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Abstract

We propose a smooth multibidding mechanism for environments where a group

of agents have to choose one out of several projects (possibly with the help of a social

planner). Our proposal is related to the multibidding mechanism (Pérez-Castrillo

and Wettstein, 2002) but it is “smoother” in the sense that small variations in

an agent’s bids do not lead to dramatic changes in the probability of selecting a

project. This mechanism is shown to possess several interesting properties. Unlike

in the study by Pérez Castrillo and Wettstein (2002), the equilibrium outcome is

unique. Second, it ensures an equal sharing of the surplus that it induces. Finally,

it enables reaching an outcome as close to efficiency as is desired.
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1 Introduction

1.1 Contribution

The design of mechanisms that help agents reach decisions on contentious issues is a

very relevant and active line of research. A mechanism that leads to an efficient project

requires information about agents’ preferences for each possible decision. Themultibidding

mechanism, proposed by Pérez-Castrillo and Wettstein (2002) allows the agents to express

their relative preference for projects. It proceeds as follows. Each agent submits a vector

of bids, one for each project, with the sole restriction that the sum of each agent’s bids

is zero. Therefore, bids measure relative rather than absolute valuation. Each agent

also nominates one of the projects specifically. The project with the highest aggregate

bid (sum of bids made for this project) is chosen. In case there is more than one such

project, there is a rule that gives priority to projects that have been nominated by some

agent. The winning project is carried out, agents pay the promised bid corresponding

to this project, and any surplus is shared among the agents, so that the mechanism is

budget-balanced.

The main property of the multibidding mechanism is that all its Nash (and strong

Nash) equilibrium outcomes are efficient. However, in general environments, the mech-

anism has two weak aspects that we address in the current paper. First, it requires the

tiebreaking rule that, at equilibrium, is always used because all projects’ equilibrium ag-

gregate bids are zero. Therefore, the tiebreaking rule plays a crucial role. As Ehlers

(2009) highlights, removing the agents’ abilities to nominate one specific project and us-

ing tiebreaking rules may prevent an equilibrium from existing. Because agents do not

nominate a specific project in many real-world processes such as auctions, this lack of ro-

bustness constitutes a weakness of the initial mechanism. Second, the set of equilibrium

outcomes is quite large, as it consists of all the outcomes where each agent’s payoff is at

least the expected payoff he would obtain in a situation where all the projects have the

same probability of being developed. Therefore, almost any (“reasonable”) sharing of the

surplus is an equilibrium outcome.

In the present paper, we tackle the issues highlighted above by proposing a smooth

multibidding mechanism. It is close to the original proposal but ours is “smoother” in
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the sense that small variations of an agent’s bids do not lead to dramatic changes in the

probability of selecting a project. In the smooth mechanism, each agent only submits a

vector of bids, without nominating any project. All projects can be selected, with each

project’s probability being a function of its aggregate bid as well as the aggregate bids

of the rest of the projects. Projects with a negative aggregate bid have a very low, but

positive, fixed probability of being selected (a function of some parameter ). Each project

with a positive aggregate bid is selected with a probability that is a function of the level

of its (and others’) positive aggregate bid.

We first show that, for a given value of , the equilibrium outcome is unique. This

property is important because it highlights that there is no coordination issue with respect

to agents’ expectation about the final outcome. We then characterize the equilibrium

outcome. Although there may be several equilibrium strategies, the differences among

them only concern bids for those projects that, at equilibrium, end up with negative

aggregate bids. We identify the set of projects with positive equilibrium bids as well as

each agent’s bids to any project in this set. Only projects that are efficient, or whose

total valuation is very close to the efficient one, ultimately receive a positive aggregate

bid. In case some non-efficient project receives a positive aggregate bid, its level reflects

the degree of inefficiency.

Second, the smooth multibidding mechanism ensures a fair share of the surplus that it

induces. Indeed, an agent’s equilibrium payoff in the mechanism is the sum of the value of

the average project plus his fair share of the remaining surplus. That is, agents obtain the

same level of utility as in the original multibidding mechanism, and the surplus is divided

in equal parts among the agents. This fairness property ensures that the mechanism is

politically feasible, which is an important characteristic for practical implementation.

Third, the mechanism does not rely on the use of tiebreaking rules and is immune

to the criticism raised by Ehlers (2009). It can be thus thought of as a more natural

mechanism than the initial one.

Finally, it is apparent from the previous description that the smooth multibidding

mechanism does not achieve efficiency. It does, however, get as close to efficiency as one

wishes. We show that each agent’s expected payoff increases as the value of the parameter

 decreases; therefore, total efficiency increases as well. Moreover, the probability of
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choosing an inefficient project converges to zero as the value of the parameter  becomes

small. We can bound the level of expected inefficiency as a function of the parameter :

the maximum level of inefficiency of a project that receives a positive aggregate bid is a

linear function of the square root of .

To summarize, the present mechanism exhibits the interesting properties of uniqueness

and fairness of its equilibrium outcome. The weakness compared to the initial mechanism

(which guarantees full efficiency) is only minor as a social planner relying on the new

protocol would be able to get as close to full efficiency as she wishes. Therefore, this

mechanism constitutes an interesting option for practical implementations.

1.2 Applicability of the mechanism and related literature

There are many economic situations where this mechanism can be successfully used. A

first case concerns the complex problem of the location of noxious facilities, such as prisons,

dump sites, nuclear waste repositories, or airports. Many authors address this type of

problem; we can refer among other papers to Kunreuther and Kleindorfer, 1986; Rob,

1989; O’Sullivan, 1993; Ingberman, 1995; Pérez-Castrillo and Wettstein, 2002; Minehart

and Neeman, 2002; and Laurent-Lucchetti and Leroux, 2009. Whereas the construction of

such facilities may provide large global benefits, their cost is usually borne by the hosting

agent. The sitting problems are so severe and so common that an acronym is used to

refer to them: NIMBY (Not In My Back Yard).

Another sensitive decision problem concerns the location of large international re-

search infrastructures. The decision about the city that should host such a facility is

always the subject of hot debate among the candidates and other interested countries and

institutions. In 2002, the European Commission started the European Strategy Forum on

Research Infrastructures (ESFRI) to support and facilitate multilateral initiatives leading

to a better use and development of research infrastructures, including biological archives,

communication networks, research vessels, satellite and aircraft observation facilities, tele-

scopes, synchrotrons, and particle accelerators. Although its 2006 Report presented a first

roadmap identifying 35 projects with the scientific needs for the next 10-20 years, ESFRI

is silent about how the interested countries should determine the location of the facility.
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However, this is a very difficult decision that involves many scientific, economic, and social

issues. For each project, supporting countries should work out a procedure to choose the

host of the facility. Therefore, they must first decide on a mechanism and then use the

procedure to elect the hosting city.

The previous examples belong to a general class of problems in which a group of

agents has to choose one out of several projects. In some situations, the set of projects

coincides with the set of agents, as is the case if a group of municipalities meet to choose

one of them to host a dump site or a hospital. In another context, the set of agents is

larger than the set of projects, as is typically the case when countries or institutions build

a large international research infrastructure: in such a situation, all countries may not

have an own proposal regarding the specifics of the project to be carried out. The main

objective of a mechanism in such situations would be to maximize the aggregate welfare

of all the agents (efficiency). Moreover, such decisions typically require to compensate

(some) agents with monetary transfers. The protocol defined in the present contribution

can be considered a valuable option to be considered.

We have highlighted our contribution to the literature that offers mechanisms to decide

the location of noxious facilities or any other joint decision by a group of agents. Our

proposal is also related to papers that look for mechanisms that agents can use to choose

whether to develop a project and which one to develop (see, for instance, Moulin, 1984,

and Jackson and Moulin, 1992); to reach good allocations in economic environments

with public goods and externalities (Varian, 1994a and 1994b); to dissolve a partnership

(McAfee, 1992); to sell (or not) a project to one agent when it affects many (Jehiel et

al., 1996); or to award an indivisible good to one agent (in the spirit of King Solomon’s

dilemma; see, for instance, Glazer and Ma, 1989, and Perry and Reny, 1999).

Our contribution can also expand the set of applications of the multibidding mech-

anism as part of more complex mechanisms implementing solution concepts. Indeed,

variants of the multibidding mechanism (without the need to resort to the tiebreaking

rule) have been used in several environments; see Pérez-Castrillo and Wettstein (2001),

Bergantiños and Vidal-Puga (2003, 2010), Macho-Stadler et al. (2006), Porteiro (2007),

Slikker (2007), Ju et al. (2007), Kamijo (2008), Ehlers (2009), Ju and Wettstein, (2009),
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and Veszteg (2010).1

Finally, our paper can also be related to the literature on virtual (or −) implementa-
tion (Matsushima, 1988, and Abreu and Sen, 1991) in the sense that our objective is not

to achieve an exact implementation of an efficient and fair outcome but to get as “close”

as wished to that allocation.

The paper is organized as follows. In Section 2, we present the environment and the

smooth multibidding mechanism. The equilibrium strategies and outcome are stated in

Section 3. Section 4 studies the main properties of the equilibrium outcome, including

the convergence properties when the parameter  goes to zero. We provide a simple

example in Section 5. Finally, Section 6 concludes the paper. All proofs are included in

the Appendix.

2 The environment and the mechanism

We consider a set of agents  = {1     } which have to choose which project will be
carried out of a set of possible projects  = {1     }. The utility (payoff) of agent  if
project  is selected is given by .

We denote by  ≡
P

∈  the sum of agents’ utilities if project  is implemented.

Project  is efficient if  ≥  for all  ∈ . We denote by  the set of efficient projects,

that is,

 = { ∈  ≥  for all  ∈ } 

Information about all the values  is complete among the agents; that is, each agent

knows not only the value he assigns to the projects but also the values assigned by

the other agents. However, the planner does not have information about these values.

Alternatively, even if she did have some information, she would not want to use it. The

planner is interested in designing an impartial mechanism that will treat all the agents in

a symmetric manner.

We propose a smooth multibidding mechanism through which agents influence the

probability that projects are selected. We now describe the mechanism, which has a

unique stage.

1For further discussions and applications, see Pérez-Castrillo and Veszteg (2007) and Veszteg (2010).
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Each agent  ∈  makes a vector of bids  ≡ ¡¢∈ in R, one for each  in  withP
∈  = 0. All agents make their decision simultaneously. Once the agents have chosen

their bids, the outcome of the smooth multibidding mechanism is the following.

For each  ∈ ,  ≡
P

∈  denotes the aggregate bid for project  and ≡ ()∈
denotes the vector of aggregate bids. The probability that project  be carried out if the

vector of aggregate bids is  is

() =
()P
∈ ()



where we consider the following function ():

() =
 for all   0

+ for all  ≥ 0


with   0. Finally, if project  is chosen, each agent  ∈  pays his bid for that project,

, and he receives a fair share of the aggregate bid, . Therefore, agent ’s utility if

project  is implemented is

 −  +
1




The smooth multibidding mechanism borrows from the multibbiding mechanism of

Pérez-Castrillo and Wettstein (2002) the idea of allowing the agents to express their rela-

tive preference for projects through a vector of bids. However, under the original mecha-

nism, the probability of selecting any project abruptly jumps from 0 to 1 as the aggregate

bid for this project just passes the maximum aggregate bid for the other projects. Under

our proposal, a higher (positive) aggregate bid for a project increases the probability that

it is selected, but the increase is “smooth”. This feature allows us to offer a mechanism

that does not require ad hoc tiebreaking rules.

3 The equilibria of the smooth multibidding mecha-

nism

In this section, we characterize the Nash equilibria (NE) of the smooth multibidding

mechanism. We proceed as follows. First, we derive several properties that are necessarily
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satisfied by NE of the game. Second, we use these properties to provide a characterization

of the set of NE.

Let us proceed now with the analysis. Consider a vector of agents’ bids ()∈ and let

 denote the set of projects for which the aggregate bid is positive under this vector of

strategies, that is,  ≡ { ∈   0}. Similarly, denote by  ≡ { ∈   0} and
 ≡ { ∈  = 0} so we have  ∪  = \. Additionally, we denote  the number
of projects in .2 The probability that project  ∈  is chosen is given by

() =

+

+


∈
for all  ∈ 


+


∈

for all  ∈ \

Agent  chooses his vector of bids  to maximize his expected profits given the bids

chosen by the rest of the agents. Agent ’s profits are

Π( −) =
X
∈

()

∙
 −  +

1




¸


Therefore, agent  chooses  to solve the following program, which we denote by [ ]:


X
∈

()

∙
 −  +

1




¸
s.t.

X
∈

 = 0

To proceed with our analysis we note first, that agent ’s program [ ] is well behaved

except that the derivative on the right of function () with respect to  (hence, with

respect to  as well) is different from its derivative on the left, at the point  = 0.

We introduce the First-Order Conditions (FOCs) of the program. Denoting by  the

Lagrange multiplier of the constraint, the FOC of [ ] for any  ∈  are:




=

Π


( −) +  = −(− 1)


() +  = 0, (1)

where we have taken into account that
()


= 0 for all  ∈  and  ∈ . It is worthwhile

to notice that () is the same for all  ∈ , which supports the following property:

2Although the sets , , and  depend on the the vector of aggregate bids , we avoid using the

notations (), () (), and () for simplicity.
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increasing agent ’s bid to a project in  and decreasing another of this agent’s bids to

a different project in  does not matter, as long as both projects still receive a negative

aggregate bid after the changes.

The FOC for any  ∈  is




=

()



∙
 −  +

1




¸
− (− 1)


()+X

∈\{}

()



∙
 −  +

1




¸
+
X

∈\

()



∙
 −  +

1




¸
+  = 0 (2)

where
()



=
( − 1)+P∈\{}¡

+
P

∈

¢2 (3)

()



= − +¡
+

P
∈

¢2 for all  ∈ \ {} (4)

()



= − ¡
+

P
∈

¢2 for all  ∈ \. (5)

Finally, for any  ∈ , it needs to be the case that 

≥ 0 on the left and 


≤ 0 on

the right. In fact, the derivative on the left is the same as the left-hand side of equation

(1), which is independent of . Therefore, the derivative 

≥ 0 on the left always holds

(it holds with equality). Therefore, we only have to add the following condition:




=

()



∙
 −  +

1




¸
− (− 1)


()+X

∈

()



∙
 −  +

1




¸
+

X
∈\(∪{})

()



∙
 −  +

1




¸
+  ≤ 0, (6)

for any  ∈  where
()



=
( − 1)+P∈¡
+

P
∈

¢2  (7)

and
()


is given by (4) for any  ∈ , and it is given by (5) for any  ∈ \( ∪ ).

The previous FOCs are necessary (although not sufficient) to characterize the NE of

the proposed mechanism given that any equilibirum must be interior.

Next, we use the FOCs of each agent’s program to characterize the set  and the

NE aggregate and individual bids to these projects. Lemma 1 conveys useful information

about the equilibrium aggregate bids for the projects in .
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Lemma 1 In any NE of the smooth multibidding mechanism, if  0 ∈  then

 = 0 +
1

(− 1) ( − 0)  (8)

Lemma 1 implies that differences in bids among those projects that receive positive

aggregate bids directly reflect the differences in total values of the projects.

We now use the previous result and the FOCs to characterize the aggregate bid received

by any project in .

Proposition 1 In any NE of the smooth multibidding mechanism, if  ∈  then 

satisfies () = 0, where

() ≡ − (− 1) 2
 −

"
 (− 1) + 2

X
∈

 − 2
#
+

 − 
X
∈

 − 1

(− 1)
X
∈

( − )
2
 (9)

We notice that the concave function () starts (at  = 0) at a positive value only if

 is close enough to the valuation of the projects in  that is, if  is high enough. The

derivative of () also depends on : it is larger when  is larger. This derivative 
0()

can be positive or negative at  = 0, depending on  and it converges to −∞ as 

becomes very large. Therefore, () always crosses (once) the horizontal axis if it starts

with a positive value. We also prove in the Appendix that it never crosses the horizontal

axis if () starts at a negative value.

Before we continue the characterization of the equilibrium agents’ bids, we turn to

the analysis of the set , that is, the set of projects that receive positive aggregate bid.

Lemma 1 showed that, for projects in , aggregate bids increase with total valuation.

The same logic suggests that any project in  should have higher total valuation than

any project outside  (as they receive non-positive aggregate bids). Lemma 2 shows that

this intuition is indeed correct.

Lemma 2 In any NE of the smooth multibidding mechanism, if project  satisfies  ≥ 

for some  ∈ , then  ∈ .
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We can now provide a simple condition to check whether a project receives, at equi-

librium, a positive aggregate bid. That is, Proposition 2 characterizes the set of projects

.

Proposition 2 In any NE of the smooth multibidding mechanism,  ∈  if and only if

the following condition holds:

 − 
X
∈

 − 1

(− 1)
X
∈

( − )
2
 0 (10)

where  ≡ { ∈  ≥ }.

The above result enables to conclude that the valuation of any particular project in

 cannot be too far from that of projects whose total valuation is higher. Only projects

whose total valuation is higher than the average valuation can be in  (otherwise, the

left-hand side of equation (10) is negative). Moreover, for a “better-than-average” project

to be in , it is also necessary that the sum of the differences (to the power 2) between

the value of this project and the value of the projects that are more efficient should be

small enough. In particular, only efficient projects will receive positive (aggregate) bids

in situations where the difference between the total values of any efficient project and

the least inefficient project is sufficiently large. Finally, the set  only contains efficient

projects if the parameter  is small enough.

Proposition 2 characterizes the set of projects  whose equilibrium aggregate bids

satisfy () = 0. Additionally, taking into account condition (10) and the concavity

of the function (), equation () = 0 characterizes a unique value for the aggregate

bid of any project in . On the other hand, one implication of the FOCs (specifically,

condition (1)) is that any switch in agents’ strategy concerning bids to projects outside

 is irrelevant, as long as the set  is not changed. Therefore, we already have the main

information concerning the characteristics of the NE strategies of the smooth multibbiding

mechanism. Theorem 1 provides the full description of the equilibria through a complete

characterization of the equilibrium bids.

Theorem 1 The set of bids ()∈ , with
P

∈  = 0 for all  ∈  , constitutes a NE of

the smooth multibidding mechanism if and only if it satisfies the following properties:
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(a)   0 if and only if  − 
P

∈  − 1
(−1)

P
∈ ( − )

2
 0

(b) () = 0 whenever   0

(c)  = +
1

− 1



P
∈ − 1



³
 − 1



P
∈ 

´
for all  ∈  whenever   0, and

(d)  ≥  +  +
−1

 − 1



P
∈  − 1


( − 1



P
∈ ) for all  ∈  and any given

project  ∈ , whenever  ≤ 0.

There is an intuitive progression from the first to the last property in the above

theorem. Property () provides a way to check which projects will receive positive bids.

Property () then characterizes the aggregate bids of such projects. Property () uses ()

to characterize the corresponding individual bids. Finally, property () follows from ()

and provides a lower bound on the individual bids for projects whose aggregate bid is non

positive.

There are three important remarks regarding the last property. First, property ()

prevents any agent from having incentives to increase his bid for a project whose aggregate

bid is non positive. Second, the statement of this property is actually independent from

the specific choice of project  ∈  since the difference −1

 − 1


 is independent from

this choice. Third, property () is stronger that the FOC (6) as it concerns not only

projects in  but also in . Therefore, not all strategies that satisfy the FOCs constitute

a NE.

Theorem 1 enables us to construct a particular vector of bids that satisfy conditions

() and (), which also shows that the set of  of the smooth multibidding mechanism

is always non empty:

Proposition 3 The set of  of the smooth multibidding mechanism is non empty. In

particular, the following set of bids ()∈ is a :

(I)  is constructed using () and (), for all  ∈ , where  is the non-empty set that

satisfies condition ();

(II)  =  +
−1

 − 1



P
∈  − 1


( − 1



P
∈ ) for all  ∈ \ ( ∪ {}), where 

is a particular element of \;
(III)  = −

P
∈\ 


.

Therefore, we have an easy way to construct a  for any environment. The proof of
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Proposition 3 only requires that condition () is also satisfied for the particular project

 ∈ \.
The characterization of equilibrium bids is an important point of the analysis, but we

have little information on the practical properties satisfied by the mechanism (in terms

of equilibrium payoffs, degree of efficiency). These properties will be provided in the next

section.

4 Properties of the smooth multibidding mechanism

In the present section we provide several properties satisfied by the equilibrium outcome

of the proposed mechanism. First, we highlight that each agent’s equilibrium payoff

satisfies a fairness property. Second, we show that the optimal payoffs resulting from the

mechanism increase monotonically as the value of the parameter  decreases. Third, we

provide an upper bound on the degree of potential inefficiency that could arise in a project

in the set , and we prove that the mechanism converges to full efficiency as the value of

the parameter  becomes small.

4.1 Fairness of equilibrium payoffs

We start with the characterization of the agents’ equilibrium payoffs.

Proposition 4 In any NE of the smooth multibidding mechanism, agent ’s profits are

Π =
1



X
∈

 +
1



"X
∈

() − 1


X
∈



#


The above equality highlights that an agent’s equilibrium payoff is made of two parts.

The first part amounts to the value of the average project, 1


P
∈ . This would corre-

spond to the payoff associated with the random assignment mechanism, that is, a mech-

anism that would choose any project with the same probability. We notice that this

mechanism is a benchmark that is used often in practical situations. It basically cor-

responds to a process where agents would “throw a die” to determinate which specific

project would be implemented in case they would be indifferent between all the potential
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projects. It is also the utility level that each agent can secure himself when he plays the

multibidding mechanism (Pérez-Castrillo and Wettstein, 2002). The second part of the

equilibrium payoff is the fair share of the surplus. Therefore, not only is the equilibrium

payoff of the smooth multibidding mechanism unique (in contrast with the multibidding

mechanism, whose outcome set can be large) but it also implies a fair share of the surplus

(i.e., the additional payoff obtained with respect of the average value of the projects).

One implication of Proposition 4 is that agents’ interests are aligned: when one agent’s

payoff increases, the payoffs of the other agents also increase. Therefore, there is no conflict

between total profits and individual profits.

4.2 Monotonicity of equilibrium payoffs

The characterization of the agents’ expected payoffs obtained in the previous sub-section

is also useful because it enables us to check whether the parameter  has a monotone

effect on the optimal payoffs. Intuitively, one would think that payoffs should increase

with a decrease in the value of the parameter. This is confirmed by the next result.

Proposition 5 Any agent’s optimal expected profits increase with a decrease in the value

of the parameter .

A smaller value of  leads to a higher efficiency level attained by the mechanism and

each agent having higher expected payoffs. This provides a clear implication for a practical

implementation of the mechanism: the value of the parameter  should be positive and

chosen as small as possible, as this would ensure that the agents’ expected payoffs will

come close to their highest possible values.

It is important to notice that we have not yet proved that choosing the parameter

 as small as possible would ensure that the mechanism comes as close as possible to

full efficiency. This will be proved in the final sub-section, where we first highlight two

additional properties.
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4.3 Convergence of the mechanism to full efficiency

Before analyzing the convergence of the outcome of the mechanism to full efficiency, it

is interesting to characterize the degree of inefficiency that can be sustained in projects

with positive equilibrium aggregate bids. The next result provides an upper bound on

this degree of inefficiency.

Proposition 6 In any NE of the smooth multibidding mechanism, for any  ∈ , the

following inequality holds:

 ∗ − √
 ∗

≤
p
(− 1) ( − 1)√

where  ∗ denotes the value of an efficient project.

Proposition 6 implies that the potential degree of inefficiency of any project with

positive aggregate bid at equilibrium is a linear function of the square root of . There-

fore, the mechanism will only select efficient projects for situations where the degree of

heterogeneity in the value of the projects is sufficiently large. As soon as the difference

between the value of an efficient project  and that of a second-best project  is large

enough, then the mechanism will select efficient projects only. Moreover, as the value of

the parameter  becomes arbitrarily small the degree of heterogeneity required converges

to zero. Therefore, small values of  will ensure that the outcome implemented by the

mechanism approximates full efficiency. This is consistent with the conclusion resulting

from the monotonicity of the agents’ expected payoffs as described in Proposition 5.

Next, we provide additional information on the agents’ optimal bids when all selected

projects are efficient. In such a situation, the optimal aggregate bids can be easily char-

acterized, as highlighted by the following result.

Proposition 7 In any NE of the smooth multibidding mechanism, if  =  then

 =

− +
r
22 + 4 

(−1)

³
 −

P
∈ 

´
2

for any  ∈ . Moreover,  converges to 0 and () converges to 1 as  tends towards

0.
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When only efficient projects are selected by the mechanism, the form of the aggregate

bids is simple. According to this expression, the aggregate bid will be higher as the

difference between the value of an efficient project and those of the other projects increases.

Moreover, all efficient projects will be selected with equal probability approximately equal

to 1

as the parameter  becomes arbitrarily small. In particular, the probability that an

efficient project is selected converges to 1 as  tends toward 0.

Propositions 6 and 7 enable us to provide a final result on the relative efficiency of the

mechanism as the value of the parameter  becomes small. Specifically, we show that, for

any equilibrium, the probability of implementing an inefficient project converges to zero.

Therefore, the outcome of the mechanism gets as close to efficiency as one wishes as the

parameter  tends towards zero.

Proposition 8 The outcome of the smooth multibidding mechanism converges to full

efficiency as the parameter  converges to zero. In other words, if project  ∈  denotes

an inefficient project, its probability to be implemented at the equilibrium converges to zero

as  becomes small.

The above result confirms that the effect of a variation of the parameter  is intuitive.

Regarding the actual implementation of the mechanism, small values of this parameter

will ensure that the chance of choosing an inefficient project comes close to zero.

5 Example

Before concluding the paper, it might be useful to highlight the main properties of the

mechanism with a simple example. Let us consider the following situation.

Two agents (1 and 2) have to make a collective decision on the implementation of a

project. There are four potential choices corresponding to the set  = {1 2 3 4} where
the agents’ benefits are: 11 = 6, 21 = 3; 12 = 4, 22 = 6; 13 = 2, 23 = 1; and 14 = 8,

24 = 2, respectively. The weighting parameter  is positive; we will highlight how its value

influences the outcome of the mechanism.

At equilibrium of the smooth multibidding mechanism, Project 3 will receive a negative

aggregate bid for any possible  (this follows from Theorem 1 (a)). Project 1 will also
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receive negative aggregate bid as soon as   12. In this case, Proposition 7 provides

the expression for the aggregate bids of projects 2 and 4 (the efficient projects):

2 = 4 = −+
√
2 + 4  0

and Theorem 1 (c) enables one to find the equilibrium individual bids for projects 1 and

2. For example, the bids that agents submit for project 2 are

12 = −2 +
1

2

h
−+

√
2 + 4

i
22 = 2 +

1

2

h
−+

√
2 + 4

i
.

The probability that projects 2 and 4 are selected at equilibrium is

2() = 4() =

√
4 + 

2
£√

+
√
4 + 

¤ 
therefore, each 2() and 4() converges to 12 as  converges to zero.

Finally, regarding the agents’ equilibrium payoffs, we know from Proposition 4 that,

for instance, agent 1’s payoff is given by the following expressions:

Π1 = 5 +
1

2

"
1£√

+
√
4 + 

¤ ³10√4 + + 6
√

´
− 8
#

which corresponds to this agent’s value of the average project (5) plus his fair share of

the collective benefits. The collective benefits converge towards the total value 10 of an

efficient project minus the total value of the average project 8. Therefore, Π1 converges

to 6 as  converges to 0.

6 Conclusion

Relying on the main characteristics of the multibidding mechanism (Pérez-Castrillo and

Wettstein, 2002), we developed a new procedure for choosing efficient projects in situations

where the social planner does not have information on the agents’ preferences.

Even though the present protocol does not achieve efficiency, it has a number of inter-

esting properties compared to the mechanism developed in Pérez-Castrillo and Wettstein

(2002). That is, it implements a unique equilibrium outcome, satisfies a fairness property
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and is immune to the problems highlighted by Ehlers (2009) as the use of tiebreaking rules

is avoided (by making the probability to select a given project continuous). Moreover, it

may come as close to full efficiency as the social planner wishes.

As uniqueness and fairness of the resulting outcome are important properties for prac-

tical implementation (among other things, fairness ensures that the mechanism will be

politically feasible), this mechanism may be considered a valuable tool for such problems

of collective decision making.

7 Appendix

Proof of Lemma 1. Assume  contains at least two projects, otherwise the lemma

holds trivially. The derivative of the payoff to any agent , when adding an infinitesimal

 to  and substracting  from 0 is

1¡
+

P
∈

¢ ∙ −  +
1




¸
− (− 1)



(+)¡
+

P
∈

¢−
1¡

+
P

∈

¢ ∙0 − 0 +
1


0

¸
+
(− 1)



(+0)¡
+

P
∈

¢ 
The previous derivative must be zero at the optimum, that is,

 −  −
(− 2)


 = 0 − 0 −

(− 2)


0. (11)

Summing over  we get − (− 1) = 0 − (− 1)0, which is equivalent to (8).

Proof of Proposition 1. The FOC for any  ∈  implies  =
(−1)




(+


∈)
.

Therefore, we write the FOC with respect to  ∈  (equation (2)) as (after easy simplifi-

cations)

1¡
+

P
∈

¢2
"Ã

+
X
∈



!∙
 −  +

1




¸
−
X
∈



∙
 −  +

1




¸#
−

¡
+

P
∈

¢2 X
∈

 −
(− 1)



¡
+

P
∈

¢ = 0 (12)

or Ã
+

X
∈



!∙
 −  −

(− 2)




¸
−
X
∈



∙
 −  +

1




¸
− 

X
∈

 = 0 (13)
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Summing (13) over  ∈  we obtainÃ
+

X
∈



!
[ − (− 1)]−

X
∈

 − 
X
∈

 = 0

i.e.,

 − 
X
∈

 −  (− 1) +
X
∈

 ( − )− (− 1)

X
∈

 = 0 (14)

Note that we can write the last two terms in (14) as

X
∈

 [( − )− (− 1)] = − 1

− 1
X
∈

[( − )− (− 1)]
2
=

− 1

− 1
X
∈

( − )
2 − (− 1) 2

 + 2 − 2

X
∈

,

where we have used equation (8). Therefore, (14) can be written as () = 0.

Proof of Lemma 2. First, suppose\ contains at least two projects. Take projects
 ∈ \ and  ∈  satisfying  ≥ . We know that for any agent  ∈  , changes in¡

¢
∈\ do not influence his profits as long as  ≤ 0 for all  ∈ \ is maintained.

Therefore, if   0 then agent  can increase  to  =  −  and decrease 

 to

 =  +  for some other  ∈ \. The derivative of the payoff to any agent , when
adding a positive infinitesimal  to  and substracting  from  is

1¡
+

P
∈

¢ £ − ¡ −

¢¤− (− 1)


¡
+

P
∈

¢−
1¡

+
P

∈

¢ ∙ −  +
1




¸
+
(− 1)



(+)¡
+

P
∈

¢ 
The previous derivative can not be positive at the optimum, that is,£

 −  +

¤− ∙ −  −
(− 2)




¸
≤ 0 for all  ∈  .

Summing the previous equation over  , we get

 −  + (− 1) ≤ 0. (15)

However, the last inequality cannot hold if  ≥  and   0
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Second, suppose \ = {} and pick  such that  is the lowest among the elements
in . Taking into account that  ≤ , then  ≤  for all  ∈ . For this project ,

0() |=0= −
"
 (− 1) + 2

X
∈

 − 2
#
≤ − (− 1)  0

and

() |=0=  − 
X
∈

 − 1

(− 1)
X
∈

( − )
2 ≤ 0.

Therefore,   0 is not possible.

Proof of Proposition 2. We first prove by contradiction that project  does not

belong to  if (10) does not hold. We know that, according to Lemma 2,  ⊂  if  ∈ .

Denote by  the project in  with the lowest total valuation:  ≤  for all  ∈ . Then

() |=0=  − 
X
∈

 − 1

(− 1)
X
∈

( − )
2 ≤

 − 
X
∈

 − 1

(− 1)
2X

∈
( − ) ≤ 0

Also, 0() |=0= −
£
 (− 1) + 2P∈  − 2

¤
 0 which, together with 00() 

0 implies that ()  0 for all positive . However, this is not possible at equilibrium.

Second, we prove that (10) does not hold if  ∈ \. Note that (10) cannot happen
for  if {} = \. Therefore, we take  ∈ \ and and suppose that there are at least
two projects outside . Consider some  ∈ . By the same calculations as in the proof

of Lemma 2, we obtain (see (15))  −  + (− 1) ≤ 0, that is,  ≤ 1
(−1) ( − ) 

or, () |=
1

(−1) (−)≤ 0 This is equivalent to

− 
1

(− 1) ( − )
2 − 1

(− 1)

"
 (− 1) + 2

X
∈

 − 2
#
( − )+

 − 
X
∈

 − 1

(− 1)
X
∈

( − )
2 ≤ 0, (16)

i.e.,

 − 
X
∈

 − 1

(− 1)
X
∈

( − )
2 − 2

(− 1)
X
∈

 ( − )+

2

(− 1) ( − )− 1

(− 1) ( − )
2 ≤ 0
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Using that− ( − )
2−2 ( − ) = − 2

 − 2
 +2 and 2 ( − )−( − )

2
=

 2
 −  2

 , the previous inequality is equivalent to

 − 
X
∈

 − 1

(− 1)
2
 −

1

(− 1)
X
∈

 2
 +

2

(− 1)
X
∈

+

1

(− 1)
2
 −

1

(− 1)
2
 ≤ 0

i.e.,

 − 
X
∈

 − 1

(− 1)
X
∈

( − )
2 ≤ 0 (17)

Given that  ⊃  for any  ∈ , it is necessarily the case that equation (10) cannot

hold, as we wanted to prove.

Proof of Theorem 1. The necessity of parts () and () comes from propositions 1

and 2. For part (), note that from (11), we know that

 −  +
1


 =  −  +

1


 +

(− 1)


( −)

for any   ∈ . Therefore, we can write (12) asÃ
+

X
∈



!∙
 −  +

1




¸
−
X
∈



∙
 −  +

1


 +

(− 1)


( −)

¸
−


X
∈

 −
− 1




Ã
+

X
∈



!
= 0,

i.e.,



∙
 −  +

1




¸
− 

X
∈

 −
1



"
(− 1)

X
∈

2
 +  (− 1)

#
= 0 (18)

We use (8) to show that

X
∈

2
 =

X
∈

∙
 +

1

(− 1) ( − )

¸2
=

2
 +

2

(− 1)

X
∈

 − 2

(− 1) +
1

(− 1)2
X
∈

( − )
2
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Therefore, (18) is equivalent to



∙
 −  +

1




¸
− 

X
∈

−

1



"
(− 1) 2

 + 2

X
∈

 − 2 +
1

(− 1)
X
∈

( − )
2
+  (− 1)

#
= 0

and, using that () = 0, we obtain



∙
 −  +

1




¸
− 

X
∈

 −
1



"
 − 

X
∈



#
= 0,

and part () follows. For part (), from the same calculations as in the proof of Lemma

3, it follows that, for any agent , any project  ∈  and any  ∈  we have




=

1¡
+

P
∈

¢ £ − 
¤− 1¡

+
P

∈

¢ ∙ −  −
(− 2)




¸
≤ 0

as agents do not have incentives to deviate. This implies the following inequality:

 −  −
∙
 −  −

(− 2)




¸
≤ 0 (19)

Using () and rewriting, we check that part () follows for any  ∈ . Part () is also

implied by () for any  ∈  when \ is a singleton, \ = {}, using  = −
P

∈ 

.

Finally, when \ contains at least two projects, any agent can unilaterally amend his

bids regarding the projects in to make any project with an initially negative aggregate

bid get one equal to zero. Moreover, the resulting situation is payoff equivalent to the

initial one. This implies that condition (19) must hold for all projects  ∈  once we

increase  to 

 so that the  = 0, that is, 


 =  −. Therefore, condition (d) must

hold.

We now show that () to () are also sufficient conditions for NE. Consider any vector

of bids ()∈ satisfying () to (). We will prove that (
)∈ is indeed a NE by showing

that  is a best response to −.

Any best response  to − must satisfy the FOCs. We denote by  = +
P

∈\ 



for any  ∈  and by ,  the set and number corresponding to the vector of bids

( −). Following the same calculations as in the proof of Lemma 1, FOCs imply

 −  −
(− 2)


 = 0 − 0 −

(− 2)


0 for any  
0 ∈ . (20)
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Also, when\ has at least two elements, calculations similar to those in Lemma 2 imply

 −  + ≤ 0 − 0 −
(− 2)


0 for any  ∈ \ 0 ∈ . (21)

When \ only contains one element, that is, \ = {} for some  ∈ , then (21)

also holds as it is implied by (20). Indeed, summing (20) over  ∈ \ and taking into

account that  = −
P

∈ 

 and  = −

P
∈, we obtainX

∈
 +  +

(− 2)


 = ( − 1)0 − ( − 1)0 − ( − 1)
(− 2)


0 for any 

0 ∈ ,

that is,

 −  + = 0 − 0 −
(− 2)


0+X

∈
 + 2

(− 1)


 − 0 + 0 + 
(− 2)


0 for any 

0 ∈ .

Therefore, (21) holds if

0 − 0 +
1


0 ≥

1



X
∈

 +
(− 1)



∙
2


 +0

¸
for some 0 ∈ 

Since  = −
P

∈\, it is necessarily the case that
2

+0 ≤ 0 for some 0 ∈ \.

Moreover, 0 − 0 +
1

0 ≥ 1



P
∈  for any 

0 ∈ \.3 Therefore, (21) also holds for
 when \ = {}.
Now, we take any 0 ∈  and rewrite (20) and (21) as

 +
X
∈\

 −
(2− 2)


 = 0 +

X
∈\



0 −

(2− 2)


0 for any  
0 ∈ , (22)

 +
X
∈\

 ≤ 0 +
X
∈\

 −
(2− 2)


0 for any  ∈ \ 0 ∈ . (23)

3Any best response  must ensure expected profits higher or equal than 1


P
∈ , which is

the level that agent  can secure with the “safe” strategy 

= −P∈\ 


 : profits under  are

1


P
∈

£
 − 

¤
= 1



P
∈  because 


= 0 for all  ∈ . Therefore, all the projects  ∈ 

must provide this level of profits in case they are chosen; otherwise, agent  would decrease all the bids

on those projects which provide less profits (he would also increase , still ensuring that  is negative);

this would increase the probability of success of those projects whose profits in case there are chosen is

higher or equal than 1


P
∈ .
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Equation (23) is a necessary condition for  to be in \. Similarly, because  is

positive if  ∈ , a necessary condition for  to be in  is (following (22))

 +
X
∈\

  0 +
X
∈\



0 −

(2− 2)


0  (24)

Therefore, if 0 ∈ , then  ∈  if and only if (24) holds. Equation (24) implies that if

0 ∈ , then  ∈  if +
P

∈\ 

 is larger than 


0 +

P
∈\ 


0. An implication is that

 ∈  if and only if  +
P

∈\ 

 is larger than some threshold. Also notice that this is

also necessarily true for the set  (possibly with a different threshold). Therefore, either

 ⊂  or  ⊂ .

We go back to (20), which we rewrite as (25)

(2− 2)


¡
0 − 

¢
= 0 −  −

(− 2)


X
∈\

¡


0 − 

¢
for any  0 ∈ . (25)

Taking into account that (25) also holds for  (instead of ) if  0 ∈ , then

0 −  = 0 −  for any  
0 ∈  ∩, (26)

that is,  =  +  (and also  =  + ), for some  ∈ R, for all  ∈  ∩.
Take some  ∈ . The FOC with respect to  is (see (13))⎛⎝+

X
∈



⎞⎠∙ −  −
(− 2)




¸
−
X
∈



∙
 −  +

1




¸
− 

X
∈

 = 0 (27)

First, suppose that  ≤ 0 Then, (24) is more limiting for  than for ; therefore,  ⊂ .

Equation (27) becomes⎛⎝+
X
∈

 + 

⎞⎠∙ −  −
(− 2)


 − 2(− 1)




¸
−

X
∈

( + )

∙
 −  +

1


 − (− 1)




¸
− 

X
∈

 = 0
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which we write asÃ
+

X
∈



!∙
 −  −

(− 2)




¸
−
X
∈



∙
 −  +

1




¸
− 

X
∈

−⎛⎝ X
∈\



⎞⎠∙ −  −
(− 2)




¸
+
X

∈\


∙
 −  +

1




¸
+



⎛⎝

∙
 −  −

(− 2)




¸
− 2(− 1)



⎛⎝+
X
∈



⎞⎠−X
∈

∙
 −  +

1




¸
+
(− 1)



X
∈



⎞⎠+
2
µ
−2(− 1)


+ 

(− 1)


¶
= 0 (28)

The sum of the first three terms in (28) is equal to zero, as it corresponds to the FOC of

. Then after some calculations, (28) becomes

−
⎛⎝(− 1)


[ ( + ) + 2+

X
∈

] +
X
∈

µ∙
 −  +

1




¸
−
∙
 −  +

1




¸¶⎞⎠ +

X
∈\



µ∙
 −  +

1




¸
−
∙
 −  +

1




¸¶
+

⎛⎝ X
∈\



⎞⎠ (− 1)


 = 0 (29)

We notice that because of condition (),
£
 −  +

1



¤− £ −  +
1



¤
= 1


[ − ]

for any   ∈  (in particular, this is also true if   ∈ ). Moreover, Lemma 1 implies

that  −  + (− 1) = (− 1) or any   ∈ . Therefore, (29) can be written as

(− 1)


X
∈\

2
 −

(− 1)


⎡⎣ + 2+ 2X
∈



⎤⎦  = 0 (30)

The first term in (30) is non-negative; in fact, it is zero if and only if \ is empty.

Moreover,  + 2 + 2
P

∈ is positive. Taking into account that  ≤ 0, (29) only
holds if \ is empty, that is,  =  and  = 0.

Second, suppose that  ≥ 0, which implies (following (24)) that  ⊃ . We take

 ∈  and we rewrite (27):⎛⎝+
X
∈

 +  +
X

∈\


⎞⎠∙ −  −
(− 2)


 − 2(− 1)




¸
−

X
∈

( + )

∙
 −  +

1


 − (− 1)




¸
−
X

∈\


∙
 −  +

1




¸
− 

X
∈

 = 0
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i.e.,Ã
+

X
∈



!∙
 −  −

(− 2)




¸
−
X
∈



∙
 −  +

1




¸
− 

X
∈

−⎛⎝ X
∈\



⎞⎠∙ −  −
(− 2)




¸
−
X

∈\


∙
 −  +

1




¸
+



∙
 −  −

(− 2)


 − 2(− 1)




¸
 − 2(− 1)



Ã
+

X
∈



!
−

X
∈

∙
 −  +

1


 − (− 1)




¸
 = 0 (31)

which, because  ∈ , and after following steps similar to those in the first case, givesX
∈\



µ∙
 −  −

(− 2)




¸
−
∙
 −  −

(− 2)


 +
(− 1)




¸¶
−

(− 1)


"
 + 2+

X
∈



#
 = 0 (32)

Using (20), we deduce that the first term is equal to − (−1)


P
∈\. Therefore,

taking into account that  ≥ 0, (32) only holds if  =  and  = 0.

This concludes the proof.

Proof of Proposition 3. We show that  satisfies condition ()

 = −
X
∈\

 = −
X
∈

 −
X

∈\(∪{})
 =

−
X
∈

 −
1



X
∈

 +




X
∈

 +
1



X
∈

 − 1






X
∈

−

X
∈\(∪{})

 −
X

∈\(∪{})
 − (− − 1)

"
(− 1)


 − 1



X
∈

 −
1


 +

1



X
∈



#


Therefore,  ≥  +  +
−1

 − 1



P
∈  − 1


( − 1



P
∈ ) if and only if

−1


X
∈

 −
X

∈\
 − ( − )

(− 1)


 − 1


X
∈

 +
1



X
∈

 + ( − )
1


 ≥ 0

which, after easy calculations, gives

1



X
∈\

[ −  − (− 1) − (− 1)] ≥ 0 (33)
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Notice that the previous inequality is independent of  and holds if −−(− 1) ≥ 0
for all  ∈ \ (as  ≤ 0 for  ∈ \), that is, if 

³
1

(−1) ( − )
´
≤ 0 (where we

take the function () corresponding to project ). Therefore, (33) holds if equation (16)

is satisfied. In the proof of Proposition 2 we have shown that (16) is equivalent to (17):

 − 
X
∈

 − 1

(− 1)
X
∈

( − )
2 ≤ 0

Equation (17) holds for the project with the highest  among the projects in\, as, for
this project,

P
∈ ( − )

2
=
P

∈ ( − )
2
and (17) is equivalent to the condition

that  does not belong to . Additionally,  −  − (− 1) ≥ 0 as well for the other
projects whose  is smaller. This concludes the proof.

Proof of Proposition 4. Denote   = 1

(+


∈)
the probability that any of the

projects outside  is selected. Using Theorem 1, we derive:

Π =
X
∈

()

∙
 −  +

1




¸
=

X
∈

()

"
1



X
∈

 +
1



Ã
 − 1



X
∈



!#
+  

X
∈\

∙
 −  +

1




¸
 (34)

We elaborate on the second term of (34), also using Theorem 1:X
∈\

∙
 −  +

1




¸
=
X

∈\
 +

X
∈

 −
1



X
∈

 =

X
∈\

 +
X
∈

 +
1



X
∈

 − 1


X
∈

 −
1



X
∈

 +
1



1



X
∈

 − 1


X
∈

 =

( − )



X
∈

 −
1



X
∈

 +
1



1



X
∈



Therefore,

Π =
X
∈

()
1



X
∈

 +
1



X
∈

() − 1


X
∈

()
X
∈

+

 
( − )



X
∈

 −  
1



X
∈

 +  
1



1



X
∈



Using ( − )  +
P

∈ () = 1, we obtain

Π =
1



X
∈

 −
1



1



X
∈

 +
1



X
∈

() −  
1



X
∈

 +  
1



1



X
∈

,
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which, after simplification, is the expression in the Proposition.

Proof of Proposition 5. Given Proposition 4, Proposition 5 is equivalent to the

property that the function  () ≡ P∈ ((); ) is decreasing with . We rewrite

the continuously differentiable function  () as

 () =
X
∈

[+()]£
+

P
∈()

¤ + X
∈\

£
+

P
∈()

¤
We deduce that 0

() is the same for any  ∈  from Lemma 1, and we denote such a

derivative by 0(). Then the sign of  0() is the same as that of the following expression:X
∈

()
X
∈

+
0()

X
∈

+
0()

X
∈

()
X
∈

−
X
∈

()−0()
X
∈

−

0()
X
∈

() +

"X
∈

()− 0()

# X
∈\



which, after some easy calculations, can be written as

() ≡
"X
∈

[()− 0()]

#⎡⎣ X
∈\

 − ( − )



X
∈



⎤⎦+
∙
0() +





¸"X
∈

()
X
∈

 − 
X
∈

()

#


We now analyze the sign of the four elements of ().

First,
P

∈\ − (−)


P
∈   0 given that    for every  ∈  and  ∈ \.

Second, using Lemma 1 and denoting by () and  ∗ the aggregate bid and the value

of any project in , we findX
∈

()
X
∈

 − 
X
∈

() =

X
∈

∙
()− (

∗ − )

(− 1)
¸X
∈

−
X
∈

∙
()− (

∗ − )

(− 1)
¸
 =

X
∈


X
∈

−
X
∈

 2
 ≤ 0

where the inequality is strict whenever  is larger than  and the proof of the inequality

can be easily done by induction.

Third, we prove that 0() + 

 0. Using Proposition 1 we obtain

() =
−(− 1)− [2P∈  − 2] +

p
∆()

2(− 1)
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where

∆() =

"
(− 1) + 2

X
∈

 − 2
#2
+4(−1)

"
 − 

X
∈

 − 1

(− 1)
X
∈
( − )

2

#


Therefore,

0()+



=

1

2(− 1)

"
−(− 1) + 1

2
∆0

()
1p
∆()

#
+



=



2
+

1

4(− 1)∆
0
()

1p
∆()

 0

since

∆0
() = 2(− 1)

"
(− 1) + 2

X
∈

 − 2
#
+ 4(− 1)

"
 −

X
∈



#
=

22(− 1)2 + 4(− 1)
"

X
∈

 − 
X
∈



#
 0,

because the average value of  in  is higher than (or equal to) that of  in .

Finally, we check whether
P
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which is independent of .

If (35) is satisfied then we conclude that  − 0  0, which implies that  0()  0,

and Proposition 5 is proven. −0  0 holds, for example, when  =  (in which case,

the second term is zero), but it does not necessarily hold otherwise. Now, suppose that

 − 0 ≤ 0, that is,
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We then rewrite () as:
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It is easily checked that the following equality holds:
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Plugging this last equality into the expression of () and then using (36), we conclude

that the following inequality is satisfied:
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We already checked that the first two terms of the last expression are negative. We thus

can conclude that the sign of () (and that of  0()) is negative if the last term of the

30



expression is non positive. Provided that  ≥ 3 this is always satisfied. Finally, notice
that for  = 2 and  6=  (if  =  we already know that  0()  0)
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∈  = 0; therefore 
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¸"X
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which always holds. We can thus conclude the proof.

Proof of Proposition 6. Following Proposition 2, for any  ∈  the value  satisfies:
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which, denoting as  ∗ the value of an efficient project, implies that
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The left-hand side of (37) is a polynomial expression of degree two. Let us denote
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One can notice that ∆ is positive, as  ∗ ≥  for any project . This implies that

condition (37) (which holds for any  ∈ ) is equivalent to the property that  lies in

the interval :
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Bound  can be rewritten as follows:
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( − 1)(− 1)

2
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2

s
4
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∗

Therefore,  ∗ −  ≤  , which gives the expression stated in the Proposition.

Proof of Proposition 7. The expression for  follows immediately from () = 0

once we take into account that  =  for any   ∈  when  = . It is also immediate

that  converges to 0 as  tends towards 0. Finally,

() =
+

+
P

∈

=
1



(2− )+

r
22 + 4 

(−1)

³
 −

P
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´
+

r
22 + 4 

(−1)

³
 −

P
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´ 

which converges to 1 as  tends towards 0.

Proof of Proposition 8. Let  ∈  denote a second-best project and  ≡  ∗−  0
denote the difference between the value of an efficient project and that of . We have

 ∗−
 ∗ = 

 ∗  0 Let us consider that the parameter  takes values such that

 
³ 

 ∗

´2 1

(− 1)( − 1) 

Then, by Proposition 6 we deduce that project  does not belong to  for the above

values of the parameter , which implies that any inefficient project is in \ as well.

Therefore, for small enough values of ,  =  and, according to Proposition 7, the

probability of selecting an efficient project converges to 1 as the parameter  tends to

zero, which ensures convergence to an efficient outcome as  tends to zero.
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