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Abstract

We study a model of information aggregation and social learning recently pro-

posed by Jadbabaie, Sandroni, and Tahbaz-Salehi, in which individual agents try

to learn a correct state of the world by iteratively updating their beliefs using

private observations and beliefs of their neighbors. No individual agent’s private

signal might be informative enough to reveal the unknown state. As a result,

agents share their beliefs with others in their social neighborhood to learn from

each other. At every time step each agent receives a private signal, and computes

a Bayesian posterior as an intermediate belief. The intermediate belief is then

averaged with the belief of neighbors to form the individual’s belief at next time

step. We find a set of minimal sufficient conditions under which the agents will

learn the unknown state and reach consensus on their beliefs without any assump-

tion on the private signal structure. The key enabler is a result that shows that

using this update, agents will eventually forecast the indefinite future correctly.

1 Introduction

We discuss a model of how individuals might use relevant information available to
them to form opinions about different social, economic, and political issues. Oftentimes,
the “best” action an agent can take is not obvious and depends on certain unknown
parameters that determine the agent’s utility function. Consider the example of an
institution making an investment decision. The expected utility of different investment
options depend, among other things, on the expected policies of the next administration,
which in turn depend on how likely different political candidates are to win the election.
One can think of the candidate who is the most likely to win as an unknown parameter
in the investment decision of institutions. We assume that the value of the parameter
is an unknown state of the world that is exogenous to our model and is determined at
time zero by nature.

Agents make relevant observations about the unknown state. Frequently, not all the
agents make the same observations, and not all the observations are equally informative.
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Lack of access to all the relevant information is a motivation for individuals to share their
opinions with others in order to learn from their personal experiences. The importance of
social interactions on opinion dynamics have been documented in several examples such
as consumer choice, and diffusion of medical innovations and agricultural practices [1].

We study the scenario in which each individual has two sources of information: his
personal observations, and those of his neighbors in a social network (e.g. friends,
neighbors, colleagues, etc.). However, agents might not have direct access to personal
experiences of their neighbors. Instead, we assume that they can only observe their
neighbors’ beliefs, i.e., their subjective probabilities of different feasible realizations of
the unknown state of the world. An alternative equally valid interpretation is that
agents play a particular repeated game of imperfect information where each agent can
only observe the actions of his neighbors, and the actions completely reveal the beliefs
of acting agents.

To study the effect of social networks on learning, we analyze the model in [2] in
which agents use an update other than Bayes’ rule to incorporate the new information
available to them. Agents repeatedly interact with their neighbors and use a simple
rule to update their beliefs. Each agent first forms the Bayesian posterior given his
observed private signal, as an intermediate step. He then updates his belief to the
convex combination of his Bayesian posterior and the beliefs of his neighbors.

There are two major motivations for considering non-Bayesian protocols: The pos-
itive point of view comes from the choice theoretic studies showing existence of non-
Bayesian opinion dynamics among people (see [3–5] for instance). The second motiva-
tion comes from a normative point of view. Bayesian inference in social networks can be,
except for certain simple scenarios, computationally complicated to carry out. Part of
the complications is because there is no reason to believe that agents know the source of
their neighbors’ information. Rather, they have to infer it to be able to form an unbiased
belief about the true state of the world. The complexities of Bayesian updating limit its
applicability in practice.

In [2], the authors show that, under some assumptions, this update eventually leads to
social learning, even in finite networks: They show that agents can eventually forecast
the immediate future correctly. Furthermore, they will eventually learn the unknown
state, if for each agent there exist a signal that is the more probable under the true state
of the world than any other state. This assumption “turns the deck” in favor of learning
by assuming that agents are infinitely often notified, indirectly, of the true state of the
world.

We argue through a simple example that the assumption of having a “revealing”
signal is very limiting. We show that agents will learn the state of the world under
the much weaker assumption that they can distinguish the state collectively. Signals
need not be independent among agents at the same time period. Instead, we require
the signal structure to be such that the state is identifiable given the marginals of the
likelihood function. We first prove that not only agents will forecast the immediate
future correctly, but also they eventually will learn to forecast the indefinite future. We
also show that there exist a signal sequence which is informative enough to let agents
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identify the true state of the world, even if no revealing signal exists. The results signify
that even when none of the agents have enough information to learn the true state of the
world, and in spite of individual signals not being revealing enough, social interaction can
aggregate pieces of information available to the individuals such that each and everyone
of them can distinguish the true state of the world. Furthermore, this paper suggests
a distributed, computationally tractable algorithm for learning in networks that can be
applied to real world problems such as parameter estimation in sensor networks (cf. [6]
and the references therein).

Recently there has been a rapidly growing interest in models of learning in networks.
For a survey of different models of non-strategic and strategic social learning see [1].
Since in the presence of social networks fully Bayesian inference faces tractability prob-
lems, different types of simplifications have been proposed. The first group of models
assumes that agents interact sequentially. Examples include models in [7–11]. In such
models each agent, having observed the actions of some of the agents acting before,
takes an action. Each agent makes only one decision, and cannot reverse or change
his choice. The other group of models suggests non-Bayesian rules of thumb for belief
update. Examples include [2, 12–18].

2 The Model

The social learning model we consider, was first proposed in [2]. Time is discrete and
there is a finite number of agents, signals, and states of the world.

Let Θ be the finite set of possible states of the world, and θ∗ ∈ Θ be the true state that
is determined at time zero by nature, and is unchanged thereafter. Let N = {1, 2, . . . , n}
be the set of agents. At time t ≥ 0 each agent i has a belief about the true state, denoted
by µi,t(θ), which is a probability distribution over Θ.

At each time period t ≥ 1 each agent i observes a private random signal ωi,t ∈ Si

where Si = {s1i , s
2
i , . . . , s

Mi

i } is the set of possible signals for agent i. Conditional on
θ ∈ Θ being the state of the world, the observation profile ωt = (ω1,t, ω2,t, . . . , ωn,t) is
generated according to the likelihood function ℓ(·| θ) with ℓi(·| θ) as its ith marginal.
Let Pθ = ℓ(·| θ)N be the product measure that determines the realization of signals
conditioned on θ being the state of the world. This definition allows for signals to be
correlated among agents at the same time period, but makes them independent over
time. Without loss of generality we assume that ℓi(si |θ

∗) > 0 for all si ∈ Si; Si is only
the set of signals that are realized with positive probability conditioned on the true state
of the world being θ∗.

Let Θ̄i = {θ ∈ Θ : ℓi(si| θ) = ℓi(si| θ∗) for all si ∈ Si} be the set of states that are
observationally equivalent to the true state θ∗ from the point of view of agent i, and let
Θ̄ = Θ̄1 ∩ · · · ∩ Θ̄n be the set of states that are observationally equivalent to the true
state of the world from the point of view of all agents.

(Ω,F ,P) is the probability triple, where Ω = (
∏n

i=1 Si)
N, F is the smallest σ-field

that makes all ωi,t measurable, and P = Pθ∗ is the probability distribution determining
the realization of signals. N stands for the set of natural numbers. We use ω ∈ Ω
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to denote the infinite signal sequence (ω1, ω2, . . . ), and E to denote the expected value
operator with respect to the probability measure P. Let Fi,t = σ(ωi,1, ωi,2, . . . , ωi,t) be
the filtration generated by the observations of agent i up to time t, and let Ft be the
σ-field generated by the union of all Fi,t for 1 ≤ i ≤ n.

We say that the adapted random variables Xt and Yt are asymptotically P-almost
surely equal, denoted by Xt

a.a.s.
= Yt, if there exist Ω̃ ⊆ Ω such that P(Ω̃) = 1, and for all

ω ∈ Ω̃ and all ǫ > 0, there exist T (ω, ǫ) such that for all t1, t2 > T (ω, ǫ),

|Xt1 − Yt2 | < ǫ.

It is an easy exercise to show that if Xt
a.a.s.
= Yt and Zt

a.a.s.
= Wt, then Xt±Zt

a.a.s.
= Yt±Wt,

and XtZt
a.a.s.
= YtWt.

The interactions between the agents are captured by a directed graph G = (N , E).
Let Ni = {j ∈ N : (j, i) ∈ E} be the set of neighbors of agent i. It is assumed that
agent i can observe the belief of agent j if there exist a directed edge from i to j, that is
(i, j) ∈ E. A graph is called strongly connected if there exist a directed path from any
vertex to any other one.

Each agent i starts with the initial belief µi,0(θ) that θ is the true state of the world.
At the end of period t, each agent observes the beliefs of his neighbors. At the beginning
of the next period, agent i receives the private signal ωi,t+1, and then uses the following
rule to update his belief:

µi,t+1(θ) = aiiµi,t(θ)
ℓi(ωi,t+1| θ)

mi,t(ωi,t+1)
+

∑

j∈Ni

aijµj,t(θ), (1)

where mi,t(si) is defined for any si ∈ Si as

mi,t(si) =
∑

θ∈Θ

ℓi(si| θ)µi,t(θ).

In the update in equation (1) each agent updates his belief to a convex combination
of his own Bayesian posterior, given only his private signal and neglecting the social
network, and his neighbors’ previous period beliefs. aij is the weight agent i assigns to
the opinion of agent j, and aii, called the self-reliance of agent i, is the weight he assigns
to his Bayesian posterior conditional on his private signal. We assume that aij ∈ R+

and
∑

j∈Ni∪{i}
aij = 1 for the beliefs to remain a probability distribution over Θ after

the update.
It is sometimes more convenient to use vector notations. We use A to denote the

n× n matrix whose ij element is aij , and use µt(θ) to denote the n dimensional column
vector whose ith element is µi,t(θ).

When there is no arrival of new information, this update becomes the same as DeG-
root’s naive learning model. Likewise, when aij = 0 for all j 6= i, the model is the same
as the Bayesian learning model with no network structure.

For all t > 0, µi,t(θ) and mi,t(si) are random functions adapted to Ft, the former
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on Θ and the latter on Si. mi,t(si) is the probability that agent i assigns, at time t,
to signal si being observed in the next time step, hence, it is called agent i’s one step
forecast. We can extend this notion to define the k-step forecast mi,t(si,1, si,2, . . . , si,k) as
the forecast at time t of agent i that the signal sequence (si,1, si,2, . . . , si,k) ∈ (Si)

k will
be realized in the next k time steps

mi,t(si,1, . . . , si,k) =
∑

θ∈Θ

ℓi(si,1, . . . , si,k| θ)µi,t(θ),

where ℓi(si,1, si,2, . . . , si,k| θ) is the shorthand for ℓi(si,1| θ) ℓi(si,2| θ) . . . ℓi(si,k| θ).
The update in equation (1) is local in the sense that each agent only needs the beliefs

of his immediate neighbors to compute it.

3 Asymptotic Learning

In this section we find a set of sufficient conditions for learning when agents use
equation (1) to update their beliefs. First we have to define what we mean by learning.
For a discussion of different notions of learning and how they are related see [19]. The
first one we examine here is the notion of weak merging of opinions.

Definition 1 Agent i learns the likelihood function on a sample path ω, in the sense of
weak merging of opinions, if along that path

mi,t(·) → ℓi(·| θ
∗) as t → ∞.

When an agent learns the likelihood function in this sense, he will know the proba-
bility distribution according to which signals are generated. In other words, the agent
can forecast the immediate future correctly, as if he knows the likelihood function.

In [2], the authors show that if agents use the update in equation (1), learning in the
sense of weak merging of opinions occurs under the following assumptions:

Assumption 1

(a) The social network is strongly connected.
(b) All agents have strictly positive self-reliances.
(c) There exists an agent with positive prior belief on the true parameter θ∗.

Assumption 1.(a) allows for information to flow from any agent to any other one.
Assumption 1.(b) is to prevent agents from disregarding their personal experiences.
Assumption 1.(c) is what is known as a “grain of truth” in agent’s prior belief. In the
discrete setting, this is equivalent to absolute continuity of the initial forecasts with
respect to the likelihood function, which is often a necessary condition for learning.
The following theorem shows that weak merging of opinions occurs when Assumptions
1(a)-(c) hold.
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Table 1: The likelihood function of Example 1

H T

θ∗ 1/3 2/3

θ1 1/4 3/4

θ2 3/5 2/5

Theorem 1 (Jadbabaie, Sandroni, & Tahbaz-Salehi [2]) If Assumption 1 holds,
then

mi,t(·) → ℓi(·| θ
∗) as t → ∞,

with P-probability one.

It can also easily be shown through counterexamples that none of the assumptions
of the theorem can be relaxed. This theorem corresponds to weak merging of opinions.
The much stronger notion of learning is asymptotic learning of the true state of the
world.

Definition 2 Agent i asymptotically learns the true parameter θ∗ on a sample path ω,
if along that path

µi,t(θ
∗) → 1 as t → ∞.

To prove asymptotic learning authors add the assumption that for any agent i, there
exists a signal ŝi ∈ Si and a positive number δi such that

ℓi(ŝi| θ)

ℓi(ŝi| θ∗)
≤ δi < 1 ∀θ /∈ Θ̄i. (2)

This assumption asks for existence of a signal that is more likely conditioned on θ∗

being the true state of the world rather than conditioned on any other state in Θ̄i being
the true state of the world. Under this assumption and provided that the conditions
of Theorem 1 hold, the authors prove that all agents asymptotically learn the true
parameter θ∗ with P-probability one. The condition in (2) guarantees that there exist a
revealing signal that is observed infinitely often. The following example shows that this
is a weak assumption.

Example 1 Consider a strongly connected graph on two agents. Assume that Θ =
{θ∗, θ1, θ2}, and S1 = S2 = {H, T}. Also assume that the private signals of agents
are independent and are generated according to the same probability distribution ℓ(s| θ)
which is given by Table 1. In this example there is no signal that satisfies condition (2).
But the signal sequence (H, T, T ) is most likely under θ∗ rather than any other θ ∈ Θ.
Furthermore, (H, T, T ) is the shortest such signal sequence.

In this paper we show that to prove asymptotic learning no assumption should be
made other than the distinguishability of the true state of the world θ∗.
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Assumption 2 (Distinguishability) There is no θ ∈ Θ that is observationally equiv-
alent to θ∗ from the point of view of all agents, that is

Θ̄ = Θ̄1 ∩ · · · ∩ Θ̄n = {θ∗}.

This is obviously a necessary condition for the agents to learn the true state of the
world. In Theorem 6 which is the main result of this section we show that it is also
sufficient. To that end, we first show in Theorem 4 that the correct forecasts of the
agents can be extended into the future. To prove these results we first need to present
a few preliminary results. The following theorem is a variation of Borel-Cantelli lemma
which can be found, among many other places, as Theorem 5.3.2 in [20].

Theorem 2 Let Ft, t ≥ 0 be a filtration with F0 = {∅,Ω} and At, t ≥ 1 a sequence of
events with At ∈ Ft. Then

{At infinitely often} =

{
∞∑

t=1

P(At|Ft−1) = ∞

}

.

The next theorem we need is the bounded convergence theorem for conditional ex-
pectations. For a proof see, for instance, page 263 of [20].

Theorem 3 Suppose Yt → Y , P-almost surely, and |Yt| ≤ M for all t where M is a
constant. If Ft ↑ F∞ then with P-probability one

E(Yt| Ft) → E(Y | F∞).

The next two lemmas are technical lemmas which will be used in proof of Theorem
4.

Lemma 1 If Assumption 1 holds then

E(
ℓi(ωi,t+1| θ)

mi,t(ωi,t+1)
| Ft) → 1 as t → ∞,

with P-probability one for all θ ∈ Θ.

Proof.

E(
ℓi(ωi,t+1| θ)

mi,t(ωi,t+1)
| Ft) =

∑

si∈Si

ℓi(si| θ)

mi,t(si)
ℓi(si| θ

∗)

≤ max
si∈Si

ℓi(si| θ∗)

mi,t(si)

∑

si∈Si

ℓi(si| θ)

= max
si∈Si

ℓi(si| θ∗)

mi,t(si)
.
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By a similar argument

E(
ℓi(ωi,t+1| θ)

mi,t(ωi,t+1)
| Ft) ≥ min

si∈Si

ℓi(si| θ
∗)

mi,t(si)
.

The conditional expectation is sandwiched between two quantities, both of which go to
one P-almost surely by Theorem 1, and so does it.

Lemma 2 If Assumption 1 holds then

E∗(µt+1(θ)| Ft)
a.a.s.
= Aµt.

Proof. We take expectations of both sides of equation (1) conditioned on Ft. Since
µj,t(θ) is Ft measurable for all 1 ≤ j ≤ n,

E(µi,t+1(θ)| Ft) = aiiµi,t(θ)E(
ℓi(ωi,t+1| θ)

mi,t(ωi,t+1)
| Ft) +

∑

j∈Ni

aijµj,t(θ).

Taking the limit of the above equation as t → ∞ and using Lemma 1,

E(µi,t+1(θ)| Ft)
a.a.s.
= aiiµi,t(θ) +

∑

j∈Ni

aijµj,t(θ),

which in vector form can be written as

E(µt+1(θ)| Ft)
a.a.s.
= Aµt.

The next theorem shows that not only the agents eventually forecast the next step
correctly, as shown in Theorem 1, but also they do so for the next k steps for any finite
k.

Theorem 4 If Assumption 1 holds, then

mi,t(si,1, . . . , si,k) → ℓi(si,1, . . . , si,k| θ
∗) as t → ∞,

with P-probability one for all si,1, si,2, . . . , si,k ∈ Si.

Proof. To simplify notation we drop the subscript i from si,1, si,2, . . . , si,k whenever
there is no risk of confusion. We use induction on k. For k = 1 the result is proved
in Theorem 1. Multiplying both sides of equation (1) by mi,t(ωi,t+1)ℓi(s2, . . . , sk| θ) and
summing over θ ∈ Θ,

mi,t(ωi,t+1)
∑

θ∈Θ

ℓi(s2, . . . , sk| θ)µi,t+1(θ) = aii
∑

θ∈Θ

ℓi(ωi,t+1, s2, . . . , sk| θ)µi,t(θ)

+mi,t(ωi,t+1)
∑

θ∈Θ

ℓi(s2, . . . , sk| θ)
∑

j∈Ni

aijµj,t(θ).
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Thus,

mi,t(ωi,t+1)mi,t+1(s2, . . . , sk) = aiimi,t(ωi,t+1, s2, . . . , sk)

+mi,t(ωi,t+1)
∑

θ∈Θ

ℓi(s2, . . . , sk| θ)
∑

j∈Ni

aijµj,t(θ).

By Lemma 2,

mi,t(ωi,t+1)mi,t+1(s2, . . . , sk)
a.a.s.
= aiimi,t(ωi,t+1, s2, . . . , sk)

+mi,t(ωi,t+1)
∑

θ∈Θ

ℓi(s2, . . . , sk| θ)E(µi,t+1(θ)|Ft)

− aiimi,t(ωi,t+1)
∑

θ∈Θ

µi,t(θ)ℓi(s2, . . . , sk| θ).

Since all the terms are positive and ℓi(s2, . . . , sk| θ) is a constant, using Fubini’s theorem
[20] we can change the order of sum and expectation to get

mi,t(ωi,t+1)mi,t+1(s2, . . . , sk)
a.a.s.
= aiimi,t(ωi,t+1, s2, . . . , sk)

+mi,t(ωi,t+1)E(mi,t+1(s2, . . . , sk)| Ft)

− aiimi,t(ωi,t+1)mi,t(s2, . . . , sk).

By induction hypothesis mi,t+1(s2, . . . , sk) converges P-almost surely to ℓi(s2, . . . , sk| θ∗).
Since mi,t+1 is a probability measure it is bounded for all t. Also note that Ft ↑ F .
Hence, we can use Theorem 3 to conclude that E(mi,t+1(s2, . . . , sk)| Ft) converges P-
almost surely to E(ℓi(s2, . . . , sk| θ∗)| F) which is just ℓi(s2, . . . , sk| θ∗). Therefore,

mi,t(ωi,t+1)ℓi(s2, . . . , sk| θ
∗)

a.a.s.
= aiimi,t(ωi,t+1, s2, . . . , sk)

+mi,t(ωi,t+1)ℓi(s2, . . . , sk| θ
∗)

− aiimi,t(ωi,t+1)ℓi(s2, . . . , sk| θ
∗).

We can now solve for mi,t(ωi,t+1, s2, . . . , sk) to get

mi,t(ωi,t+1, s2, . . . , sk)
a.a.s.
= mi,t(ωi,t+1)mi,t(s2, . . . , sk).

By the induction hypothesis, mi,t(s2, . . . , sk) converges on a set of P-probability one
to ℓi(s2,. . . , sk| θ∗). Moreover, mi,t(ωi,t+1) is asymptotically P-almost surely equal to
ℓi(ωi,t+1| θ∗). Therefore, mi,t(ωi,t+1, s2,. . . , sk) is asymptotically P-almost surely equal to
ℓi(ωi,t+1, s2, . . . , sk| θ∗). To get the result for any arbitrary s1, s2, . . . , sk ∈ Si, we need to
use Theorem 2. For any ǫ > 0, let

At =

{

ω :
∣
∣
∣
mi,t−1(ωi,t, s2, . . . , sk)

ℓi(ωi,t, s2, . . . , sk| θ∗)
− 1

∣
∣
∣ > ǫ

}

,
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and for any s1 ∈ Si, let

Bt(s1) =

{

ω :
∣
∣
∣
mi,t−1(s1, s2, . . . , sk)

ℓi(s1, s2, . . . , sk| θ∗)
− 1

∣
∣
∣ > ǫ

}

.

Clearly At is measurable with respect to Ft for all t ≥ 1. Since asymptotically P-almost
surely mt(ωi,t+1, s2, . . . , sk) is equal to ℓi(ωi,t+1, s2, . . . , sk| θ∗), P(At i.o.) = 0 for any
ǫ > 0, where i.o. is the abbreviation for infinitely often. Using Theorem 2 for the An

defined above,
∞∑

t=1

P(At|Ft−1) < ∞, (3)

with P-probability one. We can write the summand in equation (3) as

P(At|Ft−1) = E

( ∑

s1∈S

1Bt(s1)1{ωi,t=s1}|Ft−1

)

, (4)

where for any A ∈ F , 1A is a random variable defined as

1A(ω) =

{

1 if ω ∈ A,

0 if ω /∈ A.

1Bt(s1) ∈ Ft−1 for any s1 ∈ S, and ωi,t is independent of Ft−1. Since all the random
variables in equation (4) are positive, we can switch the order of sum and expected
value to get

P(At|Ft−1) =
∑

s1∈S

1Bt(s1)E1{ωi,t=s1}

=
∑

s1∈S

1Bt(s1)ℓi(s1 |θ
∗).

If we substitute the above equation for P(At|Ft−1) in equation (3) and use the fact that
all the terms are positive to switch the order of the sums, we get that

∑

s1∈S

ℓi(s1 |θ
∗)

∞∑

t=1

1Bt(s1) < ∞,

with P-probability. Therefore, P(Bt(s1) i.o.) = 0 for any s1 ∈ Si, and mi,t(s1, s2, . . . , sk)
converges P-almost surely to ℓi(s1, s2, . . . , sk| θ∗) for any s1, s2, . . . , sk ∈ Si.

This theorem shows that, eventually, an agent’s forecast at time t of a time t + k
event is not different than his forecast at time t+k−1 of the same event. That is, when
agents already have accurate forecasts of immediate future, they cannot improve their
forecasts of indefinite future by observing more signals.
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The following theorem uses finiteness of Si to show that for any agent i there exist
a long enough signal sequence that is more probable under θ∗ than any state θ /∈ Θ̄i.

Theorem 5 For any agent i, there exists a finite number k̂i and signals ŝi,1, ŝi,2, . . . , ŝi,k̂i
such that

ℓi(ŝi,1, ŝi,2, . . . , ŝi,k̂i| θ)

ℓi(ŝi,1, ŝi,2, . . . , ŝi,k̂i| θ
∗)

≤ δi < 1 ∀θ /∈ Θ̄i. (5)

Proof. First assume that ℓi(si| θ∗) is a rational number for all si ∈ Si. In this case we will
prove that we can take k̂i to be the least common denominator (LCD) of {ℓi(si| θ∗)}si∈Si

and (ŝi,1, ŝi,2, . . . , ŝi,k̂i) to be a sequence of signals in which the number of occurrences of
each si ∈ Si is exactly equal to the numerator of the fractional representation of ℓi(si| θ∗),
when the denominator is equal to k̂i. In other words, we pick the signal sequence in which
the frequency of each signal is equal to its probability under θ∗.

Let k̂i = LCD
(
{ℓi(si| θ∗)}si∈Si

)
and kj

i = ℓ(sji | θ
∗)k̂i for 1 ≤ j ≤ Mi. We prove that

ℓi(·| θ
∗) is the unique probability measure for which the probability of the signal sequence

(s1i , . . . , s
1
i

︸ ︷︷ ︸

k1i times

, . . . , sMi

i , . . . , sMi

i
︸ ︷︷ ︸

k
Mi
i times

)

is maximized. As a result, for this sequence ℓi(·| θ)/ℓi(·| θ
∗) is strictly less than one for

any θ /∈ Θ̄i.
Let pji = Q(sji ) for 1 ≤ j ≤ Mi, where Q is some probability measure on Si. To

simplify notation we drop the subscript i whenever there is no risk of confusion. We
solve the following concave maximization problem:

max
p1,...,pM

(p1)
k1
(p2)

k2
. . . (pM)

kM

subject to p1 + p2 + · · ·+ pM = 1,
(6)

where by (pj)
kj

we mean pj to the power of kj. We can use a Lagrange multiplier ρ
to incorporate the constraint into the cost function [21]. The resulting unconstrained
optimization is still concave. Therefore, the optimal solutions can be found using the
first order conditions. The resulting set of equalities are

kj

pj
− ρ = 0 1 ≤ j ≤ M,

p1 + p2 + · · ·+ pm = 1,

which have the unique solution

pj =
kj

∑M
j=1 k

j
1 ≤ j ≤ M.

By construction, this solution corresponds to the probability measure ℓi(·| θ∗).
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So far we have proved the theorem for the rational case. For the case that ℓi(si| θ
∗)

is irrational for some si ∈ Si, the proof follows from continuity of the objective of
the optimization problem (6) with respect to (p1, p2, . . . , pj), and the fact that rational
numbers are dense in reals.

The condition in (5) is the k-step counterpart of the condition in (2). We showed
that even though a single signal revealing the true state might not exist, but there are
signal sequences that will do so. We are now ready to prove the main result of this
section:

Theorem 6 If Assumption 1 holds, then

µi,t(θ) → 0 as t → ∞ ∀i ∈ N , ∀θ /∈ Θ̄,

with P-probability one for all i ∈ N .

Proof. First we prove that for any agent i, µi,t(θ) → 0 as t → ∞ for all θ /∈ Θ̄i

with P-probability one. Let k̂i and (ŝi,1, ŝi,2, . . . , ŝi,k̂i) be a positive integer and a se-
quence of signals respectively, that satisfy (5). By Theorem 4, mi,t(si,1, · · · , si,k) →
ℓi(si,1, · · · , si,k| θ

∗) with P-probability one for any sequence of finite length. We can use
this result for ŝi,1, ŝi,2, . . . , ŝi,k̂i to conclude that for any ǫ > 0, there exist Ω̃i ⊆ Ω and a

random variable Ti(ω, ǫ) such that P(Ω̃i) = 1, and for any ω ∈ Ω̃i and t > Ti(ω, ǫ),

∣
∣
∣
∣
∣

∑

θ

µi,t(θ)
ℓi(ŝi,1, . . . , ŝi,k̂i| θ)

ℓi(ŝi,1, . . . , ŝi,k̂i| θ
∗)

− 1

∣
∣
∣
∣
∣
< ǫ,

and therefore,

∣
∣
∣
∣
∣
∣

∑

θ/∈Θ̄i

µi,t(θ)
ℓi(ŝi,1, . . . , ŝi,k̂i| θ)

ℓi(ŝi,1, . . . , ŝi,k̂i| θ
∗)

+
∑

θ∈Θ̄i

µi,t(θ)− 1

∣
∣
∣
∣
∣
∣

< ǫ.

Using the result of Theorem 5 we can conclude that on any sample path ω ∈ Ω̃i and
t > Ti(ω, ǫ),

0 ≤ (1− δi)
∑

θ/∈Θ̄i

µi,t(θ) < ǫ.

Since ǫ > 0 is arbitrary, this proves that µi,t(θ) → 0 as t → ∞ for all θ /∈ Θ̄i.
Taking limits of equation (1) as t → ∞ and using the result proved above shows that

∑

j∈Ni
aijµj,t(θ) converges to zero as t → ∞ and so does µj,t(θ) for all θ /∈ Θ̄i and j ∈ Ni

with P-probability one. Proceeding in the same way and using the strong connectivity
assumption, for all j ∈ N , µj,t(θ) → 0 for all θ /∈ Θ̄i. Thus, with P-probability one

µi,t(θ) → 0 as t → ∞ ∀i ∈ N , ∀θ /∈ Θ̄. (7)
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Since µi,t(·) is a probability distribution over Θ for all i and t, we have the following
corollary.

Corollary 7 If Assumptions 1 and 2 hold, then

µi,t(θ
∗) → 1 as t → ∞,

with P-probability one for all i ∈ N .

4 Conclusion and Future Direction

We analyzed a model of social learning where the agents form their beliefs about an
unknown state of the world by taking the convex combination of their Bayesian posterior
and the beliefs of their neighbors. Agents will learn the true state of the world if, (a) the
social network is strongly connected, (b) all agents have strictly positive self-reliances,
and (c) there exists an agent with positive prior belief on the true state. Furthermore,
none of these assumptions can be relaxed in general. We also argued that there does not
need to exist a revealing signal for learning to happen. Rather, there are always long
enough signal sequences that are revealing. We also proved that once the immediate
future forecasts of the agents become approximately correct, they can be extended to
indefinite future with a negligible error.

We also have shown that, under the same assumptions, not only the agents eventually
learn the true state of the world, but also they do so exponentially fast with an exponent
that depends both on network topology and on signal structure. Therefore, even though
network structure had a minimal effect on the possibility of learning through requiring
strong connectivity, it influences the rate of learning in a more complicated and subtle
way. Moreover, as a corollary of exponential learning, eventually the consensus dynamic
becomes dominant. Hence, even if the true state is not distinguishable, agents eventually
reach a consensus.

As we mentioned in Section 1, the model of social learning where the agents exchange
their beliefs with their neighbors can be regarded as a trivial game of imperfect infor-
mation where the actions of the agents completely reveal their beliefs. We would like to
extend the model to nontrivial games where the observed actions only contain limited
information about the underlying beliefs. Then, to be able to use the simple update
discussed in this paper, agents have to estimate the belief of their neighbors based on
the history of their observed actions. We are interested in quantifying how, and to what
extent unobservability of the beliefs will change the results of this paper.
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