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We study the probability that two or more agents can attain common knowledge of
nontrivial events when the size of the state space grows large. We adopt the standard
epistemic model where the knowledge of an agent is represented by a partition of the
state space. Each agent is endowed with a partition generated by a random scheme
consistent with his cognitive capacity. Assuming that agents’ partitions are independently
distributed, we prove that the asymptotic probability of nontrivial common knowledge
undergoes a phase transition. Regardless of the number of agents, when their cognitive
capacity is sufficiently large, the probability goes to one; and when it is small, it goes to
zero. Our proofs rely on a graph-theoretic characterization of common knowledge that has
independent interest.
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1. Introduction

There is not much need to justify common knowledge as a theoretical construct of paramount interest. Since Aumann
(1987) wrote that “the common knowledge assumption underlies all of game theory and much of economic theory”, an
increasing appreciation of its importance and pervasiveness has been under way. Specialized fields of inquiry such as in-
teractive epistemology or epistemic game theory have been spawned. Expository reviews from Brandenburger and Dekel
(1989) and Geanakoplos (1992) have spread awareness among nonspecialists.

The question that falls within the purview of this paper inquires how restrictive is the assumption that two or more
agents attain common knowledge of a nontrivial event. While a general answer is bound to depend on many fine details, it
is possible to abstract them away and provide a clean baseline. To this aim, we consider a simple environment aligned to
the standard model in Aumann (1976).

There is a knowledge space formed by a common finite state space S and by a partition profile over S that defines, for
each agent, his knowledge. Each element in the partition profile is independently and uniformly drawn from a random
distribution over the possible partitions of S and there are at least two agents. We study what is the probability that the
realized partition profile yields at least one nontrivial event (that is, different from S itself) that is common knowledge
among all agents. To put it more simply, we look at the probability of nontrivial common knowledge.

Our main result is the existence of a phase transition for a fairly general random scheme. As the size of the state space
S grows large, the probability of a nontrivial event being common knowledge between two or more agents goes to zero
(respectively, one) when the average size of the components of a knowledge partition is large (small). The logic of this result
is described by two illustrative examples in Section 3.
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The probabilistic method, of course, is unapt to capture all the specific circumstances that may favor or counter the
attainment of common knowledge in real life. On the other hand, it provides a clear benchmark that elucidates the technical
hurdles that a finite but large state space imposes in this respect. A well-known instance in the game-theoretic literature
is the study of the probability that a finite game in strategic form has at least one Nash equilibrium in pure strategies,
initiated by Goldman (1957) for zero-sum games and brought afore in a seminal paper by Goldberg et al. (1968); see
Rinott and Scarsini (2000) for a review of the main results, as well as some advances that dispense with the assumption of
stochastic dependence. A recent addition to this line of research by Daskalakis et al. (2011) takes into account the structure
of the interaction graph.

Finally, we mention related literature that, while different in content, resonate well with the scope of our inquiry.
Hellman and Samet (2012) investigate how restrictive is the assumption of common priors. Using topological rather than
probabilistic techniques, they provide a condition on partition profiles that identifies another phase transition: the set of
consistent type profiles that can be derived from a common prior is topologically large (respectively, small) when the par-
tition profile is tight (not tight). Dimitri (1993) studies information processing skills and provides sufficient conditions for
individual partitional knowledge to emerge asymptotically from possibility correspondences.

The rest of the paper is organized as follows. Section 2 collects notation and mathematical preliminaries; we tried our
best to make sure that skipping the formalities of this short section should not impair accessibility for the rest of the paper.
Section 3 sets out assumptions and provides two examples that illustrate the nature of our results. Section 4 states our main
theorems and gives an overview of the demonstrative techniques. These are based on a graph-theoretic characterization of
common knowledge that (to the best of our knowledge) is new and of independent interest; in particular, when agents’
informational partitions are represented as graphs, the events that are common knowledge are generated by a simple
operation known as graph sum. All proofs and associated lemmas are collected in Appendix A.

2. Preliminaries and notation

Knowledge. The standard model used to describe the knowledge of an agent assumes a set S of states of the world en-
dowed with a partition; see Geanakoplos (1994). The mutually disjoint and exhaustive classes constituting the partition are
called blocks. If two states are in the same block, then the agent cannot distinguish them. The possibility correspondence
π : S → 2S \ ∅ describes the informational partition of an agent: for each s ∈ S , π(s) is the set of states that an agent thinks
are possible when the true state of the world is s. Moreover, the possibility correspondence is nondelusional: for all s in S ,
s ∈ π(s); that is, the agent never fails to believe that the true state is possible.

Any subset E of S is called an event. When the true state of the world is s and s ∈ E , we say that an event E occurs or is
true. If π(s) ⊆ E , then every state that an agent thinks possible (given the true state s) entails E and we say that the agent
knows E . In general, an agent may know E in some state s and may not know it in another state s′ . If π(s) ⊆ E for any s
in E , we say that E is self-evident to the agent. Such event cannot be true without the agent knowing it.

The formal definition of common knowledge was introduced in Aumann (1976). Given S , consider a finite set A formed
by a � 2 agents. Each agent i in A is associated with a partition πi that represents his knowledge. The finest common
coarsening of the partition profile (πi, i ∈ A) is another partition M called their meet. An event E ⊆ S is common knowledge
among the agents in A at s if and only if for any n and sequence (i1, i2, . . . , in), it holds that πin (πin−1 . . . (πi1 (s))) ⊆ E .
When S is finite, there is an equivalent definition that leads to a simple characterization. An event that is simultaneously
self-evident to all agents in A is called a public event. An event E is common knowledge at s if and only if there is a public
event occurring at s that entails E; or, equivalently, if the (fictitious) agent whose informational partition is the meet M of
the partition profile (πi, i ∈ A) knows E at s.

Partitions. Let S be a finite set with n elements; when useful, we write it as Sn to make the number of elements evident.
Following custom, we list the blocks of a partition of S in increasing order of their least elements and the elements of each
block in increasing order. For instance, the blocks of the partition {3,4,5}, {6,1}, {2} of a set with six elements are listed as
16|2|345.

The set of all partitions of S , ordered by refinement, is a lattice. We write π � π ′ to denote that π is coarser than π ′ .
The notation π1 ∧π2 stands for the finest coarsening of π1 and π2; analogously, π1 ∨π2 denotes their coarsest refinement.
The meet of the partition profile (πa, a ∈ A) is M = ∧

a∈A πi .
The number of partitions for a (finite) set Sn of n elements is given by the Bell number Bn . The first few Bell numbers

are B0 = 1, B1 = 1, B2 = 2, B3 = 5, B4 = 15, B5 = 52, and B6 = 203. The Bell numbers satisfy the recursive formula

Bn+1 =
n∑

k=0

(
n

k

)
Bk,

as well as Dobinsky’s formula

Bn =
+∞∑
k=0

kn ·
(

e−1

k!
)

according to which Bn is the n-th moment of a Poisson distribution with expected value 1.
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Table 1
When the meet of two partitions is not the trivial partition.

123 1|23 2|13 3|12 1|2|3
123
1|23 × ×
2|13 × ×
3|12 × ×
1|2|3 × × × ×

Random partitions. A random partition of a finite set Sn is a random variable Π taking values in the set P(Sn) of partitions
of Sn . The distribution of Π refers to the collection of probabilities P (Π = π) as π ranges over P(Sn).

The simplest example is the uniform random partition, where Π has the uniform distribution P (Π = π) = 1/Bn for each
partition π in P(Sn). Let ξn be the number of blocks in a random partition. It is possible to show that the uniform random
partition has E(ξn) = Bn+1/Bn −1 and Var(ξn) = Bn+2/Bn − (Bn+1/Bn)2 −1. Moreover, using standard asymptotic techniques,

E(ξn) = n

lnn

(
1 + o(1)

)
as n ↑ +∞; see Sachkov (1997).

A more general case is the following random allocation scheme; see Pitman (1997). Throw n numbered balls into m
numbered urns and assume that all mn possible allocations of balls into urns are equally likely. More formally, let Xi be the
number of the urn containing the i-th ball for 1 � i � n. Then the Xi are independent and uniformly distributed over the m
urns and Πmn is the partition of the n balls induced by the random equivalence relation i ∼ j if and only if Xi = X j . The
distribution of Πmn induced by the uniform distribution over the m urns is

P (Πmn = π) = m(m − 1) · · · (m − k + 1)

mn
if π has k blocks;

see Pitman (1997). For n � 3 this random partition does not have a uniform distribution. However, it is possible to generate
a uniformly distributed random partition by a suitable randomization of m; see Stam (1983).

3. Illustrative examples

The question we investigate in this paper is the probability of nontrivial common knowledge among a � 2 agents when
the finite state space grows large. This section provides two examples that help elucidate the logic of our approach and the
import of our results.

We make the following general assumptions. There is a finite state space Sn with n elements and there are a � 2 agents.
Each agent i = 1, . . . ,a is endowed with a partition πi of Sn representing his knowledge. We assume that the partition
profile for the set A = {1, . . . ,a} of agents is obtained by making a independent (but not necessarily identically distributed)
random draws over the set of possible partitions.

3.1. The uniform model

Let Pa(n) denote the probability that a group of a � 2 agents attains common knowledge of a nontrivial event over the
state space Sn . We begin by explicitly computing Pa(n) for the special case where the informational partition of each agent
is i.i.d. according to the uniform model; in particular, for each agent any possible partition is equally likely to occur. For
instance, assume that there are a = 2 agents and n = 3 elements in S . For simplicity, label the elements of S as integers so
that S = {1,2,3}. The B3 = 5 possible partitions of S are: 123; 1|23; 2|31; 3|12; 1|2|3. Under the uniform model, each of
these five partitions has an identical probability 1/5 of occurring for each agent.

Suppose that the knowledge of Agent 1 is represented by the partition 1|23 and the knowledge of Agent 2 by the
partition 2|13. Then the meet of their partitions is 123, and only the trivial event S is common knowledge. On the contrary,
suppose that Agent 1 has the partition 1|2|3 and Agent 2 has the partition 2|13; now, the nontrivial events {2} and {1,3}
are common knowledge. Clearly, the existence of a nontrivial event that is common knowledge depends on the partition
profile for the two agents.

We list in Table 1 the 5 · 5 = 25 partition profiles that may occur and mark by × those profiles for which some nontrivial
event is common knowledge. Since 10 out of the 25 equally likely cells are marked, we obtain a probability P2(3) = 10/25 =
0.4 of attaining nontrivial common knowledge under the uniform model when a = 2 and n = 3.

Our question of interest is what happens to the probability Pa(n) when the size n of the state space Sn grows large. That
is, if two (or more) agents face a large state space and their partition profile is drawn according to the i.i.d. uniform model,
what is the asymptotic probability that they can attain common knowledge of a nontrivial event? Perhaps surprisingly, the
answer turns out to be zero for this special case.

Proposition 1. Under the i.i.d. uniform model, limn Pa(n) = 0 for any a � 2.
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Table 2
Nontrivial common knowledge with heterogeneous cognitive
capacities.

123 1|23 2|13 3|12 1|2|3
123 1/4
1|23 × × 1/4
2|13 × × 1/4
3|12 × × 1/4

3/27 6/27 6/27 6/27 6/27

The proof of this result is a straightforward corollary of Theorem 5 in Pittel (2000), where it is shown that

Pa(n) = O

(
loga+1 n

na−1

)
.

This result is obtained in a setup very different from ours; in particular, we warn the casual reader that the lattice of
partitions in Pittel (2000) is the dual of what is commonly used in the game-theoretic literature; thus, his “join” is the
equivalent of the “meet” defined in this paper. Moreover, his result is based on combinatorial techniques that do not extend
to more general random schemes, and therefore are very different from the probabilistic methods employed in this paper.

3.2. The random allocation scheme

The i.i.d. uniform model is a convenient example, but it is not sufficiently flexible to provide a plausible benchmark. Two
limitations are most prominent. First, there is no clear relationship between the assumption that all partitions are equally
likely and the structure of agents’ knowledge. Second, since agents’ partitions are identically distributed, there is an implicit
presumption that the randomness surrounding the generation of an informational partition is the same across agents. We
introduce a richer random allocation scheme that avoids these two limitations. An extension left for further research is to
make agents’ partitions stochastically dependent.

Concerning the first limitation, we assume that an agent cannot articulate his knowledge over more than m distinct
partitional blocks; that is, any partition of his has at most m blocks. Let n be the number of states in Sn . Then the ratio
κ(m,n) = m/n can be viewed as a measure of the cognitive capacity of an agent relative to the size of the state space. An
agent with κ < 1 has no access to sufficient cognitive capacity for accommodating perfect knowledge of each state, because
the maximum number of blocks in his informational partition is strictly lower than the cardinality of Sn .

To generate a random partition consistent with this assumption, we let each of the n states be independently assigned to
one of the m available blocks with equal probability, so that all the mn possible allocations of states into blocks are equally
likely. In particular, if we let Ni denote the number of states in block i, we find the multinomial distribution

Pr

[
m⋂

i=1

(Ni = ni)

]
= n!

n1!n2! · · ·n! ·
(

1

m

)n

over any configuration (n1,n2, . . . ,nm) such that
∑m

i=1 ni = n.
Let us consider an example. For instance, suppose m = 2 and n = 3 so that an agent has cognitive capacity κ = 2/3. There

are 23 = 8 equally likely allocations of three states over two blocks, generating four possible partitions: 123; 1|23; 2|31;
3|12. Each of these partitions can be generated into exactly two different ways, and thus they all have the same probability
1/4 of occurring. Instead, if we let m = 3 and increase the agent’s cognitive capacity to κ = 1, then there are five possible
partitions: 123; 1|23; 2|31; 3|12; 1|2|3. The first partition occurs with probability 3/27 and the other four with probability
6/27 each.

Concerning the second limitation, we allow heterogeneity in agents’ informational partitions: each agent has a (possibly,
different) bound mi with a corresponding cognitive capacity κi = κ(mi,n). Similarly to the i.i.d. uniform model, we maintain
the assumption that agents’ random partitions are stochastically independent for tractability. Therefore, given a agents and
a state space Sn , the random allocation scheme is defined by a profile (κ1, . . . , κa) of cognitive capacities. A special case of
importance occurs when each agent has the same cognitive capacity κi = κ .

Continuing our example, suppose that there are a = 2 agents with the same cognitive capacity κ = 2/3. Under the
random allocation scheme, their partitions are i.i.d. draws from the uniform distribution over the four partitions 123; 1|23;
2|31; 3|12. A reasoning similar to the example in Section 3.1 yields a probability P = 3/16 of attaining nontrivial common
knowledge.

Suppose instead that the agents have different cognitive capacities, with κ1 = 2/3 and κ2 = 1. Dropping the first row
from Table 1 and adding marginal probabilities, we obtain Table 2 where we mark by × those profiles for which some
nontrivial event is common knowledge. Adding up the products of the relevant marginal probabilities for all the cells
marked by ×, we find that the probability of nontrivial common knowledge is now P = 1/3. Note how increasing the
cognitive capacity of the second agent raises the probability of nontrivial common knowledge. This property of monotonicity
holds generally. We state first the formal result, and then the sharp and important intuition behind it.
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Table 3
Probability of nontrivial common knowledge between two agents.

n = 4 n = 8 n = 12 n = 16 n = 20

m = n 0.666 0.928 0.983 0.996 0.999
m = 
√n� 0.109 0.008 0.008 0.008 0.001

Given the number n of states and the number a of agents, let Pa(n;κ1, . . . , κa) denote the probability that a group of a
agents, each with his own cognitive capacity κi , attains common knowledge of a nontrivial event over the state space Sn .
The following monotonicity property holds; see Appendix A for a proof.

Theorem 2. The probability Pa(n;κ1, κ2, . . . , κa) is (weakly) increasing in each κi .

From a technical viewpoint, this result greatly simplifies the comparative statics concerning the probability of nontrivial
common knowledge under the random allocation scheme. Given a profile (κ1, . . . , κa) of cognitive capacities, let κ∗ = mini κi
and κ∗ = maxi κi . Theorem 2 implies

Pa(n;κ∗, κ∗, . . . , κ∗) � Pa(n;κ1, κ2, . . . , κa) � Pa
(
n;κ∗, κ∗, . . . , κ∗) (1)

for any profile (κ1, . . . , κa). Hence, an adequate analysis of the behavior of Pa(n;κ1, . . . , κa) when κi = κ for all i provides
natural upper and lower bounds for its value when the profile of cognitive capacities is heterogeneous. This makes the
assumption of identical cognitive capacities a convenient simplifying device. Unless otherwise stated, in the following we
assume κi = κ for all i and then write simply Pa(n;κ) for Pa(n;κ,κ, . . . , κ).

As n grows large, the ability of a group of agents to attain nontrivial common knowledge is heavily influenced by the
minimum and maximum levels κ∗ and κ∗ of their cognitive capacities. When κ∗ is sufficiently large (albeit possibly lower
than 1), agents have an ample cognitive capacity that tends to generate knowledge partitions formed by many small blocks.
The meet of partitions with many small blocks is more likely to contain a nontrivial block; hence, it is easier to find
some nontrivial event that is common knowledge among the agents. Vice versa, when κ∗ is sufficiently small, the reduced
cognitive capacity favors knowledge partitions with few large blocks, whose meet is likely to be the trivial partition. This
makes it unlikely for nontrivial events to be common knowledge.

Table 3 showcases this intuition by listing the probabilities Pa(n;κ) of nontrivial common knowledge between two
agents under the random allocation scheme, with identical cognitive capacities and two different choices of the parameters
for n = 4,8,12,16,20. (These probabilities are empirical estimates generated over one million simulations.) The first row
reports the probability values for m = n, with a constant cognitive capacity κ = 1. It is apparent that, as n increases, the
probabilities are increasing towards one: the cognitive capacity is sufficiently high to support nontrivial common knowledge
when the state space grows large. The second row, instead, reports the probability values for m = 
√n�, when the (common)
cognitive capacity κ is approximately 1/

√
n. Now, as n grows large, the cognitive capacity shrinks sufficiently fast that the

probability of nontrivial common knowledge tends to 0.
We extend this intuition in the next section by proving that the asymptotic probability of attaining nontrivial common

knowledge in the random allocation scheme undergoes a phase transition that depends (almost exclusively) on the limit
behavior of the cognitive capacities. Loosely speaking, when the minimum cognitive capacity κ∗ does not decrease too
fast, the asymptotic probability of attaining common knowledge between a � 2 agents goes to 1; on the other hand, if the
maximum cognitive capacity κ∗ declines sufficiently rapidly, then this probability goes to 0. Thus, depending on the strength
of the epistemic assumptions supporting the model, the existence of nontrivial common knowledge may be viewed in the
limit as an event that occurs with probability zero or one.

4. Results

This section states our two main results. Immediately after, we describe the general strategy used to develop the proofs.
These latter ones are collected in Appendix A.

Recall the assumptions made at the beginning of Section 3. There is a finite state space Sn and there are a � 2 agents.
Each agent i = 1, . . . ,a is endowed with a partition πi of Sn representing his knowledge. The partition profile for the set
A = {1, . . . ,a} of agents is generated by a stochastically independent random draws over the set of partitions following the
random allocation scheme.

When the size of the state space n grows large, we may view the parameter m = m(n) as a function of n. Throughout the
paper, we write m to simplify notation and switch to m(n) only when it is necessary to emphasize the dependence on n.
Accordingly, we slightly abuse notation and write κ for the cognitive capacity κ(n) = m(n)/n.

4.1. Statements

Let Pa(n;κ) denote the probability that a group of a � 2 agents attains common knowledge of a nontrivial event over
the state space Sn when they all have the same cognitive capacity κ . The first result is a sufficient condition under which
the asymptotic probability Pa(n;κ) of nontrivial common knowledge between a � 2 agents goes to 1.
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Theorem 3. If the sequence κ(n) satisfies

lim inf
n→∞ κ(n) · lnn > a, (2)

then

lim
n→∞ Pa(n, κ) = 1.

As anticipated, when the cognitive capacity is large and (2) is satisfied, nontrivial common knowledge asymptotically
occurs with probability one. For instance, go back to the first example in Section 3.2 where we assume m(n) = n and
thus κ(n) = 1. Replacing this into (2), we see immediately that the condition holds for any a � 2 and thus the asymptotic
probability of nontrivial common knowledge is one for any group of a � 2 agents. The special case of Theorem 3 for m(n) = n
was first claimed in Pittel (2000), with an explicit proof given in LiCalzi and Surucu (2012).

An immediate consequence of Theorem 2 is the following extension of Theorem 3 to the case of heterogeneous cognitive
capacities.

Corollary 4. If the sequence κ∗(n) = mini κi(n) satisfies

lim inf
n→∞ κ∗(n) · ln n > a, (3)

then

lim
n→∞ Pa(n, κ1, κ2, . . . , κa) = 1.

The second result is a sufficient condition under which the asymptotic probability Pa(n;κ) of nontrivial common knowl-
edge between a agents with identical cognitive capacities is 0.

Theorem 5. If the sequence κ(n) satisfies

lim sup
n→∞

κ(n) · lnn <
1

8
, (4)

then

lim
n→∞ Pa(n, κ) = 0.

Dual to the above, when the cognitive capacity is small and (4) is satisfied, nontrivial common knowledge almost surely
fails to occur asymptotically. For instance, the second example in Section 3.2 assumes m(n) = 
√n� and thus κ(n) ≈ 1/

√
n.

Then (4) holds for any a � 2 and thus the asymptotic probability of nontrivial common knowledge is zero for any group of
a � 2 agents. As a remark, we mention that it is possible to improve the constant 1/8 in (4), but this would make the proof
more complicated and fail to produce a sharp phase transition. Nonetheless, the results are sharp up to a multiplicative
constant.

Similarly to before, Theorem 2 implies an analog of Corollary 4 for heterogeneous cognitive capacities.

Corollary 6. If the sequence κ∗(n) = maxi κi(n) satisfies

lim sup
n→∞

κ∗(n) · lnn <
1

8
, (5)

then

lim
n→∞ Pa(n, κ1, κ2, . . . , κa) = 0.

Taken together, Theorems 3 and 5 show that the asymptotic probability of attaining common knowledge of some non-
trivial event under homogeneous cognitive capacities undergoes a phase transition that is driven by the common cognitive
capacity κ , with criticality reached at κ(n) ≈ 1/ ln n. Corollaries 4 and 6 extend these results to the case where agents have
heterogeneous cognitive capacities.
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Fig. 1. The partitions of two agents and their meet.

4.2. The demonstrative approach

The key observation in our demonstrative approach is that any partition π of the set Sn is equivalent to a collection
of connected components for an undirected graph over the vertex set Vn = {1,2, . . . ,n}. To see why, it suffices to place an
edge between two (distinct) vertices i and j from Vn if and only if the corresponding elements from Sn belong to the same
block. Then any block of π corresponds to a connected component over Vn , and the partition π corresponds to the union
of all the connected components of the graph G .

For instance, consider Fig. 1. The central column uses the traditional set-theoretic representation to describe the infor-
mational partitions of two agents over a set S with six elements, and their corresponding meet. The right column replicates
the same information using a graph-theoretic visualization. Remarkably, using this latter representation, the graph of the
meet is generated by joining the edge lists of all the agents’ graphs. Formally speaking, this operation is known as graph
sum.1 When such graph sum is connected, as in the bottom-right corner of Fig. 1, then the agents share only trivial common
knowledge.

Thus, given a partition profile (πi, i ∈ A) for a � 2 agents over the state space Sn , we can equivalently represent it
as a profile (Gi, i ∈ A) of corresponding informational graphs. The meet generated by the partition profile (πi, i ∈ A) is
equivalent to the graph-sum Ga(n,m) over the graphs (Gi, i ∈ A). In particular, the graph Ga(n,m) is connected if and only
if the meet of (πi, i ∈ A) is the trivial partition.2 When we add the assumption that the partition profile is generated by
stochastically independent draws according to the random allocation scheme described in Sections 2 and 3.2, the probability
of attaining nontrivial common knowledge is the same as the probability that Ga(n,m) is not a connected graph.

This turns our goal into a study of the connectedness of the random graph Ga(n,m) when the number of blocks m
for the random allocation scheme is a function of n and n grows large. In particular, we prove Theorem 3 by showing in
Appendix A that, when (2) holds, then

lim
n→∞P

(
Ga(n,m) is not connected

) = 1.

Analogously, Theorem 5 is proven by demonstrating that (4) implies

lim
n→∞P

(
Ga(n,m) is connected

) = 1.

The proof of this second result is more challenging and necessitates a few intermediate propositions.
Remarkably, our results state that there is a phase transition when m(n) ∼ n/ ln n, similarly to a well-known result in the

Erdös–Renyi theory of random graphs, where m(n) can be interpreted as the inverse of the probability that an edge is open.

1 We are not aware of any literature on graph-theoretic representations of common knowledge. Fagin et al. (1995) represent Kripke structures as labeled
graphs.

2 Hellman and Samet (2012) say that the partition profile is connected.
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However, the model studied in this paper has a richer structure than in the Erdös–Renyi’s construction, due to the presence
of stochastic dependence among the edges.

Appendix A. Proofs

A.1. Proof of Theorem 2

As discussed in Section 4.2, the probability Pa(n;κ1, . . . , κa) that a group of a agents with heterogeneous cogni-
tive capacities attains nontrivial common knowledge is equal to the probability that the graph sum Ga(n, κ1, . . . , κa)

over the profile (Gi, i ∈ A) of their informational graphs is not connected. Therefore, it suffices to prove that
P(Ga(n, κ1, . . . , κa) is connected) is (weakly) decreasing in any κi . By symmetry, this is accomplished if we show that

P
(
Ga

(
n, κ ′

1, κ2, . . . , κa
)

is connected
)
� P

(
Ga(n, κ1, κ2, . . . , κa) is connected

)
when κ ′

1 < κ1. Recall that m1 = κ1n. For simplicity, we drop all other arguments and write Ga(m1) instead of
Ga(n, κ1, κ2, . . . , κa) so that our goal becomes to prove that

P
(
Ga

(
m′

1

)
is connected

)
� P

(
Ga(m1) is connected

)
for m′

1 < m1.

But, by induction, this follows if we prove that the above inequality holds for adjacent values of m1:

P
(
Ga(m1 − 1) is connected

)
� P

(
Ga(m1) is connected

)
for m1 � 2. (6)

Let G−1 denote the graph sum over the profile (Gi, i ∈ A \ {1}); that is, G−1 is the random graph generated by all agents
except the first one. Since G−1 is a subgraph of Ga(m1), whenever G−1 is connected it follows that Ga(m1) is connected for
any value of m1. On the other hand, suppose that G−1 is not connected and consider Ga(m1) as the graph sum of G−1 and
the random graph G1(m1) for Agent 1.

Clearly, Ga(m1) is connected if G1(m1) carries enough links to fill the gaps among the connected components of G−1.
Since G1(m1) is stochastically independent of G−1, the links are exchangeable and thus only their number matters to achieve
connectedness. The greater the number of links added by G−1, the more likely Ga(m1) is to be connected. Let N (m1) denote
the (random) number of links associated with G1(m1). Then (6) follows if we show that N (m − 1) stochastically dominates
N (m1) for any m1 � 2.

Recall from Section 3.2 that, given m1, the random allocation scheme distributes n states over (at most) m1 blocks and
the profile X = (N1, N2, . . . , Nm1 ) of the number of states in each block has a multinomial distribution. Correspondingly, the
random graph G1(m1) has (at most) m1 connected components, and a component i with Ni nodes carries (N2

i − Ni)/2 links.
Therefore,

N (m1) =
m1∑
i=1

N2
i − Ni

2
=

m1∑
i=1

(
N2

i

2

)
− n

2

where we use the equality
∑

i Ni = n.
To prove that N (m − 1) stochastically dominates N (m), we apply the theory of stochastic majorization. We say that

a random vector X′ stochastically majorizes another random vector X if f (X′) stochastically dominates f (X) for any Borel
measurable Schur-convex function f :Rn → R. A family Xθ of random vectors indexed by a parameter vector θ in R

m is a
Schur family if whenever θ ′ majorizes θ then Xθ ′ stochastically majorizes Xθ . Application 4.2.a in Nevius et al. (1977) shows
that the family of multinomial distributions over m1 categories indexed by the vector θ = (θ1, . . . , θm) of probabilities for
each category is a Schur family, when θ1 > 0 and

∑
i θ1 = 1. By continuity, their result extends to the case θm1 = 0 which

generates the multinomial distribution over m1 − 1 categories as a special case of the multinomial distribution over m1
categories (under the obvious normalization 00 = 1). Now, note that N (m − 1) and N (m) are generated by the multinomial
distributions respectively associated with the parameter vectors(

1

m1 − 1
,

1

m1 − 1
, . . . ,

1

m1 − 1
,0

)
and

(
1

m1
,

1

m1
, . . . ,

1

m1
,

1

m1

)
,

where the first vector majorizes the second. Since the function f (n1, . . . ,nm1 ) = ∑
i(n

2
i /2) − n/2 is Schur-convex, we obtain

that N (m1 − 1) stochastically dominates N (m1).

A.2. Proof of Theorem 3

As discussed in Section 4.2, we show that limn→∞ P(Ga(n,m) is not connected) = 1. We speak only of vertices (or, equiv-
alently, nodes), but recall that each state in Sn corresponds to a vertex in Vn = {1,2, . . . ,n}. We say that a vertex is single
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for an agent k when it is not connected to other nodes in his informational graph Gk; and it is everywhere single when it is
single for each agent. Given n nodes, let

Hi
def= {the i-th vertex is everywhere single}

be the event that the i-th vertex (out of n) is single for each of the agents. Let

Xn =
n∑

i=1

1Hi

be the random variable counting how many nodes are everywhere single. The strategy of the proof is the following. Since
the graph Ga(n,m) cannot be connected when a vertex is everywhere single,

{Xn � 1} ⊂ {
Ga(n,m) is not connected

}
and thus

P(Xn � 1) � P
(
Ga(n,m) is not connected

)
.

We state a lower bound for P(Xn � 1) and show that it converges to 1 when the sequence m(n) is such that κ(n) satis-
fies (2).

The lower bound is provided by the inequality

P(X � 1) � E[X]2

E[X2] , (7)

that holds for any non-degenerate random variable X on the non-negative integers. This can be deduced from the Cauchy–
Schwartz inequality

E[X] = E[X1{X�1}] � E
[

X2]1/2
P(X � 1)1/2,

after squaring both sides and rearranging. We need to show that the right-hand side of (7) converges to 1.
We begin with a few observations. The probability that a vertex i is everywhere single is

P(Hi) =
(

m(m − 1)n−1

mn

)a

=
(

1 − 1

m

)a(n−1)

.

Hence,

E[Xn] = n

(
1 − 1

m

)a(n−1)

.

Moreover, for i �= j, we claim that

P(Hi ∩ H j) =
(

1 − 1

m

)a(n−1)(
1 − 1

m − 1

)a(n−2)

.

To see why, consider the following. Conditional on the first node i being everywhere single, the other n − 1 vertices are
uniformly distributed over the remaining m − 1 components for each agent. Hence, the probability that the vertex j is
everywhere single is (1 − 1/(m − 1))a(n−2) . Combined with the exchangeability of the Hi ’s, this yields

E
[

X2
n

] = nP(H1) + n(n − 1)P(H1 ∩ H2) = n

(
1 − 1

m

)a(n−1)

+ n(n − 1)

(
1 − 1

m

)a(n−1)(
1 − 1

m − 1

)a(n−2)

.

Finally, note that (2) implies that we can choose ε > 0 such that

lim inf
n→∞ κ(n) · lnn � a + ε. (8)

Consider now the right-hand side of (7). We have

E[Xn]2

E[X2
n ] = n2(1 − 1

m )2a(n−1)

n(1 − 1
m )a(n−1) + n(n − 1)(1 − 1

m )a(n−1)(1 − 1
m−1 )a(n−2)

= n(1 − 1
m )a(n−1)

1 + (n − 1)(1 − 1 )a(n−2)
�

n(1 − 1
m )a(n−1)

1 + (n − 1)(1 − 1 )−a(1 − 1 )a(n−1)

m−1 m−1 m
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= n

(1 − 1
m )−a(n−1) + (n − 1)(1 − 1

m−1 )−a
� n

[(1 − 1
m )−am] n

m + n(1 − 1
m−1 )−a

= n

O (n
a

a+ε ) + n(1 − 1
m−1 )−a

= 1

O (n
−ε

a+ε ) + (1 − 1
m−1 )−a

, (9)

where the first inequality follows from 1/m � 1/(m − 1), the second inequality is justified by using n − 1 � n twice, and the
next to last equality obtains because (8) implies

[(
1 − 1

m

)−am] n
m

= O
([

ea] n
m
) = O

(
n

a
a+ε

)
.

Since O (n
−ε

a+ε ) → 0 and (1 − 1
m−1 )−a → 1 as n ↑ ∞, the last expression in (9) goes to 1. Hence, the right-hand side of (7)

converges to 1, and this proves the theorem.

A.3. Proof of Theorem 5

As discussed in Section 4.2, we show that limn→∞ P(Ga(n,m) is connected) = 1. The strategy of the proof is the follow-
ing. We prove that with high probability the random graph Ga(n,m) contains a connected subgraph whose size is larger
than n/2. Then, we show that this subgraph is very likely to connect all the vertices of Ga(n,m). Thus, we conclude that
Ga(n,m) is very likely to be connected.

We begin with a key estimate. We say that two (nonempty) disjoint sets of states overlap when there is a block that
contains states from both collections. Our first intermediate result is an exponential bound for the probability that two sets
of states overlap. More precisely, consider the following experiment where each random draw is assumed to be stochastically
independent. There are k � 1 white states and n − k � 1 black states. (Colors are used only for presentational purposes, and
are otherwise irrelevant.) We randomly place each of the n colored states into the m blocks with uniform probability. Then
we repeat the procedure afresh r − 1 more times. Let Wr(k,n − k) be the event that the two sets of white and black states
overlap; that is, in some of the r repetitions, at least one block contains states of different colors.

Proposition 7. Suppose n � 4m. Then

P
(
Wr(k,n − k)

)
� 1 − (4.35)r exp

{
− rn

2m

}
.

Proof. By definition, it is clear from symmetry that P(Wr(k,n − k)) = P(Wr(n − k,k)). Hence, without loss of generality, we
assume 1 � k � n/2. We prove the lower bound by establishing an upper bound for the probability of the complementary
event, denoted W c

r (k,n − k).
Label each block using a different integer from 1 to m. For any nonempty proper subset M ⊂ {1, . . . ,m} of the blocks,

let E(i)
M denote the event that, in the i-th repetition, each block with a label in M is not empty and the union of the blocks

with labels in M contains all and only the white states. For a fixed repetition i in {1, . . . , r}, the events E(i)
M , with M running

over all nonempty proper subsets of {1, . . . ,m}, are disjoint. Thus, we have

W c
r (k,n − k) =

r⋂
i=1

⋃
M

E(i)
M .

Denote by J ( j, �), with 1 � j �
(m

�

)
, a given list of all the subsets of blocks whose cardinality is 1 � � � m − 1. For a fixed �,

all events E(i)
M with cardinality |M| = � share the same probability. Hence, using the independence between repetitions,

P
(
W c

r (k,n − k)
) =

(
(m−1)∧k∑

�=1

(m
�)∑

j=1

P
(

E(1)
J (1,�)

))r

=
(

(m−1)∧k∑
�=1

(
m

�

)
P
(

E(1)
J (1,�)

))r

�
(

(m−1)∧k∑
�=1

(
m

�

)(
�

m

)k(
1 − �

m

)n−k
)r

.

We now apply the inequality
(m

�

)
< (em/�)� , which holds for any m � � � 1. This can be proved using the Stirling approxi-

mation n! � (n/e)n
√

2πne1/(12n+1) as follows(
m

�

)
<

m�

�! � m�

�
√

1/(12�+1)
= (em/�)�√

1/(12�+1)
< (em/�)�.
(�/e) 2π�e 2π�e



566 A. Collevecchio, M. LiCalzi / Games and Economic Behavior 76 (2012) 556–570
We thus have

[
P
(
W c

r (k,n − k)
)]1/r

<

(m−1)∧k∑
�=1

(
em

�

)�(
�

m

)k(
1 − �

m

)n−k

�
(m−1)∧k∑

�=1

e�

(
�

m

)k−�

exp

{
− (n − k)�

m

} (
as 1 − �/m � e−�/m)

�
(m−1)∧k∑

�=1

exp

{
− (n − k)�

m
+ �

}
(as �/m � 1)

�
(m−1)∧k∑

�=1

exp

{
− n�

2m
+ �

}
(as k � n/2)

= e−n/(2m)+1
(m−1)∧k−1∑

�=0

exp

{
− n�

2m
+ �

}

� 1.6e−n/(2m)+1 � 4.35e−n/(2m),

where the next to last inequality follows from

(m−1)∧k−1∑
�=0

exp

{
− n�

2m
+ �

}
�

∞∑
�=0

(
exp

{
− n

2m
+ 1

})�

= 1

1 − exp{− n
2m + 1} (and, as n � 4m)

� 1

1 − exp{− 4m
2m + 1} � 1

1 − e−1
� 1.6. �

Recall that our ultimate goal is to show that the probability of the event {Ga(n,m) is connected} goes to one. To this
purpose, we produce a stochastic algorithm that generates an event Ψn whose occurrence implies that Ga(n,m) is connected.
Once this event is defined, it suffices to show that limn→∞ P(Ψn) = 1.

The construction of such event is accomplished as follows. Recall that there are a agents and m blocks for each of them.
(We toss n labeled states into m blocks to generate the random partition of an agent.) Arrange these am blocks over an
(a ×m) grid A, where the rows represent the agents and the columns represent the blocks. Let Aij = An

ij be the set of states
found in the j-th block ( j = 1, . . . ,m) of the i-th agent (i = 1, . . . ,a). Since we distribute a set N = {1, . . . ,n} of distinct
states over the blocks in each row, it is clear that

⋃m
j=1 Aij = N for any agent i; moreover, Aij ∩ Ak� �= ∅ only if i �= k.3

Given the grid A, we construct a second grid A′ . For any set of states Aij in A, we copy a subset of states from Aij and
put them into A′

i j: we count the number of states τi j in Aij and choose 
 τ
2 � of them, randomly and uniformly over the( τ


 τ
2 �

)
possibilities. In particular, if τi j = 0 or 1, then we leave A′

i j empty.

We construct a special subset of states from the m blocks of the first agent such that the vertices associated with these
states generate a connected component, and moreover they are very likely to be connected with the other vertices of
Ga(n,m).

If necessary, relabel the blocks in M = {1, . . . ,m} to make sure that the first block is not empty. For simplicity, we
identify each block with its label. Now, set �(1) = 1 and pick the first block. Let Mt = M \ {�(1), . . . , �(t − 1)} be the set of
(yet) unpicked blocks, and recursively define �(t) as follows. The subset

U t def=
{

k ∈ Mt : ∃i ∈ {2, . . . ,a}, j ∈ {1, . . . ,m} s.t. Aij ∩
(

t−1⋃
s=1

A′
1�(s)

)
�= ∅ and Aij ∩ A′

1k �= ∅
}

is not empty when there exists a block for some agent i �= 1 that contains states in common with some block A′
1s with

s ∈ {�(1), . . . , �(t − 1)}, and at least one state from a block A′
k with k ∈ Mt . That is, U t is not empty when there are unpicked

blocks from M \ Mt whose content is connected with the blocks in Mt by means of another agent’s block. When U t is not
empty, we let �(t) point to one of the unpicked blocks in M \ Mt , randomly chosen with uniform probability among all the
blocks in U t . When U t is empty, we set �(t) = ∞ and terminate the procedure. The key point of this construction is that,
for �(t) < ∞, the vertices associated with the states in

⋃t
s=1 A1�(s) form a connected component in G(n,m).

3 We abuse notation in the interest of simplicity. Formally speaking, one should speak of a sets of N states with identical labels and claim that only
blocks in distinct rows may contain states with the same labels.
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Denote by

T
def= inf

{
t � 1:

∣∣∣∣∣
t⋃

s=1

A1�(s)

∣∣∣∣∣ � n/2

}

the smallest time step in the algorithm when more than half of the states of Agent 1 are linked. (Set T = ∞ if the defining
event never occurs.) Given a subset B of states from N = {1, . . . ,n}, denote by Ui(B), with 2 � i � a, the collection of blocks
of the i-th agent that contain states from B . Formally speaking, for 2 � i � a, we set

Ui(B)
def= {

j ∈ {1, . . . ,m}: Aij ∩ B �= ∅}
.

We are now ready to define the event

Ψn
def=

{
T < ∞ and max

2�i�a

∣∣∣∣∣Ui

(
T⋃

t=1

A1�(t)

)∣∣∣∣∣ = m

}
(10)

and prove the claim that its occurrence implies that Ga(n,m) is connected.

Proposition 8.

Ψn ⊆ {
Ga(n,m) is connected

}
.

Proof. Suppose that Ψn holds. For T < ∞, the vertices associated with the states in
⋃T

t=1 A1�(t) form a connected compo-
nent in G(n,m). When Ψn holds, there is at least an agent i �= 1 for whom |Ui(

⋃T
t=1 A1�(t))| = m; or, equivalently, we can

find states from
⋃T

t=1 A1�(t) in each of i’s blocks. Therefore, there exists a path in Ga(n,m) connecting any pair of vertices,
and we can conclude that Ga(n,m) is connected. �

We remark that the only role played by the A′
1�(s) in the definition of Ut is to concatenate the A1�(t) , with t ∈

{1,2, . . . , T }. This concatenation makes the A′
1�(t) dependent on each other. On the other hand, conditional on its cardi-

nality, the set A1�(t) \ A′
1�(t) is independent of T because this latter random variable depends only on the collection A′

1i ,
with 1 � i � m.

We now state a few intermediate results that lead up to estimating P(Ψn).

Proposition 9. Let B be a given set of 
n/4� states. For any i ∈ {2, . . . ,a},

P

(∣∣∣∣∣Ui

(
T⋃

t=1

A1�(t)

)∣∣∣∣∣ = m
∣∣∣ T < ∞

)
� P

(∣∣Ui(B)
∣∣ = m

)
.

Proof. Suppose T < ∞. By the definition of T , we have Q
def= |⋃T

t=1 A1�(t)| � n/2. Recall that by construction |A′
1 j| =


|A1 j|/2� � |A1 j|/2 for any j = 1, . . . ,m. This yields∣∣∣∣∣
T⋃

t=1

A′
1�(t)

∣∣∣∣∣ =
T∑

t=1

∣∣A′
1�(t)

∣∣ =
T∑

t=1

⌊ |A1�(t)|
2

⌋
� Q /2,

and thus we obtain∣∣∣∣∣
T⋃

t=1

(
A1�(t) \ A′

1�(t)
)∣∣∣∣∣ =

∣∣∣∣∣
T⋃

t=1

A1�(t)

∣∣∣∣∣ −
∣∣∣∣∣

T⋃
t=1

A′
1�(t)

∣∣∣∣∣ � Q − Q /2 = Q /2 � n

4
� |B|. (11)

Given the random variable Q , the random variables T and
⋃T

t=1(A1�(t) \ A′
1�(t)) are independent. Together with (11), the

monotonicity of Ui(·) with respect to set inclusion yields that∣∣∣∣∣Ui

(
T⋃

t=1

A1�(t) \ A′
1�(t)

)∣∣∣∣∣ is stochastically larger than
∣∣Ui(B)

∣∣.
Since these two random variables cannot exceed m, this proves the proposition. �
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Proposition 10. Define

γn
def= 
n/4�

m
− lnm (12)

and let B be a given set of 
n/4� states. For any i ∈ {2, . . . ,a},

P
(∣∣Ui(B)

∣∣ = m
)
� 1 − e−γn .

Proof. Define the event

G j
def= {the block Aij contains no states from B}.

Then

{∣∣Ui(B)
∣∣ = m

} =
(

m⋃
j=1

G j

)c

and the conclusion follows from the upper bound

P

(
m⋃

j=1

G j

)
� mP(G1) = m

(
1 − 1

m

)(
n/4�)
� exp

{−(
n/4�/m
) + ln m

} = e−γn . �

The next result states a lower bound for the probability that Ga(n,m) is connected. Once this is in place, the main
theorem will follow easily.

Theorem 11. Suppose n � 4m. Then

P
(
Ga(n,m) is connected

)
�

(
1 − exp

{−(a − 1)γn
}) ·

(
1 − (4.35)a−1 exp

{
− (a − 1)
n/4�

2m

})m−1

, (13)

where γn is defined in (12).

Proof. Recall from Proposition 8 that Ψn ⊆ {Ga(n,m) is connected}. We can estimate P(Ψn) and provide a lower bound for
the probability that Ga(n,m) is connected. By the definition of Ψn in (10), we have

P(Ψn) = P

(
max

2�i�a

∣∣∣∣∣Ui

(
T⋃

t=1

A1�(t)

)∣∣∣∣∣ = m
∣∣∣ T < ∞

)
· P(T < ∞). (14)

We estimate the two terms on the right-hand side one at the time, beginning with the first one. Recall that
max2�i�a |Ui(

⋃T
t=1 A1�(t))| � m. We have

P

(
max

2�i�a

∣∣∣∣∣Ui

(
T⋃

t=1

A1�(t)

)∣∣∣∣∣ < m
∣∣∣ T < ∞

)
�

[
P
(∣∣Ui(B)

∣∣ < m
)]a−1 = [

1 − P
(∣∣Ui(B)

∣∣ = m
)]a−1

� 1 − exp
{−(a − 1)γn

}
, (15)

where the first inequality follows from Proposition 9 and the independence between agents’ partitions, and the second
inequality from Proposition 10.

Next, we estimate P(T < ∞). The event {T < ∞} occurs if and only if, for each t = 1, . . . ,m, it is true that either
{�(t) < ∞ and T � t} or {T < t} take place. Hence, if we define the event

Et
def=

t⋂
k=1

{{
�(k) < ∞, T � k

} ∪ {T < k}}
for t = 1, . . . ,m, then

{T < ∞} = Em. (16)

Note the initial value P(E1) = 1, because �(1) = 1. We get the recursive relation

P(Et) = P
({

�(t) < ∞, T � t
} ∪ {T < t} ∣∣ Et−1

) · P(Et−1). (17)
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We begin by deriving a lower bound for the first probability in the right-hand side of the above equation. Recall that, for
any triplet of events A, B , C , we have

P(A | B) = P(A | B ∩ C) · P(B | C) + P
(

A
∣∣ Bc ∩ C

) · P(
Bc

∣∣ C
)
.

Hence,

P
({

�(t) < ∞, T � t
} ∪ {T < t} ∣∣ Et−1

)
= P

({
�(t) < ∞, T � t

} ∪ {T < t} ∣∣ T > t − 1, Et−1
) · P(T > t − 1 | Et−1)

+ P
({

�(t) < ∞, T � t
} ∪ {T < t} ∣∣ T � t − 1, Et−1

) · P(T � t − 1 | Et−1)

= P
({

�(t) < ∞, T � t
} ∪ {T < t} ∣∣ T > t − 1, Et−1

) · P(T > t − 1 | Et−1) + P(T � t − 1 | Et−1)

� P
({

�(t) < ∞, T � t
} ∪ {T < t} ∣∣ T > t − 1, Et−1

) · [P(T > t − 1 | Et−1) + P(T � t − 1 | Et−1)
]

= P
({

�(t) < ∞, T � t
} ∪ {T < t} ∣∣ T > t − 1, Et−1

)
= P

({
�(t) < ∞, T � t

} ∪ {T < t} ∣∣ T > t − 1, �(t − 1) < ∞)
= P

(
�(t) < ∞ ∣∣ T > t − 1, �(t − 1) < ∞)

where the next to last equality uses {T > t −1, Et−1} = {T > t −1, �(t −1) < ∞}, and the last equality ignores the redundant
events. This shows that

P
({

�(t) < ∞, T � t
} ∪ {T < t} ∣∣ Et−1

)
� P

(
�(t) < ∞ ∣∣ T > t − 1, �(t − 1) < ∞)

.

Combining this inequality with (17), we get

P(Et) � P
(
�(t) < ∞ ∣∣ T > t − 1, �(t − 1) < ∞) · P(Et−1) =

t∏
k=2

P
(
�(k) < ∞ ∣∣ T > k − 1, �(k − 1) < ∞)

,

where the last step comes from recursion. Applying (16) yields

P(T < ∞) = P(Em) �
m∏

t=2

P
(
�(t) < ∞ ∣∣ T > t − 1, �(t − 1) < ∞)

. (18)

It remains to estimate the probabilities in the last product above. Fix any t � 2 and suppose {T > t − 1, �(t − 1) < ∞} holds.
Pick one state at random in

⋃t−1
k=1 A′

1�(k)
and color it white; paint in black all the states in the complementary set(

t−1⋃
k=1

A′
1�(k)

)c

,

and ignore all other states from
⋃t−1

k=1 A′
1�(k)

. The total number of black and white states exceeds 
n/4� because T > t − 1.
When the white state overlaps with the black ones, then �(t) < ∞; that is, Wa−1(1, 
n/4�) ⊂ {�(t) < ∞}. Moreover,
Wa−1(1, 
n/4�) is independent of the event {T > t − 1, �(t − 1) < ∞} because we chose the only white state at random.
Hence, by virtue of Proposition 7 with r = a − 1 repetitions, we get

P
(
�(t) < ∞ ∣∣ T > t − 1, �(t − 1) < ∞)

� P
(
Wa−1

(
1, 
n/4�)) � 1 − (4.35)a−1 exp

{
− (a − 1)
n/4�

2m

}
.

Replacing in (18), we obtain

P(T < ∞) �
(

1 − (4.35)a−1 exp

{
− (a − 1)
n/4�

2m

})m−1

. (19)

Let us put everything together. By Proposition 8, we know Ψn ⊆ {Ga(n,m) is connected}. Replacing the two estimates
(15) and (19) into (14), we get

P
(
Ga(n,m) is connected

)
� P(Ψn) = P

(
max

2�i�a

∣∣∣∣∣Ui

(
T⋃

t=1

A1�(t)

)∣∣∣∣∣ = m
∣∣∣ T < ∞

)
· P(T < ∞)

�
(
1 − exp

{−(a − 1)γn
}) ·

(
1 − (4.35)a−1 exp

{
− (a − 1)
n/4�

2m

})m−1

(20)

and the theorem is proved. �
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Proof of Theorem 5. It suffices to show that the last expression on the right-hand side of (20) goes to 1 as n ↑ ∞. We check
below that the two bracketed terms in this expression converge to 1. Note that, if m(n) satisfies (4), then for all sufficiently
large n we have n > 8m ln n, and in particular n � 4m.

Consider the first bracketed term. By (4), for all sufficiently large n, we get

γn = 
n/4�
m

− lnm > 
2 ln n� − lnm > lnn + ln

(
n

m

)
− 1 > lnn + ln(8 ln n) − 1.

As n → ∞, the last expression on the right diverges and thus γn → ∞. Hence, the first bracketed term on the right-hand
side of (20) goes to 1.

Recall a � 2. Substituting n > 8m ln n, the second bracketed term yields the asymptotic estimate

exp

{
− (a − 1)
n/4�

2m

}
� exp

{
− (a − 1)
2m lnn�

2m

}
= O

(
1

na−1

)
= O

(
1

n

)
,

and thus(
1 − (4.35)a−1 exp

{
− (a − 1)
n/4�

2m

})m−1

=
(

1 − (4.35)a−1 O

(
1

n

))m−1

=
(

1 − O

(
1

n

))m−1

. (21)

For sufficiently large n, the expression 1 − O ( 1
n ) in parenthesis is larger than 1/2. Observe that, for some appropriately large

constant C , the inequality (1 − x) � e−Cx holds for any x < 1/2. Thus, for sufficiently large n and C , the last expression in
(21) is larger than

exp
{−C(m − 1)O (1/n)

}
,

and this converges to 1 because limn→∞ m(n)/n = limn→∞ κ(n) = 0 by (4). �
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