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1 Introduction

Unawareness is probably the most common and most important kind of ignorance. Busi-

ness people invest most of their time not in updating prior beliefs and crossing out states

of the world that they previously assumed to be possible. Rather, their efforts are mostly

aimed at exploring unmapped terrain, trying to figure out business opportunities that

they could not even have spelled out before. More broadly, every book we read, every

new acquaintance we make, expands our horizon and our language, by fusing it with the

horizons of those we encounter, turning the world more intelligible and more meaningful

to us than it was before (Gadamer, 1960).

With this in mind, we should not be surprised that the standard state-spaces aimed

at modeling knowledge or certainty are not adequate for capturing unawareness (Dekel,

Lipman and Rustichini, 1998). Indeed, more elaborate models are needed (Fagin and

Halpern, 1988, Modica and Rustichini, 1994, 1999, Halpern, 2001). In all of these models,

the horizon of propositions the individual has in her disposition to talk about the world

is always a genuine part of the description of the state of affairs.

Things become even more intricate when several players are involved. Each player

may not only have different languages, but may also form a belief on the extent to which

other players are aware of the issues that she herself has in mind. And the complexity

continues further, because the player may be uncertain as to the sub-language that each

other player attributes to her or to others; and so on.

Heifetz, Meier and Schipper (2006) showed how an unawareness structure consisting

of a lattice of spaces is adequate for modeling mutual unawareness. Every space in

the lattice captures one particular horizon of meanings or propositions. Higher spaces

capture wider horizons, in which states correspond to situations described by a richer

vocabulary. The join of several spaces – the lowest space at least as high as every one of

them – corresponds to the fusion of the horizons of meanings expressible in these spaces.

In a companion work (Heifetz, Meier and Schipper, 2008), we showed the precise

sense in which such unawareness structures are adequate and general enough for modeling

mutual unawareness. We put forward an axiom system, which extends to the multi-player

case a variant of the axiom system of Modica and Rustichini (1999). We then showed

how the collections of all maximally-consistent sets of formulas in our system form a

canonical unawareness structure.1 In a parallel work, Halpern and Rêgo (2008) devised

1Each space in the lattice of this canonical unawareness structure consists of the maximally consistent
sets of formulas in a sub-language generated by a subset of the atomic propositions.
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another sound and complete axiomatization for our class of unawareness structures.2

In this paper we extend unawareness structures so as to encompass probabilistic

beliefs (Section 2) rather than only knowledge or ignorance. The definition of types

(Definition 1), and the way beliefs relate across different spaces of the lattice, is a non-

trivial modification of the coherence conditions for knowledge operators in unawareness

structures, as formulated in Heifetz, Meier and Schipper (2006). We show that we obtain

all properties of unawareness suggested in the literature.

In Section 3 we define the notion of a common prior. Conceptually, a prior of a player

is a convex combination of (the beliefs of) her types (see e.g. Samet, 1998). If the priors

of the different players coincide, we have a common prior. A prior of a player induces a

prior on each particular space in the lattice, and if the prior is common to the players,

the induced prior on each particular space is common as well.

What are the implications of the existence of a common prior? First, we extend an

example from Heifetz, Meier and Schipper (2006) and show that speculative trade is com-

patible with the existence of a common prior (Section 1.1). This need not be surprising

if one views unawareness as a particular kind of “delusion”, since we know that with

deluded beliefs, speculative trade is possible even with a common prior (Geanakoplos,

1989). Nevertheless, we show that under a mild positivity condition, a common prior

is not compatible with common certainty of strict preference to carry out speculative

trade. That is, even though types with limited awareness are, in a particular sense, de-

luded, a common prior precludes the possibility of common certainty of the event that

based on private information players are willing to engage in a zero-sum bet with strictly

positive subjective gains to everybody. This is so because unaware types are “deluded”

only concerning aspects of the world outside their vocabulary, while a common prior

captures a prior agreement on the likelihood of whatever the players do have a common

vocabulary. An implication of this generalized no-trade theorem is that arbitrary small

transaction fees rule out speculative trade under unawareness. We complement this re-

sult by generalizing Aumann’s (1976) “No-Agreeing-to-disagree” result to unawareness

belief structures.

To what extend could unawareness be modeled by probability zero belief in appli-

2The precise connection between Fagin and Halpern (1988), Modica and Rustichini (1999), Halpern
(2001) and Heifetz, Meier and Schipper (2006) is understood from Halpern and Rêgo (2008) and Heifetz,
Meier, and Schipper (2008). The connection between Heifetz, Meier and Schipper (2006, 2008) and
Galanis (2009a) is explored in Galanis (2009b). The connection with the models of Ewerhart (2001), Li
(2009) and Feinberg (2009) are yet to be explored.
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cations? First, assigning probability zero to an event is still compatible with realizing

what could happen if the probability zero event were nevertheless to obtain. This is

conceptually distinct from being completely unaware of the event, and it is the latter

concept that we want to model here. Second, if a modeler aims nevertheless to model

“unawareness” of an event as zero probability belief of that event, then this is impossi-

ble to do in a standard type-space. According to the symmetry axiom of awareness (see

Proposition 3), a decision maker is unaware of an event if and only if she is unaware of its

negation. So a decision maker being unaware of an event would have to assign probability

zero to the event and probability zero to the negation of the event. Because of additivity,

a probability measure in a standard type-space can never assign both zero to an event

and its complement. In Section 2.12 we show how to extend our definitions of types in

unawareness structures so as to characterize unawareness of an event as probability zero

belief of the existence of that event, where we interpret the event that some event E

exists as the set of states where this event does or does not happen, i.e. as the event

E ∪ ¬E. While such a characterization is trivial in a standard type-space because every

measurable event exists in every state, in our lattice of spaces the event that an event

E exists is non-trivial. We show that in the extended model a decision maker assigns

probability zero to the existence of an event if and only if she assigns probability zero to

the event and probability zero to its negation. Yet, unawareness modeled as probability

zero lacks transparency. If in the extended model a decision maker assigns probability

zero to an event, then it is not clear whether she does so because of being unaware of

the event or because she is aware of the event but assigns probability zero to the event

obtaining. We view this as a drawback of the probability zero model of “unawareness”.

In any case, we demonstrate that no matter whether the applied economist chooses to

model unawareness as unawareness proper or by probability zero belief, our (extended)

unawareness structures provide the appropriate modeling tool.

In the following section we present our interactive unawareness belief structure. In

Section 3 we define a common prior and investigate agreement and speculation under un-

awareness. Section 4 contains an informal discussion of the common prior and the related

literature. Some further properties of our unawareness belief structures are relegated to

the appendix. Proofs are relegated to the appendix as well. In a separate appendix,

Meier and Schipper (2009), we extend the “No-trade” theorem to infinite unawareness

structures.
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1.1 Introductory Example - Speculation under Unawareness

The purpose of the following example is threefold: First, it shall motivate the study of

unawareness and speculation under unawareness. Second, it should illustrate informally

some features of our model. Third, it is a counter example to the standard “No Trade”

theorems in the context of unawareness.

Consider a probabilistic version of the speculative trade example of Heifetz, Meier

and Schipper (2006). There is an owner, o, of a firm and a potential buyer, b, whose

awareness differ. The owner is aware that there may be a costly lawsuit [l] involving the

firm, but he is unaware of a potential novelty [n] enhancing the value of the firm. In

contrast, the buyer is aware that there might be an innovation, but he is unaware of the

lawsuit. Both are aware that the firm may face high sales [s] or not in future.

Both agents can only reason and form beliefs about contingencies of which they are

aware of respectively. The information structure is given in Figure 1. There are four

state-spaces of different expressive power. The description of each state is printed above

the state. While the upmost space, S{nls}, contains all contingencies, the space S{ls}

misses the novelty, S{ns} misses the law suit, and S{s} is capable of expressing only events

pertaining to the sales. At any state in the upmost space S{nls}, the buyer’s belief has full

support on the lower space S{ns} (as given by the solid ellipse and lines) and the seller’s

belief has full support on S{ls} (dashed ellipse and lines). Thus the buyer forms beliefs

about sales and the novelty but is unaware of the law suit, and the seller forms beliefs

about sales and the law suit but is unaware of the novelty. At any state in S{ns} the

seller’s belief has full support on the lower space S{s}. That is, the buyer is certain that

the seller is unaware of the novelty. Analogously, the seller is certain that the buyer is

unaware of the law suit since at any state in S{ls} the belief of the buyer has full support

on the space S{s}. Figure 1 provides an example of an unawareness structure developed

in this paper. The probability distribution given in each space illustrates an example of

a common prior in unawareness structures, a projective system of probability measures.

I.e., the prior on a lower space is the marginal of the prior in the upmost space. The

beliefs of both agents are consistent with the common prior.

Suppose that the status quo value of the firm with high sales is 100 dollars, but only

80 dollars with low sales. If the potential innovation obtains, this would add 20 dollars

to the value of the firm, whereas the potential lawsuit would cost the firm 20 dollars.

According to the beliefs at state (nls), the buyer’s expected value of the firm is 100,

whereas the seller’s expected value of the firm is 80 dollars. However, the buyer (resp.

seller) is certain that the seller’s (resp. buyer’s) expected value is 90 dollars.
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Figure 1: Information Structure in the Speculative Trade Example

nls n¬ls nl¬s n¬l¬s ¬nls ¬n¬ls ¬nl¬s ¬n¬l¬s

● ● ● ● ● ● ● ●

⅛ ⅛ ⅛ ⅛ ⅛ ⅛ ⅛ ⅛

ns n¬s ¬ns ¬n¬s

● ● ● ●

¼ ¼ ¼ ¼

ls l¬s ¬ls ¬l¬s

● ● ● ●

¼ ¼ ¼ ¼

s ¬s

● ●

½ ½

S{nls}

S{ns} S{ls}

S{s}

We assume that both players are rational in the sense of maximizing their respective

payoff given their belief and awareness. The buyer (resp. seller) prefers to buy (resp.

sell) at price x if her expected value of the firm is at least (resp. at most) x. The buyer

(resp. seller) strictly prefers to buy (resp. sell) at price x if her expected value of the

firm is strictly above (resp. strictly below) x.

Note that despite the fact that both agents’ beliefs are consistent with the common

prior, at state (nls) and at the price 90 dollars, there is common certainty of preference to

trade, but each player strictly prefers to trade. This is impossible in standard state-space

structures with a common prior. In standard “No Trade” theorems, if there is common

certainty of willingness to trade, then agents are necessarily indifferent to trade (Milgrom

and Stokey, 1982).

Despite this counter example to the “No Trade” theorems, we can prove in section 3

a generalized “No-trade” theorem according to which, if there is a common prior, then

there can not be common certainty of strict preference to trade.
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2 Model

2.1 State-Spaces

Let S = {Sα}α∈A be a complete lattice of disjoint state-spaces, with the partial order �
on S. If Sα and Sβ are such that Sα � Sβ we say that “Sα is more expressive than Sβ

– states of Sα describe situations with a richer vocabulary than states of Sβ ”.3 Denote

by Ω =
⋃

α∈A
Sα the union of these spaces. Each S ∈ S is a measurable space, with a

σ-field FS.

Spaces in the lattice can be more or less “rich” in terms of facts that may or may not

obtain in them. The partial order relates to the “richness” of spaces. The upmost space

of the lattice may be interpreted as the “objective” state-space. Its states encompass full

descriptions.

2.2 Projections

For every S and S ′ such that S ′ � S, there is a measurable surjective projection rS
′

S :

S ′ → S, where rSS is the identity. (“rS
′

S (ω) is the restriction of the description ω to the

more limited vocabulary of S.”) Note that the cardinality of S is smaller than or equal

to the cardinality of S ′. We require the projections to commute: If S ′′ � S ′ � S then

rS
′′

S = rS
′

S ◦ rS
′′

S′ . If ω ∈ S ′, denote ωS = rS
′

S (ω). If D ⊆ S ′, denote DS = {ωS : ω ∈ D}.

Projections “translate” states in “more expressive” spaces to states in “less expres-

sive” spaces by “erasing” facts that can not be expressed in a lower space.

2.3 Events

Denote g(S) = {S ′ : S ′ � S}. For D ⊆ S, denote D↑ =
⋃
S′∈g(S)

(
rS
′

S

)−1
(D). (“All the

extensions of descriptions in D to at least as expressive vocabularies.”)

An event is a pair (E, S), where E = D↑ with D ⊆ S, where S ∈ S. D is called

the base and S the base-space of (E, S), denoted by S(E). If E 6= ∅, then S is uniquely

determined by E and, abusing notation, we write E for (E, S). Otherwise, we write ∅S

for (∅, S). Note that not every subset of Ω is an event.

3Here and in what follows, phrases within quotation marks hint at intended interpretations, but we
emphasize that these interpretations are not part of the definition of the set-theoretic structure.
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Some fact may obtain in a subset of a space. Then this fact should be also “express-

ible” in “more expressive” spaces. Therefore the event contains not only the particular

subset but also its inverse images in “more expressive” spaces.

Let Σ be the set of measurable events of Ω, i.e., D↑ such that D ∈ FS, for some

state-space S ∈ S. Note that unless S is a singleton, Σ is not an algebra because it

contains distinct ∅S for all S ∈ S.

2.4 Negation

If (D↑, S) is an event where D ⊆ S, the negation ¬(D↑, S) of (D↑, S) is defined by

¬(D↑, S) := ((S \D)↑, S). Note, that by this definition, the negation of a (measurable)

event is a (measurable) event. Abusing notation, we write ¬D↑ := (S \D)↑. Note that by

our notational convention, we have ¬S↑ = ∅S and ¬∅S = S↑, for each space S ∈ S. The

event ∅S should be interpreted as a “logical contradiction phrased with the expressive

power available in S.” ¬D↑ is typically a proper subset of the complement Ω \D↑
. That

is, (S \D)↑ $ Ω \D↑
.

Intuitively, there may be states in which the description of an event D↑ is both

expressible and valid – these are the states in D↑; there may be states in which its

description is expressible but invalid – these are the states in ¬D↑; and there may be

states in which neither its description nor its negation are expressible – these are the

states in

Ω \
(
D↑ ∪ ¬D↑

)
= Ω \ S

(
D↑
)↑
.

Thus our structure is not a standard state-space model in the sense of Dekel, Lipman,

and Rustichini (1998).

2.5 Conjunction and Disjunction

If
{(
D↑λ, Sλ

)}
λ∈L

is a finite or countable collection of events (with Dλ ⊆ Sλ, for λ ∈ L),

their conjunction
∧
λ∈L

(
D↑λ, Sλ

)
is defined by

∧
λ∈L

(
D↑λ, Sλ

)
:=
((⋂

λ∈LD
↑
λ

)
, supλ∈L Sλ

)
.

Note, that since S is a complete lattice, supλ∈L Sλ exists. If S = supλ∈L Sλ, then

we have
(⋂

λ∈LD
↑
λ

)
=
(⋂

λ∈L

((
rSSλ
)−1

(Dλ)
))↑

. Again, abusing notation, we write∧
λ∈LD

↑
λ :=

⋂
λ∈LD

↑
λ (we will therefore use the conjunction symbol ∧ and the intersec-

tion symbol ∩ interchangeably).

We define the relation ⊆ between events (E, S) and (F, S ′) , by (E, S) ⊆ (F, S ′) if
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Figure 2: Event Structure

 

• pq  • p¬q  •¬pq  •¬p¬q 

• p  • ¬p • q  • ¬q 

•∅ 

S{q}S{p} 

S{∅}

S{pq}

and only if E ⊆ F as sets and S ′ � S. If E 6= ∅, we have that (E, S) ⊆ (F, S ′) if and

only if E ⊆ F as sets. Note however that for E = ∅S we have (E, S) ⊆ (F, S ′) if and

only if S ′ � S. Hence we can write E ⊆ F instead of (E, S) ⊆ (F, S ′) as long as we keep

in mind that in the case of E = ∅S we have ∅S ⊆ F if and only if S � S(F ). It follows

from these definitions that for events E and F , E ⊆ F is equivalent to ¬F ⊆ ¬E only

when E and F have the same base, i.e., S(E) = S(F ).

The disjunction of
{
D↑λ

}
λ∈L

is defined by the de Morgan law
∨
λ∈LD

↑
λ = ¬

(∧
λ∈L ¬

(
D↑λ

))
.

Typically
∨
λ∈LD

↑
λ $

⋃
λ∈LD

↑
λ, and if all Dλ are nonempty we have that

∨
λ∈LD

↑
λ =⋃

λ∈LD
↑
λ holds if and only if all the D↑λ have the same base-space. Note, that by these

definitions, the conjunction and disjunction of (at most countably many measurable)

events is a (measurable) event.

Apart from the measurability conditions, the event-structure outlined so far is anal-

ogous to Heifetz, Meier and Schipper (2006, 2008). An example is shown in Figure 2. It

depicts a lattice with four spaces and projections. The event that p obtains is indicated

by the dotted areas, whereas the grey areas illustrate the event that not p obtains. Sp∪Sq
is for instance not an event in our structure.
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2.6 Probability Measures

Here and in what follows, the term ’events’ always measurable events in Σ unless other-

wise stated.

Let ∆ (S) be the set of probability measures on (S,FS). We consider this set itself as a

measurable space endowed with the σ-field F∆(S) generated by the sets {µ ∈ ∆ (S) : µ (D) ≥ p},
where D ∈ FS and p ∈ [0, 1].

2.7 Marginals

For a probability measure µ ∈ ∆ (S ′), the marginal µ|S of µ on S � S ′ is defined by

µ|S (D) := µ

((
rS
′

S

)−1

(D)

)
, D ∈ FS.

Let Sµ be the space on which µ is a probability measure. Whenever Sµ � S(E) then

we abuse notation slightly and write

µ (E) = µ (E ∩ Sµ) .

If S(E) � Sµ, then we say that µ(E) is undefined.

2.8 Types

I is the nonempty set of individuals. For every individual, each state gives rise to a

probabilistic belief over states in some space.

Definition 1 For each individual i ∈ I there is a type mapping ti : Ω →
⋃
α∈A∆ (Sα),

which is measurable in the sense that for every S ∈ S and Q ∈ F∆(S) we have t−1
i (Q)∩S ∈

FS.

We require the type mapping ti to satisfy the following properties:

(0) Confinement: If ω ∈ S ′ then ti(ω) ∈ 4 (S) for some S � S ′.

(1) If S ′′ � S ′ � S, ω ∈ S ′′, and ti(ω) ∈ 4(S) then ti(ωS′) = ti(ω).

(2) If S ′′ � S ′ � S, ω ∈ S ′′, and ti(ω) ∈ 4(S ′) then ti(ωS) = ti(ω)|S.

(3) If S ′′ � S ′ � S, ω ∈ S ′′, and ti(ωS′) ∈ 4(S) then Sti(ω) � S.
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ti(ω) represents individual i’s belief at state ω. Properties (0) to (3) guarantee the

consistent fit of beliefs and awareness at different state-spaces. Confinement means that

at any given state ω ∈ Ω an individual’s belief is concentrated on states that are all

described with the same “vocabulary” - the “vocabulary” available to the individual at

ω. This “vocabulary” may be less expressive than the “vocabulary” used to describe

statements in the state ω.”

Properties (1) to (3) compare the types of an individual in a state ω and its projection

to ωS. Property (1) and (2) mean that at the projected state ωS the individual believes

everything she believes at ω given that she is aware of it at ωS. Property (3) means that

at ω an individual can not be unaware of an event that she is aware of at the projected

state ωS.

Define4

Beni (ω) :=
{
ω′ ∈ Ω : ti(ω

′)|Sti(ω)
= ti(ω)

}
.

This is the set of states at which individual i’s type or the marginal thereof coincides

with her type at ω. Such sets are events in our structure:

Remark 1 For any ω ∈ Ω, Beni(ω) is an Sti(ω)-based event, which is not necessarily

measurable.5

Assumption 1 If Beni(ω) ⊆ E, for an event E, then ti(ω)(E) = 1.

This assumption implies introspection (Property (va)) in Proposition 9 in the ap-

pendix. Note, that if Beni(ω) is measurable, then Assumption 1 implies ti(ω)(Beni(ω)) =

1.

Definition 2 We denote by Ω :=

〈
S,
(
rSαSβ

)
Sβ�Sα

, (ti)i∈I

〉
an interactive unawareness

belief structure.

2.9 Awareness and Unawareness

The definition of awareness is analogous to the definition in unawareness knowledge

structures (see Remark 6 in Heifetz, Meier and Schipper, 2008).

4The name “Ben” is chosen analogously to the “ken” in knowledge structures.

5Even in a standard type-space, if the σ-algebra is not countably generated, then the set of states
where a player is of a certain type might not be measurable.
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Definition 3 For i ∈ I and an event E, define the awareness operator

Ai (E) := {ω ∈ Ω : ti (ω) ∈ ∆ (S) , S � S (E)}

if there is a state ω such that ti(ω) ∈ ∆(S) with S � S(E), and by

Ai(E) := ∅S(E)

otherwise.

An individual is aware of an event if and only if his type is concentrated on a space

in which the event is “expressible.”

Proposition 1 If E is an event then Ai(E) is an S (E)-based event.

This proposition shows that the set of states in which an individual is aware of an

event is indeed an event in our structure. Moreover, the operator is convenient to work

with since the event Ai(E) has the same base-space as the event E.

Unawareness is naturally defined as the negation of awareness:

Definition 4 For i ∈ I and an event E, the unawareness operator is defined by

Ui(E) = ¬Ai(E).

Note that the definition of our negation and Proposition 1 imply that if E is an event,

then Ui(E) is an S (E)-based event.

Note further that Definition 3 and 4 apply also to events that are not necessarily

measurable.

2.10 Belief

The p-belief-operator is defined as usual (see for instance Monderer and Samet, 1989):

Definition 5 For i ∈ I, p ∈ [0, 1] and an event E, the p-belief operator is defined, as

usual, by

Bp
i (E) := {ω ∈ Ω : ti(ω)(E) ≥ p},

if there is a state ω such that ti(ω)(E) ≥ p, and by

Bp
i (E) := ∅S(E)

otherwise.
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Proposition 2 If E is an event then Bp
i (E) is an S (E)-based event.

This proposition shows that the set of states in which an individual believes an event

with probability at least p is an event in our structure that has the same base-space as

the event E.

The p-belief operator has the standard properties stated in Proposition 9 in the ap-

pendix.

2.11 Properties of Unawareness

Dekel, Lipman and Rustichini (1998) showed that in a standard state-space unawareness

must be trivial, even if the belief operator satisfies only very weak properties. In contrast,

we show that we obtain all properties suggested in the literature.6

Proposition 3 Let E be an event and p, q ∈ [0, 1]. The following properties of awareness

and belief obtain: 1. Plausibility: Ui(E) ⊆ ¬Bp
i (E)∩¬Bp

i ¬B
p
i (E), 2. Strong Plausibility:

Ui(E) ⊆
⋂∞
n=1 (¬Bp

i )
n (E), 3. BpU Introspection: Bp

i Ui(E) = ∅S(E) for p ∈ (0, 1] and

B0
i Ui(E) = Ai(E), 4. AU Introspection: Ui(E) = UiUi(E), 5. Weak Necessitation:

Ai(E) = B1
i

(
S(E)↑

)
, 6. Bp

i (E) ⊆ Ai(E) and B0
i (E) = Ai(E), 7. Bp

i (E) ⊆ AiB
q
i (E),

8. Symmetry: Ai(E) = Ai(¬E), 9. A Conjunction:
⋂
λ∈LAi (Eλ) = Ai

(⋂
λ∈LEλ

)
, 10.

ABp Self Reflection: AiB
p
i (E) = Ai(E), 11. AA Self Reflection: AiAi(E) = Ai(E), and

12. Bp
iAi(E) = Ai(E).

Note that properties 3, 4, 5, 8, 9, 11, and 12 hold also for non-measurable events,

because even if E is not measurable, by 5. Ai(E) is measurable.

Although we model awareness of events, Property 8 suggests that we model a notion

of awareness of issues or questions. Let an issue or question (E.g., “is the stock market

crashing?”) be such that it can be answered in the affirmative (“The stock market

is crashing.”) or the negative (“The stock market is not crashing.”). By symmetry

(Property 8), an individual is aware of an event if and only if she is aware of the its

negation. Thus we model the awareness of questions and issues rather than just single

events. In fact, by weak necessitation, Property 5, an individual is aware of an event E

6These properties are analogous to the properties in unawareness knowledge structures (Heifetz, Meier
and Schipper, 2006, 2008). Properties 1 to 5 have been suggested by Dekel, Lipman and Rustichini
(1998), and 8 to 11 by Fagin and Halpern (1988), Modica and Rustichini (1999) and Halpern (2001).
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if and only if she is aware of any event that can be “expressed” in a space with the same

“expressive power” as the base-space of E.

In Proposition 11 in the appendix, we state some multi-person properties of awareness

and belief. For instance, we show that if an individual is aware of an event E, then she

can also conceive that others are aware of the event E. Moreover, we show that common

awareness and mutual awareness coincide. That is, if everybody is aware of an event,

then everybody can conceive that everybody is aware of the event, everybody is aware

of that, etc.

2.12 Unawareness versus Zero Probability

In this section we discuss how unawareness of an event can be characterized as zero

probability belief of the existence of the event.

For any event E ∈ Σ, consider the event S(E)↑. We interpret this event as the event

that E exists. That is, in any state ω ∈ S(E)↑ either E or ¬E obtains. This interpretation

of S(E)↑ is crucial for the interpretation of unawareness as zero probability belief.

Let Sω be the space S ∈ S with ω ∈ S.

We extend the type mapping ti to a mapping tZi by for all events E ∈ Σ,

tZi (ω)(E) :=


ti(ω)(E) if Sti(ω) � S(E)

0 if Sti(ω) � S(E) and Sω � S(E)

undefined otherwise.

That is, for every ω ∈ Ω the extended type mapping induces a belief over all events that

exist at ω.

We use the extended type mapping to define the zero probability belief operator on

events in Σ.

Definition 6 For i ∈ I and an event E ∈ Σ, the zero-probability operator is defined by

Zi(E) = {ω ∈ Ω : tZi (ω)(E) = 0}

if there is a state ω ∈ Ω such that tZi (ω)(E) = 0, and by

Zi(E) = ∅S(E)

otherwise.
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Note that different from standard state-spaces, we may have Zi(S(E)↑) 6= ∅ for some

event E. (In this case it must be that S(E) � inf S.) That is, if Zi(S(E)↑) 6= ∅ then

there is a state in which agent i assigns zero probability belief to the event that the event

E exists.

Zero probability belief about the event that the event E exists characterizes unaware-

ness of the event.

Proposition 4 For any event E ∈ Σ, Zi(S(E)↑) = Ui(E).

Zero probability so defined in unawareness structures behaves differently from zero

probability belief in standard type-spaces because agents can assign not only zero prob-

ability to an event but also to the existence of an event. In particular we show in

Proposition 5 that in our unawareness structures, an agent assigns zero probability to

the existence of an event if and only if it assigns zero probability to the event and zero

probability to the negation of the event. This is impossible in a standard type-space.

Proposition 5 For any event E ∈ Σ, Zi(S(E)↑) = Zi(E) ∩ Zi(¬E).

In applications one may be tempted to work with zero probability only instead of

the notion of unawareness. The difficulty is that zero probability of an event becomes

an “overburdened” notion. This is because when an agent assigns zero probability to

an event she may do so because she is unaware of the event or because she is aware of

the event but assigns zero probability to it. In other words - taking Proposition 4 into

account - if an agent assigns zero probability to an event then she may do so because she

assigns zero probability to the existence of the event or she is certain of the existence of

the event but assigns zero probability to that the event obtains. Having both a notion of

unawareness and belief allows us to precisely distinguish between these two cases. This

is shown in the following proposition. Note that in the event B1
i (¬E) agent i assigns zero

probability to the event E (and is aware of the event E).

Proposition 6 For any event E ∈ Σ, Zi(E) = Ui(E) ∪ (Ai(E) ∩B1
i (¬E)).

Proposition 6 also implies that the zero probability operator is a map from Σ to Σ.

Corollary 1 For every event E ∈ Σ, Zi(E) is a S(E)-based event.
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To sum up, if instead of unawareness one wants to work with a notion of zero prob-

ability, then unawareness of an event corresponds to zero probability of the existence of

that event. Since such zero probability statements are impossible to express in standard

state-spaces, unawareness structures are useful because the lattice of spaces allows us to

model for each event E the event that E exists.

Furthermore, the notion of zero probability is less useful than the notion of unaware-

ness because it does not allow us to distinguish between zero probability of the event E

due to zero probability assigned to the existence of E or certainty of its existence but

zero probability that the event E obtains. Together with the fact that unawareness is

conceptually different from probability zero belief, this makes the zero probability model

inferior to the model of unawareness.

2.13 The Connection to Standard Type Spaces

We show how to derive standard type-space from our unawareness structure by “flatten-

ing” our lattice of spaces. Moreover, we demonstrate with a simple example that not

every standard type-space can be derived from non-trivial unawareness structures.

Definition 7 G ⊆ Ω is a measurable set if and only if for all S ∈ S, G ∩ S ∈ FS.

Notice that a measurable set is not necessarily an event in our special event structure.

Remark 2 The collection of measurable sets forms a sigma-algebra on Ω.

Remark 3 Let S be at most countable and G be a measurable set, p ∈ [0, 1] and i ∈ I.

Then {ω ∈ Ω : ti(ω)(G) ≥ p} is a measurable set.

Let Ω be an unawareness belief structure. We define the flattened type-space associ-

ated with the unawareness belief structure Ω by

F (Ω) := 〈Ω,F , (tFi )i∈I〉,

where Ω is the union of all state-spaces in the unawareness belief structure Ω, F is the

collection of all measurable sets in Ω, and tFi : Ω −→ ∆(Ω,F) is defined by

tFi (ω)(E) :=

{
ti(ω)(E ∩ Sti(ω)) if E ∩ Sti(ω) 6= ∅
0 otherwise
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A standard type-space on Y for the player set I is a tuple

Y :=
〈
Y,FY , (ti)i∈I

〉
,

where Y is a nonempty set, FY is a sigma-field on Y , and for i ∈ I, ti is a FY −F∆(Y ) mea-

surable function from Y to ∆ (Y,FY ), the space of countable additive probability mea-

sures on (Y,FY ), such that for all ω ∈ Y and E ∈ FY : [ti (ω)] ⊆ E implies ti (ω) (E) = 1,

where [ti (ω)] := {ω′ ∈ Y : ti (ω
′) = ti (ω)}.

Proposition 7 If Ω is an unawareness belief structure, then F (Ω) is a standard type-

space. Moreover, it has the following property: For every p > 0, measurable set E ∈ F
and i ∈ I: {ω ∈ Ω : ti(ω)(E) ≥ p} = {ω ∈ Ω : tFi (ω)(E) ≥ p}.

A flattened unawareness structure is just a standard type-space. To derive such a

type-space, one extends a player’s type mapping by assigning probability zero to mea-

surable sets for which the player’s belief was previously undefined. Of course, once

an unawareness structure is flattened, there is no way to analyze reasoning about un-

awareness anymore since by Dekel, Lipman and Rustichini (1998) unawareness is trivial.

Moreover, there is no way to analyze probability zero belief of the existence of an event

as in the previous section.

Note that the converse to Proposition 7 is not true. I.e., given a standard type-space,

it is not always possible to find some unawareness structure with non-trivial unaware-

ness. This is illustrated in the following counter-example. We conclude that not every

standard types-space with zero probability can be used to model unawareness. The pre-

cise restrictions required for modeling unawareness are made transparent in unawareness

belief structures.

Example 1 Let Y = {ω1, ω2, ω3} with ti(ω1) = ti(ω2) = ti(ω3) = τi and τi({ω1}) =

τi({ω2}) = 1
2

and τi({ω3}) = 0. If Ω = S = Y , then by Dekel, Lipman and Rustichini

(1998) the unawareness structure has trivial unawareness only. Any non-trivial partition

of Y into separate spaces yields either no projections or violates properties (0) to (3). �

3 Common Prior, Agreement, and Speculation

In this section, we define a common prior and explore the implications. In Section

1.1, we showed by example that the common prior assumption is too weak to rule out
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speculative trade under unawareness. With unawareness, we can have common certainty

of willingness to trade but strict preference to trade. Yet, we are able to prove a “No-

Trade” theorem according to which there can not be common certainty of strict preference

to trade under unawareness. In the same vein, we prove a “No-Agreeing-to-Disagree”

theorem.

3.1 Common Belief

From now on, we assume that the set of individuals I is at most countable.

We define mutual and common belief as usual (e.g. Monderer and Samet, 1989):

Definition 8 The mutual p-belief operator on events is defined by

Bp(E) =
⋂
i∈I

Bp
i (E).

The common certainty operator on events is defined by

CB1 (E) =
∞⋂
n=1

(
B1
)n

(E).

That is, the mutual p-belief of an event E is the event in which everybody p-believes

the event E. Common certainty of E is the event that everybody is certain of the event

E, and everybody is certain that everybody is certain of the event E, everybody is certain

of that, ... ad infinitum. Common certainty is the generalization of common knowledge

to the probabilistic notion of certainty. Note that Proposition 2 and the definition of

the conjunction of events imply that Bp(E) and CB1 (E) are S(E)-based events, for any

measurable event E.

We say that an event E is common certainty at ω ∈ Ω if ω ∈ CB1 (E).

Propositions 10 and 11 (see appendix) state some properties of belief and awareness

in the multiperson context.

3.2 Priors and Common Priors

In a standard type-space S, a prior P S
i of player i is a convex combination of the beliefs

of i’s types in S (Samet, 1998). That is, for every event E ∈ FS,

P S
i (E) =

∫
S

ti (·) (E) dP S
i (·) . (1)
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In particular, if S is finite or countable, this equality holds if and only if

P S
i (E) =

∑
s∈S

ti (s) (E)P S
i ({s}) . (2)

In words, to find the probability P S
i (E) that the prior P S

i assigns to an event E, one

should check the beliefs ti (s) (E) ascribed by player i to the event E in each state s ∈ S,

and then average these beliefs according to the weights P S
i ({s}) assigned by the prior

P S
i to the different states s ∈ S.

P S is a common prior on S if P S is a prior for every player i ∈ I.

Here we generalize these definitions to unawareness structures, as follows.

Definition 9 (Prior) A prior for player i is a system of probability measures Pi =(
P S
i

)
S∈S ∈

∏
S∈S ∆(S) such that

1. The system is projective: If S ′ � S then the marginal of P S
i on S ′ is P S′

i . (That

is, if E ∈ Σ is an event whose base-space S (E) is lower or equal to S ′, then

P S
i (E) = P S′

i (E).)

2. Each probability measure P S
i is a convex combination of i’s beliefs in S: For every

event E ∈ Σ such that S(E) � S,

P S
i (E ∩ S ∩ Ai (E)) =

∫
S∩Ai(E)

ti (·) (E) dP S
i (·) . (1u)

P =
(
P S
)
S∈S ∈

∏
S∈S ∆(S) is a common prior if P is a prior for every player i ∈ I.

In particular, if S is finite or countable, equality (1u) holds if and only if

P S
i (E ∩ S ∩ Ai (E)) =

∑
s∈S∩Ai(E)

ti (s) (E)P S
i ({s}) . (2u)

What is the reason for the difference between (1) and (1u) (or similarly between (2)

and (2u))? With unawareness, ti (s) (E) is well defined only for states s ∈ S in which

player i is aware of E, i.e., the states s ∈ S ∩Ai (E). This is the cause for the difference

in the definition of the domain of integration (or summation) on the right-hand side.

Consequently, E (or equivalently E ∩ S) on the left-hand side of (1) and (2) is replaced

by E ∩ S ∩ Ai (E) in (1u) and (2u).

An example of an unawareness structure with a common prior is given in Figure 3.

A discussion of the common prior (and Figure 3) is deferred to Section 4.1.
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Figure 3: Illustration of a Common Prior

 

S’ 

• ω11 • ω10 
1/18 1/18 

S 

• ω13 • ω14 
1/18 2/18 

• ω3 • ω2 
1/18 3/18 

• ω5 • ω6
1/18 2/18

• ω7 • ω8 
1/3  2/3 

• ω9    • ω12 
1/18    3/18 

• ω1    • ω4 
1/18    1/18 

3.3 Speculative Trade

In this section, we investigate whether the common prior assumption implies the absence

of speculative trade (e.g. Milgrom and Stokey, 1982). The example in Section 1.1 shows

that speculation is possible under unawareness even if we assume that there is a common

prior. Despite this counter example to the “No-trade” theorems, we prove below a

generalized “No-trade” theorem according to which, if there is a common prior, then

there can not be common certainty of strict preference to trade. That is, even with

unawareness it is not the case that “everything goes”. We find this surprising, because

unawareness can be interpreted as a special form of “delusion”: At a given state of a

space, a player’s belief may be concentrated in a very different lower state-space.

The following example demonstrates that speculative trade is possible in delusional

standard state-space structures with a common prior.

Example 4 (Speculative Trade with Delusion) Consider the information structure

in Figure 4. The common prior and the information structure allows the dashed player

to have a posterior of tdashed(ω1)({ω1}) = tdashed(ω2)({ω1}) = 1 and the solid player

tsolid(ω1)({ω2}) = tsolid(ω2)({ω2}) = 1. So they may happily disagree on the expected
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Figure 4: Speculative Trade with Delusion

  ω1 ω2
 

 ½  ½  
 
 

value of a random variable defined on this standard state-space. �

Denote by [ti(ω)] := {ω′ ∈ Ω : ti(ω
′) = ti(ω)}.

Definition 10 A common prior P =
(
P S
)
S∈S ∈

∏
S∈S ∆(S) is positive if and only if for

all i ∈ I and ω ∈ Ω: If ti (ω) ∈ 4 (S ′), then [ti(ω)]∩S ′ ∈ FS′ and P S
(

([ti (ω)] ∩ S ′)↑ ∩ S
)
>

0 for all S � S ′.

For every type, a positive common prior puts a positive weight on each “stationary”

state where the player has this type. This technical condition serves the same purpose

as the assumption in Aumann (1976) that the prior puts strict positive weight on each

partition cell in his finite partitional structure. Our condition implies that for each player

there can be at most countably many types in each space.

Definition 11 Let x1 and x2 be real numbers and v a random variable on Ω. Define the

sets E≤x1
1 :=

{
ω ∈ Ω :

∫
St1(ω)

v (·) d (t1 (ω)) (·) ≤ x1

}
and

E≥x2
2 :=

{
ω ∈ Ω :

∫
St2(ω)

v (·) d (t2 (ω)) (·) ≥ x2

}
. We say that at ω, conditional on his

information, player 1 (resp. player 2) believes that the expectation of v is weakly below

x1 (resp. weakly above x2) if and only if ω ∈ E≤x1
1 (resp. ω ∈ E≥x2

1 ).

Note that the sets E≤x1
1 or E≥x2

2 may not be events in our unawareness belief structure,

because v (ω) 6= v (ωS) is allowed, for ω ∈ S ′ � S. Yet, we can define p-belief, mutual

p-belief and common certainty for measurable subsets of Ω, and show that the properties

stated in Propositions 9 and 10 obtain as well. The proofs are analogous and thus

omitted.7

7Contrary to our definition of the negation of an event, in point (ii) of Proposition 9, ¬E is here
understood to be the relative complement of E with respect to the union of state-spaces.
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Theorem 1 Let Ω be a finite unawareness belief structure and P =
(
P S
)
S∈S ∈

∏
S∈S ∆(S)

be a positive common prior. Then there is no state ω̃ ∈ Ω such that there are a random

variable v : Ω −→ R and x1, x2 ∈ R, x1 < x2, with the following property: at ω̃ it is

common certainty that conditional on her information, player 1 believes that the expec-

tation of v is weakly below x1 and, conditional on his information, player 2 believes that

the expectation of v is weakly above x2.

The theorem says that if there is a positive common prior, then there can not be

common certainty of strict preference to trade. Together with our example of speculative

trade under unawareness we conclude that a common prior does not rule out speculation

under unawareness but it can never be common certainty that both players expect to

strictly gain from speculation. The theorem implies as a corollary that given a positive

common prior, arbitrary small transaction fees rule out speculative trade under unaware-

ness.

So, with respect to speculative trade, heterogeneous unawareness with a common prior

is “intermediate” between common awareness with heterogeneous priors on the one hand,

and common awareness with a common prior on the other hand. With heterogeneous

priors even in standard state-spaces, common certainty of strict preference to trade is

possible.

In Meier and Schipper (2009), we extend the above “No-trade” theorem to infinite

unawareness belief structures. To this end we introduce topological unawareness belief

structures.

The following example shows that the converse of the “No-trade” theorem does not

hold.

Example 5 Consider the information structure with two spaces in Figure 5. There

are two players: The information structure of the first (resp. second) player is given

by the solid (resp. intermitted) objects. The belief of the first (resp. second) player is

given above (resp. below) the states. Since the relative weights differ, there can not be

a positive common prior. In fact, there is not even a common prior since equation (2u)

of Definition 9 imposed on the priors of both individuals would imply that the common

prior assigns probability zero to all states in S ′. Note that the only measurable sets that

are common certainty among both players are Ω = S ′ ∪ S and S. Yet, it is not true that

in all states in Ω or S player 1’s expectation of a random variable differs from player 2’s

expectation. E.g., at ω6 both player’s expectations of the random variable must agree.

Thus, the absence of common certainty of strict preference to trade does not imply the
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existence of a (positive) common prior.

Figure 5: Information Structure of the Counter-Example

3.4 Agreement

For an event E and p ∈ [0, 1] define the set [ti(E) = p] := {ω ∈ Ω : ti(ω)(E) = p}, if

{ω ∈ Ω : ti(ω)(E) = p} is nonempty, and otherwise set [ti(E) = p] := ∅S(E).

Lemma 1 [ti(E) = p] is a S(E)-based event.

Proof. [ti(E) = p] = Bp
i (E)∩B1−p

i (¬E). Hence the claim follows from Proposition 2.�

The following proposition is a generalization of the standard “No-Agreeing-to-Disagree”

theorem (Aumann, 1976):

Proposition 8 Let Ω be an unawareness belief structure, G be an event and pi ∈ [0, 1],

for i ∈ I. Suppose there exists a common prior P =
(
P S
)
S∈S ∈

∏
S∈S ∆(S) such that
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for some space S � S(G) we have P S(CB1(
⋂
i∈I [ti(G) = pi])) > 0. Then pi = pj, for all

i, j ∈ I.8

The proposition asserts the following: Suppose individuals have a common prior that

is weakly positive in the sense that it assigns strict positive probability to the event that

posteriors of G are common certainty. Then common certainty of posteriors for the event

G implies that those posteriors must agree across all individuals. So individuals with a

common prior can not agree-to-disagree on the posteriors of events which they are all

aware of.

Remark 4 A positive common prior (Definition 10) implies the condition P S(CB1(
⋂
i∈I [ti(G) =

pi])) > 0 in Proposition 8 if CB1(
⋂
i∈I [ti(G) = pi]) is nonempty and S � S(G).

4 Discussion

4.1 Common Priors

How could a prior be interpreted? Following the discussion of the notion of a prior in

standard Bayesian analysis by Savage (1954), Morris (1995) and Samet (1999), we like

to distinguish three interpretations: First, a prior is interpreted verbally as a player’s

subjective belief at a prior stage. Second, the prior is a coherence condition on the

player’s types. Third, the prior is the long run relative frequency of repeated events

observed by the player in the past.

Consider the first interpretation. A prior is a subjective belief at a prior stage before

the player received further information which led her to the interim belief ti(ω). With

unawareness, this interpretation is nonsensical. One would have to imagine that the

player had been aware of all relevant aspects of reality at the prior stage, but then

became unaware of some of them (while nevertheless having received more information

regarding other aspects).

In standard Bayesian analysis, Samet (1999) put forward a second interpretation of

a prior as a coherence condition on types: For every event E ∈ Σ and every p ∈ [0, 1],

every type of the player answers affirmatively to the question “Given that tomorrow you

will assign to the event E probability at least p, do you assign to E probability at least

8In the appendix, we prove a more general version in which we require only a common prior on a
space S � S(G) satisfying the condition stated in the proposition.
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p now?” This interpretation is conceptually valid also for unawareness belief structures

with an important qualification: Every type of the player is asked these questions only

for events of which she is aware because otherwise a question by itself may make the

type aware of an event of which she was previously unaware. While this qualification

is vacuous in standard Bayesian analysis - because of the implicit assumption of full

awareness - it implies for unawareness belief structures that each type is “aware” only

of the prior restricted to the events that she is aware of. Moreover, every type can only

perceive the beliefs of her types of which she is aware. This emphasizes that the prior is

derived from types rather than being a primitive of the model.

The third interpretation views the prior as the relative frequency of events observed

previously by the individual as history goes to infinity and before receiving information

which led to her interim belief ti(ω). Again, with unawareness such a interpretation is

nonsensical. One would have to imagine that the player had been measuring all events

in history, but then became unaware of some of them (while nevertheless having received

more information regarding other events). To recapture the validity of the frequentist

interpretation, we must assume that every player can observe only events that she is

aware of interim. This assumption is quite reasonable since a player can only measure

what she is aware of. For instance, meteorologists were unable to measure ozone before

they became aware of it. Yet, the applicability of the frequentist interpretation may

be limited since we allow also for conditioning on unobservable events (such as types

of other players), a caveat that applies not only to unawareness belief structures but to

belief structures in general.

A common prior is an identical prior among all players. In an unawareness belief

structures with a common prior, each type is only “aware” of the common prior among

the types (of hers or other players) that she is aware of. Figure 3 illustrates a common

prior in an unawareness belief structure. Odd (resp. even) states in the upper space

project to the odd (resp. even) state in the lower space. There are two individuals,

one indicated by the solid lines and ellipses and another by dashed lines and ellipses.

Note that the ratio of probabilities over odd and even states in each “information cell”

coincides with the ratio in the “information cell” in the lower space.

The positivity condition (Definition 10) requires that for every player and every type,

the common prior puts strict positive weight on the set of “stationary” states where the

player has this type. It ensures that the common prior indeed imposes consistency on the

types. To see this, consider once again Figure 3. Replace the common prior by a prior

that assigns 1
6

to each state ω9, ω10, ω11 and 3
6

to ω12, and zero to all other states in S ′.

25



The prior probabilities for states in S remain unchanged. This prior is common prior but

it does not satisfy the positivity assumption of Definition 10. In particular, this common

prior does not constrain any player’s types with beliefs on S ′. So, for unawareness belief

structures the positivity assumption on the common prior ensures that the common

prior constrains the beliefs of types not just locally on some space but across the lattice.

Essentially, it is in the spirit of common prior assumption according to which different

beliefs are only due to differences in information. The positivity condition also implies

that for each player there can be at most countably many types in each space. Moreover,

in terms of awareness it implies that for every pair of players, i and j, and every event

E, if i is certain that j is aware of the event E, then j is indeed aware of the event E.

If an unawareness belief structure has a common prior, then the associated flattened

model (see Section 2.13) has a common prior. To see this, note that the common prior al-

ways induces a common prior on the smallest space, which implies that there is a common

prior in the flattened model. If an unawareness belief structure has a positive common

prior, then it does not follow that there is a positive common prior in the flattened model.

To see this consider once again Figure 3. A common prior in the associated flattened

model must ascribe probability zero to all states in S ′. Such common prior clearly vi-

olates the positivity assumption of Definition 10. Again, this example demonstrates a

difference between unawareness belief structures and standard type-spaces.

What are the implications of the absence of speculation on the priors? For standard

type-spaces, the converse to the “No-trade” theorem characterizes the common prior as-

sumption through the absence of speculative trade (Morris, 1994, Bonanno and Nehring,

1999, Feinberg, 2000, Halpern, 2002, Heifetz, 2006). Example 5 shows that we can not

characterize positive common priors or even just common priors on unawareness belief

structures by the absence of common certainty of strict preference to trade. Does our

notion of “No-trade” imply at least the existence of a common prior in the flattened

model? First, note that our notion of “No-trade” is slightly different from the literature:

For instance, Feinberg (2000) characterizes the common prior by the absence of com-

mon certainty of speculation for some states. We show that a positive common prior

implies the absence of common certainty of speculation for all states. Hence, our notion

of “No-trade” implies Feinberg’s notion of “No-trade”.9 Since Feinberg showed that his

notion of “No-trade” implies a common prior for standard type-spaces, the existence of

9We opted for our notion of “local” speculation because intuitively one is interested to know whether
there are some states (as opposed to all states) where players speculate. Our notion of “No-trade”
coincides with Feinberg’s notion on belief closed subsets.
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a common prior for the flattened model of an unawareness belief structure follows from

his result. Note that the impossibility of the converse to a “No-trade” theorem for un-

awareness belief structures is not due to the different notion of “No-trade” employed.

To see this, consider once again Example 5. At state ω6 it is not common certainty

that players want to speculate. Yet, we noticed already that there is no common prior

in this model. Hence, also “No-trade” in the sense of Feinberg does not imply a com-

mon prior in unawareness belief structures. To sum up, we show that it is still possible

to define the common prior assumption under unawareness. Moreover, our “No-trade”

theorem demonstrates that the common prior assumption enhanced by positivity im-

poses discipline. Yet, contrary to standard type-spaces the common prior assumption

is not “provable” by the absence of speculation under unawareness, it just remains (in

principle) “falsifiable”. The possibility of characterizing a common prior by absence of

speculation in the standard type-space versus the impossibility of such characterization

in unawareness belief structures illustrates an important difference between unawareness

belief structures and standard type-spaces.

4.2 Related Literature

There is a growing literature on unawareness both in economics and computer science.

The independent parallel work of Sadzik (2006) is closest to ours. Building to a certain

extent on our earlier work, Heifetz, Meier and Schipper (2006), he presents a framework

of unawareness with probabilistic beliefs in which the common prior on the upmost space

is a primitive. In contrast, we take types as primitives and define a prior on the entire

unawareness belief structure as a convex combination of the type’s beliefs.

In a companion paper, Heifetz, Meier and Schipper (2009a), we apply unawareness

belief structures to develop Bayesian games with unawareness, define solutions, and prove

existence. Moreover, we investigate the robustness of equilibria to uncertainty about

opponents’ unawareness of actions.

Feinberg (2009) discusses games with unawareness by modeling games and many

views thereof, each (mutual) view being a finite sequence of player names i1, ..., in with

the interpretation that this is how i1 views how .... how in views the game. This differs

from our unawareness belief structures in which each state “encapsulates” the views of

the players, their views about other players’ views etc. in a standard and parsimonious

way.

Halpern and Rêgo (2006), Rêgo and Halpern (2007), Li (2006) and Heifetz, Meier
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and Schipper (2009b) and Feinberg (2009) present models of extensive form games with

unawareness and analyze solution concepts for them. Li (2006) is based on Li (2009), in

which she presents a set theoretic model with knowledge and non-trivial unawareness.

A state-space is a product set where each dimension corresponds to an issue. A deci-

sion maker may be unaware of some issues by “living in” a space with less dimensions.

Modica (2008) studies the updating of probabilities and argues that new information

may change posteriors more if it implies also a higher level of awareness. A dynamic

framework for a single decision maker with unawareness is introduced by Grant and

Quiggin (2007). Ewerhart (2001) studies the possibility of agreement under a notion of

unawareness different from the aforementioned literature. Lastly, Ahn and Ergin (2009)

consider explicitly more or less fine descriptions of acts and characterize axiomatically

a partition-dependent subjective expected utility representation. Since the set of all

partitions of a state-space forms a complete lattice, their approach suggests a decision

theoretic foundation of subjective probabilities on our lattice structure.

More recently we learned that Board and Chung (2009) presented a different model

of unawareness in which they also study speculative trade under what they term living

in “denial” and “paranoia”. The precise connection to our results is yet to be explored.

Appendices

A Properties of Belief and Awareness

Proposition 9 Let E and F be events, {El}l=1,2,... be an at most countable collection of

events, and p, q ∈ [0, 1]. The following properties of belief obtain:

(o) Bp
i (E) ⊆ Bq

i (E), for q ≤ p,

(i) Necessitation: B1
i (Ω) = Ω,

(ii) Additivity: Bp
i (E) ⊆ ¬Bq

i (¬E), for p+ q > 1,

(iiia) Bp
i (
⋂∞
l=1El) ⊆

⋂∞
l=1B

p
i (El),

(iiib) for any decreasing sequence of events {El}∞l=1, Bp
i (
⋂∞
l=1El) =

⋂∞
l=1 B

p
i (El),

(iiic) B1
i (
⋂∞
l=1El) =

⋂∞
l=1 B

1
i (El),

(iv) Monotonicity: E ⊆ F implies Bp
i (E) ⊆ Bp

i (F ),
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(va) Introspection: Bp
i (E) ⊆ B1

iB
p
i (E),

(vb) Introspection II: Bp
iB

q
i (E) ⊆ Bq

i (E), for p > 0.

In our unawareness belief structure, Necessitation means that an individual always

is certain of the universal event Ω, i.e. she is certain of “tautologies with the lowest

expressive power.” (ii) means that if an individual believes an event E with at least

probability p, then she can not believe the negation of E with any probability strictly

greater than 1− p. Property (iii a - c) are variations of conjunction, i.e., if an individual

believes a conjunction of events with probability at least p, then she p-believes each of

the events. The interpretation of monotonicity is: If an event E implies an event F , then

p-believing the event E implies that the individual also p-believes the event F . Property

(v) concerns the introspection of belief: If an individual believes the event E with at least

probability p then she is certain that she believes the event E with at least probability

p. Also, if she believes with positive probability that she p-believes an event, the she

actually p-believes this event.

Definition 12 An event E is evident if for each i ∈ I, E ⊆ B1
i (E).

Proposition 10 For every event F ∈ Σ:

(i) CB1(F ) is evident, that is CB1(F ) ⊆ B1
i (CB

1(F )) for all i ∈ I.

(ii) There exists an evident event E such that ω ∈ E and E ⊆ B1
i (F ) for all i ∈ I, if

and only if ω ∈ CB1(F ).

The proof is analogous to Proposition 3 in Monderer and Samet (1989) for a standard

state-space and thus omitted.

Analogously to mutual belief and common belief, we define mutual awareness and

common awareness:

Definition 13 The mutual awareness operator on events is defined by

A(E) =
⋂
i∈I

Ai(E),

and the common awareness operator on events is defined by

CA(E) =
∞⋂
n=1

(A)n (E).
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Mutual awareness of an event E is the event that everybody is aware of E. Common

awareness of an event E is the event that everybody is aware of E, everybody is aware

that everybody is aware of E, everybody is aware of that ... ad infinitum.

Proposition 11 Let E be an event and p, q ∈ [0, 1]. The following multi-person proper-

ties obtain:

1. Ai(E) = AiAj(E) 7.
Bp(E) ⊆ CA(E),

B0(E) = CA(E),

2. Ai(E) = AiB
p
j (E) 8.

Bp(E) ⊆ A(E),

B0(E) = A(E),

3. Bp
i (E) ⊆ AiB

q
j (E), 9. A(E) = B1(S(E)↑)

4. Bp
i (E) ⊆ AiAj(E), 10. CA(E) = B1(S(E)↑)

5. CA(E) = A(E), 11. CB1(S(E)↑) ⊆ A(E)

6. CB1(E) ⊆ CA(E), 12. CB1(S(E)↑) ⊆ CA(E)

Note that properties 1, 5, 9, 10, 11 and 12 also hold for non-measurable events.

B Proofs

B.1 Proof of Remark 1

Define D := {ω′ ∈ Sti(ω) : ti(ω
′) = ti(ω)}. I.e., D = Beni(ω) ∩ Sti(ω). We need to show

that D↑ = Beni(ω).

Consider first “⊆”: If ω′ ∈ D↑ then ω′Sti(ω)
∈ Beni(ω). This is equivalent to

ti(ω
′
Sti(ω)

) = ti(ω) ∈ 4(Sti(ω)). By (3) we have Sti(ω′) � Sti(ω). By (2), ti(ω
′
Sti(ω)

) =

ti(ω
′)|Sti(ω)

. It follows that ti(ω
′)|Sti(ω)

= ti(ω). Thus ω′ ∈ Beni(ω).

“⊇”: ω′ ∈ Beni(ω) if and only if ti(ω
′)|Sti(ω)

= ti(ω). Hence for ω′ ∈ Beni(ω), we

have Sti(ω′) � Sti(ω). By (2) ti(ω
′
Sti(ω)

) = ti(ω
′)|Sti(ω)

= ti(ω). Hence ω′Sti(ω)
∈ D. Thus

ω′ ∈ D↑. �

B.2 Proof of Proposition 1

Ai(E) is an S(E)-based event if there exists a subset D ⊆ S(E) s.t. D↑ = Ai(E).

Assume that Ai(E) is non-empty. Define D := {ω ∈ S(E) : ti(ω) ∈ ∆(S(E))}. By

definition of the awareness operator, D = Ai(E) ∩ S(E). We show that D↑ = Ai(E).

30



Let ω ∈ D↑, that is ω ∈ S ′ for some S ′ � S(E) and ωS(E) ∈ D. This is equivalent

to ti(ωS(E)) ∈ ∆(S(E)). By 0. follows S ′ � Sti(ω). By 3. we have Sti(ω) � S(E). Thus

ω ∈ Ai(E). (Note that Ai(E) = {ω ∈ Ω : Sti(ω) � S(E)}.)

In the reverse direction, let ω ∈ Ai(E), i.e., ti(ω) ∈ ∆(S) with S � S(E). By 0.,

ω ∈ S ′ with S ′ � S. Consider ωS(E). By 2., ti(ωS(E)) = ti(ω)|S(E). Hence ωS(E) ∈ D.

Thus ω ∈ D↑.

Finally, if Ai(E) is empty, then by definition of the awareness operator, we have

Ai(E) = ∅S(E). �

B.3 Proof of Proposition 2

Bp
i (E) is an S(E)-based event if there exists a subset D ⊆ S(E) s.t. D↑ = Bp

i (E).

Assume that Bp
i (E) is non-empty. Define D := {ω ∈ S(E) : ti(ω)(E) ≥ p}. By definition

of the p-belief operator, D = Bp
i (E) ∩ S(E). We show that D↑ = Bp

i (E).

Let ω ∈ D↑, that is ω ∈ S ′ for some S ′ � S(E) and ωS(E) ∈ D. This is equivalent to

ti(ωS(E))(E) ≥ p. By 0. Sti(ωS(E)) = S(E). By 3. we have Sti(ω) � S(E). By 2. it follows

that p ≤ ti(ωS(E))(E) = ti(ω)|S(E)(E). Hence ti(ω)(E) ≥ p. Thus ω ∈ Bp
i (E).

In the reverse direction, let ω ∈ Bp
i (E), i.e., ti(ω)(E) ≥ p. Since ti(ω)(E) ≥ p it

follows that Sti(ω) � S(E). Let ω ∈ S ′. By 0. S ′ � Sti(ω). Consider ωS(E). By 2.,

ti(ωS(E))(E) = ti(ω)(E)|S(E) ≥ p. Hence ωS(E) ∈ D. Thus ω ∈ D↑.

Finally, if Bp
i (E) is empty, then by definition of the p-belief operator, we have Bp

i (E) =

∅S(E). �

B.4 Proof of Proposition 3

1. This property is equivalent to Bp
i (E) ∪ Bp

i ¬B
p
i (E) ⊆ Ai(E). By Property 5. we have

Bp
i (E) ⊆ Ai(E). To see that Bp

i ¬B
p
i (E) ⊆ Ai(E), note that ω ∈ Bp

i ¬B
p
i (E) if and only

if ti(ω)(¬Bp
i (E)) ≥ p. This implies that Sti(ω) � S(¬Bp

i (E)) = S(E). The last equality

follows by Property 8 and Proposition 2. Hence ω ∈ Ai(E).

2. The proof is analogous to 1. The is property is equivalent to
⋂∞
n=1B

p
i (¬Bp

i )
n−1 (E) ⊆

Ai(E). ω ∈ Bp
i (¬Bp

i )
n−1 (E) for any n = 1, 2, ... if and only it ti(ω)

(
(¬Bp

i )
n−1 (E)

)
≥ p

for any n = 1, 2, .... It follows that Sti(ω) � S
(

(¬Bp
i )
n−1 (E)

)
for any n = 1, 2, .... By

Proposition 2, S
(

(¬Bp
i )
n−1 (E)

)
= S(E) for any n = 1, 2, .... Hence ω ∈ Ai(E).

3. First, we show Bp
i Ui(E) ⊆ Ai(E). ω ∈ Bp

i Ui(E) if and only if ti(ω)(Ui(E)) ≥ p.
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It implies Sti(ω) � S(Ui(E)). By Proposition 1 S(Ui(E)) = S(E). Hence Sti(ω) � S(E)

which is equivalent to ω ∈ Ai(E).

Second, we show that Bp
i Ui(E) = ∅S(E) for p ∈ (0, 1]. Since Bp

i Ui(E) ⊆ Ai(E) we have

by monotonicity B1
iB

p
i Ui(E) ⊆ B1

iAi(E). By introspection Bp
i Ui(E) ⊆ B1

iB
p
i Ui(E) ⊆

B1
iAi(E). By additivity, we have Bp

i Ui(E) ⊆ ¬B1
iAi(E). Hence Bp

i Ui(E) = ∅S(E) =

¬B1
iAi(E) ∩B1

iAi(E).

Third, we show that B0
i Ui(E) = Ai(E). ω ∈ Ai(E) if and only if ω ∈ AiUi(E) since

by AA-self-reflection Ai(E) = AiAi(E) and by symmetry AiAi(E) = AiUi(E). Hence,

if ω ∈ Ai(E) then ti(ω)(Ui(E)) is defined. Therefore ω ∈ B0
i Ui(E), and hence Ai(E) ⊆

B0
i Ui(E). Together with the first part of the proof, we conclude B0

i Ui(E) = Ai(E).

4. This property is equivalent to AiUi(E) = Ai(E). ω ∈ AiUi(E) if and only if

Sti(ω) � S(Ui(E)) = S(Ai(E)) = S(E) by Proposition 1. Hence ω ∈ AiUi(E) if and only

if ω ∈ Ai(E).

5. ω ∈ Ai(E) if and only if Sti(ω) � S(E). For any ti(ω), we have Sti(ω) � S(E) if

and only if 1 = ti(ω)(S(E)↑). This is equivalent to ω ∈ B1
i (S(E)↑).

6. First, we show Bp
i (E) ⊆ Ai(E). ω ∈ Bp

i (E) if and only if ti(ω)(E) ≥ p. This

implies that Sti(ω) � S(E), which is equivalent to ω ∈ Ai(E).

Second, we show for p = 0, Ai(E) ⊆ B0
i (E). ω ∈ Ai(E) if and only if ti(ω) ∈ ∆(S)

with S � S(E). Hence ti(ω)(E) ≥ 0, which implies that ω ∈ B0
i (E).

7. ω ∈ Bp
i (E) if and only if ti(ω)(E) ≥ p. This implies that Sti(ω) � S(E). By

Proposition 2 it is equivalent to Sti(ω) � S(Bq
i (E)), which is equivalent to ω ∈ AiBq

i (E).

8. By the definition of negation, S(E) = S(¬E). Hence for ti(ω) ∈ 4(S), S � S(E)

if and only if S � S(¬E).

9. ω ∈
⋂
λ∈LAi(Eλ) if and only if Sti(ω) � S(Eλ) for all λ ∈ L. This is equivalent to

Sti(ω) � supλ∈L S(Eλ) = S
(⋂

λ∈LEλ
)
, which is equivalent to ω ∈ Ai

(⋂
λ∈LEλ

)
.

10. By Proposition 2, S(E) = S(Bp
i (E)). Hence, ω ∈ Ai(E) if and only if ω ∈

AiB
p
i (E).

11. By Proposition 1, S(E) = S(Ai(E)). Hence ω ∈ Ai(E) if and only if ω ∈ AiAi(E).

12. ω ∈ Bp
iAi(E) if and only if ti(ω)(Ai(E)) ≥ p. This implies Sti(ω) � S(Ai(E)).

By Proposition 1, S(Ai(E)) = S(E). Thus ω ∈ Ai(E). To see the converse, by weak

necessitation and introspection, Ai(E) = B1
i (S(E)↑) ⊆ B1

iB
1
i (S(E)↑) = B1

iAi(E). By

Proposition 9 (o), B1
iAi(E) ⊆ Bp

iAi(E). �
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B.5 Proof of Proposition 4

Note that Ui(E) = S(E)↑ \ Ai(E) = {ω ∈ S(E)↑ : ti(ω) ∈ ∆(S) s.t. S � S(E)} =

{ω ∈ Ω : Sti(ω) � S(E) and Sω � S(E)}. The result now follows from the fact that

ti(ω)(S(E)↑) = 1 if Sti(ω) � S(E). �

B.6 Proof of Proposition 5

Note that S(S(E)↑) = S(¬E) = S(E). If Sti(ω) � S(E) and Sω � S(E), then

tZi (ω)(S(E)↑) = tZi (ω)(E) = tZi (ω)(¬E) = 0. Hence in this case ω ∈ Zi(S(E)↑)

and ω ∈ Zi(E) ∩ Zi(¬E). If Sti(ω) � S(E), then tZi (ω)(S(E)↑) = ti(ω)(S(E)↑) =

1 = ti(ω)(E) + ti(ω)(¬E) = tZi (ω)(E) + tZi (ω)(¬E). Hence ω /∈ Zi(S(E)↑) and ω /∈
Zi(E) ∩ Zi(¬E). �

B.7 Proof of Proposition 6

“⊇”: Ui(E) = Zi(S(E)↑) ⊆ Zi(E) where the first equality follows from Proposition 4 and

second inclusion follows from Proposition 5. B1
i (¬E) ⊆ Ai(E). Clearly, B1

i (¬E) ⊆ Zi(E).

“⊆”: ω ∈ Zi(E) if and only if tZi (ω)(E) = 0. If tZi (ω)(¬E) = 0, then ω ∈ Zi(S(E)↑) by

Proposition 5. Thus ω ∈ Ui(E) by Proposition 4. If tZi (ω)(¬E) > 0, then tZi (ω)(¬E) = 1.

Then ω ∈ B1
i (¬E) ⊆ Ai(E). �

B.8 Proof of Proposition 7

We only have to show:

1. tFi : Ω −→ ∆(Ω,F) is measurable, where ∆(Ω,F) is endowed with the sigma-

algebra generated by sets {µ ∈ ∆(Ω,F) : µ(E) ≥ p} for p ∈ [0, 1] and E ∈ F .

2. For all ω ∈ Ω, i ∈ I, and E ∈ F : If [tFi (ω)] = {ω′ ∈ Ω : tFi (ω′) = tFi (ω)} ⊆ E, then

tFi (ω)(E) = 1.

But both properties follow directly from the respective properties in the unawareness

belief structure Ω. �
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B.9 Proof of Theorem 1

Before we prove the theorem, we state following observations:

Remark 5 If P =
(
P S
)
S∈S ∈

∏
S∈S ∆(S) is a positive (common) prior, then also P S ∈

∆(S) is positive (common) prior on S for every S ∈ S.

Remark 6 If µi ∈ ∆(S) is a positive prior for player i on S and S ′ � S, then the

marginal of µi on S ′,
(
µSi
)
|S′ is a positive prior for player i on S ′.

Lemma 2 Let P S be a positive common prior on some finite state-space S and let i ∈
I and ω ∈ Σ such that ti (ω) ∈ 4 (S). Then we have for all ω′ ∈ [ti (ω)] ∩ S that

ti (ω) ({ω′}) = PS({ω′})
PS([ti(ω)]∩S)

.

Proof of the Lemma. Because ti (ω) = ti (ω
′), we have Ai

(
S↑
)

= Ai

(
{ω′}↑

)
⊇

[ti (ω)]↑ ⊇ {ω′}↑. By the definition of a prior on S, P S ({ω′}) = P S
(
{ω′}↑ ∩ Ai

(
{ω′}↑

))
=∫

Ai({ω′}↑)∩S
ti (·)

(
{ω′}↑

)
dP S (·). Note that if ω′′ ∈ S \ [ti (ω)] ∩ S, then we do have

ti (ω
′′)
(
{ω′}↑

)
= 0. Hence, since ti (ω) = ti (ω

′′), for ω′′ ∈ [ti (ω)], we have∫
Ai({ω′}↑)∩S

ti (·)
(
{ω′}↑

)
dP S (·) =

∫
[ti(ω)]∩S

ti (·) ({ω′}) dP S (·) = ti (ω) ({ω′})P S ([ti (ω)] ∩ S).

Because P S is positive, it follows that ti (ω) ({ω′}) = PS({ω′})
PS([ti(ω)]∩S)

. �

Proof of the Theorem. The idea of the proof is follows: First, if the set of states

in which there is common certainty that the first player’s expectation is strictly above α

and the second player’s expectations is weakly below α is nonempty, there is a minimal

state-space such that the common certainty event restricted to this space is nonempty.

Second, this restricted common certainty event is a belief closed subset in which beliefs

are stationary. Third, this set, together with the restriction of types to this set constitutes

a standard state-space to which a standard no-trade argument can be applied.

Note that E>α
1 and E≤α2 may not be events in our unawareness belief structure. The

definition of the belief operator as well as Proposition 9 and 10 can be extended to

measurable subsets of Ω. The proofs are analogous and thus omitted.

Suppose that CB1
(
E>α

1 ∩ E≤α2

)
is non-empty. Then fix a �-minimal state-space S

such that W := CB1
(
E>α

1 ∩ E≤α2

)
∩S 6= ∅. Such a space S exists by the finiteness of Σ.
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By Remark 5, since P is a positive common prior, P S is a positive common prior on

S.

Since W = CB1
(
E>α

1 ∩ E≤α2

)
∩S ⊆ S∩B1

i

(
CB1

(
E>α

1 ∩ E≤α2

))
, the minimality of S

implies that for each ω ∈ CB1
(
E>α

1 ∩ E≤α2

)
∩S we do have Sti(ω) = S and ti (ω) (W ) = 1.

By the definition, ti (ω) ([ti (ω)] ∩ S) = 1, for each ω ∈ CB1
(
E>α

1 ∩ E≤α2

)
∩ S. Since

ti(ω)(W ) = 1, we have ti (ω) (([ti (ω)] ∩ S) \W ) = 0.

By Lemma 2, this implies that P S ({ω′}) = 0, for ω′ ∈ ([ti (ω)] ∩ S) \W such that

ω ∈ CB1
(
E>α

1 ∩ E≤α2

)
∩ S. It follows that P S (([ti (ω)] ∩ S) \W ) = 0 and hence,

P S (([ti (ω)] ∩ S) ∩W ) = P S ([ti (ω)] ∩ S)− P S (([ti (ω)] ∩ S) \W ) = P S ([ti (ω)] ∩ S) >

0. So, we do have P S (W ) > 0.

The fact that P S ({ω′}) = 0, for ω′ ∈ ([ti (ω)] ∩ S)\W such that ω ∈ CB1
(
E>α

1 ∩ E≤α2

)
∩

S = W implies the following: For any random variable x, we have
∑

ω′∈[ti(ω)]∩S x (ω′)P S ({ω′}) =∑
ω′∈W∩[ti(ω)]∩S x (ω′)P S ({ω′}), if [ti (ω)] ∩W 6= ∅. And also

∑
ω∈W x(ω)P S ({ω}) =∑

[ti(ω)]∩W 6=∅
∑

ω∈[ti(ω)]∩S x(ω)P S ({ω}). This is so, because there is a ω ∈ [ti (ω)]∩W and

for this ω, we do have ω ∈ CB1
(
E>α

1 ∩ E≤α2

)
∩ S and [ti (ω)] = [ti (ω)] and this implies

P S (([ti (ω)] ∩ S) \W ) = 0.

For i = 1, 2 we have∑
ω∈W

P S ({ω})
∑

ω′∈[ti(ω)]∩S

v (ω′) ti (ω) ({ω′})

=
∑
ω∈W

P S ({ω})
∑

ω′∈[ti(ω)]∩S

v (ω′)
P S ({ω′})

P S ([ti (ω)] ∩ S)

=
∑

[ti(ω)]∩W 6=∅

∑
ω∈[ti(ω)]∩S

P S ({ω})
∑

ω′∈[ti(ω)]∩S

v (ω′)
P S ({ω′})

P S ([ti (ω)] ∩ S)

=
∑

[ti(ω)]∩W 6=∅

∑
ω∈[ti(ω)]∩S

P S ({ω})
∑

ω′∈[ti(ω)]∩S

v (ω′)
P S ({ω′})

P S ([ti (ω)] ∩ S)

=
∑

[ti(ω)]∩W 6=∅

P S ([ti (ω)] ∩ S)
∑

ω′∈[ti(ω)]∩S

v (ω′)
P S ({ω′})

P S ([ti (ω)] ∩ S)

=
∑

[ti(ω)]∩W 6=∅

∑
ω′∈[ti(ω)]∩S

v (ω′)P S ({ω′})

=
∑
ω′∈W

v (ω′)P S ({ω′}) .

But by the assumptions, we have
∑

ω∈W P S ({ω})
∑

ω′∈[t1(ω)]∩S v (ω′) t1 (ω) ({ω′}) >
αP S (W ) and

∑
ω∈W P S ({ω})

∑
ω′∈[t2(ω)]∩S v (ω′) t2 (ω) ({ω′}) ≤ αP S (W ), a contradic-
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tion, since P S (W ) > 0. �

B.10 Proof of Proposition 8

Before we prove the proposition, we require following auxiliary results:

Remark 7 For any ω ∈ Ω, ti(ω)(E ∩ Ai(E)) = ti(ω)(E) for any event E s.t. S(E) �
Sti(ω).

Proof of the Remark: Let E be an event and ti(ω) be such that S(E) � Sti(ω).

Since E = (E ∩ Ai(E)) ∪ (E ∩ Ui(E)) and Ai(E) ∩ Ui(E) = ∅S(E), we have (E ∩
Ai(E))∩ (E ∩Ui(E)) = ∅S(E). Since ti(ω) is an additive probability measure, ti(ω)(E) =

ti(ω)(E ∩ Ai(E)) + ti(ω)(E ∩ Ui(E)). Since Bp
i Ui(E) = ∅S(E) for p ∈ (0, 1] (BpU -

Introspection in Proposition 3), we must have ti(ω)(E ∩ Ui(E)) = 0. �

We slightly abuse terminology and call a probability measure µi ∈ ∆ (S) a prior for

player i on S if for every event E ∈ Σ with S(E) � S equation (1u) is satisfied, i.e.,

µi(E ∩ S ∩ Ai(E)) =

∫
S∩Ai(E)

ti(·)(E)dµi(·). (3)

The following lemma says that if there is a prior on a state-space then the marginal

on a lower space is a prior as well.

Lemma 3 If µ ∈ ∆ (S ′) is a prior for player i on S ′ and S � S ′, then (µ)|S (the marginal

of µ on S) is a prior for player i on S.

Proof of the Lemma. Let E be an event with S(E) � S and let µ be in-

dividual i’s prior probability measure on S ′ with S ′ � S. We have to show that

µ
(
(rS′S )−1(E ∩ S ∩ Ai(E))

)
=
∫
S∩Ai(E)

ti(·)(E)dµ(·). Since S(E) � S, and by Proposi-

tion 1 S(Ai(E)) = S(E), it follows that (rS′S )−1(E ∩ S ∩ Ai(E)) = E ∩ S ′ ∩ Ai(E),

and therefore µ|S(E ∩ S ∩ Ai(E)) = µ(E ∩ S ′ ∩ Ai(E)). So it remains to show that∫
S∩Ai(E)

ti(·)(E ∩ Ai(E))d(µ|S)(·) =
∫
S′∩Ai(E)

ti(·) (E ∩ Ai(E)) dµ(·).

We first show the following Claim: Let ω ∈ S(E) � S � S ′ such that ω ∈ Ai(E).

Then ti(ω)(E ∩ Ai(E)) = ti(ωS)(E ∩ Ai(E)).
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Proposition 1, ω ∈ Ai(E) and S(E) � S imply that ωS ∈ Ai(E). We have that

ω ∈ Ai(E) implies ti(ω)(E ∩Ai(E)) = ti(ω)(E ∩Ai(E)∩Sti(ω)). By 3 of Definition 1, we

have Sti(ωS) � Sti(ω). And by 1 of Definition 1 ti(ωS)(E ∩ Ai(E)) = ti(ωS)(E ∩ Ai(E) ∩
Sti(ωS)) = ti(ωSti(ωS)

)(E ∩ Ai(E) ∩ Sti(ωS)). By 2 of Definition 1, we have ti(ωSti(ωS)
)(E ∩

Ai(E) ∩ Sti(ωS)) = ti(ω)((r
Sti(ω)

Sti(ωS)
)−1(E ∩ Ai(E) ∩ Sti(ωS))) = ti(ω)(E ∩ Ai(E) ∩ Sti(ω)) =

ti(ω)(E ∩ Ai(E)). Hence the claim is proved.

We have∫
Ai(E)∩S

ti(·)(Ai(E) ∩ E)d(µ|S)(·) =

∫
Ai(E)∩S′

ti(r
S′
S (·))(Ai(E) ∩ E)dµ(·)

=

∫
Ai(E)∩S′

ti(·)(Ai(E) ∩ E)dµ(·),

where the first equation follows from the definition of marginal and the second from the

above claim. �

We say that µ ∈ ∆ (S) is a common prior on S if it is a prior on S for every player

i ∈ I.

Remark 8 Let Ŝ be the upmost state-space in the lattice S, and let (P S
i )S∈S ∈

∏
S∈S ∆(S)

be a tuple of probability measures. Then (P S
i )S∈S is a prior for player i if and only if P Ŝ

i

is a prior for player i on Ŝ and P S
i is the marginal of P Ŝ

i for every S ∈ S.

This remark together with Lemma 3 implies the following:

Remark 9 A common prior (Definition 9) induces a common prior on S, for any S ∈ S.

The converse is not necessarily true unless S is the upmost state-space of the lattice. Note

that it is possible that players have different priors, but at some space S (below the upmost

space) the priors on S coincide. Hence, in such a case they have different priors, but

a common prior on S (and by Lemma 3 also a common prior on spaces less expressive

than S).

We are now ready to prove Proposition 8. In fact, we prove below a version just requir-

ing the existence of a common prior P S on S such that S(G) � S and P S(CB1(
⋂
i∈I [ti(G) =

pi])) > 0. By Remark 9, this is more general than the statement of Proposition 8.

Proof of Proposition 8. By Proposition 10, ω ∈ CB1(F ) if and only if there exists

an event E that is evident such that ω ∈ E ⊆ B1(F ).
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Since for an evident E we have E ⊆ B1
i (E) ⊆ Ai(E) for all i ∈ I. It follows that

P S(E ∩ Ai(E)) = P S(E) for S � S(E). Set F =
⋂
i∈I [ti(G) = pi] and let E = CB1(F ).

By Proposition 1, S(E) = S(G). By Lemma 3 and the properties imposed on ti, we

consider w.l.o.g. a common prior P S(G) on S(G).

P S(G)(E) =

∫
S(G)∩Ai(E)

ti(·)(E)dP S(G)(·)

=

∫
E∩S(G)∩Ai(E)

ti(·)(E)dP S(G)(·) +

∫
(S(G)∩Ai(E))\E

ti(·)(E)dP S(G)(·).

∫
E∩S(G)∩Ai(E)

ti(·)(E)dP S(G)(·) =

∫
E∩S(G)∩Ai(E)

1dP S(G)(·) = P S(G)(E).

The second last equation above follows from the fact that E is evident. So, we have

E ⊆ B1
i (E), that is ti(·)(E) = 1, for ω ∈ E. It follows that∫

(S(G)∩Ai(E))\E
ti(·)(E)dP S(G)(·) = 0. (4)

∫
E∩Ai(E)∩S(G)

ti(·)(G)dP S(G)(·) =

∫
E∩Ai(E)∩S(G)

pidP
S(G)(·) = piP

S(G)(E)

If ω ∈ E = CB1(F ), then ω ∈ E ⊆ B1
i (F ) ⊆ B1

i ([ti(G) = pi]). Note that [ti(G) =

pi] = Bpi
i (G) ∩ B1−pi

i (¬G). Therefore, by monotonicity B1
i ([ti(G) = pi]) ⊆ B1

i (B
pi
i (G)) ∩

B1
i (B

1−pi
i (¬G)). Introspection II implies now that ω ∈ Bpi

i (G)∩B1−pi
i (¬G) = [ti(G) = pi].

So we have ti (ω) (G) = pi, for ω ∈ E.

∫
E∩Ai(E)∩S(G)

ti(·)(G)dP S(G)(·) =

∫
E∩Ai(E)∩S(G)

ti(·)(G ∩ E)dP S(G)(·)

=

∫
S(G)∩Ai(E)

ti(·)(G ∩ E)dP S(G)(·)

−
∫

(S(G)∩Ai(E))\E
ti(·)(G ∩ E)dP S(G)(·).

Since by the monotonicity of probability measures∫
(S(G)∩Ai(E))\E

ti(·)(G ∩ E)dP S(G)(·) ≤
∫

(S(G)∩Ai(E))\E
ti(·)(E)dP S(G)(·),

we must have by equation (4) and non-negativity of probability measures∫
(S(G)∩Ai(E))\E

ti(·)(G ∩ E)dP S(G)(·) = 0.
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Note that P S(G)(G ∩ E) =
∫
S(G)∩Ai(E)

ti(·)(G ∩ E)dP S(G)(·).

Note further that P S(G)(E) = P S(G)(E ∩ Ai(E)) for all i ∈ N since E = CB1(F ) ⊆
Ai(E) for all i ∈ N . Similarly, P S(G)(G ∩ E) = P S(G)(G ∩ E ∩ Ai(E)) for all i ∈ N .

Thus

piP
S(G)(E) = P S(G)(G ∩ E). (5)

Note that by assumption P S(G)(E) > 0.

Since equation (5) holds for all i ∈ I, we must have pi = pj, for all i, j ∈ I. �

B.11 Proof of Remark 4

By Lemma 1 each [ti(E) = pi] is an S(G)-based event. By the definition of the con-

junction of events,
⋂
i∈I [ti(G) = pi] is an S(G)-based event. As remarked after the

definition of the CB1-operator (page 18), this implies that CB1(
⋂
i∈I [ti(G) = pi]) is an

S(G)-based event. Since by assumption this event is nonempty, its base, that is its in-

tersection with S(G), must be nonempty. Therefore, since by assumption S � S(G),

S ∩ CB1(
⋂
i∈I [ti(G) = pi]) must be nonempty (recall that the rS

′
S are surjective, when-

ever defined). The positivity of P S implies now that P S(CB1(
⋂
i∈I [ti(G) = pi])) =

P S(S ∩ CB1(
⋂
i∈I [ti(G) = pi])) > 0. �

B.12 Proof of Proposition 9

(0) Bp
i (E) ⊆ Bq

i (E) for p, q ∈ [0, 1] with q ≤ p is trivial.

(i) B1
i (Ω) ⊆ Ω holds trivially. In the reverse direction, note that ti(ω)(Ω) = ti(ω)(Ω∩

Sti(ω)) = ti(ω)(Sti(ω)) = 1 for all ω ∈ Ω. Thus Ω ⊆ B1
i (Ω).

(ii) ω ∈ Bp
i (E) if and only if ti(ω)(E) ≥ p. Since ti(ω) is an additive probability

measure, ti(ω)(¬E) ≤ 1− p. Hence ω ∈ ¬Bq
i (¬E) for q > 1− p.

(iiia) ω ∈ Bp
i (
⋂∞
l=1El) if and only if ti(ω) (

⋂∞
l=1El) ≥ p. Monotonicity of the prob-

ability measure ti(ω) implies ti(ω)(El) ≥ p for all l = 1, 2, ..., which is equivalent to

ω ∈
⋂∞
l=1B

p
i (El).

(iiib) It is enough to show that any sequence of events {El}∞l=1 with El ⊇ El+1

for l = 1, 2, ... we have Bp
i (
⋂∞
l=1 El) ⊇

⋂∞
l=1 B

p
i (El). ω ∈

⋂∞
l=1 B

p
i (El) if and only if

ti(ω)(El) ≥ p for l = 1, 2, .... Since ti(ω) is a countable additive probability measure, it is

continuous from above. That is, if El ⊇ El+1 for l = 1, 2, ..., we have liml→∞ ti(ω)(El) =
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ti(ω) (
⋂∞
l=1El). Since for every l = 1, 2, ..., ti(ω)(El) ≥ p, we have p ≤ liml→∞ ti(ω)(El) =

ti(ω) (
⋂∞
l=1El). Hence ω ∈ Bp

i (
⋂∞
l=1El).

(iiic) It is enough to show that B1
i (
⋂∞
l=1El) ⊇

⋂∞
l=1B

1
i (El). ω ∈

⋂∞
l=1B

1
i (El) if

and only if ti(ω)(El) = 1 for l = 1, 2, .... Since ti(ω) is a countable additive probability

measure, it satisfies Bonferroni’s Inequality. I.e., ti(ω) (
⋂∞
l=1El) ≥ 1−

∑∞
l=1 1− ti(ω)(El).

Since ti(ω)(El) = 1 for all l = 1, 2, ..., we have 1 − ti(ω)(El) = 0 for all l = 1, 2, ..., and

hence
∑∞

l=1 1 − ti(ω)(El) = 0. It follows that ti(ω) (
⋂∞
l=1El) = 1. We conclude that

ω ∈ B1
i (
⋂∞
l=1 El).

(iv) Since ti(ω) is a probability measure (satisfying monotonicity) for any ω ∈ Ω,

E ⊆ F implies that if ti(ω)(E) ≥ p then ti(ω)(F ) ≥ p.

(va) Let ω ∈ Bp
i (E). Then ti(ω)(E) ≥ p. It follows that for all ω′ ∈ Beni(ω) we have

ti(ω
′)(E) ≥ p. Hence Beni(ω) ⊆ Bp

i (E). Thus ti(ω)(Bp
i (E)) = 1, which implies that

ω ∈ B1
iB

p
i (E).

(vb) Let ω ∈ Bp
i (B

q
i (E)), for some p ∈ (0, 1] and assume by contradiction that

ω /∈ Bq
i (E). Then, since by Propositions 1 and 2 ω ∈ Ai(E), we must have q > 0 and

ω ∈ B1−r
i (¬E) for some r with q > r ≥ 0. By (va), we have ω ∈ B1

i

(
B1−r
i (¬E)

)
. Note

that B1−r
i (¬E) and Bq

i (E) are disjoint because of (ii), and hence B1−r
i (¬E) ⊆ ¬Bq

i (E).

Monotonicity implies now that ω ∈ B1
i (¬Bq

i (E)) , hence, by (ii) ω ∈ ¬Bp
i (B

q
i (E)) a

contradiction to ω ∈ Bp
i (B

q
i (E)). �

B.13 Proof of Proposition 11

1. By Proposition 1, S(E) = S(Aj(E)). Hence ω ∈ Ai(E) if and only if ω ∈ AiAj(E).

2. By Proposition 2, S(E) = S(Bp
j (E)). Hence, ω ∈ Ai(E) if and only if ω ∈ AiBp

j (E).

3. ω ∈ Bp
i (E) if and only if ti(ω)(E) ≥ p. This implies that Sti(ω) � S(E). By Propo-

sition 2, this is equivalent to Sti(ω) � S(Bq
j (E)), which is equivalent to ω ∈ AiBq

j (E).

4. The proof is analogous to 3.

5. We show by induction that An(E) = A(E), for all n ≥ 1. We have ω ∈ A(An(E))

if and only if Sti(ω) � S(An(E)), for all i ∈ I, which, by the induction hypothesis, is the

case if and only if Sti(ω) � S(A(E)), for all i ∈ I. By the definition of “∩”, it is the case

that S(A(E)) = supi∈IS(Ai(E)). By Proposition 1 we have S(Ai(E)) = S(E) and hence

S(A(E)) = S(E). It follows that Sti(ω) � S(A(E)) if and only if Sti(ω) � S(E). But

Sti(ω) � S(E) if and only if ω ∈ Ai(E). Hence we have An(E) = A(E), for all n ≥ 1, and

therefore CA(E) = A(E).
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6. ω ∈ CB1(E) implies ω ∈ B1
i (E) for all i ∈ I. This is equivalent to ti(ω)(E) = 1

for all i ∈ I, which implies Sti(ω) � S(E) for all i ∈ I. Hence, by 5. we have ω ∈ A(E) =

CA(E).

7. First, we show that Bp(E) ⊆ A(E). ω ∈ Bp(E) if and only if ti(ω)(E) ≥ p for all

i ∈ I. Hence ti(ω) ∈ ∆(S) with S � S(E), for all i ∈ I. This implies that ω ∈ Ai(E),

for all i ∈ I. It follows that ω ∈ A(E).

Second, we show that A(E) = B0(E). ω ∈ A(E) if and only if ω ∈ Ai(E) for all i ∈ I
if and only if (by 6. of Proposition 3) ω ∈ B0

i (E) for all i ∈ I if and only if ω ∈ B0(E).

8. The proof follows from 7. and 5.

9. By weak necessitation, A(E) :=
⋂
i∈I Ai(E) =

⋂
i∈I B

1
i (S(E)↑) := B1(S(E)↑).

10. The proof follows from 9. and 5.

11. By definition of common certainty, CB1(S(E)↑) ⊆ B1(S(E)↑). By 9., B1(S(E)↑) =

A(E).

12. The proof follows from 11. and 5. �
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