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1 Introduction

In their in�uential paper, Shapley and Shubik (1971) introduce an assign-

ment problem that is a transferrable utility (cooperative) game in a two-sided

one-to-one matching problem. Kelso and Crawford (1982) generalize the as-

signment model to a many-to-one setting: they allow �rms to choose how

many workers to hire, and they analyze the resulting market equilibrium and

the core. They consider a central planning authority that matches up �rms

and workers and propose a price adjustment mechanism by generalizing the

Gale-Shapley deferred acceptance algorithm (Gale and Shapley 1962; Roth

and Sotomayor 1990). Their algorithm �nds the �rm-optimal stable assign-

ment that is a market equilibrium and a core allocation. As in many central-

ized market clearing mechanisms successfully used in the real world, such as

entry-level medical markets and school choice problems, Kelso and Crawford

(1982) assume that the matchmaker is a benevolent central planner who tries

to achieve a desirable allocation� a market equilibrium.

By contrast, in this paper, we consider another matching mechanism that

utilizes an auctioneer (matchmaker) who chooses a matching of �rms and

workers that maximizes pro�t in an environment of heterogeneous �rms and

workers. Speci�cally, we consider a two-stage noncooperative game in a many-

to-one assignment problem with a matchmaker. In the �rst stage, each �rm

proposes how much it is willing to pay workers if they are matched, and each

worker proposes what salary she is willing to accept from each �rm if they

are matched. These proposals are made simultaneously. Then, in the second

stage, the matchmaker matches up �rms and workers in order to maximize

pro�ts (the sum of the di¤erences between the o¤ering and asking salaries

from each matched �rm-worker(s)). This matchmaker game can be regarded

as a resource allocation mechanism with an auctioneer in a two-sided matching

problem.

Recently, Milgrom (2010) proposes a framework that analyzes the e¤ect on

equilibria of restricting the message space of a game. He de�nes a certain �out-

come closure property�on a simpli�cation of message space, and shows that

if the condition is satis�ed, then every (�)-Nash equilibrium in the simpli�ed

mechanism is an (�)-Nash equilibrium of the original mechanism. Moreover,
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he illustrates the bene�ts of working with the simpli�ed mechanism by noting

that the set of Nash equilibria is intact by simplifying message space through

adopting simple (individualized price) strategies in a combinatorial auction

game, and also that the Gale-Shapley algorithm selects the same outcome

even with individualized prices in the Kelso-Crawford assignment game under

(gross)-substitute assumption. Thus, it is interesting to investigate the per-

formance of using simple (individualized price) strategies in our matchmaker

game, which combines a two-sided matching problem and a combinatorial auc-

tion game.

Our matchmaker game can be considered a two-sided version of a combi-

natorial auction game. It satis�es the outcome closure property, so a Nash

equilibrium in simple (individualized price) strategies is a Nash equilibrium

in general (package price) strategies. However, in contrast to Milgrom�ob-

servation on a combinatorial auction game and the Gale-Shapley algorithm,

restricting the message space signi�cantly reduces the set of Nash equilibria

in our matchmaker game. In particular, all Nash equilibria in simple strate-

gies generate zero pro�t for the matchmaker (Theorem 1), but Nash equilibria

in general strategies may generate positive pro�ts (Example 3). This result

shows that while the simple strategy restriction excludes some of Nash equi-

libria in our matchmaker game, the performance of the mechanism improves

with the restriction since pro�t for the matchmaker is a waste of resource.

We also use a stronger equilibrium concept and investigate the equilibrium

outcomes. A strong Nash equilibrium is a strategy pro�le that is immune

to every coordinated change in strategies for any coalition (Aumann 1959).

In our matchmaker game, a strong Nash equilibrium in simple strategies is

a strong Nash equilibrium in general strategies as well (Proposition 1). We

show that every strong Nash equilibrium outcome in simple strategies is a

stable assignment (a core allocation) (Theorem 3).

Applying the above theorems, we obtain results on the implementation of

popular social choice correspondences in the Kelso-Crawford many-to-one as-

signment problem with monetary transfers. Alcalde et al. (1998) show that the

stable correspondence (competitive equilibrium correspondence) is subgame-

perfect-Nash-implementable by a simple two-stage game. Hayashi and Sakai
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(2009) characterize the stable correspondence by Nash implementation. Note

that their results cannot treat the one-to-one problem or a many-to-one prob-

lem with quotas. By noting that the set of Nash equilibrium outcomes is

equivalent to the set of acceptable assignments, we can show that the accept-

able correspondence is Nash-implementable by our simple matchmaker game

by applying Theorem 1 (Corollary 1). Theorem 2 directly shows that a stable

correspondence is strong-Nash-implementable in a simple matchmaker game

(Corollary 3). These results are not dependent on the presence of monetary

transfers (Theorem 4) or quotas.1

Our matchmaker game is related to the menu auction game introduced by

Bernheim and Whinston (1986), although the results in the literature of the

menu auction game do not have much to do with ours except for the one-to-one

problem. In a menu auction game, there are multiple principals (players) and

an agent, and a set of actions. All players and the agent have preferences over

actions, and each player o¤ers a contribution schedule to the agent, which is

a function from the action set to a monetary contribution. The agent sees the

players�contribution schedules and chooses the action with the highest total

payo¤. We show that the class of our matchmaker games in general (pack-

age price) strategies can be embedded into that of the menu auction games

(Proposition 2). In this sense, our game is related to the menu auction game.

However, many important results in the literature of menu auction games have

something to do with Nash equilibrium in restricted strategies: truthful strate-

gies as de�ned in Bernheim and Whinston (1986). Unfortunately, in general,

truthful strategies and simple (individualized price) strategies are incompat-

ible with each other except for a special domain of one-to-one assignment

problems, and we cannot apply the results to our many-to-one assignment

case. Still, our Theorem 1 implies that the one-to-one assignment problem is

a new domain that satis�es the no-rent property introduced by Laussel and Le

Breton (2001), under which many nice results hold.

The rest of the paper is organized as follows. In Section 2, the (many-

to-one) Kelso-Crawford assignment problem and our matchmaker game are

introduced with a few examples. Section 3 presents our main results. Section

1The e¤ect of quota can be muted by setting quota equal to the size of the labor force.
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4 provides applications of our main results to the implementation of acceptable

and stable matchings and discusses the relationship of our results with menu

auction games. Section 5 contains the proof of the main theorem.

2 The Model

2.1 A Many-to-One Matching Problem

We consider the Kelso-Crawford many-to-one assignment problem without

imposing complementarity or substitutability of workers (Kelso and Crawford

1982). There are two disjoint �nite sets of players: the set of �rms F and the

set of workersW . Let N = F [W . Each �rm f 2 F has a �nite quota qf and
each of qf positions can hold one worker. Production technology is described

by a function Y : F�2W ! R+ such that Y (f;Wf ) � 0 is the output that �rm
f can produce by hiringWf � W workers. We assume that Y (f;Wf ) = 0 when

Wf = ? or jWf j > qf for all f 2 F . Let Y be the set of all possible production
technologies. Each worker w 2 W hired by �rm f has some disutility from

working dwf independent of his or her position. If unemployed, then w receives

zero disutility (dw? = 0). We assume that dwf � 0 for all f 2 F and all w 2 W .
Let D = (dwf )w2W;f2F[f?g be a disutility matrix, and let D be the set of all

possible disutility matrices. A many-to-one matching � : W [F � W [F
is a mapping such that (i) � (f) � W and � (w) 2 F [ f?g for all f 2 F
and all w 2 W ; (ii) j� (f)j � qf for all f 2 F ; (iii) w 2 � (f) if f = � (w);

(iv) � (w) = f for all w 2 � (f). Let M be the set of all matchings �. An

e¢ cient matching is �� 2 argmax�2M
P

f2F

h
Y (f; � (f))�

P
w2�(f) dwf

i
.

We denote payo¤s of �rm f and worker w by vf and uw, respectively. Let

v = (vf )f2F and u = (uw)w2W be �rms� and workers� payo¤ vectors. A

(nonwasteful) allocation is a list (v; u; �) 2 RF � RW � M such that (i)

vf = 0 for all f 2 F with � (f) = ?, (ii) uw = 0 for all w 2 W with � (w) = ?
and (iii) vf +

P
w2�(f) uw = Y (f; � (f)) �

P
w2�(f) dwf for all f 2 F . An

allocation (v; u; �) is e¢ cient if � is an e¢ cient matching. An allocation is
individually rational if for all f 2 F and all w 2 W , vf � 0 and uw � 0.

An allocation is an acceptable assignment if (i) it is individually rational
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and (ii) Y (f;Wf ) �
P

w2Wf
dwf � vf +

P
w2Wf

uw for all f 2 F and all

Wf � �(f). Condition (ii) of acceptability requires that �rm f cannot be

better o¤ by �ring some of its workers. Note that individual rationality is

equivalent to acceptability in the one-to-one assignment problem, but not in

the many-to-one problem. An allocation is a stable assignment if (i) it is
individually rational and (ii) there is no pair (f;Wf ) 2 F �2W with jWf j � qf
such that Y (f;Wf )�

P
w2Wf

dwf > vf+
P

w2Wf
uw. Clearly, stability requires

acceptability.

2.2 The Matchmaker Game

Consider a mechanism by which a matchmaker matches up �rms and work-

ers under complete information. This matchmaker can be regarded as an auc-

tioneer, or as a central planning authority who chooses a matching based on

information submitted by �rms and workers. In the �rst stage, a matchmaker

asks each worker what salary she demands from each �rm, and asks each �rm

how much it is willing to o¤er workers if they are matched. Thus, each worker

w submits sw : F ! R (or sw = (sw(f))f2F ). However, the strategy for the
�rm has two possible formulations. One is a simple strategy (or an individ-
ualized price strategy) such that each �rm f 2 F submits �f : W ! R (or
�f = (�f (w))w2W ). That is, irrespective of other workers assigned to �rm f ,

f always pays �f (w) to the matchmaker for getting worker w. The other is

a general strategy (or a package price strategy) such that each �rm f 2 F
submits ~�f : Sf ! R where Sf = fWf � W : jWf j � qfg. Clearly, simple
strategies are special cases of general strategies. The matchmaker is allowed

to take the di¤erence between �f (w) and sw(f) if she matches f and w in the

case of simple strategies, and the matchmaker is allowed to take the di¤erence

between ~�f (Wf ) and
P

w2Wf
sw(f) from matching up f and Wf in the case

of general strategies. Needless to say, the matchmaker would not match a

pair (f; w) if �f (w) < sw(f) in the case of a simple strategy, and would not

match (f;Wf ) if ~�f (Wf ) <
P

w2Wf
sw(f) in the case of a general strategy: the

matchmaker would rather leave them unmatched.

In the second stage, using these submitted strategies, the matchmaker

chooses a matching � 2 M that maximizes pro�t. This game is called a
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matchmaker game, and the matching games with �rms�simple and general
strategies are called simple and general matchmaker games, respectively.
In a simple matchmaker game, the matchmaker has a payo¤ function U :

RF�W � RW�F �M ! R with U(�; s; �) =
P

f2F
P

w2�(f) (�f (w)� sw(f)).
Let the set M(�; s) �M be

M(�; s) � argmax
�2M

U(�; s; �):

Each �rm f , worker w, and the matchmaker obtain the following payo¤s under

� 2M(�; s):
vf (�; s; �) = Y (f; �(f))�

X
w2�(f)

�f (w);

uw(�; s; �) = sw(�(w))� dw�(w);

and

U(�; s; �) =
X
f2F

X
w2�(f)

(�f (w)� sw(f)) ;

respectively.

In a general matchmaker game, the matchmaker has a payo¤ function ~U :

R�f2FSf�RW�F�M! R with ~U(~�; s; �) =
P

f2F

�
~�f (�(f))�

P
w2�(f) sw(f)

�
.

Let the set ~M(~�; s) �M be

~M(~�; s) � argmax
�2M

~U(~�; s; �):

Each �rm f , worker w, and the matchmaker obtain the following payo¤s under

� 2 ~M(~�; s):

~vf (~�; s; �) = Y (f; �(f))� ~�f (�(f));

uw(~�; s; �) = sw(�(w))� dw�(w);

and

~U(~�; s; �) =
X
f2F

0@~�f (�(f))� X
w2�(f)

sw(f)

1A ;
respectively.

Note that each �rm f cares only about �(f). The rest of the matching is
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irrelevant. Similarly, each worker w cares only about �(w). A list ((��; s�); ��)

is a Nash equilibrium in a simple matchmaker game if (i) �� 2 M(��; s�),
(ii) there is no f 2 F such that �f : W ! R and � 2 M(�f ; ���f ; s�) such
that vf (�f ; ���f ; s

�; �) > vf (�
�; s�; ��), and (iii) there is no w 2 W such

that sw : F ! R and � 2 M(��; sw; s
�
�w) such that uw(�

�; sw; s
�
�w; �) >

uw(�
�; s�; ��).2 An outcome of a Nash equilibrium ((��; s�); ��) in a sim-

ple matchmaker game is a list (v; u; �) 2 RF � RW � M such that vf =

Y (f; �� (f)) �
P

w2��(f) �
�
f (w) for all f 2 F , uw = s�w(�

�(w)) � dw��(w) for
all w 2 W and � = ��. A list ((��; s�); ��) is a (strictly) strong Nash
equilibrium (SNE) in a simple matchmaker game if (i) �� 2 M(��; s�),

and (ii) there is no coalition C � N with their strategies (�C\F ; sC\W ) =

((�f )f2C\F ; (sw)w2C\W ), and a matching � 2 M(�C\F ; sC\W ; ���C\F ; s��C\W )
such that vf (�C\F ; sC\W ; ���C\F ; s

�
�C\W ; �) � vf (��; s�; ��) for all f 2 C \ F ,

and uw(�C\F ; sC\W ; ���C\F ; s
�
�C\W ; �) � uw(��; s�; ��) for all w 2 C\W , with

at least one being strict. An outcome of a strong Nash equilibrium in a simple

matchmaker game is de�ned similarly. Corresponding de�nitions in a general

matchmaker game are given in the same manner.

2.3 Examples

In this subsection, we illustrate what Nash and strong Nash equilibria look

like. We start with a very simple one-to-one matching example.

Example 1. There are two �rms ff1; f2g and one worker fw1g. Each �rm
has one position qf1 = qf2 = 1. Let Y (f1; fw1g) = 2, Y (f2; fw1g) = 3 and

dw1f1 = dw1f2 = 0. Even in this simple example, there are multiple Nash

equilibria with di¤erent matchings. Let �f1(w1) = 1 and �f2(w1) = 0, and

sw1(f1) = 1 and sw1(f2) = 4. Under this strategy pro�le, the matchmaker

chooses �(f1) = w1 and �(f2) = ?, and makes no pro�t. This is a Nash
equilibrium, but the resulting matching is ine¢ cient. This ine¢ ciency is due

to a coordination failure. Firm f2 has no incentive to hire w1 by changing its

strategy unilaterally since w1 is asking an unreasonable salary, while worker

2Although strictly speaking the game is a two-stage game, because the second stage is
a mere maximization problem by the matchmaker, we can regard the game as static (see
Bernheim and Whinston 1986; Laussel and Le Breton 2001).
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(a) NE can be ine¢ cient. (b) SNE achieves e¢ ciency.

Figure 1: Illustration for Example 1.

w1 has no incentive to try to be hired by changing her strategy unilaterally

since f2 is o¤ering zero salary. However, if both �rm f2 and worker w1 jointly

change their strategies, then both can be better o¤ by being matched up, thus

achieving e¢ ciency.

In contrast, let �f2(w1) = x and �f1(w1) = 2, and sw1(f1) = x and

sw1(f2) = x, where x 2 [2; 3]. If the matchmaker chooses �0(f2) = w1 and

�0(f1) = ? (indeed, unless x = 2, it must choose �0), this is a strong Nash

equilibrium, since there is no pro�table deviation. Thus, any salary x 2 [2; 3]
can be supported by a strong Nash equilibrium, and e¢ ciency is achieved.

Note that each of these allocations is a stable assignment.

Example 1 shows that Nash equilibria in matchmaker games can generate

ine¢ cient matchings. The matchmaker�s pro�t is zero in all Nash equilibria.

In the next example, we consider more general situations and show that the

matchmaker�s pro�t is still zero.

Example 2. There are two �rms ff1; f2g and two workers fw1; w2g. Each
�rm has one position qf1 = qf2 = 1. Let Y (f1; fw1g) = Y (f2; fw2g) = 3 and
Y (f1; fw2g) = Y (f2; fw1g) = 0, and let dwjfi = 0 for all i; j = 1; 2. Clearly,

the e¢ cient matching is �(f1) = w1, and �(f2) = w2. Suppose that the

matchmaker is earning a positive pro�t in a Nash equilibrium at least from the

pair ff1; w1g by choosing �, that is, �f1(w1) > sw1(f1). If �f2(w2) = sw2(f2),
we have �f1(w1)�sw1(f1) = �f2(w1)�sw1(f2) and �f1(w1)�sw1(f1) = �f1(w2)�
sw2(f1) to prevent �rm f1 from o¤ering less salary and worker w1 from asking

more salary. Then, a matching �0 with �0(f1) = w2, and �0(f2) = w1 generates
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a higher pro�t than �. Hence, �f2(w2) > sw2(f2). Note that unless �f1(w2) >

sw2(f1) or �f2(w1) > sw1(f2), f1 can gain by reducing �f1(w1) because the

matchmaker would still choose �. Without loss of generality, assume �f1(w2) >

sw2(f1). Then f1 can earn more by reducing �f1(w1) and �f1(w2) by the

same amount without a¤ecting the resulting matching. As a result, �f1(w1) =

sw1(f1) must hold in every Nash equilibrium. Thus, in this example again, the

matchmaker�s pro�t must be zero in every Nash equilibrium. It is easy to see

that the set of strong Nash equilibrium outcomes is equivalent to the set of

stable assignments.

Now we consider a many-to-one problem. The following simple example

illustrates a very important point: in general matchmaker games, a Nash

equilibrium may yield a positive pro�t to the matchmaker.

Example 3. There are two �rms ff1; f2g and three workers fw1; w2; w3g. All
�rms and workers are symmetric. Each �rm has two positions qf1 = qf2 = 2.

For all i = 1; 2 and all j; k = 1; 2; 3 (j 6= k), dwjfi = 0 and Y (fi; fwjg) = 2

and Y (fi; fwj; wkg) = 4. In a simple matchmaker game, the wage o¤ered to
each worker is individualized, and similar arguments as above follow, since

the matchmaker cares only about how much it can earn from each match of

a �rm with a worker. Thus, we can show that all Nash equilibria in this

simple matchmaker game generate zero pro�t to the matchmaker. The unique

strong Nash equilibrium (up to permutations) in the simple matchmaker game

is ((�; s); �) such that �fi(wj) = 2 and swj(fi) = 2 for all i and j, and �(f1) =

fw1; w2g and �(f2) = fw3g. The salaries are pinned down owing to excess
demand for workers. Note that this strong Nash equilibrium generates a stable

assignment. Clearly, there is no pro�t for the matchmaker in the strong Nash

equilibrium of the simple matchmaker game. From the above strong Nash

equilibrium in a simple matchmaker game, let ~�fi(wj) = 2 and ~�fi(fwj; wkg) =
4, and swj(fi) = 2 for all i, j, and k. This is indeed a strong Nash equilibrium

in this general matchmaker game. However, in the general matchmaker game,

there are Nash equilibria with positive pro�ts. Consider the following strategy

pro�le ((~�; s); �): ~�fi(fwjg) = 1 for all i and j, and ~�fi(fwj; wkg) = 3 (if �rm
fi is willing to pay 3 in total if it is matched with subset fwj; wkg) for all i,

9



(a) Unique SNE with zero pro�t (b) A NE with positive pro�t

in simple matchmaker game. in general matchmaker game.

Figure 2: Illustration for Example 3.

j, and k, and swj(fi) = 1 for all i and j. This results in �(f1) = fw1; w2g and
�(f2) = fw3g (up to permutations). This is a Nash equilibrium, and �rms
are indi¤erent between hiring one or two workers. However, the matchmaker

receives a pro�t of 1 from f1. Note that �rms are better o¤ in this Nash

equilibrium in the general matchmaker game: they obtain positive pro�ts.

This example shows that unlike the one-to-one matching problem, restric-

tions on �rms�strategy sets may a¤ect the outcomes of a matchmaker game. A

�simple�matchmaker game selects zero-pro�t Nash equilibria from the larger

set of equilibria in the general matchmaker game.

In the next section, we will investigate whether the above observations hold

in general.

3 The Results

3.1 Preliminaries

We �rst review Milgrom�s recent contribution. Let (N;X; !) be a normal-

form mechanism where N is the set of players, X = (Xi)i2N is the set of

strategy pro�les, 
 is the set of possible outcomes where 
 is endowed with

a topology, and ! : X ! 
 is an outcome function. A normal form game
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can be constructed given utility functions u = (ui)i2N where ui : 
 ! R.
A normal form mechanism (N; X̂; !jX̂) is a simpli�cation of (N;X; !) if
X̂ � X. A simpli�cation (N; X̂; !jX̂) of (N;X; !) has the outcome closure
property if, for every i, every x̂�i 2 X̂�i, every xi 2 Xi, and every open

neighborhood O of ! (xi; x̂�i), there exists x̂i 2 X̂i such that ! (x̂) 2 O. The
simpli�cation (N; X̂; !jX̂) of (N;X; !) is tight if, for every continuous function
u and every " � 0, every pure strategy pro�le x that is an "-Nash equilibrium
of (N; X̂; !jX̂) is also an "-Nash equilibrium of (N;X; !). Milgrom (2010)

shows the following simpli�cation theorem.

Theorem 0. (Milgrom 2010) Any simpli�cation (N; X̂; !jX̂) of (N;X; !) that
has the outcome closure property is tight.

In a matchmaker game, the set of players is the set of �rms and workers,

N = F [ W . For player w 2 W , a strategy is sw : F ! R and Xw is a

collection of all strategies for w. For player f 2 F , a (general) strategy is ~�f :
Sf ! R, and Xf is the collection of all possible general strategies for f . The

restriction X̂f is the set of all general strategies that can be created from simple

strategies.3 The set of possible outcomes is denoted by 
 = RF � RW�M,

where ! = (v; u; �) 2 
, and an outcome function is ! : X ! 
 such that

vf = Y (f; �(f)) � ~�f (�(f)) for all f 2 F , uw = sw(�(w)) � dw�(w) for all
w 2 W , and � 2 ~M(~�; s). A simple matchmaker game is a simpli�cation of a

general matchmaker game, and the simpli�cation satis�es the outcome-closure

property. Then the following observation immediately emerges by selecting the

appropriate outcome function to support each Nash equilibrium:4

Observation. Every Nash equilibrium in a simple matchmaker game is a

Nash equilibrium in the general matchmaker game.

3Setting ~�f (S) =
P

w2S �f (w) for all S � W with S 6= ;, we can create a general
strategy ~�f : Sf ! R from a simple strategy �f :W ! R.

4In a Nash equilibrium of a (simple and general) matchmaker game, the matchmaker is
indi¤erent among at least two actions.
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3.2 Main Result

Given the above Observation, it makes sense to analyze the Nash equilib-

rium in the simple matchmaker game. The �rst and most important result of

this paper is as follows.

Theorem 1. In every simple matchmaker game, the matchmaker�s pro�t is
zero in every Nash equilibrium.

The proof of this theorem is complicated, and we defer it to the last section

of the paper. If there is only one �rm, it is not surprising that the �rm can

reduce wages without changing the matching if the matchmaker is getting a

positive pro�t as in Example 1. However, if multiple �rms are competing for

workers, a �rm�s reducing its wage o¤ers may not improve the �rm�s payo¤,

since the matchmaker may match other �rms with workers whom the �rm

could have had if it had not reduced wages. Thus the result of Theorem

1 is more subtle than the argument that leaving the pro�t margin to the

matchmaker is never a best response. To provide some intuition behind this

result, we brie�y describe the proof for a special case of a one-to-one assignment

problem: qf = 1 for all f 2 F (the formal proof is postponed to Section

5). Suppose that there is a Nash equilibrium with a positive pro�t, and let

((�; s); �) be a Nash equilibrium with the highest pro�t. Pick a �rm-worker

pair f and w such that �(f) = w and �f (w) > sw(f). Since � is the outcome

of a Nash equilibrium, �rm f and worker w do not deviate for the fear of �

not being chosen. Since the matchmaker is pro�t-maximizing, if f deviates,

the matchmaker chooses a matching �0 6= � with �0(w) 6= f that generates

exactly the same pro�t as � does (see Corollary 4 in Section 5 for the formal

statement). Similarly, if w deviates, the matchmaker chooses matching �00 6= �
with �00(f) 6= w that generates exactly the same pro�t as � does. By combining
�0 and �00 with some adjustments we can create a new matching without a

match between f and w, which generates an even higher pro�t than �. Then

the matchmaker can improve its pro�t by choosing the new matching, which

contradicts that ((�; s); �) is a Nash equilibrium. Thus, even with interactions

among �rm-worker pairs, leaving the pro�t margin to the matchmaker cannot

be supported by a Nash equilibrium of a simple matchmaker game.

12



The result of Theorem 1 provides a stark contrast with Nash equilibria in

the general matchmaker game. Example 3 in the previous section showed that

there might be Nash equilibria that give a positive pro�t to the matchmaker.

Thus, unlike the Nash equilibrium in a (one-sided) combinatorial auction game

and the Gale-Shapley algorithm in the two-sided matching problem, restricting

the message space to simple strategies has a real impact on the set of Nash

equilibria. Is this result bad news for simple strategies? We think that it is

actually good news. In a resource allocation problem, a positive pro�t for

the matchmaker (or the auctioneer) is a waste of resources. If a restriction

in message space eliminates pro�t made by the matchmaker, thus achieving a

nonwasteful allocation, then it should be considered a desirable property.

Although this result is somewhat surprising by itself, it also turns out to

be quite useful when we consider a re�nement of Nash equilibrium. With the

zero pro�t result for Nash equilibrium, we will have a strong Nash version of

Observation.

Proposition 1. Every strong Nash equilibrium in a simple matchmaker game
is a strong Nash equilibrium in the general matchmaker game.

Proof. Suppose that a strong Nash equilibrium in a simple matchmaker

game is not immune to a coalitional deviation with general strategies. Then,

at least one player improves by the deviation. Suppose that �rm f is such

a player. Then, after the deviation, f is matched with a subset of workers

Wf . Clearly, all w 2 Wf cannot be made worse o¤ by the deviation. That is,

Y (f;Wf )�
P

w2Wf
dwf must achieve a higher value than the sum of their strong

Nash equilibrium payo¤s. However, by Theorem 1, every Nash (thus strong

Nash) equilibrium leaves zero pro�t to the matchmaker. Thus, all output is

divided up by �rms and workers, and the strong Nash equilibrium outcome is

a nonwasteful allocation. Since Y (f;Wf ) would improve over the allocation,

the original matching is not a stable assignment. This is a contradiction. The

same logic applies to the case where no �rm is strictly better o¤ (but there is

a worker who is better o¤). �

13



That is, �simple� strategies re�ne the Nash equilibrium and the strong

Nash equilibrium in a general matchmaker game. From previous examples,

it is easy to observe that every Nash equilibrium outcome is an acceptable

assignment.

Theorem 2. In every many-to-one assignment problem, the set of Nash

equilibrium outcomes in the simple matchmaker game is equivalent to the set

of acceptable assignments.

Proof. Let (v; u; �) be the outcome of a Nash equilibrium ((�; s); �). It

is clearly individually rational, as negative payo¤s can be avoided. Suppose

for �rm f there exists some C � �(f) such that Y (f; C) �
P

w2C dwf >

vf +
P

w2C uw. From Theorem 1, that the matchmaker earns zero pro�t im-

plies vf +
P

w2�(f) uw = Y (f; � (f)) �
P

w2�(f) dwf and �f (w) = sw (f) =

uw + dwf for all w 2 � (f). Consider �0f (w) = �f (w) + " for all w 2 C and

�0f (w) = 0 for all w 62 C, where " > 0 satis�es " < 1
jCj

h
Y (f; C)�Y (f; � (f))+P

w2�(f)nC (uw + dwf )
i
. The matchmaker can make a positive pro�t by match-

ing f and C. Hence, ((�; s); �) cannot be a Nash equilibrium. Thus, a Nash

equilibrium outcome is an acceptable assignment.

Consider an acceptable assignment (v; u; �). For every matched �rm f ,

consider for all w 2 �(f), �f (w) = sw(f) = uw + dwf , and for all w0 =2 �(f),
�f (w

0) = 0 and sw0(f) is prohibitively high. For each single �rm, let its

salary o¤er be zero for all workers, and for each single worker, let her salary

demand be at a prohibitively high level. It is easy to see ((�; s); �) is a Nash

equilibrium.�

We notice in Example 3 that if a Nash equilibrium is re�ned by a strong

Nash equilibrium, then a stable assignment is achieved. The next theorem

shows that this is not a coincidence. Using Theorem 1, we obtain the following.

Theorem 3. In every many-to-one assignment problem, the set of strong
Nash equilibrium outcomes in the simple matchmaker game is equivalent to

the set of stable assignments.

Proof. From Theorem 1, the matchmaker earns zero pro�t in every Nash equi-
libria, hence earns zero pro�t in every strong Nash equilibrium. Let (v; u; �)

14



be a strong Nash equilibrium outcome, and suppose that it is not a stable

assignment. Then, there is a pair (f;Wf ) 2 F � 2W with jWf j � qf such that
Y (f;Wf ) �

P
w2Wf

dwf > vf +
P

w2Wf
uw. Consider �0f (w) = uw + dwf + �

for all w 2 Wf and �0f (w
0) = 0 for all w0 =2 Wf , and s0w(f) = uw + dwf +

�
2

for all w 2 Wf and s0w0(f) is prohibitively high for all w
0 =2 Wf , where � > 0

satis�es � < 1

jWf j
h
Y (f;Wf )�

P
w2Wf

dwf �
�
vf +

P
w2Wf

uw

�i
. Since the

matchmaker gets no pro�t, she is happy to match up f and Wf to make a

positive pro�t. This cannot be a strong Nash equilibrium. Thus, a strong

Nash equilibrium outcome is a stable assignment.

Now, let (v; u; �) be a stable assignment. Consider the following strategy.

For all matched �rms f 2 F and all w 2 �(f), �f (w) = sw(f) = uw + dwf and
�f (w

0) = 0 and sw0(f) is prohibitively high for w0 =2 �(f). For each single �rm,
let its salary o¤er be zero for all workers, and for each single worker, let her

salary demand be at a prohibitively high level. The matchmaker chooses � and

gets zero pro�t. Given the strategy (�; s), the matchmaker would create a new

match only when a pair (f 0;Wf 0) 2 F�2W with jWf 0j � qf 0 provides a positive
pro�t. However, by the de�nition of a stable assignment, there is no pair

(f 00;Wf 00) 2 F � 2W with jWf 00j � qf 00 such that Y (f 00;Wf 00)�
P

w2Wf 00
dwf 00 >

vf 00 +
P

w2Wf 00
uw. Thus, there is no subset of players who agree to o¤er a

positive pro�t to the matchmaker to create a new matching. Therefore, a

stable assignment is supportable by a strong Nash equilibrium. �

From Example 3 in the previous section, we know that some Nash equilibria

in a general matchmaker game leave positive pro�ts to the matchmaker, which

implies that some Nash outcomes are not nonwasteful allocations. We conclude

that in matchmaker games, restricting the strategy space to simple ones is

socially bene�cial.

4 Discussion

In this section, we discuss the issues of implementation in matching prob-

lems. We then discuss the relationship between our matchmaker games and

the menu auction games in Bernheim and Whinston (1986).
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4.1 Implementation

Here we discuss the implementation of popular social choice correspon-

dences by using our matchmaker games. We then show how our results can

be connected with the literature on matching problems without money. Let

us �rst introduce some notation. A mapping ' : Y � D � RF[W �M is a

social choice correspondence if '(Y;D) 6= ? for all (Y;D) 2 Y � D. An
individually rational correspondence 'IR : Y � D � RF[W �M is a

social choice correspondence such that 'IR(Y;D) � RF[W �M is the set of

all individually rational allocations (v; u; �) for (Y;D). An acceptable cor-
respondence 'A : Y�D � RF[W�M is a social choice correspondence such

that 'A(Y;D) � RF[W �M is the set of all acceptable allocations (v; u; �)

for (Y;D). A stable correspondence 'S : Y � D � RF[W �M is a social

choice correspondence such that 'S(Y;D) � RF[W �M is the set of all stable

assignments (v; u; �) for (Y;D).

By Theorem 2, we know that the set of Nash equilibrium outcomes and

the set of acceptable assignments are equivalent. Thus, we have the following

implementation result.

Corollary 1. In every many-to-one assignment problem, the acceptable corre-
spondence 'A : Y�D � RF[W�M is implemented by the simple matchmaker

game in Nash equilibria.

In the one-to-one matching problem, the acceptable allocations and indi-

vidual rational allocations are the same, and there is no di¤erence between

simple and general strategies. Thus, the above corollary implies the following.

Corollary 2. In every one-to-one assignment problem, the individually ra-
tional correspondence 'IR : Y � D � RF[W � M is implemented by the

matchmaker game in Nash equilibria.

Theorem 3 directly implies the following.

Corollary 3. In every many-to-one assignment problem, if workers are gross
substitutes for each �rm, then the stable correspondence 'S : Y�D � RF[W�
M is implemented by the simple matchmaker game in strong Nash equilibria.
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Without the gross substitutability assumption, 'S may be empty valued.

This is why we require the assumption. Note that Corollaries 1 and 2 are not

a¤ected by the presence of quotas. Hayashi and Sakai (2009) characterize the

stable correspondence by Nash implementation. Note that their results cannot

treat the one-to-one problem or a many-to-one problem with quotas.

Finally, we connect our results with the implementation literature in a

matching problem without money: a many-to-one assignment problem when

salaries between each �rm and worker are �xed exogenously.5 Roth (1985)

and Shin and Suh (1996) show that under any stable mechanism, the individ-

ually rational (acceptable matching, in our de�nition) correspondence and the

stable correspondence are implemented in Nash and strong Nash equilibria,

respectively.6

Our simple matchmaker game can generate similar results. Suppose for

each �rm f and each worker w, the salary has been �xed at xfw. Then if �rm

f hiresWf � W workers, the payo¤ for f is Y (f;Wf )�
P

w2Wf
xfw. Similarly,

if worker w works for �rm f , the payo¤ for w would be xfw � dwf . Firms
without any workers pay no salary, and unemployed workers receive no salary,

so that being unmatched would still result in a payo¤ of 0. Under this setting,

it is easy to see that the de�nitions in Section 2.1 can be expressed in similar

fashion in models of matching without money. Since salaries are �xed here, a

�rm�s o¤er and a worker�s demand are considered as an additional monetary

transfer. The matchmaker takes the di¤erence between these two bids. For

simplicity, we assume preference orderings are strict. Firm f�s preference �f
is a linear ordering over subsets of workers Sf , while worker w�s preference
�w is a linear ordering over �rms F . An NTU matching problem is a list

fF;W; (�f )f2F ; (�w)w2Wg. A many-to-one matching � : W [ F � W [ F
is a mapping such that (i) � (f) � W and � (w) 2 F [ f?g for all f 2 F and
for all w 2 W ; (ii) j� (f)j � qf for all f 2 F ; (iii) w 2 � (f) if f = � (w);

(iv) � (w) = f for all w 2 � (f). A matching � is individually rational if
�(f) �f ? for all f 2 F and �(w) �w ? for all w 2 W . A matching � is

5See, say, Chapters 5 and 6.1 in Roth and Sotomayor (1990).
6Sonmez (1997) generalizes these results to the class of all e¢ cient and individually

rational mechanisms. The results by Suh and Shin (1996) and Sonmez (1997) are on one-
to-one matching problems.
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acceptable if it is individually rational and �(f) �f C for all C $ � (f). A
matching � is stable if there is no pair (f;Wf ) 2 F � 2W with jWf j � qf such
that Wf �f �(f) and f �w �(w) for all w 2 Wf .7 Let Chf : 2W ! Sf be �rm
f�s choice function such that Chf (C) = fS � C : S 2 Sf and S �f S 0 for all
S 0 � C with S 0 2 Sfg. Firms�preferences are substitutable if for all f 2 F ,
all C 2 2W , and all w 2 Chf (C), Chf (C)nfwg � Chf (Cnfwg) holds.
We restrict available monetary transfers by �rms and workers to the set

f�L; 0; Kg, where L > maxw2W maxf2F (xfw � dwf ) andK > maxf2F maxWf�W

(Y (f;Wf )�
P

w2Wf
xfw). Each �rm�s o¤er will be chosen from the set f�L; 0g,

since for any �rm K is an amount of money that is not worthwhile to pay to

any worker. Similarly, each worker�s request will be chosen from f0; Kg, since
for any worker �L is an amount of money that is not worthwhile to request
from any �rm. We assume the following tie-breaking rule: the matchmaker
matches up a pair of a �rm and a worker if she is indi¤erent between matching

them up or not.8 What remains is exactly the same as a simple matchmaker

game. Call this game a simple NTU matchmaker game. We can show the
following result.

Theorem 4. In every many-to-one matching problem without transfer, if

�rms�preferences are substitutable, then the set of Nash equilibriummatchings

in the simple NTU matchmaker game is equivalent to the set of acceptable

matchings, and the set of strong Nash equilibrium matchings in the simple

NTU matchmaker game is equivalent to the set of stable matchings.

Proof. First, we show that a Nash equilibrium matching is individually ra-

tional and acceptable. A Nash equilibrium matching is individually rational

because, by construction, every worker will not be matched up with a �rm if

she requests K > 0 from it, and every �rm will not be matched with a worker

if it o¤ers �L < 0 to her. This implies that in every Nash equilibrium the

matchmaker earns zero pro�t. We can show that for every Nash equilibrium

7With strict preferences, this de�nition is the same as requiring no (f;Wf ) such that
�rm f and all workers in Wf are weakly better o¤ and at least one of them is strictly better
o¤.

8This tie-breaking rule is su¢ cient to pin down the Nash equilibrium under strict pref-
erences. However, if indi¤erence in preferences is allowed, more careful treatment is needed
in the NTU setting. See Ko (2010) for further discussion.
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((�; s); �), the matching � is an acceptable matching. Suppose not. Then,

there exist a �rm f and a subset of workers C $ � (f) such that C �f � (f).
However, �rm f can improve its payo¤ by switching its strategy to �0f such

that �0f (w) = 0 if w 2 C and �0f (w) = �L if w 62 C, which is a contradiction.
Second, an acceptable matching can be implemented by a Nash equilibrium.

Consider an acceptable matching �. For each matched �rm f , consider for all

w 2 � (f), �f (w) = sw (f) = 0, and for all w0 62 � (f), �f (w0) = �L and
sw0 (f) = K. Given the tie-breaking rule by the matchmaker, the matching �

is chosen given the strategy pro�le (�; s). This is a Nash equilibrium because

all unmatched pairs would never be matched up by choosing other strategies.

Third, we show that a strong Nash equilibrium matching is stable. Let

((�; s); �) be a strong Nash equilibrium. Suppose it is not a stable matching.

Then there is a pair (f;Wf ) 2 F � 2W with jWf j � qf such that Wf �f �(f)
and f �w �(w) for all w 2 Wf (strict preference). Consider a deviation by

(f;Wf ) such that (i) �0f (w) = 0 for all w 2 Wf and �0f (w) = �L, otherwise,
and (ii) for all w 2 Wf , s0w (f) = 0 and s0w(f

0) = K for f 0 6= f . Since the

matchmaker would still make zero pro�t by matching (f;Wf ) and no player in

ffg[Wf can be matched with outsiders, the matchmaker matches them up by

the tie-breaking rule. Thus, ((�; s); �) cannot be a strong Nash equilibrium.

Finally, we show that a stable matching can be implemented by a strong

Nash equilibrium. Let � be a stable matching. Consider the following strat-

egy. For each matched �rm f , consider a strategy pro�le (�; s) such that

�f (w) = sw (f) = 0 if and only if w 2 � (f). Given the tie-breaking rule,
matching � is chosen by the matchmaker. Since this is a stable matching, it

is immune to coalitional deviations, which implies that ((�; s); �) is a strong

Nash equilibrium.�

4.2 Relationship with Menu Auction Games

A menu auction game is a complete information multi-principal-one-agent

game, introduced by Bernheim and Whinston (1986). The agent is going to

choose an action, which will a¤ect her own payo¤ as well as the payo¤s to

principals. Principals can a¤ect the agent�s decision by o¤ering a menu of

side payments: a side payment schedule for each possible action. The agent
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maximizes the sum of her own utility and side payments from the principals

when choosing an action. We can consider our matchmaker�s problem as a

menu auction game by interpreting a matching � as an action, and letting the

matchmaker be intrinsically indi¤erent over � (except for side payments).

A menu auction problem � is described by (N + 2) tuples:

� �
�
A; (Vk)k2N[f0g

	
;

where A is the set of actions, Vk : A! R is k�s (quasi-linear) payo¤ function, 0
denotes the agent, and N is the set of principals. In the extensive form of the

game, the principals simultaneously o¤er contingent payment schedules to the

agent, who subsequently chooses an action that maximizes her total payo¤.

A strategy for each principal k 2 N is a function Tk : A ! [bk;1), which
is a monetary reward (or punishment) of Tk(a) to the agent for selecting a,

where bk is the lower bound for payment from principal k. For each action a,

principal k receives a net payo¤:

Uk(a; T ) = Vk(a)� Tk(a);

where T = (Tk0)k02N is a strategy pro�le. The set of all possible strategies for

principal k is denoted by Tk. The agent chooses an action that maximizes her
total payo¤: the agent selects an action in the set M (T ), where

M (T ) � argmax
a2A

"
V0(a) +

X
k2N

Tk (a)

#
:

A menu auction game (�; T ) is a pair consisting of a menu auction
problem � and a set of strategies for all principals T =(Tk)k2N . This menu
auction game is merely a game among principals, although, strictly speaking,

a tie-breaking rule among M(T ) needs to be speci�ed for the agent.

Let T Ik � fTk 2 Tk : Tk(a) = Tk(a0) for all a; a0 2 A with Vk(a) = Vk(a0)g be
the restricted domain of strategies that requires principal k must bid the same

amount for all actions among which principal k is indi¤erent. If all principals�

strategy spaces belong to this domain, then we say that the principals�strategy
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spaces belong to the set of strategy spaces T I =
�
T Ik
�
k2N .

9

An outcome of a menu auction game (�; T ) is (a; T ). An outcome (a�; T �)
is a Nash equilibrium if a� 2 M (T �) and there is no k 2 N such that

Tk : A! [bk;1) and a 2 M
�
Tk; T

�
�k
�
such that Uk

�
a; Tk; T

�
�k
�
> Uk (a

�; T �).

However, the set of Nash equilibria in a menu auction game is quite large

owing to coordination problems. So, Bernheim and Whinston (1986) propose

a re�nement of Nash equilibrium by using what they call �truthful strategies.�

A strategy Tk is truthful relative to �a if and only if for all a 2 A either

(i) Uk (a; T ) = Uk (�a; T ) or (ii) Uk (a; T ) < Uk (�a; T ) and Tk (a) = bk. Clearly,

truthful strategies belong to the domain T I . An outcome (a�; T �) is a truthful
Nash equilibrium (TNE) if and only if it is a Nash equilibrium, and T �k is
truthful relative to a� for all k 2 N .
It is clear that if workers are objects (with no preferences), and if �rms

are bidding on workers, then we can easily formulate a combinatorial auction

game by this menu auction.10 In the following, we show that our general

matchmaker game can also be embedded in the class of menu auction games

by reinterpreting players�strategies. In a general matchmaker game, �rm f�s

strategy ~�f : Sf ! R+ is truthful relative to Wf if and only if for all S 2 Sf
either (i) Y (f; S) � ~�f (S) = Y (f;Wf ) � ~�f (Wf ) or (ii) Y (f; S) � ~�f (S) <
Y (f;Wf )� ~�f (Wf ) and ~�f (S) = 0.

Proposition 2. A general matchmaker game can be embedded in the class of
menu auction games with strategy space T I . A strategy in a general match-
maker game is truthful if and only if the corresponding strategy is a truthful

strategy in the corresponding menu auction game.

Proof. Let the matchmaker be the agent, and �rms and workers be principals.
LetM be the set of actions A. Firm f receives monetary payo¤ Vf :M! R
where Vf (�) � Y (f; �(f)), worker w receives monetary payo¤ Vw : M ! R
with Vw(�) � �dw�(w), and the matchmaker�s (denoted by 0) monetary payo¤

9Although this restriction is needed for the formal statement of Proposition 1, the set
of Nash equilibrium payo¤s with the restriction is the same as the set of Nash equilibrium
payo¤s without the restriction.
10Milgrom (2004) discusses menu auction games in the context of a combinatorial auction

problem.
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is V0(�) = 0 for all � 2M.11

Under T I , principals are able to choose any contribution menu over poten-
tial partners but not over the entire matching. A strategy for �rm f that is

generated from �f is a function Tf : M ! R+, where Tf (�) � �f (�(f)). A

strategy for worker w that is generated from sw is a function Tw :M! R�,
where Tw (�) � �sw (� (w)). We can set a lower bound for the value for

Tw(�) without losing anything, since worker w would not be matched any-

way, if Tw(�) < �Y (f; �(f)) holds. Thus, we assume that for each k 2 N =

W [ F , there is a lower bound bk: Tk(�) � bk that must be satis�ed for all

k 2 N . Thus, a matchmaker game can be represented as a menu auction game.
Clearly, a truthful strategy ~�f or sw trivially can be extended to a truthful

strategy Tk, and vice versa. This completes the proof.�

Remark. Note that in a one-to-one assignment problem, the general strategy
and the simple strategy are equivalent. Thus, Proposition 2 together with

Theorem 1 implies that the agent earns zero rent in every Nash equilibrium in

a menu auction game that is generated from a matchmaker game in a one-to-

one assignment problem.

Laussel and Le Breton (2001) de�ne a menu auction game as possessing

the no-rent property if and only if all truthful Nash equilibrium (TNE)

outcomes leave no pro�t to the agent. They prove that if a cooperative game

from a menu auction game � is convex,12 then � possesses the no-rent property.

However, although convexity is satis�ed in interesting classes of menu auction

games such as the public good provision game, in our assignment problem

convexity is clearly not satis�ed.13 Moreover, the following example shows

that even if convexity holds, there exists a Nash equilibrium such that the

agent earns a positive pro�t.

Example 4 (discrete public good provision). Consider a public good pro-

11We normalize V0 (�) = 0 because the matchmaker has no preferences over the matchings
themselves.
12A system (v(S))S�N is convex if and only if for all S; T � N , v(S [ T ) + v(S \ T ) �

v(S) + v(T ) holds.
13For example, imagine N = ff1; w1; w2g with y11 = y12 = 1. Letting S = ff1; w1g and

T = ff1; w2g, we can see a violation of convexity.
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vision problem with two principals (consumers) N = f1; 2g and an agent (the
government) with two actions A = fa1; a2g. Actions a2 and a1 are regarded
as provision and no provision of a discrete public good. Consumers prefer a2
to a1 but a2 is more costly for the government: Vi (a1) = 0 and Vi (a2) = 5

for i = 1; 2 and V0 (a1) = 0 and V0 (a2) = �1 (public good provision cost
is 1). This creates a transferrable utility cooperative game (N; v) such that

v(f1; 2g) = 9, v(f1g) = v(f2g) = 4, and v(?) = 0, where v(S) is the value

of coalition S � N . This is a convex game, and Le Breton-Laussel�s no-rent
property holds. Consider T1 (a1) = 2, T1 (a2) = T2 (a1) = 0, and T2 (a2) = 3.

Then (a2; T ) is a Nash equilibrium where the agent earns a positive pro�t.

However, the set of truthful Nash equilibria is f(a2; ~T ) : ~T1 (a1) = ~T2 (a1) = 0

and ~T1 (a2) + ~T2 (a2) = 1g since the game satis�es the no-rent property.

In contrast, in our one-to-one matchmaker game, the matchmaker always

earns zero pro�t not only in all truthful Nash equilibria but also in all Nash

equilibria. Since the simple strategy and the general strategy are the same

in the one-to-one matchmaker game, Theorem 1 provides another interesting

class of menu auction games that possess the no-rent property. However, in

many-to-one matching, we cannot obtain the same result by Proposition 2

(and Example 3).

Readers who are familiar with the menu auction game literature may

�nd it odd that we have not mentioned coalition-proof Nash equilib-
rium (CPNE: Bernheim and Whinston 1986; Bernheim, Peleg, and Whin-

ston 1987), which is the central solution concept in menu auction games.14

The standard de�nition of coalition-proof Nash equilibrium requires that all

reduced games (where the outsiders of a coalition keep their strategies �xed,

and the members of the coalition play the game) belong to the same class of

games. Unfortunately, however, in our game, this is not true. If outsiders

make their salary o¤ers and demands to coalition-members, then the match-

maker will have preferences over the matchings it chooses. However, we have

assumed that the matchmaker cares only about the pro�t made from matching
14Bernheim and Whinston (1986) show that TNE and CPNE are equivalent in a utility

space. Under the no-rent property, Laussel and Le Breton (2001) and Konishi, Le Breton,
and Weber (1999) show the equivalences of CPNE and the core of underlying TU game,
and CPNE and SNE, respectively.
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unlike in Bernheim and Whinston (1986). This is why we have not mentioned

coalition-proof Nash equilibrium in this paper. In contrast, if we allow the

matchmaker to have preferences over matchings, we can extend Theorem 3 in

the domain of the one-to-one matching problem.15

Theorem 3�. Suppose that the matchmaker is allowed to have preferences
over matchings. Then, in every one-to-one assignment problem, the sets of

truthful Nash equilibrium outcomes, strong Nash equilibrium outcomes, and

coalition-proof Nash equilibrium outcomes in the matchmaker game, and the

set of stable assignments (the core) are all equivalent.

5 Proof of Theorem 1

In this section, we prove Theorem 1. First, we introduce some notation. For

all S � N , let C(S; �) � fk 2 S : �(k) 2 S and �(k) 6= ?g. That is, C(S; �) is
the set of members of S who have partners in S under matching � (coupled).

Given a strategy pro�le (�; s) 2 RF�W �RW�F , let R(S; (�; s); �) be the pro�t

(rent) generated in S under � such thatR(S; (�; s); �) =
P

f2C(S;�)\F (�f (�(f))�
s�(f)(f)). Let R�(S; (�; s)) � max�2MR(S; (�; s); �) and let A�(S; (�; s)) �
argmax�2MR(S; (�; s); �) be the maximum pro�t generated in coalition S

given �rms�strategies � and workers�strategies s, and its associated matching

�, respectively. We can characterize Nash equilibrium payo¤s in an interesting

way.

Proposition 3. In every simple matchmaker game, in every Nash equilibrium
((�; s); �), (1A) for all f 2 F with �(f) = ?, R�(N; (�; s)) = R(N; (�; s); �) =
R�(Nnffg; (�; s)); (1B) for all f 2 F with �(f) 6= ?, and all w 2 �(f),

there exists �0 such that (i) �0 (f) j �(f)n fwg, and (ii) R�(N; (�; s)) =
R(N; (�; s); �0); and (2) for all w 2 W , there exists �00 such that (i) �00 (w) = ?,
and (ii) R�(N; (�; s)) = R(N; (�; s); �00) = R�(Nnfwg; (�; s)).
15The proof of equivalence is very simple. By de�nition, an SNE is a CPNE. And the

outcome of a CPNE is a stable assignment, since otherwise, there is a pair that deviates
from a CPNE. But in this domain, such a two-person deviation is credible anyway.
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Proof. Since (2) is a special case of (1), we focus on case (1).
Case (1A) is trivial, since we can use the same matching � to achieve the

same pro�t. Thus, we will work on case (1B). Clearly, if �f (w) = sw (f) for

all w 2 � (f), then we can �nd a �0 that satis�es all three conditions: the
matchmaker makes no money by matching f with workers, so she might as

well cancel the matching (let �0(f) = ?). Thus, let us focus on � (f) 2 W and

�f (w) > sw (f) for some w 2 � (f) for the rest of the proof.
Consider �0f (w) = �f (w)��, �0f (w0) = maxf�f (w0)��; 0g for all w0 62 � (f)

and �0f (w
00) = �f (w

00) for all w00 2 � (f) n fwg. Let �0 2 A�(N; (�0f ; ��f ; s)).
By construction, R(N; (�0f ; ��f ; s); �

0) = R (N; (�; s) ; �0)�� j�0 (f) n� (f)j and
R(N; (�0f ; ��f ; s); �) = R (N; (�; s) ; �)��. By optimalities of � and �0, we have
R (N; (�; s) ; �) � R (N; (�; s) ; �0) andR(N; (�0f ; ��f ; s); �0) � R(N; (�0f ; ��f ; s); �).
Since j�0 (f) n� (f)j > 1 leads to a contradiction, either j�0 (f) n� (f)j = 1 or
j�0 (f) n� (f)j = 0. Suppose j�0 (f) n� (f)j = 1. This impliesR(N; (�0f ; ��f ; s); �0) =
R(N; (�0f ; ��f ; s); �). However, if this is the case, then �rm f can improve its

payo¤by � > 0 by choosing �00f such that �
00
f (w) = �f (w)��, �00f (w0) = 0 for all

w0 62 � (f) and �00f (w00) = �f (w00) for all w00 62 � (f) n fwg as the matchmaker is
forced to choose �. This is a contradiction. Hence, we have j�0 (f) n� (f)j = 0
or �0 (f) j �(f). Hence, R (N; (�; s) ; �0) = R(N; (�0f ; ��f ; s); �0).
(i) Suppose w 2 �0 (f). By construction, R (ff; �0 (f)g ; (�; s) ; �0) > R(ff;

�0 (f)g; (�0f ; ��f ; s); �0) andR(Nn ff; �0 (f)g ; (�; s); �0) = R(Nnff; �0 (f)g; (�0f ;
��f ; s); �

0). SinceR (N; (�; s) ; �0) = R (ff; �0 (f)g ; (�; s) ; �0)+R(Nn ff; �0 (f)g ;
(�; s); �0) andR(N; (�0f ; ��f ; s); �

0) = R(ff; �0 (f)g ; (�0f ; ��f ; s); �0)+R(Nnff;
�0 (f)g; (�0f ; ��f ; s); �0), we have R (N; (�; s) ; �0) > R(N; (�0f ; ��f ; s); �0). This
is a contradiction. Thus, �0 (f) j �(f)n fwg.
(ii) Suppose not. Then R�(N; (�; s)) > R(N; (�; s); �0). Consider � �

R�(N; (�; s))�R(N; (�; s); �0) > 0. SinceR(N; (�; s); �0) =R(N; (�0f ; ��f ; s); �0),
�rm f can improve its payo¤ by � < � by choosing �000f such that �

000
f (w) =

�f (w) � �, �000f (w0) = 0 for all w0 62 � (f) and �000f (w
00) = �f (w

00) for all

w00 62 � (f) n fwg. This is a contradiction.�

Although Theorem 1 deals with a simple matchmaker game in a many-

to-one matching problem, it is more convenient to start with a one-to-one

matching problem, since the result of a one-to-one matching problem can be
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extended to the case of a many-to-one matching problem. Let qf = 1 for

all f 2 F . In the one-to-one matching problem, Proposition 3 becomes the
following simple statement.

Corollary 4. In every one-to-one matchmaker game, in every Nash equilib-
rium ((�; s); �), R�(N; (�; s)) = R�(Nnfkg; (�; s)) for all k 2 N .

Let Sk = fk0 2 Nnfkg : �(k0) 6= ?g. This implies that R�(Sk; (�; s)) =
R(Sk; (�; s); �) = R�(Nnfkg; (�; s)). Then, Corollary 4 says that in every
Nash equilibrium ((�; s); �), for all k 2 N , there exists Sk � Nnfkg such that
the following equation holds:

R�(N; (�; s)) = R�(Sk; (�; s)):

This system of Nash equations characterizes a Nash equilibrium ((�; s); �)
of the one-to-one matchmaker game.16 The following is the �rst main result

of this section.

Proposition 4. In every one-to-one matchmaker game, the matchmaker�s
pro�t is zero in every Nash equilibrium.

Proof. We will prove the theorem by contradiction. Assume that there is a

Nash equilibrium allocation ((�; s); �) with a positive pro�t (R(N; (�; s); �) =

R�(N; (�; s)) > 0), and we will reach a contradiction.

First, note that R(N; (�; s); �) =
P

f2C(N;�)\F R(ff; �(f)g; (�; s); �). Pick
up a pair (f1; w1) � N that generates the highest positive pro�t under (�; s)

and �:

R(ff1; w1g; (�; s); �) > 0: (�)
16Our system of Nash equations is inspired by the system of fundamental equations given

by Laussel and Le Breton (2001). However, these two systems of equations are very di¤er-
ent from each other. Laussel and Le Breton�s (2001) system of fundamental equations is
constructed from each coalition�s value (the maximal value of the sum of the payo¤s of the
agent and the principals in the coalition), and all truthful equilibrium payo¤ vectors satisfy
the same system of equations. In contrast, our system of Nash equations is constructed from
the matchmaker�s (the agent�s) total pro�t for each coalition when a Nash strategy pro�le
is picked.
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The relevant Nash equations for f1 and w1 can be written asX
f2C(Sf1 ;�0)\F

R(ff; �0(f)g; (�; s); �0) =
X

f2C(N;�)\F

R(ff; �(f)g; (�; s); �);

X
f2C(Sw1 ;�00)\F

R(ff; �00(f)g; (�; s); �00) =
X

f2C(N;�)\F

R(ff; �(f)g; (�; s); �)

where �0 2 A� (Sf1 ; (�; s)) and �00 2 A� (Sw1 ; (�; s)).
Our �rst lemma is the following.

Lemma 1. We have w1 2 Sf1 and R(f�0(w1); w1g; (�; s); �0) > 0. Similarly,
f1 2 Sw1 and R(ff1; �00(f1)g; (�; s); �00) > 0.

Proof of Lemma 1. We will prove the �rst half (the second half follows
by a symmetric argument). Suppose w1 =2 Sf1 or �

0(w1) = ?. Then, we
can construct a new matching �� such that ��(k) = �0(k) for all k 2 Sf1,

��(f1) = w1, and ��(k) = ? for all k 2 Nn (Sf1 [ fw1; f1g). Then, we have

R (N; (�; s); ��) = R (Sf1 ; (�; s); �
0) +R (fw1; f1g ; (�; s); �)

> R (Sf1 ; (�; s); �
0) = R (N; (�; s); �) :

Note that the last equality comes from the Nash equation. This is in contra-

diction with � 2 A�(N; (�; s)).
Now, suppose R(f�0(w1); w1g; (�; s); �0) = 0 (if pro�t is negative, the

matchmaker would rather leave them unmatched). Then, we have

R (Sf1 ; (�; s); �
0) = R (Sf1n fw1; �0(w1)g ; (�; s); �0) +R(f�0(w1); w1g; (�; s); �0)
= R (Sf1n fw1; �0(w1)g ; �0) :

Then we could construct �� such that ��(k) = �0(k) for all k 2 Sf1, ��(f1) =
w1, and ��(k) = ? for all k 2 Nn (Sf1 [ fw1; �0(w1)g). Then we have

R (N; (�; s); ��) = R (Sf1n fw1; �0(w1)g ; (�; s); �0) +R (fw1; f1g ; (�; s); �0)
= R (Sf1 ; (�; s); �

0) +R(fw1; f1g; (�; s); �) > R (N; (�; s); �) :
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This violates � 2 A�(N; (�; s)).�

Recall �0 and �00 are matchings that achieve values R� (Sf1 ; (�; s)) and

R� (Sw1 ; (�; s)), respectively. By using Lemma 1, we will construct chains of

pairs from matchings �; �0, and �00. Let f`+1 � �0 (w`) and w`+1 = �(f`+1)

for ` = 1; 2; :::L, where L is such that �(f`) 2 C(N;�) \ W and �0(w`) 2
C(N;�)\F for all ` < L and �(fL) =2 C(N;�)\W . Similarly, let ~w`+1 � �00( ~f`)
and ~f`+1 = �( ~w`+1) for ` = 1; 2; :::; ~L, where ~L is such that �( ~w`) 2 C(N;�)\F
and �0( ~f`) 2 C(N;�)\W for all ` < ~L and �( ~w~L) =2 C(N;�)\F . The following
is our key lemma.

Lemma 2. Either
PL

`=1R (fw`; f`g ; (�; s); �) >
PL�1

`=1 R (fw`; f`+1g ; (�; s); �0)
or
P~L

`=1R(f ~w`; ~f`g; (�; s); �) >
P~L�1

`=1 R(f ~w`+1; ~f`g; (�; s); �00) holds.

Proof of Lemma 2. Optimality of � implies:
PL

`=1R (fw`; f`g ; (�; s); �) �PL�1
`=1 R (fw`; f`+1g ; (�; s); �0) and

P~L
`=1R(f ~w`; ~f`g; (�; s); �) �

P~L�1
`=1 R(f ~w`+1;

~f`g; (�; s); �00). Thus, suppose to the contrary that

LX
`=1

R (fw`; f`g ; (�; s); �) =
L�1X
`=1

R (fw`; f`+1g ; (�; s); �0) ;

~LX
`=1

R(f ~w`; ~f`g; (�; s); �) =
~L�1X
`=1

R(f ~w`+1; ~f`g; (�; s); �00):
(��)

There are two cases: (Case 1)
�
[L�1`=1 fw`; f`+1g

�
\ ([~L�1`=1 f ~w`+1; ~f`g) = ?, and

(Case 2)
�
[L�1`=1 fw`; f`+1g

�
\ ([~L�1`=1 f ~w`+1; ~f`g) 6= ?. We will analyze the two

cases by noting fw1; f1g = f ~w1; ~f1g. Let us start with the simpler case.

(Case 1) Suppose
�
[L�1`=1 fw`; f`+1g

�
\ ([~L�1`=1 f ~w`+1; ~f`g) = ?. See Figure 3.
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Figure 3: Illustration of (Case 1). Solid, dashed, and dotted lines represent
matchings �, �0, and �00, respectively. Arrows represent ��.

Summing the two equations in (��), we have

L�1X
`=1

R (fw`; f`+1g ; (�; s); �0) +
~L�1X
`=1

R(f ~w`+1; ~f`g; (�; s); �00)

=
LX
`=1

R (fw`; f`g ; (�; s); �) +
~LX
`=1

R(f ~w`; ~f`g; (�; s); �)

=

0@ LX
`=1

R (fw`; f`g ; (�; s); �) +
~LX
`=2

R(f ~w`; ~f`g; (�; s); �)

1A
+R(fw1; f1g; (�; s); �)

where the last equality comes from f ~w1; ~f1g = fw1; f1g. LetA �
�
[L�1`=1 fw`; f`+1g

�
\([~L�1`=1 f ~w`+1; ~f`g). There is no double counting of players inA. Let �� 2M be

such that ��(w`) = f`+1 for ` = 1; :::; L�1 and ��( ~f`) = ~w`+1 for ` = 1; :::; ~L�1.
Replacing � by ��, the total value in A increases by R(fw1; f1g; (�; s); �). By
the prevailing assumption (�), R(fw1; f1g; (�; s); �) > 0. This contradicts the
optimality of �.

(Case 2)
�
[L�1`=1 fw`; f`+1g

�
\ ([~L�1`=1 f ~w`+1; ~f`g) 6= ?. Let �̀ be such that

for all 1 � ` < �̀, ~w`; ~f` =2 [L`=1 fw`; f`g, and ~w�̀; ~f�̀ 2 [L`=1 fw`; f`g. Hence,
f ~w�̀; ~f�̀g = fw`0 ; f`0g for some `0 2 f2; :::; Lg. See Figure 4a for the case when
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(a) w3 = ~w3; f3 = ~f3: (b) Construct B1: (c) Remove B1:

Figure 4: Illustration of (Case 2) when `0 = �̀= 3: Solid, dashed, and dotted
lines represent matchings �, �0, and �00, respectively. Arrows represent ��.

`0 = �̀= 3. Denote the set of players B1 � ([`
0
`=1 fw`; f`g)[([

�̀�1
`=2f ~w`; ~f`g) as in

Figure 4b. There is no double counting in B1. Now, consider two matchings in

B1: � and �� such that ��(w`) = �0(w`) for ` = 1; :::; `0�1, and ��( ~f`) = �00( ~f`)
for ` = 1; :::; �̀� 1 (note ~f1 = f1 and ~w�̀= w`0). We now compare the values of
these two. First,

R(B1; (�; s); �
�)

=

`0�1X
`=1

R (fw`; f`+1g ; (�; s); �0) +
�̀�1X
`=1

R(f ~w`+1; ~f`g; (�; s); �00)

=

24L�1X
`=1

R (fw`; f`+1g ; (�; s); �0) +
~L�1X
`=1

R(f ~w`+1; ~f`g; (�; s); �00)

35
�

24L�1X
`=`0

R (fw`; f`+1g ; (�; s); �0) +
~L�1X
`=�̀

R(f ~w`+1; ~f`g; (�; s); �00)

35
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and

R(B1; (�; s); �)

=
`0X
`=1

R (fw`; f`g ; (�; s); �) +
�̀�1X
`=2

R(f ~w`; ~f`g; (�; s); �)

=

24 LX
`=1

R (fw`; f`g ; (�; s); �) +
~LX
`=1

R(f ~w`; ~f`g; (�; s); �)

35
�

24 LX
`=`0

R (fw`; f`g ; (�; s); �) +
~LX
`=�̀

R(f ~w`; ~f`g; (�; s); �)

35
� [R(fw1; f1g; (�; s); �)�R (fw`0 ; f`0g ; (�; s); �)]

=

24L�1X
`=1

R (fw`; f`+1g ; (�; s); �0) +
~L�1X
`=1

R(f ~w`+1; ~f`g; (�; s); �00)

35
�

24 LX
`=`0

R (fw`; f`g ; (�; s); �) +
~LX
`=�̀

R(f ~w`; ~f`g; (�; s); �)

35
� [R(fw1; f1g; (�; s); �)�R (fw`0 ; f`0g ; (�; s); �)]

where the last equality follows from (��). Thus, we have

R(B1; (�; s); �
�)�R(B1; (�; s); �)

= R(fw1; f1g; (�; s); �)�R (fw`0 ; f`0g ; (�; s); �)

+

"
LX
`=`0

R (fw`; f`g ; (�; s); �)�
L�1X
`=`0

R (fw`; f`+1g ; (�; s); �0)
#

+

24 ~LX
`=�̀

R(f ~w`; ~f`g; (�; s); �)�
~L�1X
`=�̀

R(f ~w`+1; ~f`g; (�; s); �00)

35 :
Note that the contents in both brackets must be nonnegative since � max-

imizes the total value in N . Since fw1; f1g generates the highest pro�t un-
der (�; s) and �, R(fw1; f1g; (�; s); �) � R (fw`0 ; f`0g ; (�; s); �) must hold.
Thus, R(B1; (�; s); ��) � R(B1; (�; s); �) must hold. If R(B1; (�; s); ��) >

R(B1; (�; s); �), we have a contradiction, so assume that R(B1; (�; s); ��) =
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R(B1; (�; s); �). For this to happen, the following three conditions must hold:

(i) R(fw1; f1g; (�; s); �) = R (fw`0 ; f`0g ; (�; s); �) :

(ii)
PL

`=`0 R (fw`; f`g ; (�; s); �) =
PL�1

`=`0 R (fw`; f`+1g ; (�; s); �0) :

(iii)
P~L

`=�̀R(f ~w`; ~f`g; (�; s); �) =
P~L�1

`=�̀ R(f ~w`+1; ~f`g; (�; s); �00):

Recall that fw`0 ; f`0g = f ~w�̀; ~f�̀g. Rename w`, f`, ~w`, ~f`, L, and ~L as

w`�`0+1, f`�`0+1, ~w`��̀+1, ~f`��̀+1, L�`0+1, and ~L� �̀+1, respectively. Then, we
again have exactly the same problem as before:

PL
`=1R (fw`; f`g ; (�; s); �) =PL�1

`=1 R (fw`; f`+1g ; (�; s); �0) and
P~L

`=1R(f ~w`; ~f`g; (�; s); �) =
P~L�1

`=1 R(f ~w`+1;
~f`g; (�; s); �00) as in Figure 4c.
If (Case 1) applies, then we have a contradiction. If (Case 2) applies,

then we again �nd fw`0 ; f`0g = f ~w`; ~f`g, and we can again �nd a cycle set
B2. If the cycle achieves a strict improvement, we reach a contradiction. So,

assuming equalities, �rms and workers that remain after taking B2 out still

satisfy the above three conditions. Applying this procedure repeatedly, eventu-

ally, (Case 1) applies (by a �nite number of players). Hence, we conclude thatPL
`=1R (fw`; f`g ; (�; s); �) >

PL�1
`=1 R (fw`; f`+1g ; (�; s); �0) or

P~L
`=1R(f ~w`; ~f`g;

(�; s); �) >
P~L�1

`=1 R(f ~w`+1; ~f`g; (�; s); �00) holds.�

The last part of the proof of Proposition 4. Now we will complete the
proof of Proposition 4. Suppose, without loss of generality, that

PL
`=1R(fw`; f`g ;

(�; s); �) >
PL�1

`=1 R(fw`; f`+1g ; (�; s); �0) holds. There are two possibilities:
(1) Sf1 = [L�1`=1 fw`; f`+1g, or (2) Sf1 % [L�1`=1 fw`; f`+1g. In the �rst case,
R(Sf1 ; (�; s); �

0) < R(N; (�; s); �). This contradicts the Nash equation. In the

second case, the new matching created from � and �0 is broken in the middle.

There are two subcases: (i) �(fL) = ?, and (ii) �0(wL) = ?. In either subcase,
R(Nn

PL
`=1 fw`; f`g ; (�; s); �) = R(Nn

PL
`=1 fw`; f`g ; (�; s); �0).17 This again

implies R(Sf1 ; (�; s); �
0) < R(N; (�; s); �). Hence, assumption (�) cannot be

true. Thus, no pair can generate a positive pro�t.�

The proof of Proposition 4 utilizes only Corollary 4 and the matchmaker�s

pro�t-maximizing behavior given the system of pro�t on each pair of �rms

17This is a slight abuse of notation: in subcase (i), wL does not exist, since fL is single.
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and workers (generated from � and s). As the Nash equations apply to each

position instead of each �rm, we can extend our Proposition 3 to the simple

matchmaker game in the many-to-one assignment problem. Let us separate

�rm f into qf positions f 0 =
n
f 01; : : : ; f

0
qf

o
where each position o¤ers the

same wages. Denote F 0 �
S
f2F

n
f 01; : : : ; f

0
qf

o
as the set of positions (decom-

posed �rms). Then, we can generate a one-to-one matching of positions and

workers. Let �-decomposed matching �� : W [ F 0 ! W [ F 0 be a bijec-
tion such that (i) �� (f 0i) = w if there exists f

0 3 f 0i such that w 2 � (f); (ii)
�� (w) = f 0i if � (w) = f ; (iii) �� (f) 2 F 0 implies �� (f 0i) = f 0i for all f

0
i 2 f 0

and �� (w) 2 W implies �� (w) = ?. Since Proposition 3 implies that Corollary
4 applies to �-decomposed matching in the arti�cial one-to-one assignment

problem, Proposition 4 directly implies that the zero-pro�t result for the sim-

ple matchmaker game will hold in the many-to-one assignment problem. This

completes the proof of Theorem 1.
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