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Abstract

We consider dominant strategy implementation in private values settings, when

agents have multi-dimensional types, the set of alternatives is finite, monetary transfers

are allowed, and agents have quasi-linear utilities. We show that any implementable

and neutral social choice function must be a weighted welfare maximizer if the type

space of every agent is an m-dimensional open interval, where m is the number of

alternatives. When the type space of every agent is unrestricted, Roberts’ theorem

with neutrality [23] becomes a corollary to our result. Our proof technique uses a

social welfare ordering approach, commonly used in aggregation literature in social

choice theory. We also prove the general (affine maximizer) version of Roberts’ theorem

for unrestricted type spaces of agents using this approach.
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1 Introduction

The well-known Gibbard-Satterthwaite [12, 26] Impossibility Theorem in mechanism design

asserts that in unrestricted domains, every implementable social choice function which has

at least three alternatives in its range, must be dictatorial. A crucial aspect of the unre-

stricted domain assumption is that monetary transfers are not permitted. However, models

where monetary transfers are admissible are very important. Both the auction setting and

the standard public good model assume that agents can receive monetary transfers (either

positive or negative) and that the underlying utility function of every agent is quasi-linear

in money. This paper is a contribution to the literature which investigates the structure of

social choice functions which can be implemented in dominant strategies in these settings.

[28, 8, 13] showed that efficient social choice functions can be implemented by a unique

family of transfer rules, now popularly known as Vickrey-Clarke-Groves (VCG) transfer

schemes. Remarkably, when the domain is unrestricted (as in the Gibbard-Satterthwaite

setup) and the range of the mechanism contains at least three alternatives, the only (dom-

inant strategy) implementable social choice functions are affine maximizers. These social

choice functions are generalizations of weighted efficiency rules. This result was proved by

[23] in a seminal paper. It can be seen as the counterpart to the Gibbard-Satterthwaite

theorem for quasi-linear utility environments.

As in the literature without money, the literature with quasi-linear utility has since tried

to relax various assumptions in Roberts’ theorem. [24] shows that a certain cycle monotonic-

ity property characterizes dominant strategy implementable social choice functions. Though

this characterization is very general - works for any domains and any set of alternatives (finite

or infinite) - it is not as useful as the Roberts’ theorem since it does not give a functional

form of the class of implementable social choice functions. Along the lines of [24], [2] and

[25] have shown that a weak monotonicity property characterizes implementable social choice

functions in auction settings, a severely restricted domain, when the set of alternatives is

finite and the type space is convex 1. Again, the precise functional form of the implementable

social choice functions are missing in these characterizations. A fundamental open question

is the following:

What subdomains allow for a functional form of implementable social choice functions?

Several attempts have been made recently to simplify, refine, and extend Roberts’ theo-

rem. Using almost the same structure and approach, [16] reduced the complexity of Roberts’

original proof. [11] also provide an alternate (modular) proof of Roberts’ theorem for unre-

stricted domain. Building on the technique of [16], [5] extend Roberts’ theorem to continuous

domains. Other proofs of Roberts’ theorem can be found in (for unrestricted domains) [15]

1See also [21] and [1]. [1] prove the converse of this result also.
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and [29].

1.1 Our Contribution

Our paper contributes to the literature in two ways. First, we characterize restricted domains

where the affine maximizer theorem holds in the presence of an additional assumption on

social choice functions, that of neutrality. Neutrality requires the social choice function to

treat all alternatives symmetrically. It is a familiar axiom in social choice theory and we

discuss it at greater length in Section 2.2. Our main result states that every implementable

social choice function is a weighted welfare maximizer if the type space of every agent is an

m-dimensional open interval, where m is the number of alternatives. For the unrestricted

domain, our result implies Roberts’ result in the special case where attention is restricted to

neutral social choice functions. We demonstrate that the neutrality assumption is essential

for our domain characterization result in the following sense: there exist (open interval)

domains over which an implementable non-affine-maximizer social choice function exists but

over which all neutral implementable social choice functions are weighted welfare maximizers.

Our second contribution is methodological and conceptual. Our proof technique differs

significantly from existing ones. It can be summarized in three steps.

S1 We show that an implementable and neutral social choice function induces an ordering

on the domain.

S2 This ordering satisfies three key properties: weak Pareto, invariance, and continuity.

S3 We then prove a result on the representation of any ordering which satisfies these

properties. For unrestricted domains this result is familiar in the literature - see for

instance, [4], [9], [3], [27] and [10]. We show that any ordering on an open and convex

set which satisfies the axioms specified in S2 can be represented by a weighted welfare

maximizer.

The key feature of our approach is to transform the problem of characterizing incentive-

compatible social choice functions over a domain into a particular problem of characterizing

orderings of vectors in that domain. The problem of characterizing orderings satisfying

properties such as weak Pareto, invariance, continuity etc (over the unrestricted domain), is a

classical one in social choice theory. It arose from the recognition that a natural way to escape

the negative conclusions of the Arrow Impossibility Theorem was to enrich the informational

basis of Arrovian social welfare functions from individual preference orderings to utility

functions. If a social welfare function satisfies the (standard) axioms of Independence of

Irrelevant Alternatives and Pareto Indifference, then it is “equivalent” to an ordering over

R
n where n is the number of individuals. The aggregation problem in this environment can
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therefore be reduced to the problem of determining an appropriate ordering of the vectors

in R
n. There is an extensive literature which investigates exactly this question (see [10] for

a comprehensive survey).

It has been known that there is a deep connection between two seemingly unrelated

problems in social choice - the strategic problem with the goal of characterizing incentive-

compatible social choice functions and the aggregation problem with the objective of char-

acterizing social welfare functions satisfying the Arrovian axioms. For instance in the case

of the unrestricted domain consisting of all preference orderings, the Arrow Theorem can be

used to prove the Gibbard-Satterthwaite Theorem and vice-versa (for a unified approach to

both problems see [22]). Our proof serves to highlight this connection further by demon-

strating the equivalence of a strategic problem in a quasi-linear domain with an aggregation

problem involving utility functions.

We also remark that though the representation result in Step S3 is well-known for unre-

stricted domains, and our extension to open and convex domain may be of some independent

interest.

Finally, we show how Roberts’ affine maximizer theorem cab be proved using Roberts’

theorem with neutrality. This proof is contained in Section 6.

2 Roberts’ Affine Maximizer Theorem

Let A = {a, b, c, . . .} be a finite set of alternatives or allocations. Suppose |A| = m ≥ 3. Let

N = {1, . . . , n} be a finite set of agents. The type of agent i is a vector in R
m. Denote by

ti the type (vector) of agent i ∈ N , where for every a ∈ A, tai denotes the value of agent i

for alternative a when his type is ti. A type profile will be denoted by t, and consists of n

vectors in R
m. Alternately, one can view a type profile t to be an n×m matrix, where every

row represents a type vector of an agent. The column vectors are vectors in R
n. We refer to

a column vector generated by a type profile to be a utility vector. Hence, ta represents the

utility vector corresponding to allocation a in type profile t and t−a will denote the utility

vectors in type profile t except ta.

Let Ti be the type space (the set of all type vectors) of agent i. We assume Ti = (αi, βi)
m

where αi ∈ R ∪ {−∞}, βi ∈ R ∪ {∞}, and αi < βi. We call such a type space an m-

dimensional open interval domain. The set of all type profiles is denoted by T
n =

T1 × T2 × . . . Tn.

Let the set of all utility vectors for every alternative in A be D ⊆ R
n, which is an open

rectangle in R
n. Hence, the set of type profiles can alternatively written as Dm. Throughout,

we will require different mathematical properties of D which are satisfied by Ti for every i if

it is an m-dimensional open interval domain. In particular, note the following two properties

which hold if the type space is an m-dimensional open interval:
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1. If we have a type profile t in our domain and permute two utility vectors ta and tb in

this type profile, then we will get a valid type profile in our domain.

2. For every type profile t in our domain and every a ∈ A, there exists ǫ ≫ 0 2 such that

if we increase the utility vector ta by ǫ, then we get a valid type profile in our domain.

The first property follows from the interval assumption and the second property follows

from the openness assumption. We use these two properties extensively in our proofs.

We use the standard notation of t−i to denote a type profile of agents in N \ {i} and T−i

to denote the type spaces of agents in N \ {i}.

A social choice function is a mapping f : Tn → A. A payment function is a mapping

p : Tn → R
n. The payment of agent i at type profile t is denoted by pi(t).

Definition 1 A social choice function f is implementable (in dominant stragies) if there

exists a payment function p such that for every i ∈ N and every t−i, we have

t
f(ti,t−i)
i + pi(ti, t−i) ≥ t

f(si,t−i)
i + pi(si, t−i) ∀ si, ti ∈ Ti.

In this case, we say that p implements f .

Every social choice function satisfies certain properties if it is implementable. Below, we

give one such useful property.

Definition 2 A social choice function f satisfies positive association of differences

(PAD) if for every s, t ∈ T
n such that f(t) = a with sa − ta ≫ sb − tb for all b 6= a, we have

f(s) = a.

Lemma 1 ([23]) Every implementable social choice function satisfies PAD.

A natural question to ask is what social choice functions are implementable. In an

important result, [23] characterized the set of all social choice functions when the type space

is unrestricted and when the social choice function satisfies a condition called non-imposition.

Definition 3 A social choice function f satisfies non-imposition if for every a ∈ A, there

exists t ∈ T
n such that f(t) = a.

Using PAD and non-imposition, Roberts proved the following theorem.

2For every pair of vectors x, y ∈ R
n, we say that x ≫ y if and only if x is greater than y in every

component.
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Theorem 1 ([23]) Suppose Ti = R
m for all i ∈ N . If f is an implementable social choice

function and satisfies non-imposition, then there exists weights λ ∈ R
n
+ \ {0} and a deter-

ministic real-valued function κ : A → R such that for all t ∈ T
n,

f(t) ∈ argmax
a∈A

[

∑

i∈N

λit
a
i − κ(a)

]

This family of social choice functions are called affine maximizer social choice func-

tions.

2.1 Non-Affine-Maximizers in Bounded Domains: An Example

Here, we give an example to illustrate that Theorem 1 does not hold in bounded domains.

The example is due to [19].

Example 1

Let N = {1, 2} and A = {a, b, c}. Suppose T1 = T2 = (0, 1)3 (alternatively, suppose

D = (0, 1)2). Consider the following allocation rule f . Let

T
g = {(t1, t2) ∈ T

2 : tc1 < tb1 + 0.5} ∪ {(t1, t2) ∈ T
2 : tc2 > tb2 − 0.5}.

Then,

f(t1, t2) =

{

argmax{−1.5 + ta1 + ta2, t
b
1 + tb2, t

c
1 + tc2} ∀ (t1, t2) ∈ T

g

c ∀ (t1, t2) ∈ T
2 \ Tg.

It can be verified that f satisfies non-imposition. Further, the following payment rule p

implements f .

p1(t1, t2) =







ta2 if f(t1, t2) = a

min{1.5 + tb2, 2 + tc2} if f(t1, t2) = b

(1.5 + tc2) if f(t1, t2) = c.

p2(t1, t2) =







ta1 if f(t1, t2) = a

(1.5 + tb1) if f(t1, t2) = b

min{1.5 + tc1, 2 + tb1} if f(t1, t2) = c.

However, one can verify that f is not an affine maximizer. In the example above, it is essential

to assume that there are at least two agents. Roberts’ theorem holds in any bounded domain

if there is only a single agent [6]. [6] refer to this characterization as pseudo-efficiency.
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2.2 Neutrality

We restrict attention to neutral social choice functions which we now describe. Neutrality

roughly requires that the mechanism designer should treat all allocations in A symmetrically.

Given a social choice function f we define the following set. For every t ∈ T
n, the choice

set at t is defined as:

Cf(t) = {a ∈ A : ∀ ǫ ≫ 0 and ∀ (ta + ǫ, t−a) ∈ T
n, f(ta + ǫ, t−a) = a}.

We first show that choice sets are non-empty under our assumptions of the domain (m-

dimensional open intervals).

Lemma 2 Let f be an implementable social choice function. Then, for every t ∈ T
n, f(t) ∈

Cf(t).

Proof : Consider t ∈ T
n, and let f(t) = a. Let s = (sa = ta + ǫ, s−a = t−a) for some ǫ ≫ 0

such that s ∈ T
n. By PAD, f(s) = a. Hence, a ∈ Cf (t). �

Using the notion of a choice set, we define a neutral social choice function. In Appendix B,

we discuss an alternate (but more standard) notion of neutrality, which we call scf-neutrality,

defined directly on the social choice function, and show that scf-neutrality on implementable

social choice functions implies the following notion of neutrality.

Definition 4 A social choice function f is neutral if for every type profile t ∈ T
n, every

permutation ρ of A and type profile s induced by permutation ρ 3, we have Cf(s) = {ρ(a) :

a ∈ Cf(t)}.

A neutral social choice function does not discriminate between social alternatives by their

names. In many settings this is a natural assumption. For instance, consider a city planner

who has the following options to improve public facilities in the city: (a) to build an opera

house, (b) to build a public school, (c) to build a park. Although residents of the city can

have different (private) valuations over these alternatives, it is perfectly reasonable to assume

that the city planner has no preferences over them.

Non-imposition is implied by neutrality in m-dimensional open interval domains.

Lemma 3 Suppose f is an implementable social choice function. If f is neutral then it

satisfies non-imposition.

3 Given a permutation ρ of A and a type profile t, the type profile induced by permutation ρ is the profile

obtained from t by relabeling the columns based on permutation ρ.
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Proof : Fix an alternative a ∈ A. Consider any arbitrary type profile t such that f(t) = b 6=

a. By Lemma 2, b ∈ Cf(t). Now, construct another type profile s = (sa = tb, sb = ta, s−ab =

t−ab). By neutrality, a ∈ Cf(s). Now, let u = (ua = sa + ǫ, u−a = s−a) for some ǫ ∈ R
n
++.

Since a ∈ Cf (s), we have that f(u) = a. Hence, f satisfies non-imposition. �

Under neutrality, Roberts’ theorem is modified straightforwardly as follows (see [17]).

Theorem 2 ([23]) Suppose Ti = R
m for all i ∈ N . If f is an implementable social choice

function and satisfies neutrality, then there exists weights λ ∈ R
n
+ \ {0} such that for all

t ∈ T
n,

f(t) ∈ argmax
a∈A

∑

i∈N

λit
a
i

A striking aspect of this theorem is that it gives a precise functional form of the neutral

social choice functions that can be implemented. This family of social choice functions is

called the weighted welfare maximizer social choice functions. If all the weights (λis)

are equal in a weighted welfare maximizer social choice function, then we get the efficient

social choice function.

3 An Induced Social Welfare Ordering

In the aggregation theory literature, an axiom called “binary independence” is extensively

used - see [10]. Roughly, it says that the comparision between two alternatives a and b

should only depend on the utility (column) vectors corresponding to a and b. We prove a

counterpart of this axiom for our choice set for m-dimensional open interval domains.

Proposition 1 (Binary Independence) Let f be an implementable social choice func-

tion. Consider two type profiles t = (ta, tb, t−ab), s = (sa = ta, sb = tb, s−ab).

a) Suppose a, b ∈ Cf(t). Then, a ∈ Cf(s) if and only if b ∈ Cf(s).

b) Suppose a ∈ Cf(t) but b /∈ Cf(t). Then b /∈ Cf (s).

Proof : Suppose a, b ∈ Cf(t). Now, consider a type profile u = (ua = ta, ub = tb, u−ab),

where uc
i = min(tci , s

c
i) for all i ∈ M and for all c /∈ {a, b}. Note that since D is an open

rectangle in R
n, u ∈ D

m.

a) Suppose a, b ∈ Cf(t). We will first show that a, b ∈ Cf(u). Choose an ǫ ≫ 0. Since

a ∈ Cf(t), we know that f(ta+ ǫ
2
, tb, t−ab) = a. By PAD, f(ta+ ǫ, tb, u−ab) = a. Hence,

a ∈ Cf(u). Using an analogous argument, b ∈ Cf(u).
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Now, suppose that a ∈ Cf(s) and assume for contradiction b /∈ Cf (s). Choose an

ǫ ≫ 0 and arbitrarily close to zero. We show that f(ta + 2ǫ, tb + 3ǫ, s−ab) 6= b. Assume

for contradiction, f(ta + 2ǫ, tb + 3ǫ, s−ab) = b. By PAD, f(ta, tb + 4ǫ, s−ab) = b. Since ǫ

can be made arbitrarily small, this implies that b ∈ Cf (s). This is a contradiction.

Next, we show that f(ta + 2ǫ, tb + 3ǫ, s−ab) 6= c for any c /∈ {a, b}. Assume for con-

tradiction f(ta + 2ǫ, tb + 3ǫ, s−ab) = c for some c /∈ {a, b}. By PAD, f(ta + 2ǫ, tb, sc +
ǫ
2
, s−abc) = c. Also, since a ∈ Cf (s), we know that f(ta + ǫ, tb, sc, s−abc) = a. By PAD,

f(ta + 2ǫ, tb, sc + ǫ
2
, s−abc) = a. This is a contradiction.

Hence, f(ta+2ǫ, tb+3ǫ, s−ab) = a. By PAD, f(ta+ 5ǫ
2
, tb+3ǫ, u−ab) = a. We show that

f(ta, tb+ǫ′, u−ab) 6= b for all 0 ≪ ǫ′ ≪ ǫ
2
. Assume for contradiction f(ta, tb+ǫ′, u−ab) = b

for some 0 ≪ ǫ′ ≪ ǫ
2
. By PAD, f(ta + 5ǫ

2
, tb + 3ǫ, u−ab) = b. This is a contradiction.

Hence, f(ta, tb + ǫ′, u−ab) 6= b for some ǫ′ ≫ 0. This implies that b /∈ Cf(u), which is a

contradiction. Hence, a ∈ Cf(s) implies that b ∈ Cf (s).

Now, suppose that a /∈ Cf(s). Assume for contradiction b ∈ Cf(s). Exchanging

the role of a and b above, we get that a ∈ Cf (s). This is a contradiction. Hence, if

a /∈ Cf(s) then b /∈ Cf(s). This implies that either {a, b} ⊆ Cf(s) or {a, b}∩Cf (s) = ∅.

b) Suppose a ∈ Cf(t) but b /∈ Cf(t). As in part (a), a ∈ Cf(u). Now, assume for

contradiction, b ∈ Cf (s). If a /∈ Cf (s), then exchanging the role of a and b in the

second half of (a), we get that a /∈ Cf (u). This is a contradiction. If a ∈ Cf(s), then

we have a, b ∈ Cf (s) but a ∈ Cf (t). By part (a), b ∈ Cf(t). This is a contradiction.

�

We will define an ordering on D induced by an implementable social choice function. In

general, we will refer to an arbitrary ordering R on D. The symmetric component of an

ordering R will be denoted as I and the anti-symmetric component will be denoted as P .

Note that a social choice function f is a mapping f : Tn → A. Hence, for every type profile t,

a social choice function can be thought of as picking a column vector (which belongs to D) in

t. We will show that in the process of picking these column vectors in D in an“implementable

manner”, a neutral social choice function induces a social welfare ordering.

The following is a useful lemma that we will use in the proofs.

Lemma 4 Suppose f is an implementable and neutral social choice function. Consider a

type profile t ∈ T
n such that ta = tb for some a, b ∈ A. Then, a ∈ Cf (t) if and only if

b ∈ Cf (t).

Proof : This follows from the fact that permuting columns a and b in t produces t again.

Hence, by neutrality, a ∈ Cf(t) if and only if b ∈ Cf(t). �
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Definition 5 A social welfare ordering Rf induced by a social choice function f is a

relation on D defined as follows. The symmetric component of Rf is denoted by If and the

antisymmetric component of Rf is denoted by P f . Pick x, y ∈ D.

We say xP fy if and only if there exists a profile t with ta = x and tb = y for some

a, b ∈ A such that a ∈ Cf(t) but b /∈ Cf(t).

We say xIfy if and only if there exists a profile t with ta = x and tb = y for some a, b ∈ A

such that a, b ∈ Cf(t).

Proposition 2 (Social Welfare Ordering) Suppose f is an implementable and neutral

social choice function. Then, the relation Rf induced by f on D is an ordering.

Proof : We first show that Rf is well-defined. Pick x, y ∈ D. We consider two cases.

Case 1: Suppose xP fy. Then there exists a type profile t and some a, b ∈ A with ta = x and

tb = y such that a ∈ Cf(t) but b /∈ Cf(t). Consider any other type profile s such that sa = x

and sb = y. By Proposition 1, b /∈ Cf(s). Consider any other profile u and (c, d) 6= (a, b)

such that uc = x and ud = y. We can permute u to get another profile v such that va = x

and vb = y. By Proposition 1, b /∈ Cf (v). By neutrality, d /∈ Cf (u). Hence, the choice of

a and b is without loss of generality, i.e., for any a, b ∈ A and any t ∈ T
n with ta = x and

tb = y, we have b /∈ Cf(t). So, P f is well-defined.

Case 2: Suppose xIfy. Then there exists a type profile t and some a, b ∈ A such that

a, b ∈ Cf(t). Consider any other type profile s such that sa = x and sb = y. By Proposition

1, a ∈ Cf (s) if and only if b ∈ Cf(s). By neutrality (as in Case 1), the choice of a and b is

without loss of generality. This shows that If is well-defined.

We next show that Rf is reflexive. Consider x ∈ D and the profile where ta = x for all

a ∈ A. By Lemma 4, Cf (t) = A. Hence, xIfx.

Next, we show that Rf is complete. Choose x, y ∈ D. Consider a type profile t where

each column vector is either x or y with at least one column vector being x and at least one

column vector being y. Suppose f(t) = a. Then either ta = x or ta = y. Without loss of

generality, let f(t) = a and ta = x. By Lemma 4, there are two cases to consider.

Case 1: For all b with tb = y we have b ∈ Cf (t). Hence, xIfy.

Case 2: For all b with tb = y we have b /∈ Cf (t). Then, we get xP fy.

This completes the argument that Rf is complete, and hence, a binary relation. Now,

we prove that Rf is transitive. Consider x, y, z ∈ D. Consider a type profile t, where each
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column has value in {x, y, z} with at least one column having value x, at least one column

having value y, and at least one column having value z (this is possible since |A| = m ≥ 3).

Due to Proposition 1 and neutrality, without loss of generality let ta = x, tb = y, tc = z.

We prove transitivity of P f and If , and this implies transitivity of Rf .

Transitivity of P f : Suppose xP fy and yP fz. This implies that a ∈ Cf(t) but b /∈ Cf(t).

Since yP fz, we get that c /∈ Cf (t). Since c /∈ Cf(t), we have xP fz.

Transitivity of If : Suppose xIfy and yIfz. This implies that a, b ∈ Cf (t). But yIfz

implies that c ∈ Cf (t) too. This implies that xIfz.

�

4 Properties of the Induced Social Welfare Ordering

In this section, we fix an implementable neutral social choice function f . We then prove that

the social welfare ordering Rf defined in the last section satisfies three specific properties.

Definition 6 An ordering R on D satisfies weak Pareto if for all x, y ∈ D with x ≫ y

we have xPy.

Definition 7 An ordering R on D satisfies invariance if for all x, y ∈ D and all z ∈

R
n such that (x + z), (y + z) ∈ D we have xPy implies (x + z)P (y + z) and xIy implies

(x+ z)I(y + z).

Definition 8 An ordering R on D satisfies continuity if for all x ∈ D, the sets Ux = {y ∈

D : yRx} and Lx = {y ∈ D : xRy} are closed in D.

Proposition 3 (Axioms for Social Welfare Ordering) Suppose f is an implementable

and neutral social choice function. Then the social welfare ordering Rf induced by f on D

satisfies weak Pareto, invariance, and continuity.

Proof : We show that Rf satisfies each of the properties.

Weak Pareto: Choose x, y ∈ D such that x ≫ y. Start with a profile t where ta = y for

all a ∈ A. Suppose f(t) = b. Consider another profile s = (sb = x, s−b = t−b) (i.e. column

vector corresponding to b is changed from y to x). By PAD, f(s) = b and hence b ∈ Cf(s).

We show that for any a 6= b we have a /∈ Cf(s). Choose ǫ ≫ 0 but ǫ ≪ x − y. By PAD,

f(ta + ǫ, sb = x, t−ab) = b. Hence, a /∈ Cf(s). This shows that b ∈ Cf (s) but a /∈ Cf(s).

11



Hence, by Proposition 2, xP fy.

Invariance: Choose x, y ∈ D and z ∈ R
n such that (x+ z), (y + z) ∈ D. We consider two

cases.

Case 1: Suppose xP fy. We show that (x+ z)P f(y + z). Since xP fy, there exists a profile

t = (ta = x, tb = y, t−ab) such that a ∈ Cf(t) but b /∈ Cf(t). Consider the profile s, where

sc = tc + z for all c ∈ A. Fix ǫ ≫ 0. Since a ∈ Cf(t), f(ta + ǫ
2
, tb, t−ab) = a. Hence, by PAD

f(sa+ ǫ, sb, s−ab) = a. This shows that a ∈ Cf (s). Since b /∈ Cf (t), there is some ǫ ≫ 0 such

that f(ta, tb + ǫ, t−ab) 6= b. We show that f(sa, sb + ǫ
2
, s−ab) 6= b. Assume for contradiction

f(sa, sb + ǫ
2
, s−ab) = b. By PAD, f(ta, tb + ǫ, t−ab) = b. This is a contradiction. Hence,

f(sa, sb + ǫ
2
, s−ab) 6= b. This implies that b /∈ Cf(s). Using Proposition 2, (x+ z)P f (y + z).

Case 2: Suppose xIfy. We show that (x + z)If (y + z). Then, there exists a profile

t = (ta = x, tb = y, t−ab) such that a, b ∈ Cf(t). Consider the profile s, where sc = tc + z

for all c ∈ A. Fix ǫ ≫ 0. Since a ∈ Cf (t), f(ta + ǫ
2
, tb, t−ab) = a. Hence, by PAD

f(sa+ ǫ, sb, s−ab) = a. This shows that a ∈ Cf(s). Using an analogous argument, b ∈ Cf(s).

Hence, by Proposition 2, (x+ z)If (y + z).

Continuity: Fix x ∈ D. We show that the set Ux = {y ∈ D : yRfx} is closed. Take an

infinite sequence y1, y2, . . . such that every point yn in this sequence satisfies ynR
fx. Let this

sequence converge to z ∈ D. Assume for contradiction xP fz. Consider a type profile t such

that ta = x and tc = z for all c 6= a. Since xP fz, we have c /∈ Cf(t) for all c 6= a. Hence,

Cf(t) = {a}.

Consider b 6= a. Since b /∈ Cf (t), we know that there exists ǫ ≫ 0 and ǫ arbitrarily close

to the zero vector such that f(ta, tb + ǫ, t−ab) 6= b. We show that f(ta, tb + ǫ, t−ab) 6= c for

all c /∈ {a, b}. Assume for contradiction f(ta, tb + ǫ, tc, t−abc) = c for some c /∈ {a, b}. Then,

by PAD, f(ta, tb, tc + ǫ′′, t−abc) = c for all ǫ′′ ≫ 0. This implies that c ∈ Cf (t), which is a

contradiction. Hence, f(ta, tb + ǫ, t−ab) = a.

This implies that xRf (z + ǫ). Since the sequence converges to z, there is a point z′ ∈ D

arbitrarily close to z such that z′Rfx. Since z is arbitrarily close to z′, by weak Pareto,

(z + ǫ)P fz′. Using z′Rfx, we get (z + ǫ)P fx. This is a contradiction to the fact that

xRf (z + ǫ).

To show Lx = {y ∈ D : xRfy} is closed, take an infinite sequence y1, y2, . . . such that

every point yn in this sequence satisfies xRfyn. Let this sequence converge to z. Assume

for contradiction zP fx. Interchanging the role of x and z in the previous argument, we will

get zRf (x + ǫ) for some ǫ ≫ 0. Since the sequence converges to z, there is a point z′ ∈ D

arbitrarily close to z such that xRfz′. Since z′ is arbitrarily close to z, (x + ǫ)P fz by weak

Pareto. This is a contradiction to the fact that zRf (x+ ǫ). �
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5 Multi-dimensional Open Interval Domains

In this section, we prove the main result. In particular, we prove a proposition related to

linear utility representation on open and convex sets.

Proposition 4 (Representation of Social Welfare Ordering) Suppose an ordering R

on D satisfies weak Pareto, invariance, and continuity. If D is open and convex, then there

exists weights λ ∈ R
n
+ \ {0} and for all x, y ∈ D

xRy ⇔
∑

i∈N

λixi ≥
∑

i∈N

λiyi.

Proof : Fix any z ∈ D. Denote Uz = {x : xRz}, Lz = {x : zRx}, D \ Lz = {x : xPz}, and

D \ Uz = {x : zPx}.

Step 1: We first show that the sets Uz, Lz,D \ Uz , and D \ Lz are convex. We make use of

the following fact here.

Fact 1 Consider a set X ⊆ D and let X satisfy the property that if x, y ∈ X then x+y

2
∈ X.

If X is open in D or closed in D, then X is convex.

The proof of this fact is given in the Appendix A. By continuity, each of the sets Uz, Lz,D\Uz ,

and D \ Lz are either open or closed in D. Hence, by Fact 1, we only need to verify that

these sets are closed under the midpoint operation.

Consider Uz . Now, let x, y ∈ D such that xRz and yRz. We will show that x+y

2
Rz.

Note that x+y

2
∈ D because D is convex. Now, assume for contradiction that zP x+y

2
. This

implies that xP x+y

2
and yP x+y

2
. By invariance, x+ y−x

2
P x+y

2
+ y−x

2
. Hence, x+y

2
Py. This is

a contradiction. Hence, the set Uz is convex.

Similar arguments show that Lz, D \ Lz, and D \ Uz are convex.

Step 2: We now show that z is a boundary point of Uz. Let Bδ(z) = {x : ‖x − z‖ < δ},

where δ ∈ R+. Since D is open, there exists ǫ ≫ 0 such that (z+ǫ) ∈ D∩Bδ(z) and, by weak

Pareto, (z + ǫ)Pz. Further, since D is open, ǫ can be chosen such that (z − ǫ) ∈ D ∩ Bδ(z),

and by weak Pareto, zP (z − ǫ). Hence, for every δ > 0, there exists a point in Bδ(z) which

is in Uz and another point which is not in Uz. This shows that z is a boundary point of Uz.

Step 3: By the supporting hyperplane theorem, there exists a hyperplane through z sup-

porting the set Uz, i.e., there exists a non-zero vector λ ∈ R
n \ {0} such that for all x ∈ Uz,

n
∑

i=1

λixi ≥
n

∑

i=1

λizi.
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Denote the intersection of this hyperplane with the set D as Hz.

Step 4: We next show that λ ∈ R
n
+ \ {0}. Assume for contradiction λj < 0 for some j ∈ N .

Since D is open there exists ǫ ≫ 0 such that (z + ǫ) ∈ D. Moreover, we can choose ǫ such

that

n
∑

i=1

λiǫi < 0.

By weak Pareto (z + ǫ)Pz. Hence, (z + ǫ) ∈ Uz . Thus,

n
∑

i=1

λi(zi + ǫi) ≥
n

∑

i=1

λizi.

This implies that

n
∑

i=1

λiǫi ≥ 0.

This is a contradiction. Hence, λi ≥ 0 for all i ∈ N .

Step 5: Now, consider x ∈ D such that

n
∑

i=1

λixi >

n
∑

i=1

λizi.

We will show that xPz. Assume for contradiction zRx. We consider two cases.

Case 1: Suppose zPx. Since D is open, there exists a point z′ in Bδ(z) for some δ ∈ R+

such that

a) z lies on the line segment joining z′ and x and

b) x and z′ lies on opposite sides of the hyperplane Hz, i.e.,

n
∑

i=1

λiz
′
i <

n
∑

i=1

λizi.

By (b) and using Step 3, zPz′. By our assumption zPx. Hence, x, z′ ∈ D \ Uz . By Step

1, D \ Uz is convex. Since z is in the convex hull of x and z′, we get that zPz. This is a

contradiction.
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Case 2: Suppose zIx. Since D is open, there exists x′ = x− ǫ for some ǫ ≫ 0 such that

n
∑

i=1

λix
′
i >

n
∑

i=1

λizi.

By weak Pareto xPx′. Hence, zPx′. By Case 1, this is not possible. This is a contradiction.

Hence, in both cases we reach a contradiction, and conclude that xPz.

Step 6: Now, consider x ∈ D such that

n
∑

i=1

λixi =

n
∑

i=1

λizi.

We will show that xIz. Suppose not. There are two cases to consider.

Case 1: Assume for contradiction xPz. By continuity, the set {y : yPz} is open in D. Since

D is open in R
n, we get that {y : yPz} is open in R

n. Hence, there exists δ ∈ R+ such that

for every point in x′ ∈ Bδ(x) we have x′Pz. Choose ǫ ≫ 0 such that for x′′ = x− ǫ we have

x′′ ∈ Bδ(x). Hence, x
′′Pz. By Step 4, λ ∈ R

n
+ \ {0}. Hence, we get

n
∑

i=1

λix
′′
i <

n
∑

i=1

λizi.

But this is a contradiction since x′′Pz implies x′′ ∈ Uz , which in turn implies that

n
∑

i=1

λix
′′
i ≥

n
∑

i=1

λizi.

Case 2: Assume for contradiction zPx. By continuity, the set {y : zPy} is open in D.

Hence, there exists δ ∈ R+ such that for every point in x′ ∈ Bδ(x) we have zPx′. Choose

ǫ ≫ 0 such that for x′′ = x+ ǫ we have x′′ ∈ Bδ(x). Hence, zPx′′. By Step 4, λ ∈ R
n
+ \ {0}.

Hence, we get

n
∑

i=1

λix
′′
i >

n
∑

i=1

λizi.

By Step 5, this implies that x′′Pz. This is a contradiction.

This shows that for any z, there exists λ ∈ R
n
+ \ {0} such that for all x ∈ D, we have

xRz ⇔
n

∑

i=1

λixi ≥
n

∑

i=1

λizi.
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In other words, Hz contains all the points in D which are indifferent to z under R.

Moreover, on one side of Hz we have points in D which are better than z under R and on

the other side, we have points which are worse than z under R.

Finally, pick any two points x and y in D. Since D is open and convex, we can connect

x and y by a series of intersecting open balls along the convex hull of x and y, with each of

these open balls contained in D. By invariance, for any two points x′ and y′ in such an open

ball, Hx′

and Hy′ have to be parallel to each other. Since such open balls intersect each

other, the hyperplanes Hx and Hy are parallel to each other. This completes the proof. �

When D = R
n, this result is well known due to [4] (see also recent proofs in the utility

representation literature - [9], [3], [27], and [10]).

We are now ready to state our main result.

Theorem 3 Suppose f is a neutral social choice function and for every i ∈ N , Ti is an

m-dimensional open interval. The social choice function f is implementable if and only if

there exists weights λ ∈ R
n
+ \ {0} such that for all t ∈ T

n,

f(t) ∈ argmax
a∈A

∑

i∈N

λit
a
i .

Proof : Suppose f is neutral and implementable. Note that since for every i ∈ N , Ti is

an open interval domain, then D must be convex and open in R
n - indeed, D is an open

rectangle in R
n. Hence, by Proposition 2, a neutral and implementable SCF f induces a

social welfare ordering Rf on D. By Proposition 3, Rf satisfies continuity, weak Pareto, and

invariance. By Proposition 4 (since D is open and convex), there exists weights λ ∈ R
n
+ \{0}

such that for every x, y ∈ D we have

xRfy ⇔
∑

i∈N

λixi ≥
∑

i∈N

λiyi.

Finally, by Lemma 2 for all t ∈ D
m, f(t) ∈ Cf (t). Hence, tf(t)Rf tb for all b ∈ A and for all

t ∈ D
m.

It is well known that if f is a weighted welfare maximizer with weights λ ∈ R
n
+ \{0}, then

the following payment function p : Tn → R
n makes the social choice function implementable.

For all i ∈ N with λi = 0, pi(t) = 0 for all t ∈ T
n. For all i ∈ N with λi > 0,

pi(t) =
1

λi

[

∑

j 6=i

λjt
f(t)
j

]

− hi(t−i) ∀ t ∈ T
n.

where hi : T−i → R
4. This proves the theorem. �

4 Since Ti is connected for all i ∈ N , revenue equivalence holds in this setting [7, 14]. Hence, these are

the only payment functions which makes f implementable.
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5.1 Discussions

In this section, we make several observations relating to our results.

Affine Maximizer and Weighted Welfare Maximizer Domains. A plausible con-

jecture is that every domain where neutral and implementable social choice functions are

weighted welfare maximizers are also domains where implementable social choice functions

are affine maximizers. This conjecture is false. To see this, observe that the domain in

Example 1. The domain in this example, (0, 1)2 is a 2-dimensional open interval domain.

However we have already seen that it admits implementable social choice functions that are

non-affine-maximizers (of course, these social choice functions are not neutral). This obser-

vation emphasizes the fact that neutrality plays a critical role in our result.

Auction domains are not covered. It is well known that in auction domains, there

are social choice functions other than affine maximizers which are implementable [18]. These

social choice functions are also neutral. Hence, in auction domains, there are neutral social

choice functions which are implementable, but not weighted welfare maximizers. It can be

reconciled with our result in several ways. First, auction domains are restricted domains

which are not necessarily open (or even full dimensional). For example, consider the sale of

two objects to two buyers. The set of allocations can be {a, b, c, d}, where a denotes buyer 1

gets both the objects, b denotes buyer 2 gets both the objects, c denotes buyer 1 gets object

1 and buyer 2 gets object 2, and d denotes buyer 1 gets object 2 and buyer 2 gets object

1. Note here that in every utility vector ta for allocation a buyer 2 will have zero valuation.

Similarly, in every utility vector tb for allocation b buyer 1 will have zero valuation. Hence,

this domain is not open.

Second, our open interval domain assumption is not usually satisfied in auction domains.

This is because, agents usually have a partial order on the set of alternatives (see [2]). We

do not allow any such partial order in our model. Finally, neutrality is an unacceptably

restrictive assumption in auction domains.

However, as we have noted in Section 2.2, there are settings where our domain and neu-

trality assumptions are plausible.

No ordering without neutrality. If we drop neutrality and replace it with non-

imposition, then Roberts’ theorem says that affine maximizers (as in Theorem 1) are the

only implementable social choice functions. But affine maximizers do not necessarily induce

the ordering we discussed. This is because of the κ(·) terms in the affine maximizers. For

example, consider a type profile t = (ta = x, tb = y, t−ab). Suppose a ∈ Cf (t) but b /∈ Cf(t).

Here, the κ(a) term may be higher than κ(b) such that when we permute the columns of a

and b and get the new type profile s = (sa = y, sb = x, t−ab), we still have a ∈ Cf (s) and
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b /∈ Cf (s). Thus, our social welfare ordering is not induced here.

Anonymity gives efficiency. Consider the following additional condition on every social

choice function.

Definition 9 A social choice function f is anonymous if for every t ∈ T
n and every

permutation σ on the row vectors (agents) of t, we have f(σ(t)) = f(t).

Definition 10 An ordering R on D satisfies anonymity if for every x, y ∈ D and every

permutation σ on agents we have xIy if x = σ(y).

Lemma 5 Suppose f is implementable and anonymous. Then, Rf satisfies anonymity.

Proof : Let σ be a permutation of the set of agents. For any vector x ∈ D, we write σ̄(x) to

denote the permutation of vector x induced by the permutation σ on sets of agents. Consider

x, y ∈ D such that y = σ̄(x). Assume for contradiction xP fy. Consider a type profile t such

that ta = x and tb = y for all b 6= a. Hence, Cf(t) = {a} = f(t). Let s be the type profile

such that sc = σ̄(tc) for all c ∈ A. Since f is anonymous f(s) = a. Hence, yRf σ̄(y), which

futher implies that xP f σ̄(σ̄(x)). Repeating this argument again, we will get σ̄(y)Rf σ̄(σ̄(y)).

Hence, xP f σ̄(σ̄(σ̄(x))). Clearly, after repeating this procedure some finite number of times,

we will be able to conclude xP fx, which is a contradiction. �

It is straightforward to show using Theorem 3 that every implementable, neutral, and

anonymous social choice function in an open interval domain is the efficient social choice

function. Here, we show that this result holds for some other domains too. The proof is an

adaptation of an elegant proof by [20] (see also Theorem 4.4 in [10]). We give the proof in

Appendix A.

Theorem 4 Suppose f is implementable, neutral, and anonymous. If T
n = [0, H)m×n,

where H ∈ R ∪ {∞}, then f is the efficient social choice function.

Note here that the domain in Theorem 4 always includes the origin (this is crucial for

the proof) and is not open from “left”. Hence, this result is not a corollary to Theorem 3.

6 Roberts’ Affine-Maximizer Theorem

In this section, we show how the general version of Roberts’ theorem using version of Roberts’

theorem with neutrality, which we have proved earlier. We assume throughout that the

domain is unrestricted, i.e., T
n = R

m×n. Although our proof of the general Roberts’

theorem uses elements developed in earlier proofs, we believe nonetheless that it offers some
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new insights into the result. The main idea behind our proof is to transform an arbitrary

implementable social choice function to a neutral implementable social choice function. Then,

we can readily use Roberts’ theorem with neutrality on the new social choice function to get

the Roberts’ theorem.

Consider a mapping δ : A → R. Denote 1δ(a) as the vector of δ(a) s in R
n. Let 1δ ≡

(1δ(a), 1δ(b), . . .) be the profile of m such vectors, each corresponding to an allocation in A.

For any social choice function f , define f δ as follows. For every t ∈ T
n, let (t+ 1δ) ∈ T

n be

such that (t+ 1δ)
a = ta + 1δ(a) for all a ∈ A. For every t ∈ T

n, let

f δ(t) = f(t+ 1δ).

Since δ(a) is finite for all a ∈ A, the social choice function f δ is well-defined.

Proposition 5 (Implementability Invariance) For every δ : A → R, if f is imple-

mentable, then f δ is implementable.

Proof : Since f is implementable, there exists a payment function p which implements it.

We define another payment function pδ as follows. For every t ∈ T
n and every i ∈ N ,

pδi (t) = pi(t + 1δ) + δ(f δ(t)).

We will show that pδ implements f δ. To see this, fix an agent i ∈ N and t−i ∈ T−i. Let

s = (si, t−i) and note the following.

t
fδ(t)
i + pδi (t) = t

f(t+1δ)
i + pi(t+ 1δ) + δ(f δ(t))

= t
f(t+1δ)
i + pi(t+ 1δ) + δ(f(t+ 1δ))

= (t+ 1δ)
f(t+1δ)
i + pi(t + 1δ)

≥ (t+ 1δ)
f(s+1δ)
i + pi(s+ 1δ)

= (t+ 1δ)
fδ(s)
i + pi(s+ 1δ)

= t
fδ(s)
i + δ(f δ(s)) + pi(s+ 1δ)

= t
fδ(s)
i + pδ(s),

where the inequality followed from the implementability of f by p. Hence, pδ implements

f δ. �

Our next step is to find a mapping δ : A → R such that f δ is neutral. We will need the

following property of choice sets.

Lemma 6 Suppose f is implementable and satisfies non-imposition. Let t be a type profile

such that Cf (t) = {a} for some a ∈ A. Then, for some ǫ ∈ R
n
++, a ∈ Cf(s), where sa = ta−ǫ

and sb = tb for all b 6= a.
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Proof : Since Cf (t) = {a}, we have f(t) = a (by Lemma 2). Choose some b 6= a. Since

b /∈ Cf(t), there exists ǫb ∈ R
n
++ such that b /∈ Cf(u), where ub = tb + ǫb and uc = tc for all

c 6= b. Indeed, by Proposition 1, Cf(u) = {a}. Now, consider the type profile v such that

vc = tc + ǫc for all c 6= a and va = ta. We will show that Cf(v) = {a}.

To show this, we go from t to v in (m−1) steps. In the first step, we choose an arbitrary

allocation b 6= a, and consider a type profile x, where xb = vb and xc = tc for all c 6= b. By

definition of ǫb, we have Cf (x) = {a}. Next, we choose another allocation c /∈ {a, b}, and

consider a type profile y such that yd = xd if d 6= c and yd = vd otherwise. We first show

that c /∈ Cf (y). Assume for contradiction, c ∈ Cf(y), then by PAD, c ∈ Cf(x). This is a

contradiction. Hence, c /∈ Cf (y), and by Proposition 1, Cf(y) = {a}. We now repeat this

procedure by choosing d /∈ {a, b, c} and considering a type profile z where utility vector of

z is increased to vd and every other utility vector remains at y. After a finite steps, we will

reach the type profile v with Cf(v) = {a}.

Now, choose ǫ = 1
2
minb6=a ǫb. Consider a type profile s such that sb = tb for all b 6= a and

sa = ta − ǫ. By PAD (from v to s), a ∈ Cf(s). �

Now, we define a set which can also be found in Roberts’ original proof (see also [16]).

For every a, b ∈ A and every social choice function f define the P -set as

P f(a, b) = {α ∈ R
n : ∃t ∈ T

n such that a ∈ Cf (t), ta − tb = α}.

[23] and [16] define the P -set slightly differently. They let P f(a, b) = {α ∈ R
n : ∃t ∈

T
n such that f(t) = a, ta − tb = α}. Our notion of P -set is the interior of the P -set they

define.

The P -sets are non-empty if the social choice function satisfies non-imposition. To see

this, choose a, b ∈ A and a social choice function f . By non-imposition, there must exist a

t ∈ T
n such that f(t) = a, which implies that a ∈ Cf(t) and (ta − tb) ∈ P f(a, b).

We want to characterize a neutral social choice function by the properties of its P -sets.

Here is a necessary and sufficient condition.

Proposition 6 (Neutrality) Suppose f is an implementable social choice function. The

social choice function f is neutral if and only if P f(a, b) = P f(c, d) for all a, b, c, d ∈ A.

Proof : Suppose f is implementable and neutral. Let α ∈ P f(a, b). So, for some type profile

t, we have a ∈ Cf(t) and ta − tb = α. Now, permuting a, b respectively with c, d, we get

a new type profile s with sc = ta, sd = tb, sa = tc, sb = td. By neutrality, c ∈ Cf(s) and

sc − sd = ta − tb = α. So, α ∈ P f(c, d). Exchanging the role of (a, b) and (c, d) in this

argument, we get that α ∈ P f(c, d) implies α ∈ P f(a, b). Thus, P f(a, b) = P f(c, d).

Now, suppose that f is implementable and P f(a, b) = P f(c, d) for all a, b, c, d ∈ A. Con-

sider a permutation ρ of A. Without loss of generality, assume that ρ is a transposition, i.e.,

for some a, b ∈ A we have ρ(a) = b, ρ(b) = a, and ρ(c) = c for all c /∈ {a, b}. Consider a type
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profile t ∈ T
n and let s be the type profile induced by permutation ρ on t, i.e., sa = tb, sb = ta,

and s−ab = t−ab. We show f is neutral in several steps.

Step 1: Suppose a /∈ Cf(t). We show that b /∈ Cf(s). Assume for contradiction b ∈ Cf(s).

Let c ∈ Cf(t). Such a c exists since Cf(t) is non-empty. Note that c 6= a. There are two

cases to consider.

Case 1: Suppose c = b. Because, b ∈ Cf(s), we get that (ta − tc) ∈ P f(b, a) = P f(a, c).

Case 2: Suppose c /∈ {a, b}. Again, because b ∈ Cf(s), we get that (ta − tc) ∈ P f(b, c) =

P f(a, c).

So, we get (ta − tc) ∈ P f(a, c) in both the cases. Then for some ǫ ∈ R
n and some type

profile v = (va = ta + ǫ, vc = tc + ǫ, v−ac), we have a ∈ Cf (v). Consider the type profile u

such that ua = ta, uc = tc, and ud = vd − ǫ for all d /∈ {a, c}. By PAD, a ∈ Cf(u). But, in

both t and u, the utility vectors corresponding to a and c are respectively ta and tc. Since

a /∈ Cf(t) and c ∈ Cf(t), by Proposition 1, a /∈ Cf (u). This is a contradiction.

Step 2: Suppose a ∈ Cf(t). We show that b ∈ Cf(s). Assume for contradiction b /∈ Cf(s).

By Step 1, a /∈ Cf(t). This is a contradiction.

Step 3: Suppose c ∈ Cf(t), where c /∈ {a, b}. We show that c ∈ Cf(s). Since c ∈ Cf(t),

we have (tc − ta), (tc − tb) ∈ P f(c, b). Assume for contradiction c /∈ Cf (s). Then, for some

d 6= c, we have d ∈ Cf(s). There are two cases to consider.

Case 1: Suppose d /∈ {a, b, c}. In that case, by Proposition 1 (applied to s and t), c /∈ Cf(t).

This is a contradiction.

Case 2: Suppose d ∈ {a, b}. Without loss of generality, let d = a. So, a ∈ Cf(s)

but c /∈ Cf(s). Now, since (tc − tb) ∈ P f(c, b) = P f(c, a), there exists a type profile

u = (ua = tb + ǫ, uc = tc + ǫ, u−ac) such that c ∈ Cf(u). By PAD, c ∈ Cf(v), where

va = tb, vc = tc, and vd = ud− ǫ for all d /∈ {a, c}. By Proposition 1, we get that if c /∈ Cf(s),

then a /∈ Cf(s). This is a contradiction.

Step 4: Suppose c /∈ Cf(t). Assume for contradiction c ∈ Cf(s). Exchanging the role of s

and t in Step 3, we get that c ∈ Cf (t). This is a contradiction.

Combining all the steps, we get that Cf(s) = {ρ(c) : c ∈ Cf (t)}, i.e., f is neutral. �
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We begin by noting two properties of the P -sets. Identical properties have been estab-

lished in [16, 29] for their version of P -sets. We give proofs which are also more direct.

Lemma 7 Suppose f is implementable and satisfies non-imposition. The following state-

ments are true for every a, b, c ∈ A.

1. If (β − ǫ) ∈ P f(a, b) for some β ∈ R
n and some ǫ ∈ R

n
++, then −β /∈ P f(b, a).

2. If β ∈ P f(a, b) and α ∈ P f(b, c), then (β + α) ∈ P f(a, c).

Proof : Fix a, b, c ∈ A.

Proof of (1): Suppose (β− ǫ) ∈ P f(a, b) for some β ∈ R
n and some ǫ ∈ R

n
++. Assume for

contradiction that −β ∈ P f(b, a). So, there exists some type profile t such that b ∈ Cf(t)

and ta − tb = β. Consider the type profile s such that sa = ta − ǫ and sc = tc for all c 6= a.

Note that (sa − sb) = (β − ǫ). We first show that a ∈ Cf(s). Since (β − ǫ) ∈ P f(a, b), there

is some profile u = (ua = sa + α, ub = sb + α, u−ab), where α ∈ R
n, such that a ∈ Cf(u). By

PAD, there is a profile v = (va = sa, vb = sb, v−ab) such that a ∈ Cf(v). We consider two

cases.

Case 1: Suppose b /∈ Cf(v). Then, by Proposition 1, b /∈ Cf (s). By PAD, b /∈ Cf (t), which

is a contradiction.

Case 1: Suppose b ∈ Cf (v). Then, by Proposition 1, a ∈ Cf (s) if and only if b ∈ Cf (s). If

b /∈ Cf (s), as in Case 1, we have a contradiction due to PAD. Hence, a, b ∈ Cf(s). Consider

the type profile x such that xa = ta, xb = tb + ǫ
2
, and xc = tc for all c /∈ {a, b}. By PAD,

f(x) = a. Hence, b /∈ Cf(t). This is a contradiction.

Proof of (2): Suppose β ∈ P f(a, b) and α ∈ P f(b, c). Then, there must exist t ∈ T
n such

that a ∈ Cf(t) and ta − tb = β. Now, consider a type profile s such that sa = ta, sb = tb,

sc = tb − α, and sd is sufficiently low for all d /∈ {a, b, c}. We show that for all d /∈ {a, b, c},

we have d /∈ Cf(s). Assume for contradiction d ∈ Cf (s). Then, by PAD, a /∈ Cf(t), which

is a contradiction. So, Cf(s) ⊆ {a, b, c}.

We show that a ∈ Cf (s). Assume for contradiction a /∈ Cf(s). Then, by Proposition 1,

b /∈ Cf (s). This implies that Cf(s) = {c} (by Lemma 2). By Lemma 6, (−α− ǫ) ∈ P f(c, b).

By (1), α /∈ P f(b, c). This is a contradiction.

This implies that a ∈ Cf(s), and hence, (sa − sc) ∈ P f(a, c). But sa − sc = ta − tb + α =

β + α implies that (β + α) ∈ P f(a, c). �

We are now ready to define the mapping that will make any social choice function neutral.
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Define the following mapping κ : A → R as follows. For all a ∈ Cf (0) 5, let κ(a) = 0. For

all a /∈ Cf(0), define κ(a) as follows. Denote a type vector t as 1bǫ, where all utility (column)

vectors except one, say tb, is zero vector and tb = 1ǫ for some ǫ ∈ R. For all a /∈ Cf(0),

κ(a) = {ǫ ∈ R+ : Cf(1aǫ ) = Cf(0) ∪ {a}}.

Our first claim is that for all a ∈ A, κ(a) ∈ R+ exists.

Lemma 8 Suppose f is implementable and satisfies non-imposition. Then, for all a ∈ A,

κ(a) ∈ R+ and is unique. Moreover, κ(a) = inf{ǫ ∈ R+ : a ∈ Cf(1aǫ )}.

Proof : For all a ∈ Cf(0), κ(a) = 0, and hence, the lemma is true. Consider a /∈ Cf (0). If

κ(a) exists, by PAD, it is unique. We show that κ(a) exists. We do this in two steps.

Step 1: We show that there exists an ǫ ∈ R+ such that a ∈ Cf (1aǫ ). By non-imposition,

there exists a type profile t such that f(t) = a. By PAD, there exists an ǫ ∈ R such that

a ∈ Cf(1aǫ ). Moreover ǫ > 0 since a /∈ Cf(0).

Step 2: We now prove the lemma. Define

κ(a) = inf{ǫ : a ∈ Cf(1aǫ )}.

By Step 1, κ(a) exists. We show that Cf(1aκ(a)) = Cf (0)∪{a}. Consider b /∈ (Cf(0)∪{a}). By

PAD, if b ∈ Cf(1aκ(a)), then b ∈ Cf(0), which is a contradiction. Hence, b /∈ Cf (1aκ(a)). Next,

by Proposition 1, we can conclude that either Cf (1aκ(a)) = Cf(0) ∪ {a} or Cf(1aκ(a)) = {a}.

Assume for contradiction Cf(1aκ(a)) = {a}. Then, by Lemma 6, there exists ǫ ∈ R
n
++ such

that a ∈ Cf(1aκ(a)−ǫ). This is a contradiction by the definition of κ(a). This shows that

Cf(1aκ(a)) = Cf (0) ∪ {a}. �

We now prove a critical lemma.

Lemma 9 Suppose f is implementable and satisfies non-imposition. Let t be a type profile

such that ta = 1κ(a) for all a ∈ A. Then, Cf(t) = A.

Proof : We start from the type profile 0 and move to t in finite number of steps. Consider a

set A0 ⊆ A. Initially, A0 = A \Cf(0). Now, choose a ∈ A0, and consider 1aκ(a). By definition

of κ(a), Cf (1aκ(a)) = {a} ∪ Cf (0). Now, set A0 := A0 \ {a}, and choose b ∈ A0. We now

define a type profile s such that sa = 1κ(a) and sb = 1κ(b) but s
c = 0 for all c /∈ {a, b}. By

Proposition 1, either Cf (s) = Cf(1aκ(a))∪ {b} or Cf (s) = {b}. The latter case is not possible

by Lemma 6 since it will imply b ∈ Cf(1bκ(b)−ǫ) for some ǫ ∈ R
n
++, which will violate the

5Here, 0 denotes the type profile, where every agent’s type is the m-dimensional zero vector.
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definition of κ(b). Hence, Cf(s) = Cf (1aκ(a)) ∪ {b}. Now, we set A0 := A0 \ {b}, and repeat.

Since A is finite, this process will terminate with type profile t such that Cf(t) = A. �

We now have all ingredients for proving the Roberts’ theorem.

Theorem 5 ([23]) Suppose T
n = R

m×n. If f is an implementable social choice function

and satisfies non-imposition, then there exists weights λ ∈ R
n
+ \ {0} and a deterministic

real-valued function κ : A → R such that for all t ∈ T
n,

f(t) ∈ argmax
a∈A

[

∑

i∈N

λit
a
i − κ(a)

]

Proof : Since f is implementable and satisfies non-imposition, by Lemma 8, there exists a

mapping κ : A → R satisfying properties stated in Lemmas 8 and 9. Now, consider the social

choice function fκ. By Proposition 5, fκ is implementable. By definition, fκ(0) = f(1κ).

By Lemma 9, Cfκ

(0) = Cf (t) = A. This implies that 0 ∈ P fκ

(a, b) for all a, b ∈ A.

Now, pick a, b, c, d ∈ A and let β ∈ P fκ

(a, b). But 0 ∈ P fκ

(b, d). By Lemma 7, β ∈

P fκ

(a, d). Now, using 0 ∈ P fκ

(c, a), and applying Lemma 7 again, we get β ∈ P fκ

(c, d).

By Proposition 6, fκ is neutral. By Theorem 3, fκ is a weighted welfare maximizer. This

implies that there exists λ ∈ R
n \ {0} such that for every t ∈ T

n,

fκ(t) ∈ argmax
a∈A

n
∑

i=1

λit
a
i .

But this implies that, for every t ∈ T
n,

fκ(t− 1κ) ∈ argmax
a∈A

n
∑

i=1

λi(t− 1κ)
a
i .

This in turn implies that, for every t ∈ T
n,

f(t) ∈ argmax
a∈A

[

n
∑

i=1

λi[t
a
i − κ(a)]

]

Since we can assume without loss of generality that λi ∈ [0, 1] for all i ∈ N , we can

immediately infer Roberts’ theorem. �

To summarize, Roberts’ theorem can be proved using Roberts’ theorem with neutrality

by transforming any social choice function to a neutral social choice function as given by

Proposition 6. This transformation seems to require that the domain be unrestricted.
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7 Conclusion

We have provided a characterization of domains over which every implementable and neu-

tral social choice function is a weighted welfare maximizer. Our proof technique reduces

the problem of characterizing such social choice functions to the problem of characterizing

orderings over Euclidean space, a problem which has been studied at length in social choice

theory. Finally, we show how Roberts’ theorem (the general version) can be proved using

Roberts’ theorem with neutrality. This proof requires transforming any implementable social

choice function into a neutral and implementable social choice function. To our knowledge,

this transformation seems to require the unrestricted domain.

We summarize our main contribution in Figure 1. The arrows in this figure indicate

implications. As the figure shows, our results can be thought to be equivalence of the PAD

condition and implementability in the presence of neutrality in open interval domains. It

will be interesting to investigate this equivalence in the absence of neutrality.
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Appendix A

Proof of Fact 1

Proof : Let x, y ∈ X and z = αx+ (1 − α)y for some α ∈ (0, 1). We consider two possible

cases.

Case 1: Suppose X is closed in D. Assume for contradiction that z /∈ X . Since D is convex,

z ∈ D \X . Since X is closed in D, the set D \X is open in D. Hence, D \X is open in R
n.

This means, there exists an n-dimensional open ball Bδ(z) = {z′ : ‖z′ − z‖ < δ} of radius δ

such that every z′ ∈ Bδ(z) belongs to D \X .

Now, consider an iterative procedure as follows. Let l, h be two variables in R
n. Initially,

set l = x and h = y. In every step,

• if z is in the convex hull of l and l+h
2

then set h = l+h
2
,

• else set l = l+h
2
.

If ‖l − h‖ < 2δ, stop. Else, repeat the step.

Since ‖l − h‖ strictly decreases in every step, the procedure will terminate. Moreover, l

and h at the end of the procedures are two points in X . Hence, l+h
2

is in X and lies in the

ball Bδ(z). This is a contradiction 6.

Case 2: Suppose X is open in D. Then X is open in R
n. This implies that there exists an

open ball Bδx(x) around x of radius δx and an open ball Bδy(y) around y of radius δy such

that each of these balls are contained in X . Let δ = min(δx, δy). Using the fact that for

every x′ ∈ Bδx(x) and every y′ ∈ Bδy(y) we have x′+y′

2
∈ X , we get that every x′′ ∈ Bδ(

x+y

2
)

lies in X . Now, we can repeat the procedure of Case 1 to conclude that z ∈ X . �

Proof of Theorem 4

Proof : Note that D is open from above (i.e., for every x ∈ D, there exists an ǫ ∈ R
n
++ such

that (x+ǫ) ∈ D) and a meet-semilattice (i.e., if x, y ∈ D, then min(x, y) ∈ D). We can verify

6Essentially, the procedure generates a sequence of dyadic rational numbers. We know that the set of

dyadic rational numbers are dense. Since X is closed, we are done.
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that Propositions 2 and 3 are true as long as D is open from above and a meet-semilattice.

Hence, by Proposition 2, Rf is an ordering. By Proposition 3 and Lemma 5, f satisfies weak

Pareto, invariance, and anonymity (we do not need continuity for this proof). Also, note

that for any x ∈ D, any permutation of the elements of x results in a vector in D.

Now, choose x, y ∈ D such that
∑

i∈N xi =
∑

i∈N yi. By anonymity, we can rearrange x

and y in non-decreasing order but mutually ranked the same way as x and y. Considering

successively, in these new vectors, each pair of corresponding components and subtracting

from each the minimal one, we get again two new vectors which are ranked the same way as x

and y by invariance (note here that these two new vectors belong to D = [0, H)n). Repeating

these two operations at most n times, we will reach two zero vectors (since
∑

i∈N xi =
∑

i∈N yi). Hence, xI
fy.

Next, we show that if
∑

i∈N xi >
∑

i∈N yi then xP fy. Let δ = 1
n
[
∑

i∈N xi −
∑

i∈N yi].

Consider the vector z defined as zi = yi + δ for all i ∈ N . By weak Pareto zP fy. Further
∑

i∈N xi =
∑

i∈N zi. Hence, xI
fz. Hence, xP fy.

By Lemma 2, for every t ∈ T
n, we have f(t) ∈ Cf (t). Hence, f(t)Rfa for all a ∈ A.

Hence, f is the efficient social choice function. �

Appendix B

In this appendix, we show that a stronger, but natural definition of neutrality implies our

definition of neutrality.

Definition 11 A social choice function f is scf-neutral if for every t ∈ T
n, every permu-

tation ρ of A and type profile s induced by permutation ρ on t, we have f(s) = ρ(f(t)) if

t 6= s.

Claim 1 If a social choice function f is implementable and scf-neutral, then it is neutral.

Proof : Since f is implementable, it satisfies PAD. Fix a type profile t and a permutation

ρ of A, and let s be the type profile induced by ρ on t. Consider a ∈ Cf(t) and a type

profile u = (ua = ta + ǫ, u−a = t−a) for some ǫ ∈ R
n
++. Hence, f(u) = a. Now, let v be the

type profile induced by permutation ρ on u. By scf-neutrality f(v) = ρ(a) (ǫ can be chosen

arbitrarily small so that u 6= v). By PAD, ρ(a) ∈ Cf (s).

To show that for any a /∈ Cf(t), we must have a /∈ Cf(s), assume for contradiction

a ∈ Cf (s), and apply the previous argument to conclude a ∈ Cf (t). This gives the desired

contradiction. �
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