10 and �40,

but lower cuto¤ levels in treatment �120. Overall, subjects�cuto¤ levels were not

su¢ ciently responsive to the noise in the signal.

[ Insert Table 7 about here ]

4.2 Explaining the results

In the previous section we compared actual behavior to equilibrium behavior and

best response. Playing best response is cognitively very demanding and it is very

unlikely that boundedly rational subjects with limited time actually derived the

best response functions for their role. In this section, we provide a behavioral

23This best response is given by zBR = 1
2

�
(cmg + cmb) +

2�2 ln
h
��(1�p)
(1���)p

i
cmg�cmb

�
.
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explanation that requires less cognitive e¤ort and contrast this explanation with

actual behavior and best responses.

For buyers, we collected the 5 signals in the social history screen that were

closest to the received signal in the current period and we counted how often

those 5 signals were accompanied by high quality (remember, for buyers the history

screen was ordered on the basis of signal, see Figure 2a). We took this statistic

as a measure of the buyer�s belief of the probability of high quality given the

signal and set the behavioral response equal to the best response based on this

belief. Actually, if 3 out of 5 signals were connected to high quality, the posterior

probability of high quality was 0.6 and the buyer should be indi¤erent between

buying and not buying. In those cases we looked at the relative frequency of high

quality in the 3 closest signals and let this statistic decide the decision to buy or

not buy (i.e., buy if and only if at least 2 out of 3 were high quality).

Table 8 presents buyers�decisions together with the best responses and the

behavioral responses. It is striking how similar best and behavioral responses

are. Aggregated across treatments, 89.3% of all buyers�decisions agree with best

responses. The behavioral response explanation only performs marginally better,

since it gets 90.2% of the actual decisions right. In 93.0% of the cases, the best

response coincides with the behavioral response.

[ Insert Table 8 about here ]

Although behavioral and best responses trace buyers�behavior very well, one

feature of the data has not yet been explained. Table 7 revealed that buyers�cuto¤

levels were not su¢ ciently responsive to the noise in the signal. Here follows a

potential explanation. It is quite natural for buyers to start with a cuto¤ level

of 90, the amount that the low-quality seller earns when his good is bought.

The question is why in the treatments with noise buyers did not learn to change

the cuto¤ su¢ ciently into the direction of the true best response. Figures 4a-4d

provide an answer to this question. For each treatment, these �gures show the

buyer�s expected payo¤ and its volatility conditional on each possible cuto¤ level

z, given the actual average signal costs chosen by low-quality and high-quality

sellers. It appears that the expected payo¤ functions are very �at around 90, and

in all treatments the pro�t at a cuto¤ level of 90 was close to the pro�t of the

optimal cuto¤ level. This means that there was hardly any pressure to change the

cuto¤ level.

[ Insert Figures 4a-4d about here ]
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For sellers, we divided a group�s social history screen of 40 observations in 8

windows of 5 observations each. The history screen of the sellers was ordered on

signal cost (cf. Figure 2b), so the �rst window contained the observations related

to the 1-5 highest signal costs, the second window contained the observations

related to the 6-10 highest signal costs etc. Then we computed for each window

how much pro�t the seller would have made on average, given the own type in the

new period, if she had chosen the signal costs in the window and if she had faced

the corresponding buy/not buy decisions of the buyers. Then we determined which

window would have led to the highest average pro�t, and we set the behavioral

response equal to the average signal cost in this window. Notice that the behavioral

response of the sellers has the �avor of reinforcement and imitation. It circumvents

the need to compute best responses altogether.

Table 9 presents sellers� signal costs combined with the best responses

and the behavioral responses. In all treatments, the behavioral response comes

closer to actual behavior than the best response does. In the treatments with

noise behavioral responses were lower than best responses. This makes sense,

because for the same signal cost, the observations in a window were ordered on

signal. Higher signals were often accompanied by buy decisions. Thus, the highest

hypothetical pro�t was often generated in windows with relatively low signal costs

combined with lucky signals. In this way, reinforcement and imitation guided

subjects to lower signal costs than the best response did. It is remarkable that in

all treatments with noise, actual behavior was sandwiched between the behavioral

response and the best response. Probably both the force of belief learning (best

response) and the force of imitation/reinforcement (behavioral response) played a

role for sellers.

[ Insert Table 9 about here ]

A noteworthy feature of sellers�behavior is that the volatility of the signal

costs chosen by high-quality sellers increased with the noise in the signal. As the

histograms presented in Figures 3 revealed, especially in treatment �120, high-

quality sellers chose signals all over the place when they attempted to separate.

Figures 5a-5d provide a coherent reason why this may have occurred. These �gures

present the expected pro�t of a high-quality seller and its variance conditional on

the signal cost submitted, given the actual average cuto¤ level of the buyers in

a treatment. In treatment �0, the payo¤ function was steep and, indeed, high-

quality sellers�signal costs in this treatment were clustered in a very small interval.
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In treatment �120, the payo¤ function has become very �at. It is no surprise that

high-quality sellers were not able to locate the optimum of this function.

[ Insert Figures 5a-5d about here ]

We now turn to an explanation of the two most important �ndings of our

paper. The �rst is that subjects separated even in a treatment where the noise

is so small that a pure strategy separating equilibrium did not exist. We already

brie�y alluded to an explanation of this intuitive anomaly. Buyers started with

a natural cuto¤ level of approximately 90. In periods 21-40 of treatment �10,

they actually earned on average 133.9 (at a standard error of 157.6). If they

would consistently have used the much lower optimal best response cut-o¤ level

of 57.8,24 their pro�t would have been 141.8 (standard error 166.0). In the large

majority of 95% of the cases, the optimal cuto¤ led to the same choice and pro�t

as the buyer actually made. In only 4% of the cases the optimal cuto¤ would

have led to a higher pro�t, while in 1% of the cases it would have led to a lower

pro�t. The di¤erence between the actual pro�t and the optimal pro�t generated

by a hypothetical cuto¤ strategy of 57.8 is not signi�cant according to a Wilcoxon

rank test using all observations as data-points (p = 0:15). Thus, there was no

noticeable pressure on buyers to lower their cuto¤. Given the high cuto¤ level

actually used by the buyers, it is no surprise that high-quality sellers continued to

send messages with high signal costs. In fact, their messages were even a bit lower

than the actual best response (112.8 versus 117.9). So buyers employed higher

cuto¤ levels than they should in equilibrium, but they were hardly punished for

doing so and sellers were very close to best responding.

Finally, we deal with the issue of equilibrium selection. In the introduction,

we hypothesized that sellers are less willing to pursue the separating equilibrium

when the noise increases. With noise, there is always a chance that a separating

signal cost of a high-quality seller is pushed below the cuto¤ of the buyer, in

which case the seller incurs a loss. This becomes more likely the higher the noise

is. For instance, in �40, the probability that the (equilibrium) separating signal

cost of the high-quality seller is not accepted equals 0.05. In �120, the probability

that a high-quality seller incurs a loss increases to 0.23. At the same time, the

equilibrium markup in case of a sale decreases from 258 in �40 to 169 in �120.

24If buyers would have used this cuto¤ level of zBR = 57:8, the theoretical best response for
the bad (good) type seller is to choose signal costs equal to zero (81.34). So even in that case the
bad type would not have an incentive to deviate from 0, i.e. to upset the separating outcome.
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Thus, for the seller the prospects of the separating equilibrium deteriorate when

the noise in the signal increases.

The actual pro�t data are in accordance with this explanation. Table 10 lists

seller pro�ts, separated for high types and low types, and for pooling signals (< 90)

and separating signals (� 90). For high-quality types, the attractiveness of the

separating equilibrium is highest in �0. With noise the loss-gain tradeo¤ worsens,

which favors pooling. In fact, for �120 high-quality sellers made on average slightly

more when they selected pooling signal costs. This result agrees with the �nding

that in the end 6 of the 8 matching-groups in �120 converged to pooling.

[ Insert Table 10 about here ]

5 Conclusion

In this paper we introduced noise in Spence�s pure signaling game. Besides being

more realistic, allowing for noise in the signal is appealing because it substantially

cuts down the number of equilibria. With an unfavorable prior belief, the sepa-

rating equilibrium even completely disappears for low levels of noise. It reappears

for intermediate noise levels, where the (high type�s) signal costs increase with

the noise in the signal up to a ceiling. In contrast, a pooling (on no signaling)

equilibrium always exists.

In our experiment, noise worked as an empirical (equilibrium) selection device.

With low and medium noise, subjects successfully coordinated on separation. For

high noise levels, the separating equilibrium lost ground to the pooling equilib-

rium. With high noise, high-quality sellers faced the risk that a signal cost aimed

at separation would fail to accomplish its goal because it received a bad draw for

the noise term. In addition, with high noise higher signal costs were required to

convince the buyer, which decreased the markup in case of a sale. Thus, the sepa-

rating equilibrium became much less attractive, which is re�ected in the frequency

that it was chosen. We did, however, observe a couple of very high signal costs

when the noise in the signal cost was high.

We observed a smoother pattern in the e¤ect of noise on the signal cost than

predicted by theory. Conditional on choosing a separating level of signal costs,

the signal costs of high-quality sellers increased monotonically with noise. This

is surprising, because it means that subjects separated even in the case where no

separating equilibrium existed. It turns out that with little noise subjects initially

played as if there were no noise. In particular, buyers used higher cuto¤s than
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prescribed by equilibrium. The strategic nature of the game was such that there

was negligible pressure on buyers to change their initial behavior. Buyers almost

made the same amount as they would have earned with their best response and

their best response hardly guided them to lower cuto¤s. Sellers reacted by choosing

best responses to buyers�actual cuto¤s. Thus, separation did not unravel.

In fact, simple behavioral explanations organize the data very well. Buyers�

actual play follows the predictions of belief learning closely. According to this

explanation, buyers form beliefs on the basis of the available information of past

play and best respond to this belief. Sellers�behavior shows traces of reinforcement

learning as well as belief learning. That is, high quality sellers usually choose signal

costs that are lower than their empirical best responses but higher than the levels

that are reinforced. An important advantage of the behavioral explanations is

that they take account of our �nding that subjects separated in the treatment

where the noise was so small that a separating equilibrium did not exist. Thus,

they account for this intuitive anomaly.

Appendix

In this Appendix we formally derive the theoretical predictions discussed in Section

2. Recall that z = m+� � ", with z the signal observed by the buyer, m the signal

costs chosen by the seller and " a random variable with distribution F . With

regard to F we make the following three assumptions:

(F.1) F is continuously di¤erentiable, i.e. density f is continuous;

(F.2) The density f is strictly positive on the entire real line;

(F.3) The conditional density of z given m (denoted g(z j m)) satis�es the strict
monotone likelihood ratio property (MLRP): g(z j m)

g(z j m0) =
1
�
�f( z �m

�
)

1
�
�f( z �m0

�
)
is strictly

increasing in z for m > m0.

These three assumptions facilitate the equilibrium analysis. First, in the setup of

both Matthews and Mirman (1983) and Carlsson and Dasgupta (1997), MLRP

implies that the receiver necessarily uses a cuto¤ strategy in equilibrium. Building

on their theoretical analysis, Lemma 1 below reveals that essentially the same

result applies in our model where signaling constitutes a pure social waste. Second,

the three assumptions together also imply that f is �nicely�shaped, see our Lemma

2.
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Lemma 1. Let �b(m) [ �g(m)] denote the probability with which the bad [good] type
seller chooses signal costs m in equilibrium. Consider non-pooling equilibria only,

i.e. �b(m) 6= �g(m) for some m � 0. Assumptions (F.1) through (F.3) then imply
that the buyer�s best response rule is of the following form (with z� 2 (�1;+1)):

�(z) = 0 if z < z� (A1)

= 1 if z > z�;

with �(z) the probability that the buyer �Buys�after observing signal z.

Proof. To prove the lemma, we �rst show that the seller�s equilibrium strategy is
weakly monotonic in his type. Using this we subsequently show that the buyer�s

equilibrium payo¤ from buying is monotonically increasing in the observed signal,

positive for large signals and negative for small signals.25

Let p(m j �(z)) =
R
�(z) � 1

�
� f
�
z�m
�

�
dz denote the probability with which the

buyer buys, given that she uses strategy �(z) and the seller chooses signal cost m.

For the type t 2 fb; gg seller, expected payo¤s then equal t � p(m j �(z))�m. Let
Mt be the set of maximizers of this expected payo¤ function. This set is non-empty

because f , and thus p(m j �(z)), is continuous and the relevant range [0; t] of signal
costs m is compact. Suppose there exists a m0

b 2 Mb with m0
b > 0. It then holds

that g � [p(m0
b j �(z))� p(m j �(z))] > b � [p(m0

b j �(z))� p(m j �(z))] � m0
b�m for

all m 2 [0;m0
b). The second inequality directly follows from m0

b 2Mb whereas the

�rst follows from g > b. Thus, the good type strictly prefersm0
b > 0 over any lower

level of signal costs. Because this holds for any m0
b > 0 inMb, there exists a cuto¤

level mc � 0 such that the bad (good) type necessarily chooses m � mc (m � mc)

in equilibrium. The seller�s equilibrium strategy is thus weakly monotonic.

The buyer�s expected payo¤s of buying when she observes signal z and the

seller plays
�
�b; �g

�
equal V

�
z j

�
�b; �g

��
= �y+[x+y] ��(z). Here �(z) denotes

the buyer�s posterior belief that the seller is of the good type after observing signal

z and given that the seller uses strategy
�
�b; �g

�
. By Assumption (F.2) this belief

is determined by Bayes�rule everywhere:

�(z) � Pr(
�
t = good j z;

�
�b; �g

��
(A2)

=
p �
R
f
�
z�m
�

�
� �g(m) dm

p �
R
f
�
z�m
�

�
� �g(m) dm+ (1� p) �

R
f
�
z�m
�

�
� �b(m) dm

25The proof is in the spirit of Lemmas 1 and 2 in Matthews and Mirman (1983). Because they
do not consider mixed strategies, however, our proof more closely follows the one of Proposition
3.1 in Carlsson and Dasgupta (1997).
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Given that f is continuous it follows that �(z) is continuous in z. Moreover,

if �b(m) 6= �g(m) for some m � 0, MLRP together with the weak monotonic-

ity of the seller�s strategy imply that �(z) is strictly increasing in z (cf. Mil-

grom, 1981, Proposition 2).26 This in turn implies that the buyer�s expected

payo¤s V
�
z j

�
�b; �g

��
are continuous and strictly increasing in z. Suppose

V
�
z j

�
�b; �g

��
> [<]0 for all z. Then the buyer always [never] buys irrespec-

tive of the value of z and both seller types would strictly prefer m = 0. This

contradicts �b 6= �g. Hence there is a unique solution z� to V
�
z j

�
�b; �g

��
= 0.

�

Lemma 2. Assumptions (F.1) through (F.3) imply that f(u) is uni-modal and
strictly increasing [decreasing] in u for u < [>]M , with M denoting the mode.

Proof. Let c1 < c3. We �rst show that f(c) > minff(c1); f(c3)g for all c 2 (c1; c3).
Suppose not. Then by the continuity of f there exists a c2 2 (c1; c3) for which
f(c2) � f(c) for all c 2 [c1; c3] (i.e. c2 is an interior global minimum of f on

the compact set [c1; c3]). Assumption (F.1) then also implies that there exists a

�c � minfc3 � c2; c2 � c1g (with �c > 0) such that f(c2 � �c) � f(c2) and

f(c2 + �c) � f(c2). Pick zh and m0 such that zh � m0 = � (c2 +�c), and take

zl = �c2+m
0 and m = m0+��c. Then f(

zh �m
�

)

f(
zh �m0

�
)
= f(c2)

f(c2+�c)
� f(c2��c)

f(c2)
=

f(
zl �m
�

)

f(
zl �m0

�
)
.

This contradicts that g(z j m) satis�es MLRP.
Given that f is continuous and strictly positive on R it follows that f can-

not be monotonically increasing; otherwise
R1
c1
f (u) du >

R1
c1
f (c1) du = 1,

contradicting that f is a density. Together with f(c) > minff(c1); f(c3)g for all
c 2 (c1; c3) it follows that f is uni-modal. �

Assuming that players are restricted to use pure strategies only, Theorem 1 below

characterizes the set of possible equilibria. Proposition 1 in the main text directly

follows from this theorem.

26To see this directly, note that the sign of @�(z)@z equals the sign of @l(z)@z , with l(z) equal to:

l(z) �
p �
R
f
�
z�m
�

�
� �g(m) dm

(1� p) �
R
f
�
z�m
�

�
� �b(m) dm

=

p �
Z �

f( z�m� )
f( z�m

c

� )

�
� �g(m) dm

(1� p) �
Z �

f( z�m� )
f( z�m

c

� )

�
� �b(m) dm

The second equality simply follows from dividing both numerator and denominator by f
�
z�mc

�

�
,

with mc de�ned in the main text. By MLRP, the numerator is strictly increasing in z whenever
there exists a m > mc for which �g(m) > 0. Similarly so, the denominator is strictly decreasing
in z if there exists a m < mc for which �b(m) > 0. Hence l(z) is strictly increasing in z whenever
�b 6= �g.
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Theorem 1. Assume that players are restricted to use pure strategies. (i) A

pooling equilibrium in which both seller types choose m = 0 always exists. In this

equilibrium the buyer never [always] buys when p < [>]�� � y
x+y
. Pooling on some

m > 0 cannot occur. (ii) Generically, i.e. for all p 6= ���g
(1���)�b+���g , it holds that

in any separating equilibrium the bad type seller chooses m = 0 whereas the good

type chooses some positive level of signal costs m =mg > 0. The buyer buys if

z > z� and refrains from buying otherwise. Necessary and su¢ cient conditions for

((0;mg); z
�) to constitute equilibrium strategies are:

g

�
� f
�
z� �mg

�

�
= 1 with mg > z

� � �M (A3)

1

�
� f
�
z�

�

�
=
p � (1� ��)
�� � (1� p) �

1

g
(A4)

b �
�
F

�
z�

�

�
� F

�
z� �mb

�

��
� mb (A5)

for mb > z
� � �M that solves

b

�
� f
�
z� �mb

�

�
= 1

g �
�
F

�
z�

�

�
� F

�
z� �mg

�

��
� mg (A6)

Proof. (i) For any pooling strategy it follows from (A2) that the buyer�s posterior
belief equals her prior belief for any signal z observed; �(z) = p 8z. Therefore, if
p �x� (1�p) �y > 0, i.e. p > �� � y

x+y
, the buyer buys for sure and neither type of

seller wants to spend positive signaling costs. Similarly, in case p < �� the buyer

never buys and the seller�s unique best response is m = 0. Only in the knife-edge

case p = �� the buyer is indi¤erent and her probability of buying �(z) may vary

with z. For the type t seller (with t 2 fb; gg) to be willing to choose some m > 0

it must then hold that t � @p(mj�(z))
@m

= 1, where p(m j �(z)) =
R
�(z) � 1

�
� f
�
z�m
�

�
dz

denotes the probability of trade, given buyer�s strategy �(z) and the seller choosing

signal costs m.27 With b < g this �rst order condition cannot hold simultaneously

for both types, so pooling on some m > 0 cannot occur.

(ii) From Lemma 1 it follows that in any non-pooling equilibrium the buyer

necessarily uses a cuto¤ strategy like in (A1). The expected payo¤ of choosing

27By Assumption (F.1) @p(mj�(z))
@m does exist. In fact, @p(mj�(z))@m =

R
1
� � f

�
z�m
�

�
d�(z), see

Carlsson and Dasgupta (1997, fn. 8).
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m for the type t seller then equals t �
�
1� F

�
z��m
�

��
� m. Hence the following

necessary �rst order condition for an interior maximum:

t

�
� f
�
z� �m
�

�
= 1: (A7)

The l.h.s. (r.h.s) equals the marginal bene�ts (costs) of raising m. With b < g ,

for given m condition (A7) cannot hold simultaneously for both types. The two

seller types thus never put positive probability on the same m > 0 in equilibrium.

From Lemma 2 it follows that (A7) allows at most two solutions. If so, only

the largest one satis�es the second order condition, because at the optimum f

should be increasing. (If f is decreasing, an increase in m at the margin increases

the marginal bene�ts of raising m further.) Therefore, necessarily z��mt

�
< M .

In equilibrium the type t seller thus chooses between the two levels m = 0 and

mt > z
� � �M satisfying (A7) only.

We next show that the bad type seller necessarily chooses m = 0: Suppose to

the contrary that he chooses mb > 0. This requires that mb yields the bad type

weakly more than m = 0 does. Given g > b the good type then already strictly

earns more by choosing mb rather than m = 0, so certainly this is the case for

signal costs equal to mg. Hence for all levels of signal costs chosen in equilibrium

�rst order condition (A7) holds. From Bayes�rule in (A2) we then obtain that

after observing cuto¤ signal z�, the buyer�s posterior belief equals:

�(z�) =
p � 1

g

p � 1
g
+ (1� p) � 1

b

=
p � b

p � b+ (1� p) � g

Because �(z) is continuous in z, it necessarily must be such that the buyer is

indi¤erent between her two actions after observing cuto¤ signal z� (cf. Carlsson

and Dasgupta, 1997):

�(z�) = �� � y

x+ y
(A8)

Since generically p�b
p�b+(1�p)�g 6=

y
x+y
; an equilibrium in which neither type chooses

m = 0 cannot exist. Therefore, the bad type seller necessarily chooses m = 0:

Only two possible types of pure strategy equilibria remain: (1) both seller

types choose m = 0 (cf. case (i)), and (2) the bad type chooses m = 0 whereas the

good type chooses mg > 0 satisfying (A3). Consider the latter case. From (A2)

and (A3) we obtain that:

�(z�) =
p

p+ (1� p) � g � 1
�
� f
�
z�

�

�
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Together with requirement (A8) then equality (A4) follows. Note that generically,

this latter equality has either two, or zero solutions (cf. Lemma 2).

Given cuto¤ z� implicitly de�ned in (A4), the bad type seller should not have

an incentive to deviate from m = 0. The best candidate deviation level of signal

costs mb necessarily satis�es �rst order condition (A7) and mb > z
���M as well:

This level mb should give the bad type seller weakly less than choosing m = 0,

i.e.:

b �
�
1� F

�
z�

�

��
� b �

�
1� F

�
z� �mb

�

��
�mb

Rewriting this yields requirement (A5). (From Lemma 2 it follows that only when
b
�
� f
�
z�

�

�
< 1 no mb > z

� � �M exists that solves the �rst order condition (A7);

in that case condition (A5) is automatically satis�ed.) Similarly so, the good type

seller should (weakly) prefer choosing mg > 0 over no signal costs at all. This is

what condition (A6) requires. �

The actual existence of a separating equilibrium depends on whether expressions

(A3) through (A6) in Theorem 1 allow a feasible solution. Theorem 2 below,

which generalizes Proposition 2 in the main text to general distribution functions

F , in particular considers how this varies with the value of �. For the situation

in which the level of noise becomes small, the following lemma will appear helpful

in proving this theorem. In words it says that the tails of density f(u) become

�thin� if we move su¢ ciently far away from the mode M (see part (a)). As a

consequence, we should stay su¢ ciently close to the mode M if we want f(u) to

equal a particular given value v (cf. part (b)).

Lemma 3. Assumptions (F.1) through (F.3) imply that:

(a) 8k>0 9U(k)>0 such that f(juj) � k
juj for all juj � U(k);

(b) Let f�1+ (f�1� ) denote the inverse of f(u) on the interval u � M (u � M),

with M the mode of f(u).28 It holds that: 8k>0 9V (k)>0 such that �k
v
�

f�1� (v) �M � f�1+ (v) � k
v
for all v satisfying 0 < v � V (k):

Proof. (a) First consider the case u > 0. Let D � fu j f(u) = k
u
g denote

the set of intersection points of f(u) and h(u; k) � k
u
. First suppose that this

set is bounded (which includes the case that D is empty), i.e. 9U(k)>0 such that
28Given that f is monotonically increasing below M and monotonically decreasing above M

(cf. Lemma 2), these inverses do exist.
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u � U(k) for all u 2 D. Then by the continuity of f and h(u; k) on (0;1), for all
u > U(k) either f(u) > k

u
or f(u) < k

u
. Now the former would imply:Z 1

U(k)

f(u) du >

Z 1

U(k)

k

u
du = k �

�
lim
u�!1

lnu� lnU(k)
�
=1:

This contradicts
R1
U(k)

f(u) du � 1 given that f is a density. Hence it must hold
that f(u) < k

u
for all u > U(k).

Next assume that the set of intersection pointsD is unbounded. Let u1; u3 2 D
with u1 < u3 and f(u) < k

u
for all u satisfying u1 < u < u3. Such u1 and u3 do

exist when D is unbounded, because otherwise f(u) � k
u
for all u � u1 andR1

u1
f(u) du = 1, a contradiction. De�ne u2 � u1+u3

2
. MLRP then requires

f(u1)
f(u2)

< f(u2)
f(u3)

.29 Given u1; u3 2 D this becomes k2

u1�u3 < [f(u2)]
2. From f(u2) <

k
u2

this can only be satis�ed whenever k2

u1�u3 <
k2

u22
, i.e.

�
u1+u3
2

�2
< u1 � u3. Rewriting

this we get (u1 � u3)2 < 0, a contradiction. Hence D cannot be unbounded.

The case u < 0 is simply the mirror image of u > 0 and thus immediately

follows from the above.

(b) This part follows from part (a). To see this, consider the case u �M . Here
f �and thus f�1+ �is decreasing. Let U(k) > 0 be the cuto¤ value as given in part

(a), i.e. f(u) � k
u
for all u � U(k). Consider values v � f(U(k)) � V (k). From

f�1+ decreasing it follows that for all these values f�1+ (v) � f�1+ (f(U(k))) = U(k).
Now suppose there exists a v0 with 0 < v0 � V (k) for which f�1+ (v

0) > k
v0 . Given

that function h(u; k) � k
u
is strictly decreasing, it holds that h(f�1+ (v

0); k) <

h( k
v0 ; k) = v

0 = f
�
f�1+ (v

0)
�
. So, at point f�1+ (v

0) function f(u) lies above function

h(u; k). Together with f�1+ (v
0) � U(k) this contradicts part (a). Hence necessarily

f�1+ (v) � k
v
for all v satisfying 0 < v � V (k). (Note that M � f�1+ (v) follows by

de�nition.) Again, the case u �M is the mirror image of u �M . �

Theorem 2. Assume that players are restricted to use pure strategies. A nec-

essary condition for a separating equilibrium to exist is that � � g � f(M) �
min

n
(1�p)��
p(1���) ; 1

o
� �. Assuming � � �, it holds that:

(i) p � ��: a separating equilibrium does not exist if � becomes su¢ ciently small;

(ii) �� < p < ���g
(1���)�b+���g : a separating equilibrium always exists. For this equi-

librium it holds that lim�#0mg = 0;

29To see this, pick zh and m0 such that zh � m0 = �u3. Then let zl = �u2 + m
0 and m =

m0 + � (u2 � u1). This gives zh�m
0

� = u3, zh�m� = u2 =
zl�m0

� and zl�m
� = u1. The requirement

then follows from MLRP.
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(iii) p > ���g
(1���)�b+���g : a separating equilibrium does not exist.

Proof. When � > � either (A3) or (A4) in Theorem 1 does not have a solution, so
a separating equilibrium cannot exist. Therefore, � � � is a necessary condition.
Before proving (i) through (iii) separately, we �rst show that lim�#0 z

� =

lim�#0mg = lim�#0mb = 0 (with mb the solution to (A7) for t = b): Consider the

de�ning equation (A4) of z� and let c = p�(1���)
���(1�p) �

1
g
. From Lemma 2 it follows

that (generically) this equation has either two or no solutions. For � low enough,

(A4) admits two solutions. Denote these solutions z�l and z
�
h respectively, with

z�l < z�h. Note that necessarily
z�l
�
< M and z�h

�
> M . First consider the latter

solution z�h. With f
�1
+ denoting the inverse of f on the interval above M , we

obtain z�h = � � f�1+ (�c) from (A4). From Lemma 3(b) it then follows that for

all � satisfying 0 < � � V (k)
c
� �(k; c), necessarily f�1+ (�c) � k

�c
. Hence z�h =

� � f�1+ (�c) � � � k�c =
k
c
for all � � �(k; c). Because this holds for any arbitrary

k > 0; and z�h > �M , we obtain lim�#0 z
�
h = 0.

Next consider a solution z�l to (A4) for which
z�l
�
< M . In this case z�l =

� � f�1� (�c) from (A4), with f�1� the inverse of f on the interval below M . From

Lemma 3(b) it then follows that for all � � V (k)
c
� �(k; c), necessarily f�1� (�c) �

� k
�c
. Hence z�l = � � f�1� (�c) � �k

c
for all � � �(k; c). Because this holds for any

arbitrary k > 0, and z�l < �M , we obtain lim�#0 z
�
l = 0. Hence, overall lim�#0

z� = 0 for any solution z� to (A4).

By inserting z�l = z� � mg and c = 1
g
in the reasoning for z�l above we im-

mediately obtain lim�#0 (z
� �mg) = 0 from equation (A3). Together with lim�#0

z� = 0 this implies lim�#0mg = 0. Similarly so for lim�#0mb = 0.

(i). Inequality p � �� is equivalent to p�(1���)
���(1�p) �

1
g
� 1

g
. From conditions (A3)

and (A4) in Theorem 1 we obtain that f
�
z��mg

�

�
� f

�
z�

�

�
necessarily. Together

with Lemma 2 this implies that necessarily z�

�
> M: Hence in this case only

a separating equilibrium based on z�h may exist. We show that this separating

equilibrium disappears for � su¢ ciently small, because the bad type seller obtains

an incentive to deviate from m = 0 to a positive level of signal costs equal to mb.

To see this, from equality (A4) we have that lim�#0 f
�
z�h
�

�
= 0. With Lemma 2

and z�h
�
> M this in turn implies that lim�#0

z�h
�
=1: Taking the limit in the l.h.s.

of condition (A5) we then obtain that:

lim
�#0

b �
�
F

�
z�h
�

�
� F

�
z�h �mb

�

��
= b > 0
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Here lim�#0
z�h�mb

�
= �1 (and thus lim�#0 F

�
z�h�mb

�

�
= 0) follows from the fact

that mb satis�es both �rst order condition (A7) and mb > z�h � �M (such that
z�h�mb

�
< M). Because lim�#0mb = 0 as derived above, requirement (A5) cannot

be satis�ed for � su¢ ciently small.

(ii). When �� < p < ���g
(1���)�b+���g separating equilibria based on z

�
l and z

�
h may

exist side by side. The one based on z�h vanishes for low �, see the proof of part (i).

We show that the one based on z�l continues to exist under the stated conditions.

Note that when � � �, condition (A4) allows a solution z�l � �M . Given this

solution z�l and
p(1���)
(1�p)�� > 1 from �� < p, we can always �nd a corresponding

solution mg to (A3). Because p < ���g
(1���)�b+���g , it follows from (A4) that b

�
�

f
�
z�l
�

�
= b

g
�p(1��

�)
(1�p)�� < 1. This implies that condition (A5) is automatically satis�ed,

because no mb > z
� � �M exists that satis�es the �rst order condition (A7) (see

the proof of Theorem 1). Moreover, from (A3) and Lemma 2 we have:

g �
�
F

�
z�l
�

�
� F

�
z�l �mg

�

��
= g �

Z z�l

z�l �mg

1

�
� f
�u
�

�
du

> g �
Z z�l

z�l �mg

1

g
du = mg

Hence condition (A6) is satis�ed as well.

(iii). In case p > ���g
(1���)�b+���g ; (A4) implies that

b
�
� f
�
z�

�

�
= b

g
� p(1��

�)
(1�p)�� > 1. At

m = 0 the marginal bene�ts for the bad type of raising the signal costs thus exceed

the marginal costs of doing so and he wants to deviate from choosing m = 0. That

is, condition (A5) cannot be satis�ed. �

The non-existence of a separating equilibrium in cases (i) and (iii) is based on the

same intuition. Equation (A4) in Theorem 1 provides a precise characterization

of the buyer�s equilibrium cuto¤ value z� on the basis of her posterior beliefs. But

the feasible value(s) of z� may be incompatible with seller�s best response behavior

given the buyer�s cuto¤ strategy. In particular, no-deviation condition (A5) for

the bad type seller may not be satis�ed for the value(s) of z� that solve (A4). He

thus obtains an incentive to deviate from m = 0.

We �nally turn to mixed strategy equilibria. Theorem 3 below characterizes

the set of mixed strategy equilibria that potentially may exist.

Theorem 3. When players are allowed to use mixed strategies, only two additional
types of (mixed strategy) equilibria may potentially exist:
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(i) The bad type chooses m = 0 with probability 1 � qb and some mb > 0 with

probability qb, whereas the good type chooses some mg � mb for sure. A

necessary condition for existence is: p < ���g
(1���)�b+���g . Conditional on ex-

istence it holds that: lim�#0 z
� = lim�#0 mb = lim�#0 mg = b and lim�#0

qb =
(1���)�p
(1�p)��� �

b
g
� q0 :

(ii) The bad type chooses m = 0 for sure while the good type chooses m = 0

with probability 1 � qg and some mg > 0 with probability qg. A necessary

condition for existence is: p < ��. Conditional on existence it holds that:

lim�#0 z
� = lim�#0 mg = g and lim�#0 qg = 0 :

Proof. From the proof of Theorem 1 we obtain the following three observations:

(1) in equilibrium the type t seller chooses between the two levels of signal costs

m = 0 and mt > z
� � �M satisfying (A7) only, (2) the bad type seller necessarily

puts positive probability onm = 0, and (3) if the bad type puts positive probability

on mb > 0 as well, the good type strictly prefers level mg � mb over m = 0 and

thus choosesmg for sure. Together these three observations imply that only mixed

strategy equilibria of types (i) and (ii) may potentially exist. The remainder of the

proof characterizes these mixed equilibria in more detail and considers the limit

equilibria of letting � become in�nitely small.

First note that in a mixed equilibrium it necessarily holds that z� > �M .

Suppose z� � �M . Then f( z
��m
�
) < f( z

�

�
) by Lemma 2 and neither type wants

to mix between 0 and m (at m marginal bene�ts equal marginal costs, so at all

inframarginal levels below m marginal bene�ts exceed marginal costs).

(i) Equilibrium values of z�;mb;mg and qb are characterized by the following

four equations:

b

�
� f
�
z� �mb

�

�
= 1 with mb > z

� � �M (A9)

g

�
� f
�
z� �mg

�

�
= 1 with mg > z

� � �M (A10)

b

�
� f
�
z�

�

�
=
(1� ��) � p � b� �� � (1� p) � g � qb

�� � (1� qb) � (1� p) � g
with z� > �M (A11)

b �
�
F

�
z�

�

�
� F

�
z� �mb

�

��
= mb (A12)
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Given the last condition, no-deviation requirement (A6) for the good type is

automatically satis�ed. Existence depends on whether (A9) through (A12) admit

a feasible solution. Because these are four non-linear equations (in four unknowns),

it is in general hard to determine whether a solution exists. We therefore look at

the equilibrium properties when � becomes small, assuming the mixed strategy

equilibrium to exist. The latter requires necessarily (1���)�p�b����(1�p)�g�qb
���(1�qb)�(1�p)�g < 1, for

otherwise f( z
��mb

�
) < f( z

�

�
) and the bad type does not want to mix. This reduces

to p < ���g
(1���)�b+���g . Because f > 0, from (A11) it follows that qb <

(1���)�p
(1�p)��� �

b
g
� q0

necessarily. (Note that for p < ���g
(1���)�b+���g it holds that q0 < 1.)

From (A9) and (A10) it follows that lim�#0 (z
� �mb) = lim�#0(z

� �mg) = 0,

see the proof of Theorem 2. Moreover, equality (A12) implies lim�#0 mb = b.

Together, lim�#0 z
� = lim�#0 mb = lim�#0 mg = b. Now suppose lim�#0 qb 6= q0.

Then there exists some r < q0 such that qb � r for some subsequence �r # 0. Let
zr solve b

�
� f
�
zr
�

�
= (1���)�p�b����(1�p)�g�r

���(1�r)�(1�p)�g � k(r). From the proof of Theorem 2

it follows that lim�#0 zr = 0. With k(r) decreasing in r (given p <
���g

(1���)�b+���g )

and f( z
�
) decreasing in z for z > �M (cf. Lemma 2), it follows that z� � zr

for all �r # 0, and thus z� ! 0 along this subsequence. This contradicts lim�#0

z� = b > 0. Hence necessarily lim�#0 qb = q0.

(ii) In this case equilibrium values of z�;mg and qg are characterized by the

following three equations:

g

�
� f
�
z� �mg

�

�
= 1 with mg > z

� � �M (A13)

g

�
� f
�
z�

�

�
=

(1� ��) � p � qg
(�� � p) + (1� ��) � p � qg

with z� > �M (A14)

g �
�
F

�
z�

�

�
� F

�
z� �mg

�

��
= mg (A15)

Given (A15), requirement (A5) for the bad type seller is satis�ed. We again look

at the equilibrium properties for low values of �, assuming the mixed strategy

equilibrium to exist. This requires (1���)�p�qg
(���p)+(1���)�p�qg < 1, for otherwise f(

z��mg

�
) <

f( z
�

�
) and the good type does not want to mix. Therefore p < �� is needed.

From (A13) it follows that lim�#0
z��mg

�
= �1 and lim�#0 (z

� �mg) = 0, see

the proof of Theorem 2. Because the r.h.s. of (A14) is bounded from above by
(1���)�p
(1�p)��� , the l.h.s. is bounded as well. This implies lim�#0 f

�
z�

�

�
= 0 and thus

lim�#0
z�

�
= 1. Together with equality (A15) we obtain lim�#0 mg = g, and

thus lim�#0 z
� = g as well. Now suppose lim�#0 qg 6= 0. Then there exists some
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r > 0 such that qg � r for some subsequence �r # 0. Let zr solve g
�
� f
�
zr
�

�
=

(1���)�p�r
(���p)+(1���)�p�r � l(r). From the proof of Theorem 2 it follows that lim�#0 zr = 0.

With l(r) increasing in r and f( z
�
) decreasing in z for z > �M (cf. Lemma 2), it

follows that z� � zr for all �r # 0, and thus z� ! 0 along this subsequence. This

contradicts lim�#0 z
� = g > 0. Hence necessarily lim�#0 qg = 0. �

Theorem 3 reveals that whenever an equilibrium exists in which the good seller

type mixes, this equilibrium converges to the pooling on m = 0 equilibrium when

the noise becomes small. The other equilibrium in which the bad type mixes

converges to a mixed equilibrium that is insu¢ ciently revealing; the bad type

chooses m = b with probability q0 and m = 0 otherwise, while the good type

chooses m = b for sure. Upon receiving message b the buyer then decides to buy.

Interestingly, Theorems 2 and 3 together reveal that for a very favorable prior, only

pooling on m = 0 can occur. Some amount of noise thus precludes informative

signaling altogether in this case.
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Table 1: Payoffs of seller and buyer over action-state pairs 

 Seller is of bad type (1− p) Seller is of good type (p) 

Buy b − m, −y g − m, x 

Refrain −m, 0 −m, 0 

Remarks: The first (second) number in each cell refers to the seller’s 
(buyer’s) payoffs. g > b > 0 and x,y > 0 are parameters of the model. m ≥ 0 
denotes the signal costs chosen by the seller. 

 

 

 

 

 

 
Table 2: Overview of separating equilibria 

 Amount of noise σ  

 ≤ 20 25 40 75 100 120 140 ≥ 145 

*
hz  − 53.14 75.66 114.26 132.12 141.02 145 − 

gm  − 101.28 142.21 206.43 228.80 231.62 216.63 − 

Remarks: This table is based on the parameter values used in the experiment: p = 0.5, g 
= 400, b = 90, x = 300 and y = 450 (so β* = 0.6). In the experiment we only consider 
four different values of σ, viz. 0, 10, 40 and 120. A dash implies that a separating 
equilibrium does not exist. 

 



 
Table 3: Overview of mixed strategy equilibria 

 Bad type mixes  Good type mixes 

σ  *
hz  bq  bm  gm   *

hz  gq  gm  

1 88.98 0.15 89.66 90.16  396.53 ≈ 0 399.71 

5 77.95 0.15 87.88 91.11  385.14 ≈ 0 398.30 

10 69.06 0.15 85.05 92.59  372.74 ≈ 0 396.28 

40 − − − −  314.21 ≈ 0 380.75 

120 − − − −  200.35 0.25 290.95 

Remarks: This table is based on the parameter values used in the experiment: g = 400, b 
= 90, x = 300, y = 450 and p = 0.5. In the experiment we only consider the four different 
values of σ of 0, 10, 40 and 120. A dash implies that a mixed strategy equilibrium does 
not exist for the given value of σ. 

 

 

 

Table 4: Experimental design 

Treatment σ # of 

matching 

groups 

#subjects per 

matching group 

σ0 0 4 8 

σ10 10 5 8 

σ40 40 6 8 

σ120 120 8 8 

Remarks: Per period payoffs for the subjects are given in 
Table 1, with b = 90, g = 400, x = 300, y = 450 and p = 0.5. 

 



Table 5: Pooling and separating signal costs (SC) in periods 21-40 

 Pooling: SC < 90  Separating: SC ≥ 90  

 n Actual Emp. best response  n Actual Emp. best response  

Predicted 

separating eq. 

Low type          
σ0 149 0.7 (7.0) 2.1 (13.0)  11 112.3 (11.7) 0.0 (0.0)  0.0 

σ10 200 2.3 (12.9) 0.0 (0.0)  − − −  0.0 

σ40 235 2.8 (11.7) 0.0 (0.0)  5 124.0 (28.8) 0.0 (0.0)  0.0 

σ120 319 1.6 (7.0) 0.0 (0.0)  1 110.0 (0.0) 0.0 (0.0)  0.0 

High type          
σ0 1 80.0 (0.0) 80.0 (0.0)  159 97.9 (11.4) 93.8 (4.4)  90.0 

σ10 4 70.0 (4.1) 112.5 (15.0)  196 113.6 (15.9) 117.9 (11.6)  48.7* 

σ40 18 38.3 (33.7) 149.6 (16.2)  222 140.5 (41.5) 156.3 (17.5)  142.2 

σ120 187 17.7 (29.9) 190.8 (73.8)  133 158.3 (55.5) 187.4 (62.5)  231.6 

Ranksum tests high type (p values)       
σ0 vs. σ10     0.09    
σ0 vs. σ40     0.01    
σ0 vs. σ120     0.01    
σ10 vs. σ40     0.10    
σ10 vs. σ120     0.11    
σ40 vs. σ120     0.90    

Remarks: n gives the number of observations. Standard deviations (based on individual observations) in parentheses. * When σ = 10 only pooling on 
zero is a Nash equilibrium; a choice for 48.7 by the high type is a best response given that the low type chooses a signal cost of zero (but not vice 
versa). Between treatment comparisons are based on Mann-Whitney ranksum tests (performed at the group level). 



Table 6: Average actual outcomes per group and comparison with best response (periods 21-40) 

   1 2  3 4 5 6 7 8 
   Act. BR Act. BR Act. BR Act. BR Act. BR Act. BR Act. BR Act. BR 

σ0 SC Low 2.4 0.0 2.5 8.0 0.0 0.0 28.4 0.0     
  High 91.7 90.0 92.8 89.9 100.0 100.0 106.8 95.0     
 Buyer buys? 50.0 51.3 50.0 51.3 50.0 50.0 55.0 62.5     
 Pool 50.0  50.0  50.0  45.0      
 Separ. 100  97.5  100.0  87.5      
 

Agrees 
with eq. P / S S  S  S  S      

            
σ10 Low 6.0 0.0 5.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0    
 

SC 
High 97.8 103.9 100.3 105.3 118.6 124.3 122.0 130.8 125.1 124.6    

 Buyer buys? 47.5 53.8 48.8 52.5 47.5 50.0 42.5 50.0 46.3 50.0    
 Pool 52.5  51.3  52.5  57.5  53.8     
 Separ. 95.0  93.8  97.5  92.5  96.3     
 

Agrees 
with eq. P / S S  S  S  S  S     

             
σ40 Low 2.0 0.0 0.5 0.0 2.8 0.0 3.0 0.0 1.4 0.0 22.3 0.0   
 

SC 
High 90.0 136.1 112.2 156.0 119.3 148.2 131.3 155.2 153.3 162.7 191.0 176.4   

 Buyer buys? 43.8 50.0 42.5 52.5 46.3 55.0 48.8 55.0 50.0 51.3 53.8 53.8   
 Pool 56.3  57.5  53.8  51.3  50.0  46.3    
 Separ. 83.8  90.0  91.3  93.8  92.5  88.8    
 

Agrees 
with eq. P / S S  S  S  S  S  S    

             
σ120 Low 0.1 0.0 0.0 0.0 0.5 0.0 0.0 0.0 9.0 0.0 1.1 0.0 5.0 0.0 0.0 0.0 
 

SC 
High 4.3 121.1 28.8 205.5 32.8 231.7 62.3 220.3 86.9 187.5 92.6 210.3 103.8 178.7 197.6 160.2 

 Buyer buys? 35.0 0.0 21.3 7.5 23.8 1.3 45.0 23.8 32.5 22.5 22.5 25.0 41.3 30.0 40.0 37.5 
 Pool 65.0  78.8  76.3  55.0  67.5  77.5  58.8  60.0  
 Separ. 42.5  68.8  58.8  72.5  80.0  75.0  68.8  87.5  
 

Agrees 
with eq. P / S P  P  P  S (P)  S (P)  P  S  S  

Remarks: We have 23 independent group observations, with 4, 5, 6 and 8 groups for treatments σ0, σ10, σ40 and σ120, respectively. The table reports the average signal cost 
SC within a group (by quality level), buyers’ buy decision, and the percentage of outcomes that is in line with the pooling and the separating equilibrium outcomes. 
Groups are ordered on the basis of average signal cost when quality is high. ‘Act.’ means actual, ‘BR’ refers to best response. Groups 4 and 5 in σ120 converged to pooling 
with the strategy method: in periods 41-50, 87.5% (75.0%) and 77.5% (75.0%) of the outcomes agreed with pooling (separating) in groups 4 and 5, respectively. 



 

Table 7: Average estimated cutoff levels and tests for equality (periods 21-40) 

 Pooling groups  Separating groups 

 Estimated 

actual 

(stan. Dev.) 

Predictions 

best response 

[equilibrium] 

Actual vs. 

best response 

[equilibrium] 

 Estimated 

actual 

(stan. dev.) 

Predictions 

best response 

[equilibrium]  

Actual vs. 

best response 

[equilibrium] 

σ0 − − −  94.0 53.0 0.07 

     (4.1) [90.0] [0.11] 

        

σ10 − − −  96.2 57.8 0.04 

     (15.1) [25.6*] [0.04] 

        

σ40 − − −  98.5 75.3 0.03 

     (22.4) [75.7] [0.03] 

        

σ120 211.5  330.9 0.72  96.9 122.2 0.47 

 (166.2) [800] [0.07]  (84.8) [141.0] [0.07] 

        

Ranksum tests (p-values)      

σ0 vs. σ10     0.62   

σ0 vs. σ40     0.39   

σ0 vs. σ120     0.25   

σ10 vs. σ40     1.00   

σ10 vs. σ120     0.22   

σ40 vs. σ120     0.34   

Remarks: For each buyer the actual cutoff level was estimated on the basis of the choices in periods 
21-40. The cutoff level was set such that the number of errors against the cutoff level was minimized. 
Standard deviations (based on observations per person) in parentheses; equilibrium 
predictions/comparisons appear in square brackets. (* When σ = 10 only pooling on zero is a Nash 
equilibrium.) Within treatment comparisons are based on Wilcoxon tests performed at the matching 
group level, between treatment comparisons are based on Mann-Whitney tests performed at the 
matching group level. 



 

 

 

Table 8: Consistency best / behavioral response with actual buy decisions (periods 21-40) 

 Buy?  Model: best response  Model: behavioral response 

   No Yes  No Yes 

σ0 No  148 8  148 8 

 Yes  − 164  − 164 

        

σ10 No  194 20  206 8 

 Yes  1 185  7 179 

        

σ40 No  218 34  235 17 

 Yes  8 220  16 212 

        

σ120 No  414 17  386 45 

 Yes  108 101  77 132 

        

σall No  974 79  975 78 

 Yes  117 670  100 687 

Remarks: The cells list the number of cases that fall into the specific row (actual buy 
decision) and the corresponding column (model prediction). σall collapses all cases of all 
treatments. 



 

 

Table 9: Signal costs sellers, best responses and behavioral responses (periods 21-40) 

 Quality  Actual Best   

response 

Behavioral 

response 

| Best−Actual | | Behav.−Actual | 

σ0 Low  8.3 (29.3) 2.0 (12.5) 0.2 (1.8) 10.3 (31.3) 8.5 (29.3) 

 High  97.8 (11.5) 93.7 (4.5) 94.3 (4.0) 4.1 (10.8) 3.9 (10.7) 

        

σ10 Low  2.3 (12.9) 0.0 (0.0) 0.4 (3.1) 2.3 (12.9) 2.3 (12.1) 

 High  112.8 (16.9) 117.8 (11.7) 111.1 (10.5) 10.1 (10.1) 8.2 (10.7) 

        

σ40 Low  5.3 (21.2) 0.0 (0.0) 3.3 (7.6) 5.3 (21.2) 7.9 (21.0) 

 High  132.8 (49.0) 155.8 (17.4) 128.4 (18.8) 36.8 (33.0) 24.1 (34.8) 

        

σ120 Low  2.0 (9.2) 0.0 (0.0) 2.0 (4.4) 2.0 (9.2) 3.2 (9.0) 

 High  76.1 (81.3) 189.4 (69.2) 15.7 (43.0) 131.6 (83.8) 71.0 (77.1) 

        

σall Low  4.0 (18.3) 0.3 (5.3) 1.7 (5.1) 4.4 (19.0) 5.2 (18.2) 

 High  102.6 (59.3) 148.4 (55.7) 79.5 (55.3) 58.3 (76.0) 33.4 (56.8) 

Remarks: Standard deviations (based on individual observations) in parentheses. σall collapses all 
cases of all treatments. The last two columns give the absolute differences between actual signal costs 
and best responses and behavioral responses, respectively. 



 

 

Table 10: Seller profits conditional on signal and type (periods 21-40) 

 Low type  High type 

 Pooling Separating  Pooling Separating 

 SC < 90 SC ≥ 90  SC < 90 SC ≥ 90 

σ0 −0.7 −46.8  −80.0 294.5 

 (7.0) (46.3)  (0.0) (60.2) 

      

σ10 −0.9  30.0 257.8 

 (9.6) 
− 

 (200.0) (100.6) 

      

σ40 3.3 −52.0  117.2 221.7 

 (24.6) (37.0)  (206.3) (119.1) 

      

σ120 22.6 −110  80.7 73.3 

 (40.4) (0.0)  (170.2) (189.8) 

Remarks: The cells list average profits. Standard deviations (based on 
individual observations) in parentheses. 



Figure 1a: signal densities and posterior beliefs in the no noise case
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Figure 1b: signal densities and posterior beliefs in the σ = 10 case
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Figure 2a: Social history window buyers (example). 
 

 
 
 
 
Figure 2b: Social history window sellers (example). 
 



Figures 3a-3h: running histograms for periods 21-40; for each signal cost the relative frequency of cases in the interval [signal cost-5, signal 
cost+5] is displayed. 
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Figures 4a-4d: expected profit buyer as function of cutoff given actual behavior of 
sellers in periods 21-40. 
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Figures 5a-5d: expected profit high-quality seller as function of signal cost given 
actual behavior of buyers in periods 21-40. 
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