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Abstract

We consider the problem of choosing a partition of a set of objects by a set of agents.

The private information of each agent is a strict ordering over the set of partitions of

the objects. A social choice function chooses a partition given the reported preferences

of the agents. We impose a natural restriction on the allowable set of strict orderings

over the set of partitions, which we call an intermediate domain. Our main result is

a complete characterization of strategy-proof and tops-only social choice functions in

the intermediate domain. We also show that a social choice function is strategy-proof

and unanimous if and only if it is a meet social choice function.
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1 Introduction

The general mechanism design problem is concerned with choosing an alternative among a
set of alternatives, when each agent has a preference ordering over the alternatives, which
is his private information. The seminal work of Gibbard (1973) and Satterthwaite (1975)

showed that if the preferences of agents over alternatives is unrestricted and the range of
the social choice function has at least three alternatives, then the only strategy-proof social

choice function is a dictatorship. A large body of literature has since focused on relaxing
the underlying assumptions in the Gibbard-Satterthwaite theorem. One way to escape this

impossibility result is to impose domain restrictions. Indeed, many real life problems have
inherent domain restrictions.

We study one such model. In our model, a set of agents are faced with a set of objects.

The agents have to collectively choose a partition of the set of objects. Each agent has a
strict preference ordering over the set of partitions (of the set of objects), which is his private

information. A social choice function asks for the preference orderings of the agents, and
based on the reported preference orderings, chooses a partition. We describe some settings
where such a model can be applied.

• Creation of a network. There is a set of cities, and the government wants to create
a network by connecting the cities (using highways, high-speed cables, high-speed rails
etc.). Connections are transitive - if city a is connected to b and b is connected to

c, then a is also connected to c. Such networks will lead to a partition of the cities.
Various firms will use the network. Firms have preferences over networks. These

preferences may arise because each firm may have manufacturing and distribution
centers at different cities. A center at a particular city will want to be connected by

high-speed infrastructure by a fixed set of cities - it may not want to be connected
to all cities because there may be costs of connections which will offset any utility
of connection. The government collects the preferences of agents over networks, and

chooses a network to build.

• Creating Political Districts from Geographical Districts. Consider a
state which has a set of geographical districts. The state wants to create a set of political

districts (constituencies) by partitioning the geographical districts. Different political
parties may have different preferences over the partitions of geographical district. The

state asks each political party to reveal its preference ordering of the partitions, and
then chooses a collective partition of the set of geographical districts.

We impose the standard notion of strategy-proofness on the social choice functions -

it must be a dominant strategy for every agent to report his true preference ordering over
partitions. If all possible preference orderings are allowed, then, under a mild range condition

or unanimity, the Gibbard-Satterthwaite theorem will say that the only strategy-proof social
choice function is a dictatorship.
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We consider a restricted domain of preference orderings. Note that a partition must
determine, for every pair of objects i and j, whether i and j should be together or separate.
Call two partitions similar in i and j if they treat i and j similarly, i.e., either both of them

put i and j together or both of them put i and j separately. Now, consider an agent who has
A as the top partition in a preference ordering, and consider two other partitions B and C.

Suppose whenever A and C are similar for any pair of objects, A and B are also similar for
that pair of objects. This implies that overall, B is more similar to A than C is to A. Our

domain restriction says that in such a case this agent must rank B over C, whenever A is
his top ranked partition. We allow for all preference orderings which is consistent with such
restriction, and call such a domain an intermediate domain, and investigate the consequence

of strategy-proofness in this domain.

1.1 Our Contribution

We give a complete characterization of strategy-proof and tops-only social choice functions

in the intermediate domain. Tops-onlyness property stipulates that at two preference profiles
if the tops of the agents are the same, then the chosen partitions must also be the same.
Because the number of partitions is quite large, tops-only property significantly reduces the

communication requirement of each agent to the mechanism designer.
We prove our main result by proving another result, which is interesting in its own right.

This result uses another mild property called Pareto+, which requires that if all the agents
want to put a pair of objects together in their top-ranked partition, then the social choice
function must put them together. We show that if the number of objects is at least three,

then a social choice function is strategy-proof, tops-only, and satisfies Pareto+ if and only
if it is a meet∗ social choice function. A meet∗ social choice function identifies a subset of

agents (may be empty) as oligarchs, and for every pair of objects, they are put together if
and only if the top-ranked partition of each oligarch puts them together.

Our main result uses this characterization. It says that if a social choice function is
strategy-proof and tops-only, then it can be decomposed. Decomposability roughly says that
there is exists a canonical partition such that a pair of objects belonging to different bundles

of this partition are never put together. Further, the social choice function can be viewed
as union of a set of strategy-proof social choice functions, each defined for a bundle of the

canonical partition. We show that if a social choice function is strategy-proof and tops-only,
we can decompose it into a set of social choice functions, each of which is strategy-proof,

tops-only, and satisfies Pareto+. As a result, we can invoke our earlier characterization to
get a complete characterization of strategy-proof and tops-only social choice functions.

We show that if we impose unanimity, then we can get rid of tops-onlyness property. In

particular, we show that if the number of objects is at least three, then a social choice function
is strategy-proof and satisfies unanimity if and only if it is a meet social choice function (a

meet social choice function is a meet∗ social choice function where the the oligarchs are
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non-empty). Hence, unanimity and strategy-proofness imply tops-onlyness in our domain.
On the other hand, if we impose Pareto efficiency, then also we can get rid of tops-

onlyness property (Pareto efficiency implies unanimity), but it reduces the class of strategy-

proof social choice functions significantly. In particular, we get a Gibbard-Satterthwaite-like
impossibility - if the number of objects is at least three, then the only strategy-proof and

Pareto efficient social choice function is a dictatorship.

1.2 Past Literature

Since the seminal work of Gibbard and Satterthwaite, many interesting restricted domains
have been investigated - for a survey, see Barbera (2010) and Moulin (1983). Some prominent

examples of restricted domains that have been studied are: models with single-peaked pref-
erences (Moulin, 1980) and multi-dimensional single-peaked domains (Barbera et al., 1993),

matching models (Papai, 2000; Svensson, 1999), location on a network model (Schummer and Vohra,
2002), choosing a subset of objects from a set of objects in a separable environment (Barbera et al.,

1991), and many more. Different restrictions bring out different possibilities, e.g., median
rules and its generalizations are strategy-proof in various single-peaked domains (Moulin,
1980; Barbera et al., 1993).

As far as we know, there is no literature studying strategy-proof social choice functions in
our model. A recent related paper is that of Duddy and Piggins (2010). They study strategy-

proof social choice functions in a model where agents need to classify each object as 1 (good)
or 0 (i.e., a partition into two bundles), a model first studied in Kasher and Rubinstein (1997)
in the context of axiomatic aggregation (see also Miller (2008)) and studied in Barbera et al.

(1991) under separable preferences. Barbera et al. (1991) find voting by committees rules
to be the only onto and strategy-proof social choice functions for this model in separable

domain. Under some mild technical conditions and a range condition, Duddy and Piggins
(2010) show that the only onto and strategy-proof social choice function in their domain is

a dictatorship.
The literature on separable preferences is related to ours. Models with separable domains

work in a multi-dimensional environment. Suppose there are k dimensions of an alternative

(in the choice of a subset of objects from a set of objects, each object is a dimension). There
are Aj set of outcomes in dimension j, and the set of alternatives is A1 × A2 × . . . × Ak.

The separable domain roughly says that preferences over alternatives is separable over each
dimension. Separable domains where an alternative is a product of outcomes on each dimen-

sion is well-studied. Barbera et al. (1991) and Barbera et al. (2005) studied it in the context
of choosing a subset of objects from a set of objects. While these two papers consider the case
where each object can have two outcomes (chosen or not chosen), Svensson and Tortstensson

(2008) consider the case where each object can have more than two outcomes - see also
Reffgen and Svensson (2010). Barbera et al. (1993) studied a separable domain in the con-

text of multi-dimensional single-peaked preferences. The main insights of these papers is that
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in separable domains where an alternative is a product set of outcomes in each dimension, a
strategy-proof social choice function can be decomposed into social choice functions in each
dimension. The most general version of this result is found in Le Breton and Sen (1999) -

see also Le Breton and Weymark (1999) and Weymark (1999).
Why is our decomposability result not implied by these results? It is possible to imagine

each pair of objects as a dimension in our model. The outcome for each pair of objects is
either together or separate. But we cannot write the set of alternatives in our model (the

set of partitions) as a product of possible outcomes for each pair of objects. This is because
of the requirement that a partition is an equivalence relation, and must satisfy a transitivity
property - if the pair of objects i and j is together, and the pair of objects j and k is together,

then the outcome for the pair of objects i and k is fixed (i and k must be together). This is
a crucial departure from the literature which studies separable domains on product outcome

sets. Because of this difference, none of our results is implied by any of the results from
the literature on separable domains. Moreover, our decomposability result is of completely

different nature. We do not require any onto condition, usually a standard assumption in the
separability literature (Le Breton and Sen, 1999). We get our decomposability result with
strategy-proofness and tops-onlyness (which is weaker than ontoness). Further, we do not

get decomposability on each pair of objects.
Our model has some resemblance to the coalition formation literature. However, the

coalition formation literature usually does not consider externality between coalitions, i.e.,
focuses on hedonic coalition formation, where an agent only cares about the coalition he is in
(Bogomolnaia and Jackson, 2002). In hedonic coalition formation games, Rodriguez-Alvarez

(2004) shows that strategy-proofness, individual rationality, non-bossiness, and voter-sovereignty
are incompatible. Rodriguez-Alvarez (2009) considers strategy-proof hedonic coalition for-

mation in restricted domains of separable preferences. With individual rationality and non-
bossiness, he characterizes a class of rules called the “single-lapping” rules. This rule is also

central in characterizing coalition form games which give rise to unique core-stable coalitions
(Papai, 2004). The coalition formation literature is too long to describe here, and the domain
is very restricted. So, none of our results can be applied in the coalition formation setting.

There is a large body of literature studying Arrovian type aggregation in our model.
This literature is inspired by Wilson (1978), who advocates Arrovian aggregation in abstract

models such as those described in Rubinstein and Fishburn (1986). This literature considers
aggregators, which are maps from a profile of partitions of agents to a partition. This liter-

ature does not consider a preference ordering over partitions for agents. Rather, each agent
has a partition (an equivalence relation) of objects, and an aggregator chooses a collective
partition. The main axioms used in that literature are binary independence and some form of

unanimity (Mirkin, 1975; Leclerc, 1984; Barthélemy et al., 1986; Fishburn and Rubinstein,
1986; Barthélemy, 1988; Dimitrov et al., 2011). Broadly, this literature concludes that bi-

nary independence along with some form of unanimity gives us meet aggregators (when there
are at least three objects) - see also Dimitrov et al. (2011); Chambers and Miller (2011) for
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a different characterization of meet aggregators. This literature does not focus on prefer-
ences of agents over partitions, and does not consider strategy-proof aggregation. Much
like Gibbard-Satterthwaite theorem is proved using Arrow’s theorem (see Reny (2001) for

a unified proof of Arrow’s theorem and Gibbard-Satterthwaite theorem), we use one of the
results in the aggregation literature of this model to prove one of our results. Thus, our

results provide a strategic foundation to this literature on aggregating partitions.

2 The Domain of Preferences

Let N = {1, . . . , n} be the set of agents and M = {1, . . . , m} be the set of objects. A

partition A of objects in M is an equivalence relation, and can be represented by an m×m-
{0, 1} matrix satisfying (a) reflexivity: Aii = 1 for all i ∈ M , (b) symmetry: Aij = Aji for

all i, j ∈ M , and (c) transitivity: Aij = Ajk = 1 implies Aik = 1 for all i, j, k ∈ M 1. The
value of Aij reflects whether objects i and j are together in partition A or not. In particular,
Aij = 1 indicates that objects i and j are together in partition A, whereas Aij = 0 indicates

that objects i and j are separate in partition A. A bundle of a partition A is a set of objects
S ⊆ M such that for all i, j ∈ S, Aij = 1 and for all i ∈ S and j /∈ S, Aij = 0 2. Hence, a

partition can be written as a collection of bundles. Let M be the set of all partitions of M .
A preference ordering is a complete, transitive, and anti-symmetric binary relation over

M. Let P be the set of all strict orderings over M. An agent h ∈ N has a preference ordering
$h over M, where $h (k) denotes the k-th ranked partition according to $h. We impose a
natural restriction on the allowable set of preference ordering.

Definition 1 A domain of preferences D ⊆ P is intermediate if for every $h∈ D with
A = ($h (1)) and every B, C ∈ M such that

{{i, j} : i, j ∈ M, i %= j, Cij = Aij} ! {{i, j} : i, j ∈ M, i %= j, Bij = Aij},

we have B $h C.

In some sense, if for every i, j ∈ M , Cij = Aij implies Bij = Aij, then B is more similar to
A than C is to A. A strict ordering in $h belonging to D must satisfy the property that if

a partition B is “more similar” to the top partition of $h than a partition C, then B $h C.
We assume that the preference ordering $h of every agent h ∈ N must belong to the domain
of intermediate preferences D.

Our intermediate domain uses a familiar notion of betweenness for any relation. Its use
can be traced back to Grandmont (1978). A partition is an equivalence relation. Using

the terminology of Grandmont (1978), our domain restriction says that if a partition B is
between partitions A and C, then if A is at the top, then B must be ranked above C.

1 Here, Aij specifies the value of the entry in the ith row and jth column.
2 The conventional mathematical terminology for partition is “equivalence relation” and for bundle is

“equivalence class”. We use partition and bundle for convenience.
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Now, we give an equivalent way of stating our domain restriction. For this, we define
utility functions for every agent. Let M ≡ {{i, j} : i, j ∈ M, i #= j}. Define a utility function
for agent h as uh : {0, 1} ×M → R. Instead of writing uh(x, {i, j}), where x ∈ {0, 1}, we

will write uh
ij(x) for simplicity. Here, uh

ij(0) and uh
ij(1) denote the utility gained by agent h

from the pair of objects {i, j} if i and j are put separately and together respectively in a

partition. For any partition A, denote by Uh(A) the sum
∑

{i,j}∈M uh
ij(Aij). This is agent

h’s utility from partition A.

We say a utility function uh is consistent with partition A if for all {i, j} ∈ M we have

uh
ij(Aij) > uh

ij(1 − Aij).

Clearly, if a utility function uh represents a preference ordering 'h, it must be consistent

with 'h (1).

Definition 2 A partition B dominates partition C at partition A if for all utility functions
uh consistent with A we have

Uh(B) > Uh(C).

The following result establishes the connection between intermediate domain and such
utility representation.

Proposition 1 Let 'h be any preference ordering. It belongs to the intermediate domain

D if and only if for all partitions B and C such that B dominates C at 'h (1), we have
B 'h C.

The proof of Proposition 1 is in the Appendix. Proposition 1 clarifies the exact nature of our

domain restriction. In our domain, an agent must evaluate a partition by assigning utility
numbers to every pair of object and each of the two possible states for each pair of object.

The utility of an agent for a partition is then obtained by summing those utility numbers.
In the creation of network example, this means that the utility of connecting city a and b is

the same whether any other city is connected to them or not.
We give an example to clarify some of the nuances of the intermediate domain.

Example 1 Suppose M = {a, b, c, d}. Consider a preference ordering 'h∈ D with 'h (1) =
A, where A refers to the partition with the following bundles: {a, b, c} and {d}. Consider

four more partitions and their corresponding bundles:

• B is the partition with bundles {a, b}, {c}, and {d}.

• C is the partition with bundles {a, b, d} and {c}.

• D is the partition with bundles {a}, {b}, and {c, d}.

• E is the partition with bundles {a} and {b, c, d}.

7



Comparing B and C with A, we see that whenever C and A agree on a pair of objects, B
and A also agree on the same pair. Hence, B !h C.

However, for B and E, we cannot make such a comparison - a and b are together in A

and B but separate in E, but b and c are together in A and E but separate in B. So, it is
possible that B !h E or E !h B. Similarly, D and E can be ranked either way when A is

the top.
On the other hand, wherever A and D agree on a pair of objects, A and B also agree on

that pair. Hence, B !h D.

A social choice function (SCF) is a mapping F : Dn → M, i.e., given the intermediate
preference orderings of agents, it selects a partition. For a profile (!1, . . . ,!n) ∈ Dn, the

output of F is denoted by F (!1, . . . ,!n), and F (!1, . . . ,!n)ij ∈ {0, 1} denotes whether
i, j ∈ M belong to the same bundle or not in F (!1, . . . ,!n). Often, we write the profile

(!1, . . . ,!n) as ! and the profile (!′
1, . . . ,!

′
n) as !′, and so on.

We impose the usual strategy-proofness requirement on an SCF - every agent must have
a dominant strategy to submit his true preference ordering. An agent h manipulates an

SCF F at (!h,!−h) ∈ Dn via !′
h∈ D if F (!′

h,!−h) !h F (!h,!−h).

Definition 3 An SCF F is strategy-proof if no agent h ∈ N , can manipulate at any
preference profile (!h,!−h) ∈ Dn via any preference ordering !′

h∈ D.

3 Strategy-proof, Tops-only, Pareto Properties

The number of partitions grows exponentially with the number of objects. Hence, the number

of possible orderings grows even faster with the number of objects. Even in the intermediate
domain, the number of allowable orderings increases at an exponential rate with the number

of objects. In such a scenario, a natural restriction to impose is that agents only report their
top ranked partition to the social choice function. In particular, the following well-known
requirement seems plausible in our model.

Definition 4 An SCF F is tops-only if for every pair of profiles !,!′∈ Dn such that
!h (1) =!′

h (1) for all h ∈ N , then F (!) = F (!′).

Tops-onlyness is a well-studied axiom in social choice theory. It comes as a consequence of
unanimity in various domains (Chatterji and Sen, 2011). We discuss this issue further for
our model later.

If an SCF is tops-only, then it only cares about the top ranked partition of each agent.
In such a case we can focus on aggregators instead of SCFs.

An aggregator v is a mapping v : Mn → M. So for a profile of partitions (A1, . . . , An),
an aggregator gives a partition v(A1, . . . , An).

An agent h manipulates an aggregator v at (Ah, A−h) via Bh ∈ M if for some preference
ordering !h∈ D with !h (1) = Ah, we have v(Bh, A−h) !h v(Ah, A−h).
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Definition 5 An aggregator v is strategy-proof if no agent h ∈ N can manipulate at any
(Ah, A−h) ∈ Mn via any Bh.

A tops-only SCF induces an aggregator. Suppose F is a tops-only SCF. Then, define

vF (A1, . . . , An) = F ("1, . . . ,"n), where "∈ Dn is such that "h (1) = Ah for every h ∈ N -
note that for every Ah ∈ M, there exists "h∈ D such that "h (1) = Ah (such domains are

called minimally rich). Clearly, if F is strategy-proof, then vF is strategy-proof.

3.1 An Implicit Characterization

We will now establish an implicit characterization of strategy-proof aggregators. This char-
acterization will identify a simple property of an aggregator which is equivalent to strategy-

proofness. This of course implies a characterization of strategy-proof SCFs which are tops-
only.

Definition 6 An aggregator v is responsive, if for every h ∈ N , for every A−h, for every
Ah ∈ M, and every i, j ∈ M we have Ah

ij #= v(Ah, A−h)ij implies that

v(Ah, A−h)ij = v(Bh, A−h)ij ∀ Bh ∈ M.

Responsiveness requires that if an agent’s preference for a pair of objects is not fulfilled

for some partition (keeping profile of other agents fixed), then the outcome for that pair of
objects do not change by changing the partition.

Proposition 2 An aggregator is strategy-proof if and only if it is responsive.

Proof : Suppose v is strategy-proof. Now, fix an agent h ∈ N , and fix the profile of

other agents at A−h. Let Ah ∈ M be such that Ah
ij #= v(Ah, A−h)ij for some i, j ∈ M .

Consider another partition Bh ∈ M. Let v(Ah, A−h) = B, and v(Bh, A−h) = C. Assume
for contradiction Bij #= Cij . By definition, Ah

ij #= Bij and Ah
ij = Cij. We claim that there is

a preference ordering "′′
h such that "′′

h (1) = Ah, and C "′′
h B. If this was not true, then

B "h C for all "h∈ D with "h (1) = Ah. This implies that if Cij = Ah
ij, then Bij = Ah

ij .

This is a contradiction. But C "′′
h B implies that agent h will manipulate at (Ah, A−h) via

Bh. This is a contradiction to the fact that v is strategy-proof.

Suppose v is responsive. Fix an agent h ∈ N , and a profile A−h of other agents. Consider
partitions Ah, Bh ∈ M. Let v(Ah, A−h) = A and v(Bh, B−h) = B. If A = B, agent h
cannot manipulate at (Ah, A−h) via Bh. Else, A #= B. If A = Ah, then agent h cannot

manipulate at (Ah, A−h) via Bh. So, assume A #= Ah. Consider any i, j ∈ M , such that
Ah

ij #= Aij . By responsiveness, Aij = Bij . This implies that whenever Bij = Ah
ij for some

i, j ∈ M , Aij = Ah
ij . Now, for any preference ordering "h∈ D with "h (1) = Ah, we must

have A "h B. Hence, agent h cannot manipulate at (Ah, A−h) via Bh. This implies that v
is strategy-proof. !
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We now define an independence axiom for an aggregator. For every i, j ∈ M and any
profile of partitions (A1, . . . , An), denote the n-dimensional vector (A1

ij , . . . , A
n
ij) as Aij.

Definition 7 An aggregator v satisfies binary independence if for every i, j ∈ M and

for every pair of profiles (A1, . . . , An) and (B1, . . . , Bn) such that Aij = Bij, we have

v(A1, . . . , An)ij = v(B1, . . . , Bn)ij.

Binary independence points at some kind of separability of aggregation. In particular, it
says that whether a pair of objects remain separate or together must depend only on agents’

preferences about that pair of objects. It is a widely studied axiom in Arrovian aggregation
literature of this model (Mirkin, 1975; Fishburn and Rubinstein, 1986; Dimitrov et al., 2011).

Below, we show that every strategy-proof aggregator satisfies binary independence.

Proposition 3 If an aggregator is strategy-proof, then it satisfies binary independence.

Proof : Let v be an aggregator which is strategy-proof. By our characterization in Propo-

sition 2, v is responsive. Consider any i, j ∈ M . Let (A1, . . . , An) and (B1, . . . , Bn) be two
profiles such that Aij = Bij. Consider the profile (B1, A2, . . . , An). Assume for contradiction

that v(A1, . . . , An)ij "= v(B1, A2, . . . , An)ij . Since A1
ij = B1

ij , either v(A1, . . . , An)ij "= A1
ij or

v(B1, A2, . . . , An)ij "= B1
ij. By responsiveness, if v(A1, . . . , An)ij "= A1

ij , then v(A1, . . . , An)ij =
v(B1, A2, . . . , An)ij , and if v(B1, A2, . . . , An)ij "= B1

ij , then v(A1, . . . , An)ij = v(B1, A2, . . . , An)ij.

This is a contradiction.
We can repeat this argument by changing the preference of one agent at a time to reach

the profile (B1, . . . , Bn), and conclude v(A1, . . . , An)ij = v(B1, . . . , Bn)ij . !

Although binary independence is implied by a strategy-proofness, it is not sufficient for
strategy-proofness if |M | ≥ 3. Consider the following aggregator v∗. Suppose |M | ≥ 3. For

any pair of objects {k, l} "= {i, j} and every profile (A1, . . . , An),

v∗(A1, . . . , An)kl = 0.

For every profile (A1, . . . , An),

v∗(A1, . . . , An)ij = 1 if and only if A1
ij = 1 and Ah

ij = 0 ∀ h ∈ N \ {1}.

Clearly, v∗ satisfies binary independence. But it is not strategy-proof. To see this, consider
agent 2, and fix the profile of other agents at (A−2) such that A1

ij = 1 and Ah
ij = 0 for all

h ∈ N \ {1, 2}. Consider A2 such that A2
ij = 0. By definition v∗(A2, A−2)ij = 1 "= A2

ij. Now,
consider B2 such that B2

ij = 1. By definition v∗(B2, A−2)ij = 0 "= v∗(A2, A−2)ij . Hence, v∗

is not responsive, and by Proposition 2, it is not strategy-proof.
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3.2 A Rich Family of Aggregators

In this section, we define a rich class of aggregators, and the corresponding SCFs. Note
that an aggregator v induces an SCF F v as follows. For every profile of preference orderings
!∈ Dn, define F v(!) = v(!1 (1), . . . ,!n (1)). Clearly, F v is tops-only.

Definition 8 An aggregator v is a meet∗ aggregator if there exists a set of agents (called

oligarchs) S ⊆ N such that for all (A1, . . . , An), we have for all i, j ∈ M , v(A1, . . . , An)ij = 1
if and only if Ah

ij = 1 for all h ∈ S. If the set of oligarchs is the empty set, then we call

the aggregator a trivial aggregator. An aggregator is a meet aggregator if it is a meet∗

aggregator but not a trivial aggregator. An aggregator is a dictatorship if it is a meet
aggregator with a unique oligarch.

An SCF F is a meet∗ SCF if there exists a meet∗ aggregator v such that F = F v. An
SCF F is a trivial SCF if there exists a trivial aggregator v such that F = F v. An SCF F

is a meet SCF if it is a meet∗ SCF but not a trivial SCF. An SCF F is a dictatorship if
there exists an aggregator v which is dictatorship, and F = F v.

Note that a trivial aggregator always gives the partition where all the objects in M are
put in one bundle.

Not every meet∗ aggregator is strategy-proof when the domain of preferences is unre-
stricted. However, in intermediate domains, every meet∗ aggregator is strategy-proof.

Proposition 4 If v is a meet∗ aggregator, then it is strategy-proof.

Proof : Let v be a meet∗ aggregator with S ⊆ N being the set of oligarchs.
Note that any agent h /∈ S cannot manipulate v at any profile via any partition. If

S = ∅, we are done. Else, consider an agent h ∈ S, and assume for contradiction that h can
manipulate v at (Ah, A−h) via Bh. This means, v(Bh, A−h) !h v(Ah, A−h) for some !h∈ D
with !h (1) = Ah. Let v(Ah, A−h) = B, and v(Bh, A−h) = C. By definition, C !h B.

Consider any i, j ∈ M . By definition of meet aggregators, if Ah
ij %= Bij , then Ah

ij = 1
and Bij = 0 - this is because, since h ∈ S, if Ah

ij = 0 then Bij = 0. In that case, there is

some agent h′ ∈ S and h′ %= h such that Ah′

ij = 0. Hence, if agent h changes his report to
Bh, v(Bh, A−h)ij = Cij = 0. Hence, for every i, j ∈ M , Ah

ij %= Bij implies Ah
ij %= Cij . Since

!h∈ D, B !h C. This is a contradiction. !

As we will show later, the entire set of strategy-proof aggregators is much larger than
the meet∗ family of aggregators. Our first result is a characterization of strategy-proof
aggregators in the presence of the following weak requirement.

Definition 9 An aggregator v satisfies Pareto+ if for every i, j ∈ M and for every profile
(A1, . . . , An) with Ah

ij = 1 for all h ∈ N , we have v(A1, . . . , An)ij = 1.

A social choice function F satisfies Pareto+ if for every i, j ∈ M and for every preference
profile !∈ Dn with (!h (1))ij = 1 for all h ∈ N , we have F (!)ij = 1.
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Pareto+ says that if each agent puts objects i and j together, then the aggregator must put
i and j together.

Theorem 1 Suppose |M | ≥ 3. A social choice function is strategy-proof, tops-only, and
satisfies Pareto+ if and only if it is a meet∗ social choice function.

Proof : A meet∗ social choice function is tops-only. By Proposition 4, every meet∗ aggregator
is strategy-proof, and hence, every meet∗ social choice function is also strategy-proof. Clearly,

a meet∗ social choice function also satisfies Pareto+.
For the converse, let F be a strategy-proof, tops-only social choice function satisfying

Pareto+. Since F is tops-only, vF is well-defined. Further vF is strategy-proof and satisfies

Pareto+. By Proposition 3, vF must satisfy binary independence. Finally, Dimitrov et al.
(2011) show that if an aggregator satisfies binary independence and Pareto+, then it must

be a meet∗ aggregator. Hence, vF is a meet∗ aggregator, and F is a meet∗ social choice
function. !

Another way to state Theorem 1 is that an aggregator is strategy-proof and satisfies

Pareto+ if and only if it is a meet∗ aggregator.
We remark that strategy-proofness and Pareto+ property of a social choice function does

not imply tops-onlyness. The following example illustrates that.

Example 2 Let Â be the partition where each bundle is a singleton (i.e., all the objects

are put separately). Consider the social choice function which chooses agent 1’s top ranked
partition from the set M \ {Â} at every preference profile. This social choice function is

clearly strategy-proof and satisfies Pareto+, but it is not tops-only.

3.3 The Two Object Case

If |M | = 2, then we have many more aggregators which are strategy-proof and satisfy

Pareto+. Suppose M = {i, j}. Consider the following family of aggregators. Let S =
{S1, . . . , Sk}, where Sp with p ∈ {1, . . . , k} is a subset of agents (may be empty), called an
oligarchy. A set of oligarchies S is non-nested if for every Sp, Sq ∈ S, Sp is not a subset of

Sq. Note that if a non-nested set of oligarchies S contains ∅, then it is the only element of S.

Definition 10 Suppose M = {i, j}. An aggregator v is a meet∗-join aggregator if there
exists a set of non-nested oligarchies S such that for every (A1, . . . , An) ∈ Mn, we have

v(A1, . . . , An)ij = 1 if and only if Ah
ij = 1 ∀ h ∈ Sp for some Sp ∈ S.

A social choice function F is a meet∗-join social choice function if there is a meet∗-join
aggregator v such that F = F v.

Note that a meet∗-join aggregator is a meet aggregator if S is a singleton.

12



Proposition 5 Suppose |M | = 2. An aggregator is strategy-proof and satisfies Pareto+ if
and only if it is a meet∗-join aggregator. Further, a social choice function is strategy-proof
and satisfies Pareto+ if and only if it is a meet∗-join social choice function.

Note that when |M | = 2, every social choice function is tops-only. Also, when |M | = 2 in

our model, we are in the standard Gibbard-Satterthwaite model with two alternatives. The
characterization of strategy-proof social choice functions is well-known in that case - see, for
example, Moulin (1983) and Barbera et al. (1991). Applying Pareto+, we get Proposition 5

immediately. So, we skip the proof of Proposition 5 here, but provide it in the appendix for
completeness.

4 Strategy-proof and Tops-Only SCFs

The Pareto+ property used in Theorem 1 may not be completely appealing in our model.
Consider the example of building a network. Even if all firms agreed to connect a pair of

cities a and b, it may be infeasible for the government to connect them because of their
distance or budget constraints.

In this section, we drop the Pareto+ requirement of a social choice function. We provide
a complete characterization of strategy-proof aggregators. In other words, we provide a

complete characterization of strategy-proof and tops-only social choice functions. Our result
comes as a consequence of a decomposability result we are able to prove in our model. To
define decomposability, we require some notation. For every subset of objects X ⊆ M , let

X be the set of partitions of objects in X. For any partition Ah of agent h, we can look at
the restriction of Ah to some subset of objects X, and that restriction is denoted as Ah,X.

Definition 11 An aggregator v : Mn → M is decomposable if there exists a partition Ā
of M with bundles Ā1, . . . , Āk and k strategy-proof aggregators v1, . . . , vk, where vp : Ān

p → Āp

for all p ∈ {1, . . . , k}, and the following two conditions hold for every profile (A1, . . . , An):

• v(A1, . . . , An)ij = vp(A1,Āp, . . . , An,Āp)ij if i, j ∈ Āp for some p ∈ {1, . . . , k}.

• v(A1, . . . , An)ij = 0 if i ∈ Āp and j ∈ Āq for some p $= q and p, q ∈ {1, . . . , k}.

In such a case, we say v can be decomposed into v1, . . . , vk via partition Ā with bundles
(Ā1, . . . , Āk).

Every strategy-proof aggregator is decomposable - it can be decomposed into itself via the
complete partition with the unique bundle M . However, we can say something non-trivial
about decomposing any strategy-proof aggregator.

Proposition 6 If v is a strategy-proof aggregator, then it can be decomposed into strategy-

proof aggregators v1, . . . , vk via some partition Ā with bundles (Ā1, . . . , Āk) such that for all
p ∈ {1, . . . , k}, each vp satisfies Pareto+.
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Proof : Since v is strategy-proof, it is responsive due to Proposition 2, and satisfies binary
independence by Proposition 3. Consider a profile of partitions, where the partition of each
agent is the complete partition, where a complete partition is a partition where all the objects

are put together, i.e., there is a single bundle containing all the objects. Let the outcome of
the aggregator at this profile be Ā with bundles (Ā1, . . . , Āk).

Consider the restriction of v to Āp for all p ∈ {1, . . . , k}, and denote it by vp. In particular,
define for every (X1, . . . , Xn), where Xh ∈ Āp for all h ∈ N , and for every i, j ∈ Āp

vp(X
1, . . . , Xn)ij = v(A1, . . . , An)ij.

Since v satisfies binary independence, each vp is well-defined. Further, since v is responsive

and satisfies binary independence, each vp is also responsive. By Proposition 2, each vp is
strategy-proof.

Next, we will show that for every i ∈ Āp and j ∈ Āq where p "= q and p, q ∈ {1, . . . , k},
v(A1, . . . , An)ij = 0 for all profiles (A1, . . . , An). Fix an i ∈ Āp and j ∈ Āq where p "= q
and p, q ∈ {1, . . . , k}, and a profile (A1, . . . , An). By definition, Āij = 0 3. Assume for

contradiction v(A1, . . . , An)ij = 1.
Construct another profile (B1, . . . , Bn) such that Bh

ij = Ah
ij and Bh

st = 0 for all {s, t} "=
{i, j}. By binary independence, v(B1, . . . , Bn)ij = 1. Let S = {h ∈ N : Bh

ij = 0}. If
S "= ∅, then choose h ∈ S, and consider Ch such that Ch

ij = 1 and Ch
st = Bh

st = 0 for
all {s, t} "= {i, j}. By responsiveness, v(Ch, B−h)ij = v(Bh, B−h)ij = 1. Continuing in

this manner by choosing a new agent from S in every iteration, we will get to a profile
(C1, . . . , Cn), where Ch

ij = 1 and Ch
st = 0 for all {s, t} "= {i, j}, and v(C1, . . . , Cn)ij = 1.

Now, consider the profile (D1, . . . , Dn), where Dh is the complete partition for every h ∈ N .
By binary independence v(D1, . . . , Dn)ij = 1. But, by definition, v(D1, . . . , Dn) = Ā, and

Āij = 0. This is a contradiction.
Finally, we show that each vp for p ∈ {1, . . . , k} satisfies Pareto+. Assume for contra-

diction some vp does not satisfy Pareto+. Then, by the definition of vp, for some prefer-

ence profile (A1, . . . , An) such that Ah
ij = 1 for all h ∈ N for some i, j ∈ Āp, we have

v(A1, . . . , An)ij = 0. Now, consider the preference profile (D1, . . . , Dn), where Dh is the

complete partition for every h ∈ N . By binary independence, v(D1, . . . , Dn)ij = 0 (since v
is strategy-proof, it satisfies binary independence by Proposition 3). This is a contradiction

by the definition of Ā. !

Proposition 6 says that every strategy-proof aggregator can be decomposed into aggrega-
tors, which satisfy Pareto+. This is non-trivial since we did not impose Pareto+ for the main
aggregator. As a consequence of this, we can say precisely how a strategy-proof aggregator

must look like.
3We let Āp (single superscript) to denote a bundle in Ā, but Āij (double superscript) to denote the value

of the i-th row and j-th column entry corresponding to the 0 − 1 matrix of partition Ā. We apologize for
this notational clumsiness.
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We are now ready to define a general family of aggregators, which includes the meet∗

family.

Definition 12 An aggregator v is a decomposed meet∗ aggregator if there exists a
partition Ā with bundles Ā1, . . . , Āk, and for every Āp with p ∈ {1, . . . , k}, we have

• a set of oligarch Sp ⊆ N if |Āp| > 2,

• and a set of non-nested oligarchies Sp if |Āp| = 2,

such that

• if i, j ∈ Āp for some p ∈ {1, . . . , k} with |Āp| > 2, then v(A1, . . . , An)ij = 1 if and only

if Ah
ij = 1 for all h ∈ Sp (meet∗),

• if i, j ∈ Āp for some p ∈ {1, . . . , k} with |Āp| = 2, then v(A1, . . . , An)ij = 1 if and only

if Ah
ij = 1 for all h ∈ S for some S ∈ Sp,

• and, v(A1, . . . , An)ij = 0, if i ∈ Āp and j ∈ Āq, where p #= q.

An SCF F is a decomposed meet∗ SCF if there exists a decomposed meet∗ aggregator v such

that F = F v.

Different choices of Ā result in interesting aggregators. If we choose, Ā to be the complete

partition, then the resulting decomposed meet∗ aggregator is a meet∗ aggregator if |M | > 3
and meet∗-join aggregator if |M | = 2. Choosing any Ā, and choosing ∅ as oligarchs in

each bundle of Ā gives Ā as the output in every profile. Intuitively, Ā reflects the bias of
the mechanism designer towards a particular partition. Such bias may be inherent in some

applications, e.g., in the political district formation example discussed earlier, the state may
have an inherent bias to put two far-off geographical districts separate.

We now state the main result of the paper.

Theorem 2 A social choice function is strategy-proof and tops-only if and only if it is a

decomposed meet∗ social choice function.

Proof : Let F be a strategy-proof and tops-only social choice function. Define the aggregator

vF as follows. For every (A1, . . . , An) ∈ Mn, let vF (A1, . . . , An) = F (%1, . . . ,%n) such that
(%1, . . . ,%n) ∈ Dn and %h (1) = Ah for all h ∈ N . Since F is tops-only, vF is well-defined.
Further, vF is strategy-proof. By Proposition 6, vF can be decomposed into v1, . . . , vk via

partition Ā with bundles Ā1, . . . , Āk. For each p ∈ {1, . . . , k}, vp is strategy-proof and
satisfies Pareto+. Using Theorem 1 and Proposition 5, we conclude that vF is a decomposed

meet∗ aggregator. Hence, F is a decomposed meet∗ social choice function.
Suppose F is a decomposed meet∗ social choice function. By definition, F only uses

information in the top-ranked partition of each agent. So, it is tops-only. Let vF be the
decomposed meet∗ aggregator induced by F . Consider the partition Ā corresponding to this
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decomposed meet∗ aggregator, let (Ā1, . . . , Āk) be the bundles in this partition. Denote the
restriction of vF to Āp for every p ∈ {1, . . . , k} as vp. By definition, each vp is well-defined.
Further, each vp is either a meet∗ aggregator or a meet∗-join aggregator. By Theorem 1

and Proposition 5, each vp is strategy-proof. Strategy-proofness of each vp implies strategy-
proofness of vF (by definition of vF ). !

Another way to state Theorem 2 is that an aggregator is strategy-proof if and only if
it is a decomposed meet∗ aggregator. Note that the only decomposed meet∗ aggregators

which satisfy Pareto+ are meet∗ aggregators when |M | ≥ 3 and meet∗-join aggregators when
|M | = 2.

The tops-onlyness property in Theorem 2 is essential for the characterization. For in-

stance, consider the aggregator in Example 2. This is an aggregator which is not tops-only,
but strategy-proof. Hence, it is not a decomposed meet∗ aggregator.

5 Unanimity and Tops-Only Property

The tops-only property says that the only relevant information in the preference orderings
of agents are their tops. It is a useful tool, and often the biggest obstacle, in establishing
characterization results in social choice theory (Chatterji and Sen, 2011; Weymark, 2008).

Tops-only property is critical in our characterizations of Theorems 1 and 2. At the same time,
it may not be entirely appealing. However, we have already seen that tops-only property is

not implied by Pareto+. In this section, we intend to introduce two new appealing properties
for social choice functions, and show their connection to tops-onlyness.

The first property is Pareto−. It is an analogue of Pareto+ property. It can be found, for
example, in Fishburn and Rubinstein (1986).

Definition 13 An aggregator v satisfies Pareto− if for every i, j ∈ M and for every profile

(A1, . . . , An) with Ah
ij = 0 for all h ∈ N , we have v(A1, . . . , An)ij = 0.

A social choice function F satisfies Pareto− if for every i, j ∈ M and for every preference

profile #∈ Dn with (#h (1))ij = 0 for all h ∈ N , we have F (#)ij = 0.

Unlike Pareto+, Pareto− has different consequences when applied to strategy-proof and

tops-only SCFs. For example, using Theorem 2, we can characterize the class of SCFs which
are tops-only, strategy-proof, and satisfy Pareto− - these are decomposed meet SCFs (i.e.,
no bundle in the partition Ā will have an empty set as an oligarch). Notice that this class

is not symmetric or dual to the class of SCFs we get in Theorem 1, where we had imposed
Pareto+ in addition to strategy-proofness and tops-onlyness.

We now define unanimity. It says that whenever agents have the same top-ranked parti-
tion, the social choice function must choose that partition. It is an appealing property, and
used extensively in social choice theory.
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Definition 14 An aggregator v satisfies unanimity if for every i, j ∈ M and for every
profile (A1, . . . , An) with A1 = . . . = An = A, we have v(A1, . . . , An) = A.

A social choice function F satisfies unanimity if for every profile ("1, . . . ,"n) ∈ Dn

such that "1 (1) = . . . ="n (1) = A, we have F ("1, . . . ,"n) = A.

The main result of this section is the following.

Theorem 3 Suppose |M | ≥ 3. Then, the following statements are equivalent.

1. A social choice function is a meet social choice function.

2. A social choice function is strategy-proof and satisfies unanimity.

3. A social choice function is strategy-proof and satisfies Pareto+ and Pareto−.

As discussed earlier, when |M | ≥ 3, Fishburn and Rubinstein (1986) characterized meet

aggregators using binary independence, Pareto+, and Pareto−. Similarly, Mirkin (1975)
characterized meet aggregators using binary independence and unanimity. Theorem 3 is the

strategic counterpart of these results.
The main hurdle in proving Theorem 3 is to show that unanimity implies the tops-only

property for strategy-proof social choice function. To establish this property for our domain,
we use a general result in Chatterji and Sen (2011). Chatterji and Sen (2011) identify a
general sufficient condition on domains such that every strategy-proof function which satisfies

unanimity in that domain is tops-only. We show that this sufficient condition is satisfied in
our domain.

To be able to use their result, we need to first explore some structure of our domain.
First, we define the notion of betweenness. For any pair of distinct partitions A and B, let

β(A, B) = {C : ∀ "h∈ D with "h (1) = A, C /∈ {A, B}, C "h B}.

So, β(A, B) contains all partitions which will lie between A and B, whenever A is the
top ranked partition. An alternate way to define β(A, B) is the following. To remind,

M := {{i, j} : i, j ∈ M, i %= j}, i.e., all pairs of objects such that the objects are distinct.
For any pair of partitions, let L(A, B) = {{i, j} ∈ M : Aij = Bij}.

Lemma 1 Consider a pair of partitions A, B. A partition C ∈ β(A, B) if and only if for

every {i, j} ∈ M, Aij = Bij implies Aij = Cij (i.e., L(A, B) ⊆ L(A, C)).

Proof : This follows from the definition of β(A, B). !

The following lemma says the partitions which lie between A and B when A is the top,
are also the partitions which lie between A and B when B is the top.

Lemma 2 For any pair of partitions A and B, β(A, B) = β(B, A).
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Proof : Suppose C ∈ β(A, B). This means for every {i, j} ∈ M, if Bij = Aij then Cij = Aij .
But this also implies that if Bij = Aij then Cij = Bij. Hence, C ∈ β(B, A). A symmetric
argument establishes C ∈ β(B, A) implies C ∈ β(A, B). !

Given a preference ordering "h and a partition B, let

α(B,"h) = {A ∈ M : A "h B}.

So, α(B,"h) are all the partitions which are above B in preference ordering"h. The following

lemma says that if we take a pair of partitions A and B, we can find a preference ordering
"h with A being the top-ranked partition such that the partitions between A and B in "h

are exactly the partitions in β(A, B).

Lemma 3 (Squeezing) For every pair of partitions A and B, there exists a preference

ordering "h∈ D such that "h (1) = A and α(B,"h) = {A} ∪ β(A, B).

Proof : Fix a pair of partitions A and B. Define T (A) = {"h∈ D :"h (1) = A}. For
every "h∈ T (A), define S("h) = α(B,"h) \ ({A} ∪ β(A, B)). Choose "′

h∈ T (A) such that

|S("′
h)| ≤ |S("h)| for all "h∈ T (A). If |S("′

h)| = 0, we are done. Assume for contradiction
|S("′

h)| = r > 0.

Let C be a partition above B in "′
h such that C /∈ β(A, B), i.e., C ∈ α(B,"′

h) \ ({A} ∪
β(A, B)), and for all D %= C and D ∈ α(B,"′

h) \ ({A}∪ β(A, B)) we have D "′
h C. In other

words, C is the lowest ranked partition above B which does not lie in β(A, B). Such a C
exists since |S| = r > 0.

We construct another profile "′′
h by moving C just below B and keeping all the other

partitions at the same position. We claim that "′′
h∈ D. Assume for contradiction that

"′′
h /∈ D. Then, there must exist two partitions X, Y ∈ M \ {A} such that X "′′

h Y but

L(A, X) ⊆ L(A, Y ). Since "′
h∈ D, we must have Y = C and X ∈ α(B,"′

h) but X /∈
α(C,"′

h), i.e., X must be a partition between B and C in "′
h, and Y must be C. Then, by

definition of C, X ∈ β(A, B). Since C /∈ β(A, B), there is a preference ordering "̂h ∈ D
with "̂h(1) = A and X"̂hC. This is a contradiction to the fact L(A, X) ⊆ L(A, C).

Hence, there exists a preference ordering "′′
h∈ T (A) such that |S("′′

h)| = r − 1. This is a

contradiction. !

We are now ready to state the tops-only result. Before stating the result, we state
one notation, which we use in the proof. For every "h∈ D and for every A ∈ M, define

ω(A,"h) = {B ∈ M : A "h B}, i.e., all the partitions in "h that are worse than A.

Proposition 7 If a social choice function is strategy-proof and satisfies unanimity, then it
is tops-only.

Proof : We are going to use a result due to Chatterji and Sen (2011). They show that

the following two conditions are sufficient for tops-onlyness if a social choice function is
strategy-proof and satisfies unanimity.
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• A domain Z ⊆ P is minimally rich if for every partition A ∈ M, there exists #h∈ Z
such that #h (1) = A.

• Let A ∈ M and #h∈ P such that A $=#h (1) = B. We say A is satisfactory in

domain Z ⊆ P for #h∈ Z if for all C ∈ {B}∪ β(A, B) there exists a #′
h∈ Z such that

#′
h (1) = A and C #′

h D for all D ∈ ω(A,#h). In other words, A is satisfactory for #h

if for every C in {B} ∪ β(A, B), there is a preference ordering where A is the top and
C is better than all the alternatives worse than A in #h.

A domain Z ⊆ P satisfies Property T ∗ if for all #h∈ Z and A ∈ M \ {#h (1)}, A is

satisfactory for #h.

The intermediate domain D is clearly minimally rich. We show that our intermediate
domain D satisfies Property T ∗. Pick an arbitrary #h∈ D, and let #h (1) = B. Pick

A ∈ M \ {B}. We need to show that A is satisfactory for #h. Pick a C ∈ {B}∪β(A, B). By
the squeezing lemma (Lemma 3), and using the fact β(A, B) = β(B, A) (Lemma 2), there is

a preference ordering #′
h such that #′

h (1) = A and α(B,#′
h) = {A} ∪ β(B, A). Clearly, for

all D ∈ ω(A,#h), we have B #′
h D. Since C ∈ {B} ∪ β(B, A), we get that C #′

h D. Hence,
the intermediate domain D satisfies Property T ∗.

Finally, Chatterji and Sen (2011) show that if F is strategy-proof and D is minimally
rich and satisfies Property T ∗, then F is tops-only 4. Hence, F is tops-only. !

We can now state the proof of Theorem 3.

Proof of Theorem 3

Proof : (1) ⇒ (2), (3): Clearly, any meet social choice function is strategy-proof (Theorem
1), and satisfies unanimity, Pareto+, and Pareto−.

(2) ⇒ (3): Let F be a strategy-proof social choice function satisfying unanimity. By Proposi-

tion 7, F is tops-only. Hence, the aggregator vF is well-defined. Further, vF is strategy-proof,
and satisfies unanimity. By Proposition 3, vF satisfies binary independence. Unanimity and
binary independence implies that vF must also satisfy Pareto+ and Pareto−.

(3) ⇒ (1): Let F be a strategy-proof social choice function satisfying Pareto+ and Pareto−.

Then, it must satisfy unanimity. By Proposition 7, F is tops-only. Hence, the aggregator
vF is well-defined. Further, vF is strategy-proof, and satisfies Pareto+ and Pareto−. By

Theorem 1, vF must be a meet aggregator, and F must be a meet social choice function. !

There are other ways to prove Theorem 3 once we establish that tops-only property holds.

4Chatterji and Sen (2011) consider a general model, a la Gibbard (1973) and Satterthwaite (1975), and
provide sufficient conditions on domains for a strategy-proof social choice functions to be tops-only.
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For instance, Mirkin (1975) has shown that for |M | ≥ 3, an aggregator satisfying unanimity
and binary independence must be a meet aggregator. This establishes the equivalence be-
tween (1) and (2). Similarly, Fishburn and Rubinstein (1986) have shown that for |M | ≥ 3,

an aggregator satisfying Pareto+, Pareto−, and binary independence must be a meet aggre-
gator. Since Pareto+ and Pareto− imply unanimity, this establishes the equivalence between

(1) and (3).
The analogue of Theorem 3 for |M | = 2 can be derived too using Theorem 2. Note that

when |M | = 2, every social choice function is tops-only. Using unanimity and Theorem 2,
we conclude that every strategy-proof social choice function satisfying unanimity must be
a meet-join social choice function, where a meet-join SCF is a meet∗-join SCF where the

empty set is not part of the set of oligarchies.

6 Pareto Efficiency and Dictatorship

It is well known that unanimity is equivalent to a social choice function being onto. Unanim-

ity is also equivalent to the following definition Pareto efficiency in many domains, including
the unrestricted domain in Gibbard (1973) and Satterthwaite (1975) and the single-peaked
domain in Moulin (1980).

Definition 15 A social choice function F is Pareto efficient if for every profile "∈ Dn,
there exists no partition A ∈ M such that A "h F (") for all h ∈ N .

A meet SCF need not be Pareto efficient as the following example illustrates.

Example 3 Let M = {a, b, c} and N = {1, 2}. We refer to the partition where all the

objects are put together as the complete partition and the partition where all the objects are
kept separately as the empty partition. Consider the meet SCF where the set of oligarchs are
{1, 2}. Consider a profile ("1,"2) such that

• "1 (1) is the partition with bundles {a, b} and {c},

• and "2 (1) is the partition with bundles {a, c} and {b}.

By definition, F (") is the empty partition. Let A be the complete partition. Note that
A and "1 (1) agree that a and b should be together but A and F (") do not agree on that.

Similarly, A and "2 (1) agree that a and c should be together but A and F (") do not agree
on that. Hence, we can assume, without loss of generality, that "1 is such that A "1 F (")
and "2 is such that A "2 F ("). So, F is not Pareto efficient.

The intuition of Example 3 carries over more generally.

Theorem 4 Suppose |M | ≥ 3. A social choice function is strategy-proof and Pareto efficient

if and only if it is a dictatorship.
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Proof : Clearly, a dictatorship is Pareto efficient and strategy-proof. Suppose F is a
strategy-proof and Pareto efficient SCF. Since Pareto efficiency implies unanimity, by The-
orem 3, F is a meet social choice function, and vF is a meet aggregator. Let S ⊆ N be the

set of oligarchs of vF . We complete the proof by showing |S| = 1. Suppose |S| > 1. Fix
three objects i, j, k ∈ M . Consider the following partitions for each agent. For some h ∈ S,

let the top-ranked partition of agent h be Ah, and Ah
ik = 1 and Ah

st = 0 for all {s, t} #= {i, k}.
For every h′ ∈ S \ {h}, let the top-ranked partition of agent h′ be Ah′

, and Ah′

ij = 1 and

Ah′

st = 0 for all {s, t} #= {i, j}. For every h′′ ∈ N \ S, let the top-ranked partition of agent h′′

be Ah′′

= A, where A is the complete partition.
Now, by definition vF (A1, . . . , An) = B, where B is the empty partition. Now, note that

Ah
ik = Aik = 1 but Ah

ik #= Bik. Also, Ah′

ij = Aij but Ah′

ij #= Bij for all h′ ∈ S \ {h}. Hence,
there exists a preference ordering $h∈ D such that $h (1) = Ah and A $h B. Also, for

every h′ ∈ S \ {h}, there exists a preference ordering $′
h′∈ D such that $′

h′ (1) = Ah′

and
A $h′ B. By definition, for every h′′ ∈ N \ S, A $h′′ B for any preference ordering $h′′∈ D.

This implies that F is not Pareto efficient, which is a contradiction. Hence, |S| = 1, and F
is a dictatorship. !

Theorem 4 shows that we are back to Gibbard-Satterthwaite type impossibility if we
impose Pareto efficiency in addition to strategy-proofness. This is in sharp contrast to

various possibilities we have seen in the presence of unanimity or tops-onlyness.

7 Conclusion

This paper adds a new restricted domain to the literature on strategic social choice theory

initiated by the papers of Gibbard (1973) and Satterthwaite (1975). We provide characteri-
zations of strategy-proof social choice functions (a) under tops-onlyness property, (b) under
unanimity, and (c) under Pareto efficiency. Our model and the restricted domain we consider

are natural, and has some plausible applications (as discussed in Section 1).
It will be interesting to consider even more restriction of preferences in our model. For

instance, one natural notion of comparing two partitions with respect to a reference partition
is using “distance” between them. If A is the top-ranked partition in a preference ordering,
then a partition B may be preferred over partition C if and only if the distance between

A and B is less than the distance between A and C. One can verify that this is a smaller
domain than our intermediate domain. It will be interesting to find a characterization of

strategy-proof social choice functions in this domain.
Rubinstein and Fishburn (1986) consider an abstract model of algebraic aggregation. The

current paper, specially Theorem 3, gives a strategic foundation to their result on partitions
(Fishburn and Rubinstein, 1986). It will be interesting to extend this result to the abstract
model of algebraic aggregation.
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Appendix: Missing Proofs

Proof of Proposition 1

Proof : Suppose !h∈ D with !h (1) = A. Pick a pair of partitions B and C such that B

dominates C at A. To show that B !h C, it is sufficient to show that for every {i, j} ∈ M,
Cij = Aij implies Bij = Aij . Assume for contradiction that for some {i, j} ∈ M, we have

Cij = Aij but Bij #= Aij . In that case, choose a utility function uh consistent with A such
that uh

ij(Aij) is a very large positive number, and uh
kl(x), where {k, l} #= {i, j} and x ∈ {0, 1},

is either 1 or 0. Note that such a uh consistent with A exists. Further, Uh(C) > Uh(B)
since uh

ij(Cij) is a very large positive number. But since B dominates C at A, we must have
Uh(B) > Uh(C). This is a contradiction. Hence, B !h C.

For the converse, for all partitions B and C such that B dominates C at !h (1), we have
B !h C. Let !h (1) = A. To show !h belongs to the intermediate domain, take any B and

C with

{{i, j} ∈ M : Cij = Aij} ! {{i, j} ∈ M : Bij = Aij}. (1)

Take any utility function uh consistent with A. Now,

Uh(B) =
∑

{i,j}∈M

uh
ij(Bij)

=
∑

{i,j}∈M:Bij=Cij

uh
ij(Bij) +

∑

{i,j}∈M:Bij "=Cij ,Bij=Aij

uh
ij(Bij) +

∑

{i,j}∈M:Bij "=Cij ,Cij=Aij

uh
ij(Bij).

By the relation in 1, {{i, j} ∈ M : Bij #= Cij, Cij = Aij} is empty. Hence, we can write

Uh(B) =
∑

{i,j}∈M:Bij=Cij

uh
ij(Bij) +

∑

{i,j}∈M:Bij "=Cij ,Bij=Aij

uh
ij(Bij)

>
∑

{i,j}∈M:Bij=Cij

uh
ij(Cij) +

∑

{i,j}∈M:Bij "=Cij ,Bij=Aij

uh
ij(Cij)

= Uh(C),

where the strict inequality followed from the fact uh is consistent with A and the relation in

1. This shows that Uh(B) > Uh(C), and hence, B dominates C at !h (1). This implies that
B !h C. !

Proof of Proposition 5

Proof : With |M | = 2, every social choice function is tops-only. So, without loss of gen-
erality, we focus on aggregators instead of social choice functions. Consider a meet∗-join

aggregator v. Consider agent h ∈ N , and fix the profile of other agents at A−h. Let Ah be a
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partition such that Ah
ij != v(Ah, A−h)ij . Consider another partition Bh. If agent h is not an

oligarch (i.e., h /∈ Sp for some Sp ∈ S), then v(Ah, A−h)ij = v(Bh, A−h)ij . If h is an oligarch,
then there are two cases to consider.

• Ah
ij = 0 and v(Ah, A−h)ij = 1 implies that there is some oligarchy Sp ∈ S such that

h /∈ Sp, and Ah′

ij = 1 for all h′ ∈ Sp. In that case, v(Ah, A−h)ij = v(Bh, A−h)ij = 1.

• Ah
ij = 1 and v(Ah, A−h)ij = 0 implies that in every oligarch Sp ∈ S there is some agent

h′ ∈ Sp \ {h} such that Ah′

ij = 0. In that case, v(Ah, A−h)ij = v(Bh, A−h)ij = 0.

This shows that v is responsive. Hence, it is strategy-proof by Proposition 2.
Suppose v is strategy-proof and satisfies Pareto+. Then, call a set of agents S ⊆ N

decisive if for every (A1, . . . , An), v(A1, . . . , An)ij = 1 if and only if Ah
ij = 1 for all h ∈ S.

A decisive set exists because v satisfies Pareto+. Also, for any S ! T ⊆ N , if S is decisive,
then T is also decisive. This follows from responsiveness of v (since v is strategy-proof). Let

S = {S1, . . . , Sk} such that each Sp ∈ S is minimally decisive. Since each Sp ∈ S is minimally
decisive, for any Sq, Sr ∈ S, Sq cannot be a subset of Sr. Hence, by definition S is a set of

oligarchs, and v is a meet∗-join aggregator.
Hence, a social choice function is a meet∗-join aggregator if and only if it is strategy-proof

and satisfies Pareto+. !
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