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Abstract

Optimism-bias is inconsistent with the independence of decision weights and
payo¤s found in models of choice under risk, such as expected utility theory
and prospect theory. Hence, to explain the evidence suggesting that agents are
optimistically biased, we propose an alternative model of risky choice, a¤ective
decision-making, where decision weights � which we label a¤ective or perceived
risk � are endogenized.
A¤ective decision making (ADM) is a strategic model of choice under risk,

where we posit two cognitive processes: the �rational� and the �emotional�
processes. The two processes interact in a simultaneous-move intrapersonal po-
tential game, and observed choice is the result of a pure strategy Nash equilibrium
in this potential game.
We show that regular ADM potential games have an odd number of locally

unique pure strategy Nash equilibria, and demonstrate this �nding for a¤ective
decision making in insurance markets. We prove that ADM potential games are
refutable, by axiomatizing the ADM potential maximizers.

1 Introduction

Many of our everyday decisions such as working on a project, taking a �u shot, or
buying insurance require an estimate of probabilities of future events: the probability
of a project�s success, of getting sick, or of being involved in an accident. In assessing
these probabilities, decision-makers tend to be optimistically biased, where optimism-
bias is de�ned as the tendency to overestimate the likelihood of favorable future
outcomes and underestimate the likelihood of unfavorable future outcomes (Irwin,
1953; Weinstein, 1980; Slovic et al., 1982; Slovic, 2000). A young woman drinking at
a bar thinking it would be safe for her to drive home is an example; an entrepreneur
who starts a new business, con�dent that she is going to succeed where others have
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ful comments and advice from Eddie Dekel, Tzachi Gilboa, Ben Polak and Larry Samuelson. Bracha
would like to thank the Foerder Institute for Economic Research and the Whitebox Foundation for
�nancial support.

yThe Federal Reserve Bank of Boston
zDepartment of Economics, Yale University

1



Electronic copy available at: http://ssrn.com/abstract=1581531

failed, is another. Indeed, one can argue that although statistics for these events are
well documented, each of these individuals has private information concerning her
tolerance for alcohol and entrepreneurial ability, respectively. Hence, each woman
may have good reasons to believe that overall empirical frequencies do not apply
to her. The common feature in these examples is that decision-makers have some
freedom in choosing their probabilistic beliefs, and they are often optimistic � they
appear to choose beliefs that are biased towards favorable outcomes.

Optimism-bias is not merely a hypothetical bias; instead it translates into both
microeconomic and macroeconomic activity. For example, optimism-bias in�uences
high-stakes decisions, such as startup investment, investment behavior, and merger
decisions. It was found that 68 percent of startups�entrepreneurs believe their com-
pany is more likely to succeed than similar companies, while in reality only 50 percent
of startup companies survive beyond three years of activity (Baker, Ruback and Wur-
gler, 2006 and references therein). Malmendier and Tate (2005) �nd that CEOs who
are optimistic regarding their �rm�s future performance have a greater sensitivity to
investment�s cash �ow, leading to distortions in investments. In their 2008 paper,
Malmendier and Tate �nd that the optimistic CEOs are 65 percent more likely to
complete mergers, are more likely to overpay for those target companies, and are
more likely to undertake value-destroying mergers. On the macroeconomic level, Bob
Shiller in his now classic book Irrational Exuberance (2000, 1st ed.) de�nes irrational
exuberance as �wishful thinking on the part of investors that blinds us to the truth
of our situation,� and he makes the case that irrational exuberance contributes to
generating bubbles in �nancial markets. Shiller points out several psychological and
cultural factors that a¤ect individuals�beliefs and consequently investment behav-
ior, leading to real macro-level e¤ects. Many of these factors can be summarized as
optimistically biased beliefs.

Optimism-bias is inconsistent with the independence of decision weights and pay-
o¤s found in models of choice under risk, such as expected utility theory and prospect
theory. Hence, to explain the evidence suggesting that agents are optimistically bi-
ased, we propose an alternative model of risky choice where decision weights � which
we label a¤ective or perceived risk � are endogenized. More speci�cally, we con-
sider two systems of reasoning, which we label the rational process and the emotional
process. The rational process decides on an action, while the emotional process forms
perceptions of risk and in so doing is optimistically biased. The two processes interact
to reach a consistent decision. This interaction is modeled as a simultaneous-move,
intrapersonal potential game, and consistency between the two processes, which rep-
resents observed choice, is the equilibrium outcome realized as a pure strategy Nash
equilibrium of the game.

A formulation that may be viewed as a model of the specialization and inte-
gration of brain activity considered in the recent neuroscience literature. That is,
recent studies in neuroscience identify distinct brain modules that specialize in dif-
ferent activities. For instance, the amygdala is associated with emotions, while the
prefrontal cortex is associated with higher-level, deliberate thinking (e.g., Reisberg,
2001). Our model is also consistent with the psychology literature that draws a
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distinction between analytical and intuitive, or deliberate and emotional cognitive
activity. (Chaiken and Trope, 1999). However, in both neuroscience and psychology,
behavior is thought to be a result of the di¤erent systems interacting (for exam-
ple, Sacks, 1985; Damasio, 1994; Epstein, 1994; LeDoux, 2000; Gray et al., 2002;
Camerer, Loewenstein and Prelec, 2004; Pessoa, 2008). Gray et al. (2002) for exam-
ple conclude that �at some point of processing, functional specialization is lost, and
emotion and cognition conjointly and equally contribute to the control of thought
and behavior,� and recently, Pessoa (2008) argues that �...emotions and cognition
not only strongly interact in the brain, but [that] they are often integrated so that
they jointly contribute to behavior,� a point also made in the speci�c context of
expectation formation.

Although the evidence on modular brain and the dual-processes theory cannot
typically be pinned down to the formation of beliefs, given that beliefs formation is
partly a¤ected by the beliefs we would like to have, that is, by a¤ective considerations,
decision-making under risk naturally suggests the interplay between the two cognitive
processes, proposed by Kahneman (2003). That is, decision-making under risk can
be modeled as a deliberate process that chooses an optimal action, and an emotiona1
cognitive process that forms risk perception.

Formally, the rational process coincides with the expected utility model, where
for a given risk perception (a¤ective probability distribution), the rational process
chooses an action to maximize expected utility. The emotional process forms risk
perception by selecting an optimal risk perception that balances two contradictory
impulses: (1) a¤ective motivation and (2) a taste for accuracy. This model is con-
sistent with the de�nition of motivated reasoning, a psychological mechanism where
emotional goals motivate agent�s beliefs (see Kunda, 1990), and is a source of psy-
chological biases, such as optimism-bias. A¤ective motivation is the desire to hold
a favorable personal risk perception � optimism � and in the model it is de�ned
by the expected utility term. The desire for accuracy is modeled as a mental cost
incurred by the agent for holding beliefs in lieu of her base-rate probabilities given
her desire for favorable risk beliefs. The base-rate probabilities are the beliefs that
minimize the mental cost function of the emotional process,i.e., the risk perception
that is the easiest and least costly to justify; in many instances, one can think of the
base-line probabilities as the empirical, relative frequencies of the states of nature.

We present an example of the demand for insurance in a world with a bad state and
a good state as an application of a¤ective decision making. The relevant probability
distribution in insurance markets is personal risk; hence, the demand for insurance
may depend on optimism-bias. A¤ective choice in insurance markets is de�ned as the
insurance level and risk perception that constitute a pure strategy Nash equilibrium
of the ADM potential game.

The systematic departure of the ADM model from the expected utility model is
consistent with consumer research (Keller and Block, 1996), that campaigns intended
to educate consumers on the magnitude of the potential loss in the unfavorable state
can have the unintended consequence that consumers purchase less, rather than more,
insurance. Hence, the ADM model suggests that the failure of the expected utility
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model to explain some data sets may be due to systematic a¤ective biases.
The ADM intrapersonal game is a potential game � where the potential is a

penalized subjective expected utility (SEU) function � that de�nes the best response
dynamic of the game. This speci�cation has the natural interpretation of the utility
function of the composite agent, or integration of the two systems. Deviations from
the basic models of rational choice often raise the concern that the theory lacks
the discipline imposed by a clear paradigm, and, as a result, any data set can be
rationalized by such models. This concern arises in the ADM model, since we allow
agents to choose both actions and beliefs. We present an axiomatic characterization
of ADM potential maximizers that shows the model is refutable. That is, there exists
data sets that cannot be rationalized by ADM potential games.

The remainder of the paper is organized as follows: In section 2 we discuss the
related literature, and in section 3 we present the demand for insurance in a world
with two states of nature. Section 4 present an analysis of ADM potential games
in a world with K-states of nature.. In section 5 we provide a formal de�nition of
optimistic preferences and present an axiomatic foundation of the ADM potential
maximizers. All proofs are in the Appendix.

2 Related Literature

Recent literature in economic theory recognizes the possibility that agents might
choose their beliefs in a self-serving or optimistic way, such as Akerlof and Dickens
(1982), Bodner and Prelec (2001), Bénabou and Tirole (2002), Yariv (2002), Caplin
and Leahy (2004), Bracha (2005), Brunnermeier and Parker (2005), and Kosz½egi
(2006). The dual processes hypothesis, as well, was recently recognized in economic
modeling. Speci�cally, in models of self-control and addiction such as Thaler and
Shefrin (1981), Bernheim and Rangel (2004), Loewenstein and O�Donoghue (2004),
Benhabib and Bisin (2005), Fudenberg and Levine (2006), and Brocas and Carrillo
(2008). Existing models are restricted in the sense that choice of beliefs and choice of
action are not made in tandem and the models assume that an agent chooses beliefs
in a strategic manner to resolve a tradeo¤ between a standard instrumental payo¤
and some notion of psychologically based belief utility,1 while the existing models of
dual processes are restricted in that the two systems, or decision modes, are conceived
as mutually exclusive.

Although there are cases where a descriptive model seems to require mutually
exclusive systems, as in the case of self-control and addiction, there are other cases
where a descriptive model seems to require several di¤erent processes that together
determine observed choice. We provide such a formulation: one process chooses action
while the other forms perceptions, and both are necessary for decision-making.

As mentioned, the ADM intrapersonal game is a potential game with a poten-
tial function de�ned as a penalized SEU model. This characterization allows us to
axiomatize the set of ADM potential maximizers. More importantly, the axioms sug-
gest that ADM potential games can be interpreted as representations of optimistic

1The axiomatic foundation for this is provided by Caplin and Leahy (2001) and Yariv (2001).
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preferences. An analogous representation of optimistic preferences is the Optimal Ex-
pectations model of Brunnermeier and Parker (2005). This model considers an agent
who chooses both beliefs and actions in a dynamic setting, where beliefs are chosen
at period one for all future periods, trading o¤ greater anticipated utility against the
cost of poor decisions due to optimistic beliefs. Hence, optimal expectations are opti-
mistic beliefs not constrained by reality. ADM , in contrast, is a static model, where
beliefs and actions mutually determine observed choice, and where beliefs trade o¤
greater anticipated utility against the mental cost of distorting beliefs � costs that
are a function of reality. Having a simultaneous framework, where costs are based
solely on beliefs is a parsimonious model that is consistent with cognitive dissonance.
The ADM potential game, is also consistent with the integration of processes in the
brain, where the potential function acts as a utility function of the composite agent.
Unfortunately, there is no axiomatic characterization of the Optimal Expectations
model that allows an explicit comparison of the behavioral assumptions characteriz-
ing the two models.

3 The ADM Model of the Demand for Insurance

A¤ective decision making (ADM) is a theory of choice, which generalizes expected
utility theory by positing the existence of two cognitive processes � the rational and
the emotional process � and where observed choice is the result of their simultaneous
interaction. This theory accommodates endogenity of beliefs. In this section, we
present a model of a¤ective choice in insurance markets, where probability perceptions
are endogenous.

Consider an agent facing two states of the world, Bad and Good with associated
wealth levels wB and wG, where wB < wG. The agent has a strictly increasing,
strictly concave, smooth utility function of wealth, u(w), with limw!�1Du(w) =1,
limw!1Du(w) = 0.2 Risk perception is de�ned as the perceived probability p 2 [0; 1]
of the Bad state occurring: For simplicity we allow the agent to purchase or sell
insurance I 2 (�1;1) at the �xed insurance premium rate, 
 2 (0; 1). The intuition
and results for the case where the agent can only buy insurance are easily derived
from this analysis.

The rational process chooses an optimal insurance (I�) to maximize expected
utility given a perceived risk p. Speci�cally, the rational process maximizes the
following objective function:

max
I
fpu(wB + (1� 
)I) + (1� p)u(wG � 
I)g :

The emotional process chooses an optimal risk perception (p�) given an insur-
ance level I, to balance a¤ective motivation and taste for accuracy. Speci�cally, the
emotional process maximizes the following objective function:

max
p
fpu(wB + (1� 
)I) + (1� p)u(wG � 
I)� J�(p; p0)g :

2All qualitative results remain the same for the case of limw!0Du(w) =1; limw!1Du(w) = 0.
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A¤ective motivation is captured by the expected utility term � the agent would
like to assign the highest possible weight to her preferred state of the world. Taste
for accuracy is modeled by introducing a mental cost function J�(p; p0) that is a
nonnegative, smooth function of p 2 (0; 1). It is strictly convex, and reaches a
minimum at p = p0, where p0 is the base-line probability; at the boundary p 2
f0; 1g. If J� is strictly convex and C1on (0; 1), where limp!0DJ�(p) ! +1 and
limp!1DJ�(p) ! +1, then limp!0J�(p; p0) = limp!1 J�(p; p0) = +1. See Figure
1.

po

Mc<0 Mc>0

J*(p)

p1

Figure 1

Why this shape? The literature in psychology argue that individuals tend to
use mental strategies such as bias search through memory to �nd justi�cations for
their desired beliefs (Kunda, 1990). As the desired beliefs are farther away from
some base-line odds p0, the odds that immediately come to mind and are easiest
to justify such as the empirical, relative frequency of states of nature or available
statistics like mortality tables, the search costs are likely to increase. That is, it
would be increasingly more di¢ cult to come up with justi�cations and �nd anecdotes
to support the optimistic view. This is exactly what the shape of the mental cost
function captures. In addition, the behavior at the extreme is a formal description of
a well-known phenomenon. Namely, that decision makers assign a special quality to
certain situations: getting $100 for sure is qualitatively di¤erent from a 99 percent
chance lottery to win $100 (Kahneman and Tversky, 1979). In the current simple
settings, certainty corresponds to the extreme beliefs p 2 f0; 1g, and the behavior
at the extremes captures the dramatic di¤erence between certain, �safe,�and risky
events. Hence, the psychology literature is consistent with a mental cost J�(p) that
is strictly convex and essentially smooth on the interior of the probability simplex �.

The fact that the mental cost is a function solely of probability is appealing as
well. It formally re�ects the psychological description of reasoning and gives rise to
the special and important property of our model of interaction between the rational
and emotional processes � the intrapersonal game. That is, the intrapersonal game
is a potential game. As such, this type of mental cost is consistent with integration
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of the two processes, a property supported by psychology and recent research in
neuroscience.

We now consider the interaction of the two processes in decision making. We
model this interaction as an intrapersonal simultaneous-move game; this choice re-
�ects a recent view in cognitive neuroscience; namely, both processes mutually deter-
mine the performance of the task at hand (Damasio, 1994).

De�nition 1 An intrapersonal game is a simultaneous move game of two players,
namely, the rational and the emotional processes. The strategy of the rational process
is an insurance level, I 2 (�1;1), and the strategy of the emotional process is
a risk perception; p 2 (0; 1): The payo¤ function for the rational process g : (0; 1) �
(�1;1)! R is g(p; I) � pu(wB+(1�
)I)+(1�p)u(wG�
I). The payo¤ function
for the emotional process � : (0; 1) � (�1;1) ! R is �(p; I) � g(p; I) � J�(p; p0);
where J�(�) is the mental cost function of holding belief p; which reaches a minimum
at p0.

Proposition 2 below indicates the intrapersonal game de�ned above is a potential
game. Potential games are a class of strategic games introduced by Monder and
Shapley (1993), where all players have a common goal and therefore the game can
be represented with one global common payo¤ function. This global payo¤ function
is called the potential function of the game, and is used by each player to determine
her best response. In the case of individual choice, since the players are decision
processes and the game is a model of decision-making, the potential function has
an intuitive interpretation of a utility function of the composite agent. Below is the
formal proposition:

Proposition 2 The intrapersonal game is a potential game, in which the emotional
process�s objective function is the potential function for the game. Because the poten-
tial function is strictly concave in each variable (risk perception and insurance), its
critical points are the pure strategy Nash equilibria of the game.

It is straight-forward to show that the emotional process�s objective function is
the potential of the game, as its �rst order conditions with respect to I and p are the
same as those of the rational process and emotional process, respectively. That is the
potential function �(I; p) = hU(I); pi � J�(p) captures the best-response dynamics
of the intrapersonal game, and this potential game is therefore a model of a¤ective
decision making.

The equilibrium notion in the potential game is pure strategy Nash equilibrium,
which is a natural candidate for choice, as it re�ects a mutually determined choice and
consistency between the rational and emotional processes. Given that the potential
is bi-concave, we have the following existence theorem (see Figure 2 for illustration).
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Figure 2

Proposition 3 The ADM intrapersonal game has an odd number of pure strategy
Nash equilibria. The set of Nash equilibria is a chain in R2, under the standard
partial order on points in the plane.

Note that with the ADM model one captures di¤erences in report and choice
tasks, as reported in di¤erent studies (in the context of normal form games see Costa�
Gomes and Weizsäcker, 2008). In the insurance context, when asked to report the
probability of, say, an accident with no action to subsequently take, the agent acti-
vates only the emotional process and tends to report low chances. However, when
asked to choose an action both processes are activated and together determine choice
� hence the chosen action will generally be inconsistent with the reported beliefs.

Although the ADM model generally has multiple equilibria, which we believe is
realistic especially given framing and attentional e¤ects, the case of a unique equi-
librium ADM model is attractive due to its predictive power. Su¢ cient conditions,
due to Neyman (1997), for the uniqueness of pure strategy Nash equilibrium in a
simultaneous move potential game is strict concavity of the potential function and
compactness of the strategy sets. The potential is strictly concave if the Hessian of
the potential is negative de�nite, which in this simple example reduces to:

Proposition 4 If the strategy sets are compact, then a su¢ cient condition for a
unique pure strategy Nash equilibrium of the intrapersonal game is:

@2J�(p; p0)

@p2
> � [Du(wB + (1� 
)I)(1� 
) +Du(wG � 
I)
]2

[pD2u(wB + (1� 
)I)(1� 
)2 + (1� p)D2u(wG � 
I)
2]
;

This condition is simply a statement on the relative slope of the two processes�
best responses. Note that @2J�(p; p0)=@p2 is the rate at which the marginal mental
costs change with respect to perceived probabilities p, and

[Du(wB + (1� 
)I)(1� 
) +Du(wG � 
I)
]
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is the rate at which marginal bene�ts of distorting beliefs change with respect to
insurance level I. The above condition therefore states that the ratio of change in
marginal mental costs with respect to perceived risk to change in marginal men-
tal bene�t with respect to insurance is always greater than a similar ratio de�ned on
marginal expected utility. In this case, the emotional process�s best response is every-
where steeper � a change in perceived probability is accompanied there by a greater
change in insurance relative to the rational process�s best response � and the intrap-
ersonal game admits a unique equilibrium. One implication of this condition is that
for large mental costs the equilibrium is unique (think of � > 0; Ĵ� (�) = �J�(�)), and
for very large mental costs the ADM model reduces to the expected utility model.3

Even considering a unique ADM model, unless the mental costs are very large,
risk perceptions are endogenous and the model systematically departs from the ex-
pected utility model. This suggests that the failure of the expected utility model
to explain some data sets may be due to systematic a¤ective biases. How exactly
does a¤ective choice in insurance markets di¤er from the demand for insurance in the
expected utility model? Proposition 5 below shows that the expected utility outcome
in the case of an actuarially fair insurance market (full insurance) falls within the
choice set of the ADM agent. However, if the insurance market is not actuarially
fair, then this is no longer the case.

Proposition 5 If 
 = p0; there exists at least one Nash equilibrium (p�; I�) with
p� = p0 = 
, and I� = full insurance.

If 
 > p0, there exists at least one Nash equilibrium (p�; I�) with p� < p0 and
I� < I�(p0):

If 
 < p0, there exists at least one Nash equilibrium (p�; I�) with p0 < p� and
I� > I�(p0):

To understand the intuition behind these results, consider a standard myopic ad-
justment process where the processes alternate moves. If 
 > p0; at p0 the rational
process, similar to the expected utility model, prescribes buying less than full insur-
ance. The emotional process, in turn, leads the decision maker to believe �this is not
going to happen to me�and determines that she is at a lower risk. This e¤ect causes
a further reduction in the insurance purchase, with a result of less than full insurance,
even less than what the expected utility model would predict. This proposition gives
both an intuitive understanding of the e¤ect of the emotional process in the ADM
model, and intuitively shows existence of pure-strategy Nash equilibrium, a¤ective
choice. In the case of a unique ADM models, proposition 5 fully characterizes a¤ec-
tive choice; in the case of multiple equilibria it points out only one equilibrium out
of many possible, however, the e¤ect of the two processes in enhancing each others
initial tendency is true whether one considers the unique ADM models or the entire
class of ADM models.

Considering such adjustment process, the ADM model is consistent with two
widely discussed phenomena: cognitive dissonance and attention e¤ects. Cognitive

3As J� !1; p� ! p0 for all values of I. As a result, the ADM model converges to the expected
utility model.
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dissonance is when one holds two contradicting beliefs at the same time. Hence if one
thinks of the adjustment process as a process of reaching a decision, in this process
the agent su¤ers cognitive dissonance and choice represents a resolution of it. As for
attention e¤ects � if one�s attention is manipulated to �rst think of an action, or
�rst think of risk beliefs, generally he or she will end up with di¤erent choices. In
particular, according to our model, thinking �rst of probabilities of adverse events
leads to greater optimism and lower insurance purchased than if the agent�s attention
is given to thinking of insurance �rst.

Note that proposition 5 also implies that, from the viewpoint of an outside ob-
server, both optimism and pessimism (relative to p0) are possible. This is due to
the characteristics of insurance: if an agent purchases more than full insurance, then
the �bad�state becomes the �good�state, and vice versa. Consequently, if there is
no e¤ective action, i.e., one cannot change the bad state to a good state, we would
observe optimism and less-than-optimal insurance.

Here is another example of the di¤erence between a¤ective choice and the de-
mand for insurance in the expected utility model. In the expected utility model, if
people realize that they face a higher potential loss due to educational campaigns
aimed at raising awareness of the possible catastrophe, much like smoking warning
labels �Smoking Kills,�campaigns against speeding that show vivid pictures of people
severely injured or killed in car accidents, and �ood warnings �Like Never Before,�
then they would purchase more insurance.4 In the ADM model, if an agent realizes
she faces higher possible loss, then she might purchase less insurance. The increased
loss size a¤ects both the emotional and the rational processes in di¤erent directions;
the rational process prescribes more insurance, the emotional process prescribes lower
risk belief to every insurance level (due to greater incentives to live in denial). If the
emotional e¤ect is stronger the agent will buy less insurance than previously. That
is, if the loss is great, agents might prefer to remain in denial and ignore the pos-
sible catastrophes altogether, which will lead them to take fewer precautions such
as buying insurance. This is consistent with consumer research showing that high
fear arousal in educating people on the health hazards of smoking leads to a dis-
counting of the threat (Keller and Block, 1996; see also Ringold, 2002 and references
therein). Proposition 6 and Figure 3 below summarize the conditions for educational
campaigns to produce the counter-intuitive a¤ective result.

4 Indeed, there may be educational campaigns aimed at increasing the base-line probability of
an event occuring, or changing the mental costs directly. If one analyzes this kind of educational
campaigns, it is still possible that the campaigns will back �re. It depend on the speci�c assumptions
made as to how the margnial mental costs change with the campaign, and the type of equilibria
studied.
The approach we take is because many educational campaigns such as campaigns on smoking,

alcohol consumption, speeding, and natural disasters stress the outcome and not the probability
of getting into a bad state. For instance, recent European anti-smoking warning label say in large
letters �Smoking Kills,�and in many countries anti-speeding ads show vivid pictures of people severly
injured or killed in car accidents. That is, many "educational" ads do not add information on the
probability of su¤ering from the adverse consequence, but rather draw the attention of the public to
the possible dramatic consequences.
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Proposition 6 An educational campaign result in less insurance if

r(wG � 
I)
Du(wG � 
I)

>
r(wB + (1� 
)I)
Du(wB + (1� 
)I)

;

where r(�) is the absolute risk aversion property of the utility function u(�).

Insurance

p
0 1p0

I*p *

Emotional BRs

Rational BRs

Figure 3

In Proposition 6, if the utility function u(�) exhibits constant or increasing absolute
risk aversion, educational campaigns will lead to higher insurance purchase if and only
if initially the agent buys more than full insurance. Insurees who initially buy less
than full insurance will buy even less after the educational campaign. Hence, for
such utility functions, educational campaigns divide the insurance market into a set
of agents who purchase more insurance �the intended consequence � and a set of
agents who purchase less insurance � the unintended consequence. This is true for
any equilibrium, even in the presence of multiplicity of equilibria.

4 ADM Potential Games

The state-preference model of choice under risk is widely used in �nance, information
economics and game theory. In this section, we present a state-preference model
of a¤ective decision-making in competitive markets, where an agent maximizes her
preferences subject to a budget constraint. More speci�cally, consider an agent who
faces K possible states of nature and has a utility function u over outcomes. The
rational process chooses an action z that maps states into outcomes. Preferences over
acts z are represented by a convex function, J , of state-utility vectors U(z), where
U(z) is the vector of utilities of outcomes for the act z. That is, preferences over acts
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z are represented by a composite utility function J(U(z)). The emotional process
chooses a belief p and the ADM potential function is �(z; p) � hU(z); pi � J�(p),
where J�(p) is a convex function of Legendre type. That is, J�(p) is a strictly convex,
essentially smooth function on the interior of the probabilty simplex �:

The notion of a strictly convex, essentially smooth function is due to Rock-
afellar (1970) � see chapter 26. If 
 = the interior of the e¤ective domain of
a proper, extended real-valued convex function f : RK ! R [ f+1g, then f is
essentially smooth if: (i) 
 is not empty, (ii) f is di¤erentiable throughout 
, (iii)
limi!1 krf(xi)k = +1 whenever x1; x2; ::: is a sequence in 
 converging to a bound-
ary point x of 
. He de�nes the class of strictly convex and essentially smooth
functions to be of Legendre-type. In Theorem 26.5, Rockafellar proves that a closed
convex function, f is of Legendre type on the interior of the e¤ective domain of f ,
denoted 
, if and only if the Legendre conjugate f� is of Legendre type on the interior
of the e¤ective domain of f�, denoted 
�. Moreover, the gradient mapping rf is a
one-to-one map from the open,convex set 
 onto the open,convex set 
�, where the
gradient map is continuous in both directions and rf� = (rf)�1.

If J�(p) is a convex function of Legendre type then it follows from the envelope
theorem that the a¤ective probabilities chosen by the emotional process for the act
z is

rU(z)J(U(z)) = argmax
p2�

fhU(z); pi � J�(p)g:

Moreover, for all state-utility vectors U(z) and U(y):

[rU(z)J(U(z))�rU(y)J(U(y))] � [U(z)� U(y)] > 0:

That is, the a¤ective probabilities,rU(w)J(U(w)), are a strictly increasing monotone
map of the state-utility vector U(w). This is our de�nition of optimism-bias and
it shows that the assumed shape of the cost function in the demand for insurance
example (strictly convex and essentially smooth), re�ecting the psychological charac-
terization of a¤ective costs, is both necessary and su¢ cient for optimism-bias. The
de�nition of optimism-bias in the K-state world subsumes the intuitive de�nition of
optimism-bias in the two state case, where the more favorable outcome of an act z
is assigned the higher probability of being realized. In Corollary 26.3.1, Rockafellar
shows that if J�(�) is a closed proper, convex function on RK , then the subgradient
correspondence reduces to a one-to-one gradient map on the interior of the e¤ective
domain of J�(�) i¤ J�(�) is strictly convex and essentially smooth.

Is the assumed shape of the a¤ective cost function in the demand for insurance
example i.e., strictly convex and essentially smooth �typical�? That is, in some
precise sense are most closed proper convex functions on RK strictly convex and
essentially smooth on the interior of their e¤ective domains? Surprisingly, the answer
is yes! This result is an immediate consequence of Howe�s (1982) theorem that in
the uniform topology the family of strictly convex and di¤erentiable functions on a
compact, convex subset, A, of RK is a residual subset of the family of convex functions
on A. Any open and bounded, convex subset of RK can be exhausted by a countable
family of compact, convex subsets. Since a countable intersection of residual sets
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is residual, we see that in the topology of uniform convergence on compact sets
(or topology of compact convergence) the family of strictly convex and di¤erentiable
functions on an open and bounded convex subset, B, of RK is a residual subset in the
family of convex functions on B. If J�(�) is strictly convex and di¤erentiable, then
it follows from the strict monotonicity of the gradient map, that the gradient map is
one-to-one. By Corollary 26.3.1, these functions are strictly convex and essentially
smooth. That is, Legendre convex functions are generic.5

To extend the existence and local uniqueness of pure strategy Nash equilibria in
the two-state ADM potential game to ADM potential games with K-states of the
world , we de�ne regular potential games. Regular potential games are potential
games where the potential function �(z; p) is a Morse function or equivalently 0 is
a regular value of r(z;p)[�(z; p)], where z is an action and p is a belief. That is, the
Hessian of the potential function�(z; p) evaluated at a critical point of the potential is
non-singular. See chapter 1 in Guillemin and Pollack (1974) for a discussion of Morse
functions, where they show that �most�smooth functions are Morse functions. We
prove that essentially smooth and strictly bi-concave potential games that are regular
have an odd number of locally unique pure strategy Nash equilibria. In the proof we
use the homotopy principle, which implies an algorithmic interpretation and allows
for the computation of a pure-strategy Nash equilibrium.

Moreover, we show that if the potential function �(z; p) is essentially smooth and
strictly bi-concave, then the set of pure strategy Nash equilibria is non-empty, where
0 need not be a regular value of r(z;p)[�(z; p)].

Proposition 7 If �(z; p) is the potential function for a regular potential game G,
where the strategy-sets Z and � are the interiors of non-empty, convex, compact
subsets of RK , is essentially smooth and strictly bi-concave, then G has an odd number
of locally unique, pure strategy Nash equilibria.

Corollary 8 If �(z; p) = hU(z); pi � J�(p) is the potential function for a regular
ADM potential game G, where Z is the interior of the budget hyperplane and � is
the interior of the probability simplex, is essentially smooth and strictly bi-concave,
then G has an odd number of locally unique, pure strategy Nash equilibria.

Proposition 9 If �(z; p) is the potential function for a potential game G, where
the strategy-sets Z and � are the interiors of non-empty, convex, compact subsets of
RK , is essentially smooth and strictly bi-concave, then the set of pure strategy Nash
equilibria is non-empty.

Corollary 10 If �(z; p) = hU(z); pi � J�(p) is the potential function for an ADM
potential game G, where Z is the interior of the budget hyperplane and � is the
interior of the probability simplex, is essentially smooth and strictly bi-concave, then
the set of pure strategy Nash equilibria is non-empty.

The conditions for uniqueness are given below, where they extend Neyman�s
(1997) theorem on the uniqueness of pure strategy Nash equilibrium for potential

5This Theorem is due to Roger Howe � personal communication, March 2010.
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games with compact strategy sets to potential functions with, bounded, open strat-
egy sets.

Proposition 11 If �(z; p) = hU(z); pi � J�(p) is the potential function for a regu-
lar ADM potential game G, where the strategy-sets Z is the interior of the budget
hyperplane and � is the interior of the probability simplex, is essentially smooth and
strictly concave, then G has a unique pure strategy Nash equilibria

In the insurance example, the a¤ective cost function depends on base-line prob-
abilities p0. In the general K-states framework the analogous concept is Bregman
divergence � generalizations of relative entropy, used in information theory, to mea-
sure the �directed distance�from a �xed probability distribution p0 to other proba-
bility distributions p. See Banerjee et al. (2005) for a general discussion of Bregman
divergences. Importantly, every convex function of Legendre type J� on the interior
of � and �prior�probability distribution p0 in the interior of � de�nes a Bregman
divergence D(p0; p) of Legendre type, where

D(p0; p) � J�(p)� J�(p0)�rJ�(p0) � (p� p0):

For our purposes, notice that (i) for all p0 and p in the interior of �, D(p0; p) � 0;
and (ii) D(p0; p0) = 0. Hence p0 is the minimum of D(p0; p) on � or the base-line
probabilities in the insurance example. That is, D(p0; p) is the �directed distance�
from p0 to p 2 �.

If g�(p) = �f�(p); where f�(p) is a Bregman divergence, then we de�ne g�(p)
as a dual Bregman divergence. Relative entropy, J�(p) �

Pj=K
j=1 [pj lg(pj=p0j)], is a

Bregman divergence of Legendre type and is of special interest as H�(p) = �J�(p)
� its dual Bregman divergence of Legendre type � is the a¤ective cost function in
the multiplier preferences model (Hansen and Sargent, 2000). Here is an example of
an essentially smooth and strictly bi-concave ADM intrapersonal game.

Let
u(w) = w�; where � 2 (0; 1)

and

J�(p) =

j=KX
j=1

[pj lg(pj=p0j)]

then

�(z; p) =

j=KX
j=1

[z�jpj �
j=KX
j=1

[pj lg(pj=p0j)]:

5 Axioms for Optimistic Preferences

In this section we show that attitudes towards optimism reduce to the convexity of
the utility representation of preferences over acts, and use this property to derive ax-
ioms for optimistic preferences. We show that preferences over acts, z, are optimistic
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if and only if there exists a continuous, utility function u over outcomes and a con-
tinuous convex function J over state-utility vectors U(z), i.e., the vector of utilities
of outcomes for the act z. The ADM model, we present below, is an example of
optimistic preferences over acts.

We use the Legendre�Fenchel conjugate of a continuous, convex function J(U(z))
to represent optimistic preferences as ADM potential games. That is, the Legendre�
Fenchel conjugate

J�(p) � max
U(z)2RK+

fhU(z); pi � J(U(z))g:

It follows from the biconjugate theorem that

J(U(z)) = max
p2�

fhU(z); pi � J�(p)g:

i.e., the double conjugate of J; (J�)� = J . If we assume J�(p) is a convex function
of Legendre type, i.e., J�(p) is a strictly convex, essentially smooth function on the
interior of the probability simplex �, then the Legendre conjugate and biconjugate of
f are well de�ned � see Theorem 26.5 in Rockafellar (1970), stated in the previous
section. The potential function for the associated ADM potential game is

�(z; p) � hU(z); pi � J�(p):

Next, we derive the set of axioms characterizing optimistic preferences, and show
that these axioms also characterize the ADM potential maximizers. That is,

argmax
z2Z

J(U(z)) = argmax
z2Z;p2�

�(z; p):

The axiomatic characterization of optimistic preferences is an amendment of the
axiomatic characterization of variational preferences in Maccheroni, Marinacci and
Rustichini [MMR] (2006), where: S is the set of states of the world; � is an algebra
of subsets of S, the set of events; and X, the set of consequences, is a convex subset
of some vector space. F is the set of (simple) acts, i.e., �nite-valued �-measurable
functions f : S ! X. B(�) is the set of all bounded �-measurable functions, and
endowed with the sup-norm it is an AM-space with unit, the constant function 1.
Bo(�) the set of �-measurable simple functions is norm dense in B(�). The norm
dual of B(�) is ba(�), �nitely additive signed measures of bounded variation on �
(see Aliprantis and Border, 1999 for further discussion). Below we present the axioms:

A.1 (Weak Order): If f; g; h 2 F , (a) either g % f or f % g, and (b) f % g and
g % hs) f % h.

A.2 (Weak Certainty Independence): If f; g 2 F , x; y 2 X and � 2 (0; 1), then
�f + (1� �)x % �g + (1� �)x) �f + (1� �)y % �g + (1� �)y.

A.3 (Continuity): If f; g; h 2 F , the sets f� 2 [0; 1] : �f + (1� �)g % hg and
f� 2 [0; 1] : h % �f + (1� �)gg are closed.

A.4 (Monotonicity): If f; g 2 F and f(s) % g(s) for all s 2 S, the set of states,
then f % g.

A.�5 (Quasi-Convexity): If f; g 2 F and � 2 (0; 1), then f s g ) �f +(1��)g -
f .
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A.6 (Nondegeneracy): f � g for some f; g 2 F .
These axioms where A.�5 is replaced by A.5 (quasi-concavity) are due to MMR

(2006).

Theorem 12 Let % be a binary order on F . The following conditions are equivalent:
(1) The relation % satis�es axioms A:1�A:6:
(2) There exists a nonconstant function u : X ! R; unique up to a positive a¢ ne

transformation, and a continuous, convex function J� : � ! [0;1] where for all
f; g 2 F , f % g ,W (f) �W (g), whereW (h) = J(U(h)) = maxp2� fhU(h); pi � J�(p)g
is a convex function of U(h) by the biconjugate theorem.

In the standard models of decision-making under risk such as expected utility
theory and prospect theory, the decision-maker maximizes over actions, and not over
both actions and beliefs. That is, argmaxz2Z J(U(z)) = argmaxz2Z;p2��(z; p),
the potential maximizers, are in general a proper subset of the set of pure-strategy
Nash equilibria of the ADM potential game. If the ADM model has a unique pure
strategy Nash equilibrium then maximizing the composite utility function J(U(z))
over actions and maximizing the potential �(z; p) over actions and beliefs rationalize
the same observed choices. Hence these models are refutable. That is, not every data
set can be rationalized with an ADM potential game.

6 Appendix: Proofs

Proof. Proposition 2. Denote the rational process�s payo¤ function as (R) and the
emotional process�s payo¤ function as (E). A necessary and su¢ cient condition for
the intrapersonal game to have a potential function (Monderer and Shapley, 1996)
is @2R=@p@I = @2E=@p@I: This condition clearly is satis�ed in the ADM model.
The potential function J(p; I) is a function such that (Monderer and Shapley, 1996):
@J=@p = @E=@p; @J=@I = @R=@I. Because @E=@I = @R=@I, (E) can serve as a
potential function. The critical points of the potential function are @J=@p = @E=@p =
0; @J=@I = @R=@I = 0. The potential function is strictly concave in each variable,
so at each critical point, each process is maximizing its objective function, given the
strategy of the other process. Therefore, the critical points of the potential function
are the pure strategy Nash equilibria of the intrapersonal game, and all pure strategy
Nash equilibria are critical points of the potential function.
Proof. Proposition 3. By having an essentially smooth cost function, we know the
relationship between the emotional process and the rational process best response
at the extreme beliefs f0; 1g. We know that as p ! 0, the rational process best
response would be �higher.�That is, the optimal insurance for that belief is higher
than the required insurance level to support these beliefs. The relationship exactly
�ips when p! 1. Hence, there exist a pure strategy Nash equilibria. Since the best
responses are monotonically increasing, it follows that there exists odd number of
Nash equilibria.

when level relative to risk perception, 0 < � < �� < 1, �� 2 (�; ��); and insurance
I� 2 [I�(�); I�(��)]. Hence, all Nash equilibria will have perceived probabilities in
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the interval [��(I�(�)); ��
�
I�(��)

�
] where 0 < � < ��(I�(�)) < ��

�
I�(��)

�
< �� < 1.

De�ne ��(I�(�)) � �0, ��
�
I�(��)

�
� ��0; because all the Nash equilibria of the intrap-

ersonal game for � 2 (�; �) are 2 [�0; ��0] the focus can remain on the latter probability
space:The existence and chain results can be shown by de�ning a restricted intraper-
sonal game in which the insurance pure strategy space is restricted to [I�(�); I�(��)]

and the perceived probabilities are restricted to � 2 [�0; ��0], such that the equilibria
points of the intrapersonal game are not altered. The restricted game is a supermod-
ular game, and thus, these results follow from the properties of this class of games
(see Topkis, 1998). To Show that the game admits odd number of equilibria, think of
the geometry of the game. As � ! ��, the best response of the emotional process is
above the best response of the rational process, while this relationship is reversed for
� ! �. Since the best responses are monotonically increasing, it follows that there
exists odd number of Nash equilibria.
Proof. Proposition 4. The emotional process�s objective function J(p; I) =
pu(!B + (1 � 
)I) + (1 � p)u(!G � 
I) � J�(p; p0) is the potential function of the
game. The maximization of (J) with respect to the pair (I; �) gives rise to a pure
strategy Nash equilibria of the game.� 2 [�0; ��0] and I 2 [I�(�0); I�(��0)] (see Proof
of Theorem 1), hence only the restricted intrapersonal game in which both players�
strategy spaces are compact need be considered. Neyman (1997), proved that a po-
tential game with a strictly concave, smooth potential function, in which all players
have compact, convex strategy sets, has a unique pure strategy Nash equilibrium.
That is, the Hessian of the potential function is negative de�nite, as follows from the
condition given above.
Proof. Proposition 5. Consider the case in which 
 = �0. At full insurance, there
is no mental gain for holding beliefs � 6= �0 but there exists mental cost. Therefore, at
full insurance, the mental process�s best response is � = �0. Given that 
 = �0 = �,
the rational process�s best response is full insurance. Consequently, full insurance and
� = �0 is a Nash equilibrium of this case. Next, consider the case 
 > �0; because
the insurance premium is higher than �0, I

�(� = �0) < z. Also, �� = �0 only at
full insurance, where I = z. Therefore, at � = �0 the mental process�s best response
falls above the rational process�s best response. This relationship is reversed at the
limit � ! �, and both the mental and the rational best responses increase; therefore,
there exists a Nash equilibrium with � < �0 and less insurance than predicted by
the expected utility model. A similar argument can be used to prove the result when

 < �0.
Proof. Proposition 6. De�ne ~I(�;�0) as the inverse function p

��1. De�ne
�(p; p0) = I

�(p)� ~I(p; p0), � : [�0; ��0]! R.
Educational campaigns on impending catastrophes increase the loss size, z. Be-

cause �(p; p0) = 0 is a NE, @�=@z < 0 represent the unintended consequence of such
campaigns.

@�

@z
< 0,

@ ~I
@z
@I�
@z

> 1:
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@I�

@z
=

[u00(wG � z + (1� 
)I�)] [u0(wG � 
I�)]2

[u0(wG � 
I�)]
�
u00(wG � z + (1� 
)I�)u0(wG � 
I�)(1� 
)
+u0(wG � z + (1� 
)I�)u00(wG � 
I�)


� ;

@ ~I

@z
=

h
u0(wG � z + (1� 
)~I)

i
h
u0(wG � z + (1� 
)~I)(1� 
) + u0(wG � 
 ~I)


i ) @�

@z
< 0

, r(wG � 
I)
u0(wG � 
I)

>
r(wB + (1� 
)I)
u0(wB + (1� 
)I)

;where r(x) = �u
00(x)

u0(x)
:

The proofs of propositions 7 and 9 use the homotopy principle�see chapters 1, 2 and
22 in Garcia and Zangwill (1981). The homotopy principle admits an algorithmic
interpretation that can be used to compute a pure strategy Nash equilibrium of the
potential game � see chapter 2 in Garcia and Zangwill.
Proof. Proposition 7. Consider the following homotopy: H(t; �; �0) = (1� t)(� �
�0) + tr�[P (�)], where � = (z; �), �0 = (z0; �0) and t 2 [0; 1]:0 is a regular value
of H(0; �; �0), since [@H(0; �; �0)=@�] = I2K , the identity matrix on RKxRK . 0 is
also a regular value of H(1; �; �0), since [@H(1; �; �0)=@�] = r�[P (�)] and P (�) is
a Morse function. For t 2 (0; 1), [@H(t; �; �0)=@�0] = �I2K . Hence 0 is a regular
value of H(t; �; �0) for all t 2 (0; 1) by the transversality theorem (parametric Sard�s
theorem). That is, 0 is a regular value of H(t; �; �̂0) for almost all �̂0 2 �, where
� � Kx� �see chapter 2 in Guillemin and Pollack for a proof of the transversality
theorem. The assumption that P (�) is essentially smooth, i.e., kr�[P (�n)]k ! 1, as
�n ! bdry(�) implies that the homotopy is boundary-free. Hence by the homotopy
principle, r�[P (�)] has an odd number of regular points � see the proof of Theorem
3.2.3 in Garcia and Zangwill. Since P (�) is strictly bi-concave, it follows that P (�)
has an odd number of locally unique, pure strategy Nash equilibria.
Proof. Corollary 8. Proof is immediate.
Proof. Proposition 9. If the set of pure strategy Nash equilibria is empty, then
the set of critical points is empty and 0 is a regular value, contradicting proposition
7. Hence there exists at least one singular critical point. That is, there exists at least
one pure strategy Nash equilibrium.
Proof. Corollary 10. Proof is immediate.
Proof. Proposition 11. If P (�) is strictly concave, then it has at most one critical
point, but by proposition 7, P (�) has an odd number of critical points. Hence there
exists a unique pure strategy Nash equilibrium.
Proof. Theorem 12. Axioms 1�4 are used in MMR to derive a nonconstant
utility function, u, unique up to a positive a¢ ne transformation, over the space
of consequences, X. u is extended to the space of simple acts, F , using certainty
equivalents: That is, U(f) = u(xf ) 2 Bo(�) for each f 2 F , where xf is the certainty
equivalent of f . This is lemma 28 in MMR, where I(f) = U(f) is a niveloid on
� = f' : ' = u(f) for some f 2 Fg. Niveloids are functionals on function spaces
that are monotone: ' � � ) I(') � I(�) and vertically invariant: I('+r) = I(')+r
for all ' and r 2 R � see Dolecki and Greco (1995) for additional discussion. � is
a convex subset of B(M) and by Schmeidlers�s axiom 5, I is quasi-concave on �.
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We also assume axioms 1�4, so lemma 28 in MMR holds for the niveloid J in the
ADM representation theorem. By axiom �5, J is quasi-convex on �. MMR show in
lemma 25 that I is concave if and only if I is quasi-concave. Hence J is convex if
and only if J is quasi-convex, since J is convex(quasi-convex) if and only if �J is
concave(quasi-concave). MMR extend I to a concave niveloid Î on all of B(�) �
see lemma 25 in MMR. Epstein, Marinacci and Seo [EMS] (2007) show in lemma
A.5 that niveloids are Lipschitz continuous on any convex cone of an AM-space with
unit and concave(convex) if and only if they are quasi-concave(convex). Hence, since
B(�) is a convex cone in an AM-space with unit, Î is Lipschitz continuous. It follows
from the theorem of the biconjugate for continuous, concave functionals that I(') =
infp2ba(�)f

R
'dp � Î�(p)g, where Î�(p) = inf'2Bo(�)f

R
'dp � Î(')g is the concave,

conjugate of Î(') � see Rockafellar (1970, p. 308) for �nite state spaces. MMR
show on page 1476 that we can restrict attention to �, the family of positive, �nitely
additive measures of bounded variation in ba(�). Hence I(') = minp2�f

R
'dp �

Î�(p)g = minp2�f
R
u(f)dp + c(p)g, where ' = u(f) and J�(p) = �Î�(p). J�(p) is

convex since Î�(p) is concave.
Extending �J to �Ĵ on B(�), using lemma 25 in MMR, it follows from the

theorem of the biconjugate for continuous, convex functionals that

J(') = max
p2ba(�)

�Z
'dp� Ĵ�(p)

�
where

Ĵ�(p) = max
'2Bo(�)

�Z
'dp� bJ(')�

is the convex, conjugate of Ĵ(') � see Rockafellar (1970, p. 104) for �nite state
spaces and Z¼alinescu (2002, p. 77) for in�nite state spaces. Again it follows from
MMR that

J(') = max
p2�

�Z
'dp� Ĵ�(p)

�
= max

p2�

�Z
u(f)dp� J�(p)

�
=W (f);

where ' = u(f) and J�(p) = Ĵ�(p). J�(p) is convex since Ĵ�(p) is convex.

f % g , J(u(f)) � J(u(g)),W (f) �W (g):

Hence argmaxf2F;p2�f
R
u(f)dp � c(p)g � set of pure strategy Nash equilibria of

the ADM intrapersonal game, where u(�) is the Bernoulli utility function of the
rational process and Ĵ�(�) is the cost function of the emotional process. It follows that
the axioms for ambiguity-seeking preferences also characterize the ADM potential
maximizers : argmaxf2F;p2�f

R
u(f)dp� J�(p)g.
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