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Abstract

We provide an algorithm for testing the substitutability of a length-N preference
relation over a set of contracts X in time O(|X|3 ·N3). Access to the preference
relation is essential for this result: We show that a substitutability-testing al-
gorithm with access only to an agent’s choice function must make an expected
number of queries exponential in |X|. An analogous result obtains when the
agent’s preferences are quasilinear in a numeraire and the algorithm has access
to the agent’s underlying valuation function.
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1. Introduction

The theory of two-sided matching has been widely applied in medical labor
markets such as the National Resident Matching Program (Roth and Peranson
(1999)), the redesign of the gastroenterology fellowship market (Niederle and
Roth (2003, 2005); McKinney et al. (2005)), and the job market for clinical
psychologists (Roth and Xing (1997)).2 The centralized matching mechanisms
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used in these markets require that hospitals submit responsive preferences over
doctors, that is, preferences that render the choice between a pair of doctors
independent of other available outcomes.3 Although responsive preferences are
easy to specify, they are unnatural in many settings: for instance, if a hospital
desires both a cardiologist and a radiologist—and doctors of the same specialty
substitute for one another—then that hospital’s preferences are not responsive.

An alternative would be to allow hospitals to submit preferences that encode
substitutabilities between doctors, such as those described above. This is pos-
sible within the domain of substitutable preferences introduced by Roth (1984);
this domain is of particular interest, as in many settings it is the largest domain
for which stable matching outcomes can be guaranteed.4 For the implemen-
tation of matching mechanisms with substitutable preferences, it is necessary
that the market designer have a test which determines if a hospital’s submitted
preference list is substitutable. In this paper, we provide such a test. While a
näıve test requires time exponential in the number of options available to each
hospital, we obtain a deterministic substitutability-testing algorithm that runs
in time polynomial in the number of options and the preference list length.

Unfortunately, as we demonstrate, the efficient testing of substitutability
depends crucially on the form in which agents’ preferences are submitted. In
particular, we show that when the market designer only has oracle access to
hospitals’ choice functions, substitutability can not be tested in subexponential
time—even by randomized algorithms.

Classical matching theory typically assumes that agents only submit ordinal
preference information, such as preference relations or choice functions.5 How-
ever, it is often appropriate to consider instead cardinal utility information, as
in auction theory or exchange economies.6 Unfortunately, we find that the dif-
ficulty of testing substitutability given only choice function access carries over
to the setting where the market designer can query valuation functions.

The remainder of this paper is organized as follows. In Section 2, we present
our algorithm for testing the substitutability of a preference relation. In Sec-
tions 3 and 4, we show the difficulty of testing the substitutability of choice and

3More formally, a hospital’s preference relation is responsive if it is consistent with an
ordinal ranking of doctors.

4Substitutability is necessary and sufficient for the existence of stable allocations in the
settings of many-to-one matching (Roth (1984) proves sufficiency and Hatfield and Kojima
(2008) prove necessity), many-to-many matching, (Roth (1984) and Echenique and Oviedo
(2006) prove sufficiency and necessity follows from the results of Hatfield and Kojima (2008)),
many-to-many matching with contracts (Klaus and Walzl (2009) and Hatfield and Kominers
(2011) prove sufficiency and Hatfield and Kominers (2011) prove necessity), and supply-chain
matching (Ostrovsky (2008) and Hatfield and Kominers (forthcoming) prove sufficiency and
Hatfield and Kominers (forthcoming) prove necessity). In the setting of many-to-one matching
with contracts, substitutable preferences are sufficient for the existence of a stable outcome
(Hatfield and Milgrom (2005)), but are not necessary (Hatfield and Kojima (2008, 2010)).

5This is a standard assumption in many applications of matching, such as school choice,
where monetary transfers among market participants are not allowed.

6As in matching theory, substitutability is essential in those settings. See, in particular,
the work of Gul and Stacchetti (1999), Sun and Yang (2006), and Hatfield et al. (2011).
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valuation functions, respectively. Section 5 concludes.

2. Testing Substitutability of Preference Relations

We consider the preferences of a single agent and a finite set X of contracts
available to that agent. The agent’s preferences are specified by a preference
relation � of the form

Y 1 � Y 2 � · · · � Y N � ∅,

where Y n ⊆ X for each n = 1, . . . , N . This preference relation induces a choice
function

C(Y ) ≡ max�{Z : Z ⊆ Y }

on every set of contracts Y ⊆ X.7 Note that we suppress the dependence on the
preference relation � in the notation for C, as throughout this section we will
only consider a fixed preference relation � and its associated choice function.

Definition. The preference relation � is substitutable if for all x, z ∈ X and
Y ⊆ X, if z ∈ C({x} ∪ Y ∪ {z}), then z ∈ C(Y ∪ {z}). A tuple (x, z, Y ) that
fails this condition is called a substitutability violation.

Equivalently, if we define a rejection function

R(Y ) ≡ Y r C(Y ),

then the preference relation � is substitutable if and only if the rejection func-
tion R is isotone.8 Intuitively, this notion implies that no contracts x and z are
complements: that is, substitutability guarantees that, having rejected the con-
tract z, the agent never wishes to renege on that rejection when more contracts
become available.

As stated, the substitutability condition imposes exponentially many condi-
tions on the preference relation: one condition for each tuple (x, z, Y ). Thus,
näıve substitutability-testing takes O(|X|3 · 2|X|) time. Here we present an
algorithm that tests preference relation substitutability in time polynomial in
|X|, the number of contracts, and N , (defined as) the length of the submitted
preference list.9

Intuitively, since the agent only chooses contract sets appearing in the pref-
erence list Y 1 � · · · � Y N � ∅, one might think it only necessary to check for

7Here, we use the notation max� to indicate that the maximization is taken with respect
to �.

8Isotonicity of the rejection function can be stated in a fashion that makes substitutability
violations apparent: R is isotone (equivalently, C is substitutable) if and only if for all x, z ∈ X,
x 6= z, and Y ⊆ X, if z ∈ C(Y ), then z ∈ C(Y r {x}).

9Note that in some circumstances, N may be O(2|X|), in which case our algorithm runs in
time of the same order as that of the näıve algorithm. However, in many cases (such as when
hospitals only intend to hire some small number of doctors from a large pool), our algorithm
provides a significant improvement—a polynomial run time.
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the violation of substitutability by tuples (x, z, Y n) with x, z ∈ ∪mY m. In fact
this is not sufficient, as the following example shows.

Example 1. Let X = {a, b, b′, c} and let the preference relation be

{a, b, c} � {b′} � {a, b} � {a, c} � {b, c} � {a} � {b} � {c} � ∅.

These preferences are not substitutable, as (a, c, {b, b′}) is a substitutability
violation. However, no substitutability violation is of the form (x, z, Y n).

While it is sufficient to consider only (x, z, Y ) with x, z ∈ ∪mY m, it is
not sufficient to check only Y = Y n, as Y may need to contain multiple con-
tracts that will only be chosen when another contract (x) is available. How-
ever, the intuition that one need only check sets Y derived from the sets Y n is
sound. In particular, as we show below, it suffices to check all tuples of the form
(x, z, (Y m ∪ Y n) r {x, z}). This gives rise to Algorithm 1, which in fact returns
a list of all minimal substitutability violations, i.e. all violating tuples (x, z, Y )
for which there does not exist Y ′ ( Y such that (x, z, Y ′) is a substitutability
violation.

Algorithm 1 Tests the Substitutability of the Preference Relation �
1: set L ← ∅
2: for x, z ∈ ∪`Y ` do
3: for m = 1, . . . , N do
4: if x, z ∈ Y m then
5: for n = m+ 1, . . . , N do
6: if x, z 6∈ Y n then
7: Y ← (Y m ∪ Y n) r {x, z}
8: if z ∈ C({x} ∪ Y ∪ {z}) and z 6∈ C(Y ∪ {z}) then
9: L ← L ∪ {(x, z, Y )}

10: end if
11: end if
12: end for
13: end if
14: end for
15: end for
16: return L

Algorithm 1 finds the (minimal) substitutability violation in Example 1 when
checking contracts a and c in line 2. At that point, when m = 1 and n = 2,
Y m = {a, b, c} and Y n = {b′}, and the tuple (x, z, Y ) is (a, c, {b, b′}).

To prove the efficacy of Algorithm 1, we make repeated use of the fact that
the choice function C induced by � has the property that removing unchosen
contracts from the available set has no effect on the set of contracts chosen.10

10This is analogous to the notion of independence of irrelevant alternatives in revealed
preference theory.
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Lemma 1. For the choice function C induced by the preference relation Y 1 �
Y 2 � · · · � Y N � ∅, let n be such that Y n = C(Y ) for Y ⊆ X. Then for any
Y ′ ⊆ Y such that Y n ⊆ Y ′, we have Y n = C(Y ′).

Proof. Suppose Y m = C(Y ′). If m < n, then since Y m is available from Y , it
can not be the case that Y n = C(Y ). We can not have that m > n, as Y n is
available from Y ′.

We now prove the correctness of Algorithm 1.

Theorem 1. Algorithm 1 finds all minimal substitutability violations in a pref-
erence relation Y 1 � · · · � Y N � ∅ in time O(|X|3 ·N3).

Proof. The time bounds are immediate from the statement of the algorithm,
upon noting that computing C(Z) for any Z ⊆ X requires at most O(|X| ·N)
time.11 To show correctness, suppose there exists a set Ŵ such that the tuple
(x, z, Ŵ ) is a substitutability violation. Letting W = Ŵ r {x, z}, we see that
(x, z,W ) is a subsitutability violation as well, and if (x, z, Ŵ ) is minimal, then
W = Ŵ . Let Y m = C(W ∪ {x, z}) be the choice from options W ∪ {x, z} and
Y n = C(W ∪{z}) be the choice from options W ∪{z}.12 Set Y = (Y m ∪Y n) r
{x, z}. We will show that the tuple (x, z, Y ) is a substitutability violation.

• First note that as (x, z,W ) is a substitutability violation, z ∈ Y m =
C(W ∪{x, z}). Furthermore, Y ∪{x, z} ⊆W ∪{x, z} and C(W ∪{x, z}) =
Y m ⊆ Y ∪ {x, z} so, by Lemma 1, C(Y ∪ {x, z}) = C(W ∪ {x, z}) = Y m.
Thus, z ∈ C(Y ∪ {x, z}).

• Next note that as (x, z,W ) is a substitutability violation, we also have
z 6∈ Y n = C(Y ∪ {z}). Again, Y ∪ {z} ⊆ W ∪ {z} and C(W ∪ {z}) =
Y n ⊆ Y ∪ {z} so, by Lemma 1, C(Y ∪ {z}) = C(W ∪ {z}) = Y n. Thus,
z 6∈ C(Y ∪ {z}).

This shows that (x, z, Y ) is a substitutability violation.
To see that the algorithm finds all minimal violations, simply note that for

any substitutability violation (x, z,W ), we know that for the returned tuple
(x, z, Y ), we have that Y ⊆ W and (x, z, Y ) is a violation. Thus if (x, z,W ) is
minimal, it must be that Y = W .

Given the list of minimal substitutability violations, it is easy to check (in
constant time for each violation) whether these violations constitute violations
of the weaker bilateral and unilateral substitutes conditions introduced by Hat-
field and Kojima (2010). Thus, Algorithm 1 can easily be extended to test for
bilateral or unilateral substitutability in time polynomial in |X| and N .

11Note that calculating C(Z) requires us to check whether Z is a subset of Y n for n =
1, . . . , N and that checking the subset relation requires O(|X|) time; hence, calculating C(Z)
requires O(|X| ·N) time.

12Note that x, z /∈ Y n, as x, z /∈W and (x, z, W ) is a substitutability violation. Thus, with-
out loss of functionality (and with a slight gain in speed) we may include line 6 in Algorithm 1.
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3. Testing Substitutability of Choice Functions

We now consider algorithms which have oracle access to the agent’s choice
function over contracts, C, but do not have access to the preference relation
itself. We show that no algorithm can verify the choice function’s substitutabil-
ity in subexponential time. The key observation underlying this result is that a
substitutability violation is “local”—it is possible for a choice function to have
very few substitutability violations relative to the number of sets of contracts.

Our proof uses the minimax principle of Yao (1977), which states that the
expected running time of the best randomized algorithm on a worst-case deter-
ministic input is equal to the expected running time of the best deterministic
algorithm on the worst-case probability distribution of inputs.13

More precisely, for a problem with deterministic inputs I and deterministic
algorithms A, let ∆(I) denote the set of probability distributions over I and
∆(A) denote the set of probability distributions over A. For A ∈ A and I ∈ I,
let A(I) denote the running time of A on I.

Theorem 2 (Yao (1977)). For a problem with deterministic inputs I and de-
terministic algorithms A,

min
δA∈∆(A)

max
I∈I

EA∼δA [A(I)] = max
δI∈∆(I)

min
A∈A

EI∼δI [A(I)].

The proof of Theorem 2 follows from von Neumann’s minimax theorem for
two-player, zero-sum games. Here, the two players are the algorithm designer
and the adversary. The algorithm designer’s strategy set is all possible deter-
ministic algorithms A; the adversary’s strategy set is all possible deterministic
inputs I. The payoff of a pure strategy profile (A, I) to the adversary is the
running time A(I) (the payoff to the algorithm designer is the negative of this,
as we are defining a zero-sum game). For further details, we refer the reader to
Yao (1977).

We now apply Theorem 2 to show that a substitutability-testing algorithm
with only oracle access to C must make exponentially many queries in expecta-
tion. For any Y ( X with |X r Y | ≥ 2, we define the following choice function
(implicitly assuming |X| > 3):

CY (Z) =

{
Y Y ⊆ Z and |Z| = |Y |+ 1,
Z otherwise.

We note that CY is not substitutable: for any x, z /∈ Y , we have z /∈ Y =
CY (Y ∪ {z}), but z ∈ {x} ∪ Y ∪ {z} = CY ({x} ∪ Y ∪ {z}).

Now we consider any deterministic substitutability testing algorithm A and
suppose that the distribution of inputs is as follows. With probability 1

2 , set
C = id, where id is the identity function on X, i.e. id(Z) = Z for all Z ⊆ X.

13Here, by a randomized algorithm, we mean a probability distribution over deterministic
algorithms.
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With the remaining probability, select a set Y of cardinality q ≡
⌊
|X|
2

⌋
uniformly

at random and set C = CY .
We observe that, conditional on C = id, A must query at least

1
q + 1

(
|X|
q

)
(1)

sets in order to be sure that no substitutabilility violation exists: Since the
functions id and CY only differ on input sets Z ) Y of size |Z| = |Y | + 1,
only queries on such sets Z can distinguish them. Thus, verifying that C = id
requires distinguishing C from

(|X|
q

)
possible assignments of CY . Querying C

on a given set Z of size q + 1 simultaneously tests whether C = CZr{z} for
each z ∈ Z, checking a total of q + 1 possible assignments of CY . Hence, when
C = id, the algorithm A must check at least as many sets of size q+ 1 as in (1).
Since C = id with probability 1

2 , the expected running time must be at least 1
2

times the bound in formula (1).14

Theorem 3. There exists a distribution of choice functions δ such that for any
deterministic algorithm A that verifies substitutability given only oracle access to
the choice function, the expected running time of A given δ is at least exponential
in |X|, the number of contracts.

Combining Theorems 2 and 3, we obtain the following corollary.

Corollary 1. The worst-case expected running time of any randomized algo-
rithm that verifies substitutability given only oracle access to choice functions is
at least exponential in |X|, the number of contracts.

We note that even allowing polynomial error in the algorithm does not im-
prove the running time substantially, i.e. there is no subexponential-time algo-
rithm that verifies substitutability correctly with probability 1 − o(1). Addi-
tionally, it follows from the above argument that testing responsiveness is as
difficult as testing substitutability when given only oracle access to the choice
function.15

4. Testing Substitutability of Valuation Functions

We now consider the case where each contract defines the transfer of an item
at an associated price; let the set of items be denoted Ω, and let the price of
ω ∈ Ω be denoted pω. For many applications (e.g., Kelso and Crawford (1982);

14Unfortunately, the choice functions used in this proof do not have preference relation
encodings of length polynomial in |X|. This implies that Algorithm 1 cannot verify the
substitutability of these preferences in time polynomial in |X|. This leaves open the question
of whether there exist preferences for which substitutability can be verified in polynomial time
using the preference relation, but only in exponential time given oracle access to the choice
function.

15We thank Assaf Romm for this observation.
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Gul and Stacchetti (1999, 2000); Sun and Yang (2006, 2009); Hatfield et al.
(2011)), it is assumed that agents’ utility functions take the quasilinear form

U(Ψ, p) = v(Ψ)−
∑
ψ∈Ψ

pψ,

for Ψ ⊆ Ω.
From here, we can define the demand correspondence D : R|Ω| → P(Ω),

D(p) ≡ arg max
Ψ⊆Ω

U(Ψ, p).

Kelso and Crawford (1982) introduced the following natural notion of sub-
stitutability, which has been shown to be essential for the guaranteed existence
of stable allocations and competitive equilibria in a variety of settings (Hatfield
et al. (2011)).16

Definition. A demand correspondence D satisfies the gross substitutes condi-
tion if for all profiles of prices p and p̂ such that p̂ ≥ p, for every Ψ ∈ D(p) there
exists a Ψ̂ ∈ D(p̂) such that {ω ∈ Ψ : pω = p̂ω} ⊆ Ψ̂.

The gross substitutes condition has been rephrased in terms of conditions
on the valuation function v.

Theorem 4 (Reijnierse et al. (2002); Fujishige and Yang (2003)). A demand
correpondence D satisfies the gross substitutes condition if and only if the cor-
responding valuation function v is M \-concave, i.e. if for each Ψ,Φ ⊆ Ω and
ψ ∈ Ψ r Φ:

1. v(Ψ) + v(Φ) ≤ v(Ψ r {ψ}) + v(Φ ∪ {ψ}), and
2. v(Ψ) + v(Φ) ≤ maxϕ∈ΦrΨ v((Ψ r {ψ}) ∪ {ϕ}) + v((Φ r {ϕ}) ∪ {ψ}).

As Reijnierse et al. (2002) point out, this theorem implies an algorithm
that tests gross substitutability and runs in time O(|X|3 · 2|X|). We now
show that this algorithm is optimal up to polynomial factors; i.e. there is no
subexponential-time algorithm that verifies gross substitutability given oracle
access to the valuation function.17

Theorem 5. There exists a distribution of valuations δ such that for any de-
terministic algorithm A that verifies substitutability given only oracle access to
the valuation, the expected running time of A given δ is at least exponential in
|Ω|, the number of items.

16While the definition presented here is standard, there are many equivalent formulations;
see Hatfield et al. (2011) for a discussion.

17This result is not an exact analogue of Theorem 3, as it involves queries to valuation func-
tions rather than demand correspondences. The complexity of testing gross substitutability
given oracle access to the demand correspondence is presently unclear. The difficulty involved
in proving an exact analogue of Theorem 3 arises from the fact that demand correspondences
are functions of prices, rather than sets of items.
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Corollary 2. The worst-case expected running time of any randomized algo-
rithm that verifies substitutability given only oracle access to valuations is at
least exponential in |Ω|, the number of items.

The proof of these results follows the same strategy as that used to prove
Theorem 3 and Corollary 1. For any Ψ ( Ω with |Ω r Ψ| ≥ 2, we define the
following valuation function:

vΨ(Φ) =

{
|Φ|+ 1

2 Φ = Ψ,
|Φ| otherwise.

Note that vΨ is not M \-concave since for any ψ ∈ Ψ, as

vΨ(Ψ) + vΨ(∅) = |Ψ|+ 1
2

and
vΨ(Ψ r {ψ}) + vΨ({ψ}) = |Ψ| − 1 + 1 = |Ψ|,

and so the first condition of M \-concavity is violated.
As in the proof of Theorem 3, distinguishing vΨ from the valuation v̂ defined

by v̂(Φ) = |Φ| requires exponentially many queries in expectation. Moreover,
as in the case of Theorem 3 and Corollary 1, allowing polynomial error in the
algorithm does not improve the running time significantly.

5. Conclusion

We have shown a method for testing the substitutability of an agent’s prefer-
ences relations in time polynomial in the length of the preference relation. Since
agents are, in general, only able to construct short (i.e. polynomial length) pref-
erences lists, our algorithm is an effective method for the market designer to
test whether the submitted preferences are substitutable. In principle, such an
algorithm could be distributed to market participants for use in the preperation
of their preference relations for submission.

Unfortunately, testing substitutability with only oracle access to the choice
function is far more difficult—it requires exponential time in general. The prob-
lem persists even for the special case in which preferences are quasilinear in a
numeraire and only valuation function access is available. We note however
that as the choice functions used in this proof do not have preference relation
encodings of length polynomial in |X|, it remains unknown whether there exist
preferences for which substitutability can be verified in polynomial time using
the preference relation, but only in exponential time given oracle access to the
choice function.

Our results imply that market designers should develop specific methods
to transmit large classes of substitutable preferences. Milgrom (2009) provides
one such method, assignment messages, for enviroments such as electricity and
commodity markets where preferences are quasilinear. For other settings, it
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is likely that alternative languages for expressing substitutable preferences are
needed. It is unclear how general such a language can be while remaining
effective, but our results do not rule out the existence of an encoding under
which all substitutable preferences take a form of at most polynomial size.
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