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Abstract

This paper provides a new explanation for the dominance of the low-powered incentive

contract over the high-powered incentive contract using a mixed model of moral hazard and

adverse selection. We first show that the power of incentives in the second-best contract is

lower than that in the first-best contract in the presence of either unobservable risk aversion

or cost. We then consider the case that both risk aversion and cost of the agent are unob-

servable to the principal. We solve this multidimensional mechanism design problem under

two assumptions with regard to the structures of performance measurement system and wage

contract. It is shown that if the deterministic and stochastic components of different per-

formance measures vary proportionally, the principal is inclined to provide a low-powered

incentive contract. Moreover, it is shown that if the base wage depends only on a quadratic

function rather than the direction of the performance wage vector, no incentive is provided

for most of the performance measures in an orthogonal performance measurement system.
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1 Introduction

The central topic of moral hazard problem is to design incentives to elicit the agent’s effort.

Higher incentive pay will induce the agent to work harder and consequently bring higher

surplus to the principal. However, the arrangements employers typically reach with their

employees in reality look quite different from the incentive contracts derived by economic

theorists. Low-powered incentives are very common in practice, especially within organi-

zations. Many firms prefer to pay fixed compensation and offer continued employment to

all but clearly unsatisfactory employees. Good examples are the government agencies and

public firms, which are generally blamed for poor performance because their managers and

workers lack high-powered incentives. Based on the standard transaction-cost and principal-

agent economics, several theories have been provided to explain why low-powered incentives

are employed even if objective performance measures are available and agents are highly

responsive to incentive pay.

Williamson (1985) argues that weak incentive arises from opportunism and incomplete-

ness of contracts. He shows that the use of high-powered incentives would raise undesirable

side problems such as exploitation, inefficient asset utilization and accounting manipula-

tions. For example, if supplying a single large customer would require a firm to make a

large investment in an asset that cannot be used readily for other purposes, the supplier

may reasonably fear exploitation by the customer: once the investment is made, the cus-

tomer could force a lower price on the supplier. The problem is not simply that one party

to the transaction may end up being treated unfairly. The bigger problem is that as peo-

ple will anticipate this possibility, the transaction may not take place at all. Even if the

manufacturer intends to keep his commitment, a transaction beneficial to both sides may be

aborted because the supplier cannot trust him. One possible solution to this problem is to

write a court enforceable contract specifying how each party must behave under a number

of different contingencies. Unfortunately as Williamson points out, contracts are not always

effective in preventing opportunism in that due to limits to human information-processing

abilities, it is often impossible to anticipate all possible contingencies, let alone specify them

in a contract. This leaves scope for opportunism, so the supplier and manufacturer have to

replace the high-powered market transaction with low-powered incentive inside firms.

Holmstrom and Milgrom (1991) show that the power of incentives on some tasks relies

on the principal’s ability to monitor other aspects of the agent’s performance. The agents

may shift their effort from some activities where their individual contributions are poorly

measured to the better-measured and well-compensated activities. For this reason, high-

powered incentive may be dysfunctional in multi-task environment.

The conclusion of Holmstrom and Milgrom (1991) relies largely on the assumptions that

agent is risk averse and the tasks are substitute. On the contrary, Baker (1992) shows that
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low-powered incentive might arise even with risk neutral agent when the performance measure

used and the principal’s true objective are weakly correlated. That means if the performance

measure does not respond to the agent’s actions in the same way that the principal’s objective

responds to these actions, the firm will reduce the intensity of the incentive contract.

Aside from piece rates or commissions, another way that firms use to compensate agent

is by relative performance evaluation such as awarding promotions to the member of a

work group who performs best. In fact, in some political organizations such as government

agencies, the agents are rewarded mainly on relative performance measures rather than

on their individual output. One function of relative performance evaluation is allowing the

principal to use flatter incentives.1 In this sense, the literature justifying relative performance

evaluations also gives partial explanations on the arising of low-powered incentive.

Lazear and Rosen (1981) show in a standard single moral-hazard framework that the

promotion-based incentive scheme can achieve the same results as other incentive schemes

can. They argue that the dominance of the promotion-based incentive scheme over the

piece-rate linear scheme and the standard bonus scheme arises from the fact that obtaining

ordinal measures generally requires less resources than obtaining cardinal measures. Green

and Stokey (1983) and Nalebuff and Stiglitz (1983) show also in the single moral-hazard

framework that the relative performance evaluation incentive scheme may dominate the

absolute performance evaluation scheme when the agents are risk-averse and there are shocks

that are common to all the agents. Obviously, the promotion-based incentive scheme, by

filtering out common randomness, can reduce the risk that would otherwise be imposed

on the agents and requires compensation. Therefore, the relative performance evaluation

improves the principal’s efficiency.

Another class of literature closely related to the present paper is in the area of multidi-

mensional mechanism design. The multidimensional mechanism design problem arises when

the agent possesses multiple characteristics. Its implementability is much more complicated

than that in the unidimensional mechanism design problem because of the lack of a natural

order on types. The most notable publications about multidimensional mechanism design

include Armstrong (1996), Rochet and Choné (1998) and Basov (2001) among many others.

Armstrong (1996) was the first to formulate this problem in a multiproduct nonlinear pricing

setting. In this seminal paper, he develops an integration along rays technique and character-

izes the pricing contract for the case with cost-based tariff. Rochet and Choné(1998) analyze

1Rank order tournaments is a simple and widely used form of relative performance evaluation. This classical

form of relative performance compensation has the particularity of using only an ordinal ranking of performance.

By awarding high and low prizes based on relative performance, a principal can elicit higher effort level than with

a scheme that involves the same wage bill but equal wages. An agent’s performance is increasing in the spread

between the winner and loser prize, ceteris paribus, rather than the absolute payment levels. It therefore allows

the principal to elicit a higher effort level using lower performance pay.
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a general multidimensional screening model. They show that, in general, the monopolist

will use mechanisms in which there is bunching, i.e., different consumer-types will be treated

equally. They develop a methodology – sweeping technique, for dealing with bunching in

multiple dimensions. Basov (2001) takes advantage of control theoretic tools and develops

a “generalized Hamiltonian approach” for solving the multidimensional mechanism design

problem.

In this paper, we provide a new explanation for the dominance of low-powered over

high-powered incentives from the perspective of multidimensional mechanism design. Our

contributions are three-fold. First, we attribute the missing of incentive to multidimension-

ally asymmetric information. We show that in the presence of one-dimensional asymmetric

information, the second-best incentive contract is flatter than the first-best contract. In the

multidimensional screening model, however, if the base wage depends only on the Σ−norm of

the performance wage, the efficient linear compensation rule contains no incentive component

for most of the performance measures.

Secondly, in contrast to most of the existing literature dealing with the power-of-incentive

issue in the framework of pure moral hazard, our analysis is made in a mixed model of both

moral hazard and adverse selection. The standard moral hazard model concerns only the

trade-off between insurance and incentives. In these environments, the compensation based

on certain “risky” performance measure serves the dual functions of increasing both profits

and risk. A tension between these two functions arises when the agent is risk averse. Higher

pay induces the agent to exert a higher level of effort and thus increases the principal’s profit.

On the other hand, high wage also exposes the agent to unwanted risk, which requires an

extra risk premium as compensation. Consequently, when choosing contract, the principal

trades off the benefits of more effort against higher wage costs. Most of the existing studies

assume that only the agent’s actions are unobservable. In contrast, our paper assumes that

the agent is privately informed about both his actions and types. The principal therefore

is faced with an additional tradeoff – a tradeoff between efficiency and rent extraction. We

show that the incentive contract is inclined to be flatter in mixed model than in pure moral

hazard model.

Thirdly, we develop a “delegating” method for the complex multidimensional mechanism

design problem. The intuition behind this method is a tradeoff between authority and

complexity. As a centralized way of resource allocation, an incentive mechanism vests all the

decision making authority in the principal, but it needs to process information transmitted by

the agent. The multidimensional information increases the principal’s information processing

cost and complexity of writing a contract. The more authority the principal owns, the

more information he has to process. Therefore, in order to save information processing cost

and avoid complexity of writing a multidimensional contract, the principal may choose to

delegate part of his authority to the agent. Two extreme cases of this tradeoff in practice
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are a decentralized market economy which distributes all the decision making authority to

individual agents but their communications requirements are minimal(See Hurwicz (1972,

1979, 1986), Mount and Reiter (1974), Walker (1977), Osana (1978), Tian(1994, 2004, 2006)

among others for detailed discussion); and socialist economy in which a central planner

has almost all the authority but a great amount of information has to be processed. In

this paper, part of the principal’s authority is delegated to the agent under the assumption

that the fixed component of compensation bases only on a quadratic form (Σ − norm) of

the vector of incentive compensation coefficients. This assumption deprives some of the

principal’s degrees of freedom but decreases drastically the amount of information required.

The multidimensional mechanism design problem is therefore easily solved.

The remainder of the paper is organized as follows. The basic multi-task principal-agent

model is specified in Section 2, along with a characterization of the first-best contract. The

results with unobservable risk aversion are examined in Section 3. The results with unob-

servable cost are discussed in Section 4. Section 5 considers the optimal incentive contract

in a general environment where risk aversion and cost are both unobservable. Finally, in

Section 6, some concluding remarks are given.

2 Basic Model

Consider a principal-agent relationship in which the agent controls n activities that influence

the principal’s payoff. The principal is risk neutral and her gross payoff is a linear function

of the agent’s effort vector e:

V (e) = β′e + η, (1)

where the n−dimensional vector β characterizes the marginal effect of the agent’s effort

e on V (e), and η is a noise term with zero mean. The agent chooses a vector of efforts

e = (e1, · · · , en)′ ∈ Rn
+ at quadratic personal cost e′Ce

2 , where C is a symmetric positive

definite matrix. The agent’s preferences are represented by the negative exponential utility

function utility u(x) = −e−rx, where r is the agent’s absolute risk aversion and x is his

compensation minus personal cost.

It is assumed that there is a linear relation between the agent’s efforts and the expected

levels of the performance measures:

Pi(e) = b′ie + εi, i = 1, · · · ,m, (2)

where bi ∈ Rn captures the marginal effect of the agent’s effort e on the performance measure

Pi(e); B = (b1, · · · , bm)′ is an m × n matrix of performance parameters, and it is assumed

that the matrix B has full row rank m so that every performance measure is indispensable;

and ǫ = (ε1, · · · , εm)′ is an m × 1 vector of normally distributed variables with mean zero

and variance-covariance matrix Σ.
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Definition 1 (Orthogonality) A performance system is said to be orthogonal if and only if

b′ibj = 0 and Cov(εi, εj) = 0, for i 6= j, that is, B′B and Σ are both diagonal matrices.

Definition 2 (Signal-noise ratio) The signal-noise ratio of a performance measure Pi =

b′iβ + εi is the ratio of the inner product of the expected marginal effect of activity on a

measure divided by the variance of the noise of the measure: γi =
b′ibi

σ2
i

.

Definition 3 (Congruence) The congruence of a performance measure Pi = b′iβ + εi is

measured by Υi = cos(b̂i, β), where (b̂i, β) is the angle between the vector of payoff sensitivities

β and the vector of performance measure sensitivities bi.

According to this definition, performance measure Pi = b′iβ + εi is incongruent if vector bi

and vector β are linearly independent, which in turn implies that (b̂i, β) 6= 0. Moreover, a

more congruent performance measure is characterized by a smaller angle (b̂i, β), and hence,

implies a higher measure of congruity Υi due to the definition of the cosine.

The principal compensates the agent’s effort through a linear contract:

W (e) = w0 + w′P (e), (3)

where P (e) = (P1(e), · · · , Pm(e))′, w0 denotes the base wage, and w = (w1, · · · , wm)′ the

performance wage. Under this linear compensation rule, the principal’s expected profit is

Πp = β′e − w0 − w′Be, and the agent’s certainty equivalence is

CEa = w0 + w′Be − 1

2
e′Ce − r

2
w′Σw. (4)

The principal’s problem is to design a contract (w0, w) that maximizes her expected profit

Πp while ensuring the agent’s participation and eliciting his optimal effort.

The optimization problem of the principal is thus formulated as:




max
{w0,w,e}

β′e − w0 − w′Be

s.t:IR : w0 + w′Be − 1

2
e′Ce − r

2
w′Σw > 0

IC : e ∈ argmaxẽ

[
w0 + w′Bẽ − 1

2
ẽ′Cẽ − r

2
w′Σw

]
.

The IR constraint ensures that the principal cannot force the agent into accepting the

contract, and here the agent’s reservation utility is normalized to zero; the IC constraint

represents the rationality of the agent’s effort choice.

We now consider the effort choosing problem of the agent for a given incentive scheme

(w0, w). Since the objective is concave by noting that the second-order derivative of CEa

with respect to e is a negative definite matrix −C, the maximizer can be determined by the

first-order condition: Ce = B′w. After replacing e with e∗ = C−1B′w and substituting the

IR constraint written with equality into the principal’s objective function, the principal’s

optimization problem simplifies to:

max
w∈Rn

[
β′C−1B′w − 1

2
w′ (BC−1B′ + rΣ

)
w

]
.
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The optimal wage contract and effort to be elicited are therefore:

wfb =
[
BC−1B′ + rΣ

]−1
BC−1β (5)

wfb
0 =

rwfb′Σwfb − wfb′BC−1B′wfb

2
(6)

efb = C−1B′wfb. (7)

The resulting surplus of the principal is2

πfb =
1

2
β′C−1B′ [BC−1B′ + rΣ

]−1
BC−1β. (8)

A higher incentive pay could induce the agent to implement a higher effort, but it will also

expose the agent to a higher risk. It therefore requires a premium to compensate the risk-

averse agent for the risk he bears. The optimal power of incentive is therefore determined by

the tradeoff between incentive and insurance. Moreover, the results above show that in multi-

task agency relationships the degree of congruity of available performance measures and the

agent’s task-specific abilities also affects the power and distortion of incentive contract, which

is in line with many previously known studies such as those of Feltham and Xie (1994), Baker

(2002) and Thiele (2008).

3 The optimal contract with unobservable risk aversion

The first-best incentive contract stated above relies crucially on the agent’s attitude towards

risk. In the following, we assume that risk aversion r is private information of the agent,

and its distribution function F (r) and density function f(r) supported on [r, r] are common

knowledge to all parties. This assumption is different to most of the previous studies in

which risk aversion is regarded as a publicly observed variable. The principal then has to

offer a contract menu {w0(r̂), w(r̂)} contingent on the agent’s reported “type” r̂ to maximize

her expected payoff. {w0(r̂), w(r̂)} is said to be implementable if the following incentive

compatibility condition is satisfied:

w0(r) +
1

2
w(r)′

[
BC−1B′ − rΣ

]
w(r) > w0(r̂) +

1

2
w(r̂)′

[
BC−1B′ − rΣ

]
w(r̂) (9)

Let U(r, r̂) ≡ w0(r̂) + 1
2w(r̂)′

[
BC−1B′ − rΣ

]
w(r̂), and U(r) ≡ U(r, r). Then the imple-

mentability condition of {U(r), w(r)} is stated equivalently as:

∃w0 : [r, r] → R+,∀(r, r̂) ∈ [r, r]2, U(r) = max
r̂

{
w0(r̂) +

1

2
w(r̂)′

[
BC−1B′ − rΣ

]
w(r̂)

}

(10)

2Notice that the optimal incentive contract wfb could be regarded as a “partial” generalized least squares

regression of the payoff sensitivity β on performance measure sensitivities B′. If the agent is risk neutral (r = 0),

and has no task-specific abilities across n independent tasks, i.e., C = diag{c, c, · · · , c}, wfb is actually the OLS

regression parameter of β on B′.
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The “Taxation Principle” [cf. Guesnerie (1981), Hammond (1979) and also Rochet (1985)]

states that (??) is equivalent to the following very similar condition

∃w0 : Rm → R+,∀r ∈ [r, r], U(r) = max
w

{
w0(w) +

1

2
w′[BC−1B′ − rΣ]w

}
. (11)

It is possible to show that U(·) is continuous, convex 3(thus almost everywhere differentiable),

and satisfies the envelop condition:

U ′(r) = −1

2
w′Σw. (12)

Conversely, if (??) holds and U(r) is convex, then

U(r) > U(r̂) + (r − r̂)U ′(r̂) = U(r̂) − 1

2
(r − r̂)w′(r̂)Σw(r̂),

which implies the incentive compatibility condition U(r) > U(r, r̂). Formerly, we have

Lemma 1 The surplus function U(r) and performance wage function w(r) are implementable

by the principal if and only if:

(1) envelop condition (??) is satisfied;

(2) U(r) is convex in r.

Substituting U(r) into the principal’s expected payoff, we get

Π =

∫ r

r

[β′e∗ − w0(r) − w(r)′Be∗] f(r)dr

=

∫ r

r

{
β′C−1B′w(r) − 1

2
w(r)′

[
BC−1B′ + rΣ

]
w(r) − U(r)

}
f(r)dr.

The principal’s optimization problem is therefore:

max
U(r),w(r)

Π, s.t.:U(r) > 0, U ′(r) = −1

2
w(r)′Σw(r), U(r) is convex. (13)

The following proposition summarizes the solution of the principal’s problem.

Proposition 1 If the hazard rate Φ(r) is nondecreasing, then the optimal wage contract is

given by

wsb(r) =
[
BC−1B′ + Φ(r)Σ

]−1
BC−1β (14)

wsb
0 (r) =

1

2

∫ r

r

wsb(r̃)′Σwsb(r̃)dr̃ − 1

2
wsb(r)′

[
BC−1B′ − rΣ

]
wsb(r), (15)

where Φ(r) ≡ r + F (r)
f(r) .

3One way to define the convex functions is through representing them as maximum of the affine functions,

that is, s(x) is convex if and only if

s(x) = max
a,b∈Ω

(a · x + b)

for some a ∈ Rn, b ∈ R and some Ω ⊂ Rn+1. In this example a = − 1
2
w′Σw, b = w0(w)+ 1

2
w′BC−1B′w, therefore

U(r) = max
(a,b)∈R−×R+

(ar + b) is a convex function in r.
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Proof. See appendix.

To explore some of the properties of our model, let us now work with the special case

in which there exists a one-to-one relationship between the performance measures and the

activities: B = diag{b11, b22, · · · bnn}; the error terms are stochastically independent (Σ =

diag{σ1, · · · , σn}) and the activities are technologically independent( C = diag{c1, · · · , cn}).
Then

wfb
i (r) =

biiβi

b2
ii + rciσ2

i

, (16)

wsb
i (r) =

biiβi

b2
ii +

(
r + F (r)

f(r)

)
ciσ2

i

, i = 1, · · · , n. (17)

It is obvious that wsb
i (r) < wfb

i (r) for all r except for r = r. The following corollary is

immediate.

Corollary 1 Suppose that the tasks are technologically independent, the error terms are

stochastically independent and the activities and performance measures are one-to-one cor-

responding to each other. Then the power of incentives on all tasks is lower than that in the

first-best contract for all types except the least risk-averse one.

If the risk aversion parameter is unobservable to the principal, the less risk-averse agent

gains information rent by mimicking the more risk-averse one. The amount of information

rent gained by an agent depends on the performance wage of agents with larger risk aversion,

and therefore the basic tradeoff between efficiency and rent extraction leads to low-powered

incentive for all but the least risk-averse types.

4 The optimal contract with unobservable cost

In this section we assume that the cost parameter is private information to the agent. To

avoid the complicated multidimensional mechanism design issue momentarily, we assume that

C = cI, that is, the tasks are technologically identical and independent. δ = 1
c is assumed

to be distributed on the support [δ, δ], according to a cumulative distribution function G(δ)

and density g(δ).

A contract menu {w0(δ), w(δ)} is said to be implementable if the following incentive

compatibility condition is satisfied:

w0(δ) +
1

2
w(δ)′ [δBB′ − rΣ] w(δ) > w0(δ̂) +

1

2
w(δ̂)′ [δBB′ − rΣ] w(δ̂),∀(δ, δ̂) ∈ [δ, δ]2. (18)

Let U(δ, δ̂) ≡ w0(δ̂) + 1
2w(δ̂)′ [δBB′ − rΣ] w(δ̂), and U(δ) ≡ U(δ, δ). Then {U(δ), w(δ)} is

called implementable if

∃w0 : [δ, δ] → R+,∀(δ, δ̂) ∈ [δ, δ]2, U(δ) = max
δ̂

{
w0(δ̂) +

1

2
w(δ̂)′ [δBB′ − rΣ] w(δ̂)

}
(19)
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or equivalently,

∃w0 : R→ R+,∀δ ∈ [δ, δ], U(δ) = max
w∈Rm

{
w0(w) +

1

2
w′ [δBB′ − rΣ] w

}
. (20)

U(δ) is necessarily continuous, increasing and convex in δ 4 and satisfies the envelop condi-

tion:

U ′(δ) =
1

2
w′BB′w. (21)

Conversely, similar to the case with unobservable risk aversion, the convexity of U(δ) and

envelop condition (??) implies

U(δ) > U(δ̂) + (δ − δ̂)U ′(δ̂) = U(δ̂) +
1

2
(δ − δ̂)w′BB′w = U(δ, δ̂)

, which in turn implies the implementability of contract. We summarize the above discussion

in the following lemma.

Lemma 2 The surplus function U(δ) and wage function w(δ) are implementable by the

principal if and only if

(1) U ′(δ) = 1
2w′BB′w;

(2) U(δ) is convex in δ.

The second-best δ−contingent contract solves the following optimization problem:




max
w(δ),U(δ)

∫ δ

δ

{
δβ′B′w(δ) − 1

2
w(δ)′ [δBB′ + rΣ] w(δ) − U(δ)

}
g(δ)dδ

s.t: U(δ) > 0, U ′(δ) =
w′BB′w

2
, U(δ) is convex

.

Proposition 2 With unobservable cost, if δH(δ) is decreasing, then the optimal wage is

given by

wsb(δ) =

(
H(δ)BB′ +

rΣ

δ

)−1

Bβ (22)

wsb
0 (δ) =

1

2

∫ δ

δ

wsb(δ̃)′BB′wsb(δ̃)dδ̃ − 1

2
wsb(δ)′ [δBB′ − rΣ] wsb(δ), (23)

where H(δ) ≡ 1 + 1−G(δ)
δg(δ) .

Proof. See appendix.

We now consider a special case of orthogonal performance measurement system, that is,

BB′ = diag{b′1b1, · · · , b′mbm}, and Σ = diag{σ2
1 , · · · , σ2

m}. The first-best and second-best

wage contracts are:

wfb
i (δ) =

b′iβ

b′ibi +
rσ2

i

δ

, (24)

wsb
i (δ) =

b′iβ(
1 + 1−G(δ)

δg(δ)

)
b′ibi +

rσ2
i

δ

, i = 1, · · · , n. (25)

It is apparent that wsb
i (δ) < wfb

i (δ) for all i and all δ ∈ [δ, δ).

4In this case, let a = 1
2
w′BB′w, b = w0(w) − 1

2
w′Σw, then U(δ) = max

a,b
(aδ + b) is convex in δ.
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Corollary 2 For an orthogonal performance measurement system, the power of incentives

on all tasks is strictly lower than that in the first-best contract for all but the most efficient

types.

When the agent possesses private information on his own cost, an agent with higher δ

could accrue information rent by mimicking the agents with smaller δ. To minimize agency

costs, optimality requires a downward distortion of the power of inefficient types’ incentive

wage.

5 The optimal contract with both unobservable cost and

risk aversion

In this section we assume that both efficiency parameter δ and risk aversion r are unobserv-

able to the principal. They are jointly distributed according to density function f(δ, r) on

region [δ, δ] × [r, r]. It is known that solutions to the multidimensional mechanism design

models differ markedly from and are significantly more complex than their one-dimensional

counterparts, essentially because different types of agents cannot be unambiguously ordered.

Lacking methodology in the most general sense, different authors use different assumptions

and methods to solve the multidimensional mechanism design models in the existing liter-

ature. Armstrong (1996) adopts an integration along rays procedure solving the relaxed

problem of the principal, but the envelop condition could be satisfied by the pointwise max-

imizer only by accident, let alone the convexity condition. In order for the contract to be

implementable, he makes two “separable” assumptions on the indirect and density functions.

Rochet and Choné (1998) develop a general technique for dealing with the multi-dimensional

screening problem, but it is workable only in the case where the dimensionality of type space

is as same as the number of the principal’s available instruments. The generalized Hamil-

tonian approach developed by Basov (2005) circumvents this difficulty but it obtains the

optimal contract from a system of partial differential equations, which usually has no an-

alytic solution. Therefore, one often has to rely upon the numerical techniques except for

some very special function form.

In the following, we will treat the choosing of performance wage as a multidimensional

mechanism design problem. In order to get an explicit analytic solution, we impose restric-

tions on the set of implementable allocations by assuming that the performance evaluation

system is such that BB′ = kΣ or the base wage is based on the Σ − norm of performance

wage vector.
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5.1 The performance measurement system with proportionally-varying

deterministic and stochastic components: BB
′ = kΣ

If there exists a constant k ∈ R+ such that BB′ = kΣ, then the deterministic and stochastic

parts of a performance measurement system vary in similar ways. With this assumption, the

agent’s surplus could be represented as a function of a scalar θ1 ≡ kδ − r

U(δ, r) = max
w

[
w0(w) +

1

2
θ1w

′Σw

]
≡ u(θ1). (26)

Then, as in the previous sections, we get the convexity and envelop conditions (u(θ1) is

convex in θ1 and u′(θ1) = 1
2w′Σw), which in turn implies the implementability of contract.

We also define θ2 = kδ + r. Then type vector (δ, r) is transformed linearly to (θ1, θ2). Notice

that θ1 is the only variable affecting the agent’s choice, θ2 is irrelevant and has no informative

value to both parties.

For the convenience of discussion, we introduce some new notations. Let D ≡
{
(δ, r) ∈

R2
+|δ 6 δ 6 δ, r 6 r 6 r

}
and Θ ≡

{
(θ1, θ2) ∈ R2

∣∣ (δ, r) ∈ D
}

denote the domain of the

original and transformed types. θ1 = kδ − r, θ1 = kδ − r are minimal and maximal values

of θ1. Let ϕ(θ1, θ2) = f
(

θ1+θ2

2 , θ2−θ1

2k

)
J = f

(
θ1+θ2

2 , θ2−θ1

2k

)
1
2k denote the joint density of

(θ1, θ2), where J ≡
∣∣∣det

(
∂(δ,r)

∂(θ1,θ2)

)∣∣∣ = 1
2k is the jacobian of the transformation. ϕ1(θ1) ≡

∫
Θ2(θ1)

ϕ(θ1, θ2)dθ2 and Φ1(θ1) ≡
∫ θ1

θ
1

ϕ1(θ1)dθ1 represent the marginal density and marginal

cumulative functions of θ1, where Θ2(θ1) ≡ {θ2 ∈ R+|(θ1, θ2) ∈ Θ}. Denote by H(θ1) ≡
1−Φ1(θ1)

ϕ1(θ1)
the inverse hazard rate of θ1.

Assumption 1 The inverse hazard rate H(θ1) = 1−Φ1(θ1)
ϕ1(θ1)

is nonincreasing in θ1.

Assumption 2 k 6
σr

σδ
, σδ and σr are respectively standard deviations of r and δ.

We further define the following regimes in accordance with three different information struc-

tures. The case where both θ1 and θ2 (or equivalently both δ and r) are observable is labeled

as the first-best regime; the case where only θ1 is observable is called the second-best regime;

the case where neither θ1 nor θ2 is observable is called the third-best regime. We here-

after index the optimal contract and the resulting surplus with a superscript i ∈ {fb, sb, tb}.
Equipped with the above notations and definitions, the principal’s objective is rewritten as:

Π =

∫∫

D

[
δw′Bβ − 1

2
w′(δBB′ + rΣ)w − U(δ, r)

]
f(δ, r)dδdr

=

∫ θ1

θ
1

[
w′Bβ

2k
g(θ1) −

1

2
w′Σwh(θ1) − u(θ1)ϕ1(θ)

]
dθ1,

where g(θ1) ≡
∫
Θ2(θ1)

(θ1 + θ2)ϕ(θ1, θ2)dθ2, h(θ1) ≡
∫
Θ2(θ1)

θ2ϕ(θ1, θ2)dθ2.

As a consequence, the principal’s optimal contract design problem simplifies to a unidi-

mensional mechanism design problem:

max
w(·),u(·)

Π, s.t. : u′(θ1) =
1

2
w′Σw, u(θ1) is a convex function , u(θ1) > 0. (27)
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Using the integration by parts technique, we obtain

∫ θ1

θ
1

u(θ1)ϕ1(θ1)dθ1 =

∫ θ1

θ
1

1

2
w′Σw [1 − Φ1(θ1)] dθ1.

Then the principal’s objective can be expressed as:

Π =

∫ θ1

θ
1

{
1

2k
g(θ1)w

′Bβ − w′Σw

2
[h(θ1) + 1 − Φ1(θ1)]

}
. (28)

We ignore momentarily the convexity condition and simply maximize this expression point-

wise with respect to w to get:

wtb(θ1) =
1

2k

g(θ1)

h(θ1) + 1 − Φ1(θ1)
Σ−1Bβ = ρ(θ1)Σ

−1Bβ, (29)

where

ρ(θ1) ≡
1

2k

g(θ1)

h(θ1) + 1 − Φ1(θ1)
=

1

2k

θ1 + Eθ2
(θ2|θ1)

H(θ1) + Eθ2
(θ2|θ1)

.

The only task left is to check the convexity of function u(θ1). Because

u′′(θ1) =

(
∂w

∂θ1

)′
Σw = ρ′(θ1)ρ(θ1)β

′B′Σ−1Bβ,

u(·) is convex if and only if ρ(·) is nondecreasing. It holds provided that: (i) H(θ1) is

nonincreasing and (ii) η(θ1) ≡ Eθ2
(θ2|θ1) is nonincreasing. Condition (i) is the familiar

monotone hazard rate property, while condition (ii) is equivalent to the requirement that

Cov(θ1, θ2) < 0(See Lemma ?? in appendix). It holds if and only if Assumption ?? is

satisfied because Cov(θ1, θ2) = k2σ2
δ − σ2

r .

Substituting (??) into (??), we get the principal’s expected profit5

Πtb =
1

8k2
Eθ1

[
(θ1 + Eθ2

(θ2|θ1))
2

H(θ1) + Eθ2
(θ2|θ1)

]
β′B′Σ−1Bβ. (30)

If θ1 is observable, we only need to consider the participation constraint u(θ1) > 0 in (??).

Then the second-best wage contract and surplus are:

wsb(θ1) =
1

2k

θ1 + Eθ2
(θ2|θ1)

Eθ2
(θ2|θ1)

Σ−1Bβ (31)

Πsb =
1

8k2
Eθ1

[
(θ1 + Eθ2

(θ2|θ1))
2

Eθ2
(θ2|θ1)

]
β′B′Σ−1Bβ. (32)

If both θ1 and θ2 are observable, we get the first-best contract and surplus as follows:

wfb(θ1, θ2) =
1

2k

θ1 + θ2

θ2
Σ−1Bβ, (33)

Πfb =
1

8k2
Eθ

[
(θ1 + θ2)

2

θ2

]
β′B′Σ−1Bβ, (34)

where θ = (θ1, θ2). It is obvious that wtb(θ1) 6 wsb(θ1), which is resulted from the traditional

rent extraction-efficiency trade-off, but wtb(θ1) and wfb(θ1, θ2) are ambiguously ordered. The

5Eθi(·) is the expectation operator with respect to θi.
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intuition behind this is that owning more information about θ2 is not necessarily helpful to

the principal, since θ2 is irrelevant to the agent’s decision making. The principal’s profits in

these cases are well ordered as:

Πfb =
1

8k2
Eθ

[
(θ1 + θ2)

2

θ2

]
β′B′ΣBβ

=
1

8k2
Eθ1

Eθ2

[
(θ1 + θ2)

2

θ2

∣∣∣∣∣ θ1

]
β′B′ΣBβ

>
1

8k2
Eθ1

[
(θ1 + Eθ2

(θ2|θ1))
2

Eθ2
(θ2|θ1)

]
β′B′ΣBβ = Πsb

>
1

8k2
Eθ1

[
(θ1 + Eθ2

(θ2|θ1))
2

H(θ1) + Eθ2
(θ2|θ1)

]
β′B′ΣBβ = Πtb.

The second line follows from the law of iterated expectation, the third line follows from

Jensen’s inequality since (θ1+θ2)
2

θ2
is convex in θ2.

We summarize the above discussion in the following proposition:

Proposition 3 Suppose that a performance system P = (B,Σ) is such that BB′ = kΣ, and

that Assumptions ?? and ?? are satisfied. Then we have

1. the power of incentive in the third-best wage contract is lower than that in the second-

best wage contract: wfb
i (θ1) < wsb

i (θ1) for all i = 1, · · · ,m and θ1 ∈ [θ1, θ1), but it is

unambiguously ordered compared with the first-best wage wfb(θ1, θ2).

2. the principal’s expected surpluses in these regimes are ordered as:

Πtb
6 Πsb

6 Πfb.

Corollary 3 For an orthogonal performance measurement system, under Assumptions ??

and ??, the third-best performance wage and resulting expected surplus of the principal are

given by:

wtb(θ1) =
1

2k

θ1 + Eθ2
(θ2|θ1)

H(θ1) + Eθ2
(θ2|θ1)




b′1β

σ2
1

b′2β

σ2
2

...

b′mβ
σ2

m




(35)

Πtb =
1

8k2
Eθ1

[
(θ1 + Eθ2

(θ2|θ1))
2

H(θ1) + Eθ2
(θ2|θ1)

]
m∑

i=1

(
b′iβ

σi

)2

. (36)

The efficiency parameter δ and the risk aversion parameter r affect the agent’s payoff in

different ways. δ affects his effort provision (e∗ = δB′w) and thus the expectation of his net

surplus (w0+w′Be∗− 1
2δ e∗

′

e∗), while r affects his risk premium ( r
2w′Σw). Misreporting these

two parameters helps the agent get information rents with two degrees of freedom. However,

if the variations of the deterministic and stochastic components of performance measures
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are propositional such that BB′ = kΣ, all the information relevant to the agent’s decision-

making is contained in a scalar θ1, and the agent is in fact deprived of one of his degrees

of freedom. Therefore, the multidimensional mechanism design problem simplifies to the

traditional one-dimensional problem. It is worth noting that if there is a single performance

measure (m = 1), the condition BB′ = kΣ is necessarily satisfied. Thus the multidimensional

mechanism design problem arises only in the joint presence of multidimensional types and

multiple performance measures.

5.2 The Σ − norm based base wage: w0 = w0(w
′Σw)

To reduce the information required by a mechanism and thus simplify the model, we need

to impose some restrictions on the principal’s authority and then delegate part of it to the

agent. We assume that the base wage is based only on the Σ − norm of performance wage

vector w, that is, w0 = w0(w
′Σw) where w0(·) is a function of a scalar variable. That is to

say, the employer determines the base wage solely on the Σ− adjusted length of wage vector

w rather than on the allocations of intensity among different performance measures. In this

case, the contract menu (U,w) is called Σ−implementable if it belongs to

MΣ =





(U,w) ∈ R+ ×Rm| ∃w0 : R+ → R+, such that

U(δ, r) = max
w̃∈Rm

[
w0(w̃

′Σw̃) +
1

2
w̃′(δBB′ − rΣ)w̃

]
and

w(δ, r) = argmax
w̃∈Rm

[
w0(w̃

′Σw̃) +
1

2
w̃′(δBB′ − rΣ)w̃

]





. (37)

Let

M =





(U,w) ∈ R+ ×Rm| ∃w0 : Rm → R+, such that

U(δ, r) = max
w̃∈Rm

[
w0(w̃) +

1

2
w̃′(δBB′ − rΣ)w̃

]
and

w(δ, r) = argmax
w̃∈Rm

[
w0(w̃) +

1

2
w̃′(δBB′ − rΣ)w̃

]





(38)

be the set of implementable allocations. It is obvious that a Σ−implementable mechanism

is implementable but it is not true vice versa: MΣ ⊂ M. When (U,w) ∈ MΣ, the agent’s

information rent is

U(δ, r) = max
w∈Rm

{
w0(w

′Σw) +
1

2
w′[δBB′ − rΣ]w

}

= max
x

max
w:w′Σw=x2

{
w0(w

′Σw) +
1

2
w′[δBB′ − rΣ]w

}

= max
x

[
w0(x

2) +
1

2

(
δ max

w′Σw=x2

w′BB′w

w′Σw
− r

)
x2

]

= max
x

[
w0(x

2) +
1

2
ϑ1x

2

]

≡ u(ϑ1),

(39)

where ϑ1 = δλ1 − r,

λ1 = max
w′Σw=x2

w′BB′w

w′Σw
= λ1(Σ

−1/2BB′Σ−1/2) = λ1(BB′Σ−1) (40)
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is the first (largest) eigenvalue of matrix BB′Σ−1. The corresponding set of optimal wages

for the agent is

W(x) =
{

w ∈ Rm|Σ1/2w ∈ N (Σ−1/2BB′Σ−1/2 − λ1I), w′Σw = x2
}

, (41)

where N (Σ−1/2BB′Σ−1/2 − λ1I) denotes the eigenspace of matrix Σ−1/2BB′Σ−1/2 corre-

sponding to λ1. (See Lemma ?? in appendix for detailed discussion.) As discussed in previous

sections, (??) implies the envelop condition u′(ϑ1) = 1
2x2 and the convexity of u(ϑ1) in ϑ1,

which is conversely sufficient for the implementability of contract. We further assume that

ϑ2 = δλ1 + r. Then

δ =
ϑ1 + ϑ2

2λ1

r =
ϑ2 − ϑ1

2
.

The principal’s optimization problem is thus formulated as:

max
x

∫∫

Θ

[
ϑ1 + ϑ2

2λ1
max

w∈W(x)
w′Bβ − 1

2
ϑ2x

2 − u(ϑ1)

]
ψ(ϑ1, ϑ2)dϑ1dϑ2

s.t. : u′(ϑ1) =
1

2
x2, u(·) is a convex function, u(ϑ1) > 0,

(42)

where ψ(ϑ1, ϑ2) ≡ f
(

ϑ1+ϑ2

2λ1
, ϑ2−ϑ1

2

)
1

2λ1
represents the joint density of (ϑ1, ϑ2).

Θ =

{
(ϑ1, ϑ2)|

(ϑ1 + ϑ2)

2λ1
∈ [δ, δ],

(ϑ2 − ϑ1)

2
∈ [r, r]

}

denotes the region of transformed variables. Letting y = Σ1/2w, the embedded program

maxw∈W(x) w′Bβ can be expressed as

max
y

y′Σ−1/2Bβ, s.t. : y′y = x2, y ∈ N
(
Σ−1/2BB′Σ−1/2 − λ1I

)
.

Applying Lemma ?? in the Appendix, we get the maxima and maximized value of this

program

y∗ = x
QkQ′

kΣ−1/2Bβ√
β′B′Σ−1/2QkQ′

kΣ−1/2Bβ

Π∗ = x
√

β′B′Σ−1/2QkQ′
kΣ−1/2Bβ.

QkQ′
k is the spectral projector of matrix Σ−1/2BB′Σ−1/2 corresponding to the first eigen-

value λ1. Following from the spectral representation theorem in linear algebra, QkQ′
k is

unique although Qk is usually not. (See Lemma ?? in the appendix for detailed discussion.)

The maxima to the original program maxw∈W(x) w′Bβ is therefore

w∗ = x
Σ−1/2QkQ′

kΣ−1/2Bβ√
β′B′Σ−1/2QkQ′

kΣ−1/2Bβ
. (43)
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Substituting this expression into (??), we can rewrite the optimization problem of the prin-

cipal as

max
u,x

∫∫

Θ

[
ϑ1 + ϑ2

2λ1

√
β′B′Σ−1/2QkQ′

kΣ−1/2Bβx − 1

2
ϑ2x

2 − u(ϑ1)

]
ψ(ϑ1, ϑ2)dϑ1dϑ2

s.t. : u′(ϑ1) =
1

2
x2, u(ϑ1) is a convex function , u(ϑ1) > 0.

(44)

For expositional convenience we define the following notations

µ(ϑ1) ≡
∫

Θ2(ϑ1)

(ϑ1 + ϑ2)ψ(ϑ1, ϑ2)dϑ2

̺(ϑ1) ≡
∫

Θ2(ϑ1)

ϑ2ψ(ϑ1, ϑ2)dϑ2

ψ1(ϑ1) ≡
∫

Θ2(ϑ1)

ψ(ϑ1, ϑ2)dϑ2

Ψ1(ϑ1) ≡
ϑ1∫

ϑ
1

ψ1(s)ds

H(ϑ1) ≡ 1 − Ψ1(ϑ1)

ψ1(ϑ1)
,

where Θ2(ϑ1) = {ϑ2 ∈ R+| (ϑ1, ϑ2) ∈ Θ}, ϑ1 = λ1δ − r , and make the following two as-

sumptions:

Assumption 3 H(ϑ1) is decreasing in ϑ1.

Assumption 4 λ1 6
σr

σδ
, σr and σδ are respectively standard deviations of δ and r.

Integrating with respect to ϑ2, the above optimization can be simplified to a standard one-

dimensional screening problem:

max
u,x

∫

Θ1

[
x

µ(ϑ1)

2λ1

√
β′B′Σ−1/2QkQ′

kΣ−1/2Bβ − x2

2
̺(ϑ1) − u(ϑ1)ψ1(ϑ1)

]
dϑ1

s.t. : u′(ϑ1) =
x2

2
, u(ϑ1) is a convex function , u(ϑ1) > 0.

(45)

Ignoring for a while the convexity condition and applying the standard technique, we obtain

the solution to the relaxed problem:

x∗(ϑ1) =

√
β′B′Σ−1/2QkQ′

kΣ−1/2Bβ

2λ1

µ(ϑ1)

̺(ϑ1) + [1 − Ψ1(ϑ1)]

=

√
β′B′Σ−1/2QkQ′

kΣ−1/2Bβ

2λ1

ϑ1 + Eϑ2
(ϑ2|ϑ1)

H(ϑ1) + Eϑ2
(ϑ2|ϑ1)

.

(46)

We now need to verify the convexity of u(·), which is equivalent to say that x(·) is an

increasing function. It holds provided that (i) Assumption ?? is satisfied, (ii) ξ(ϑ1) ≡
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Eϑ2
(ϑ2|ϑ1) is decreasing in ϑ1. Condition (ii) is satisfied if and only if Assumption ?? holds

because Cov(ϑ1, ϑ2) = λ2
1σ

2
δ − σ2

r 6 0. Substituting (??) into (??) we get the optimal wage

w∗(ϑ1) =
1

2λ1

ϑ1 + Eϑ2
(ϑ2|ϑ1)

H(ϑ1) + Eϑ2
(ϑ2|ϑ1)

Σ−1/2QkQ′
kΣ−1/2Bβ. (47)

The information rent accrued to the agent and surplus of the principal are also easily ob-

tained:

u∗(ϑ1) =
β′B′Σ−1/2QkQ′

kΣ−1/2Bβ

8λ2
1

∫ ϑ1

ϑ
1

(
ϑ1 + Eϑ2

(ϑ2|ϑ1)

H(ϑ1) + Eϑ2
(ϑ2|ϑ1)

)2

dϑ1 (48)

Π∗ =
1

8λ2
1

Eϑ1

[
(ϑ1 + Eϑ2

(ϑ2|ϑ1))
2

H(ϑ1) + Eϑ2
(ϑ2|ϑ1)

]
β′B′Σ−1/2QkQ′

kΣ−1/2Bβ. (49)

The above analysis can be summarized in the following proposition.

Proposition 4 Suppose that Assumptions ?? and ?? are satisfied. Then the Σ−implementable

allocations are given by (??) and (??), and the resulting surplus is given by (??).

In the original model, the contract {w0(δ, r), w(δ, r)} is implementable if for all (δ, δ̂, r, r̂) ∈
[δ, δ]2 × [r, r]2, the following incentive compatibility condition is satisfied:

w0(δ, r) +
1

2
w(δ, r)′ (δBB′ − rΣ) w(δ, r) > w0(δ̂, r̂) +

1

2
w(δ̂, r̂)′ (δBB′ − rΣ) w(δ̂, r̂). (50)

Let

U(δ, r) ≡ w0(δ, r) +
1

2
w(δ, r)′ (δBB′ − rΣ) w(δ, r)

and

U(δ̂, r̂; δ, r) ≡ w0(δ̂, r̂) +
1

2
w(δ̂, r̂)′ (δBB′ − rΣ) w(δ̂, r̂).

Then {U(δ, r), w(δ, r)} is implementable if

U(δ, r) = max
(δ̂,r̂)∈[δ,δ]×[r,r]

{
w0(δ̂, r̂) +

1

2
w(δ̂, r̂)′ [δBB′ − rΣ] w(δ̂, r̂)

}
(51)

Applying “taxation principle”, it could be equivalently represented as:

U(δ, r) = max
w∈Rm

{
w0(w) +

1

2
w′ [δBB′ − rΣ] w

}
.

It implies that (i) the envelop conditions ∂U
∂δ = 1

2w′BB′w, ∂U
∂r = − 1

2w′Σ′w hold; (ii) U(δ, r)

is convex in (δ, r). Conversely, given the envelop and convexity conditions, we have the

following incentive compatibility condition:

U(δ, r) > U(δ̂, r̂) + (δ − δ̂)
∂U

∂δ
+ (r − r̂)

∂U

∂r

= U(δ̂, r̂) +
1

2
(δ − δ̂)w(δ̂, r̂)′BB′w(δ̂, r̂) − 1

2
(r − r′)w(δ̂, r̂)′Σw(δ̂, r̂)

= U(δ̂, r̂, δ, r).
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U(δ, r) and w(δ, r) are therefore implementable. Thus the principal’s optimization problem

is

max
U,w

∫∫

D

[
δw′Bβ − 1

2
w′(δBB′ + rΣ)w − U(δ, r)

]
dδdr

s.t. :
∂U

∂δ
=

1

2
w′BB′w,

∂U

∂r
= −1

2
w′Σ′w,

U(δ, r) > 0,

U(δ, r) is convex.

Ignoring momentarily the convexity condition, the principal’s relaxed problem could be

regarded as an optimal control problem with multiple controls and double-fold integrals.

The generalized Hamiltonian approach offered by Basov (2005) is applicable to this problem.

His method however ensures the existence of solution to the relaxed problem rather than

offers a feasible way for getting it. One often has to rely upon the numerical techniques

to get solution from a system of partial differential equations. A more serious drawback of

his approach is that the solution to the relaxed problem usually cannot solve the complete

problem because the convexity condition could only be satisfied by accident. In fact the

envelop and convexity conditions require that the vector field (1
2w′BB′w,− 1

2w′Σ′w) has a

convex potential function. This puts severe restrictions on the set of implementable wages

and makes the multidimensional problem much more complex than its unidimensional coun-

terpart because the latter requires only that 1
2w′BB′w or − 1

2w′Σw has a convex primitive

function.

In order to get an explicit solution to the complete problem, we therefore sacrifice some of

the principal’s degrees of freedom by restricting our attention in the set of Σ−implementable

allocations MΣ. We decompose the information contained in vector w into two aspects:

its Σ−norm (
√

w′Σw = x) and direction. Meanwhile, the type vector (δ, r) is transformed

linearly to (ϑ1, ϑ2). Notice that, the Σ−norm of wage vector depends only on ϑ1, while its

direction is at free disposal of the agent and depends on neither ϑ1 nor ϑ2. Our Σ−norm-

based assumption on the base wage w0 limits greatly the authority of the principal since he

now has only the discretion to choose x contingent on the agent’s report ϑ̂1. The authority

of the agent, on the contrary, is augmented since he is vested the authority of choosing the

direction of w. Thus, this procedure is virtually a process of delegating part of the principal’s

authority to the agent. Under the assumptions we made, the multidimensional mechanism

problem is solved with the same amount of computational work as in the one-dimensional

screening problem after performing integration with respect to the irrelevant variable ϑ2.

In a special case of orthogonal performance measurement system, we have the following

corollary.
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Corollary 4 For an orthogonal performance measurement system, there is no incentive in

the performance measures with non-largest signal-noise ratio.

Proof. See appendix.

As mentioned above, the wage vector is determined by two aspects: its overall inten-

sity (Σ − norm) and relative allocation among performance measures (direction). In our

dimensionality-reducing procedure, the authority of choosing relative allocation is delegated

to the agent. Then for an orthogonal system in which performance measures are totally

independent to each other, the agent inclines to allocate the overall intensity to the mea-

sures with larger sensitivity (measured by ‖bi‖2) and smaller randomness (measured by σ2
i ).

Therefore he will put the overall intensity of incentives on the measures with largest signal-

noise ratio ‖bi‖2/σ2
i , and the measures with non-largest signal-noise ratios will be assigned

zero incentive.

Holmstrom and Milgrom (1990) show that missing incentive clauses are commonly ob-

served in practice, even when good, objective output measures are available and agents are

highly responsive to incentive pay. In their model, there exist multiple performance measures

with varying degrees of accuracy (the tasks and performance measures are one-to-one corre-

sponding to each other, that is, B = I), and the tasks are substitute to each other. In this

setup, employees will concentrate their attention (effort) on improving the performance mea-

sure tied to high compensation, to the exclusion of hard-to-measure or even non-observable

but important tasks. Therefore an optimal incentive contract can be to pay a fixed wage

independent of measured performance. Our Corollary ?? offers a different explanation to

the missing incentive phenomenon. Notice that in this corollary, we assume the performance

measures are orthogonal to each other, which is quite different to the substitute condition

required by Holmstrom and Milgrom’s paper.

The following corollary provides a comparison of surpluses obtained using two perfor-

mance measurement systems with the same largest signal-noise ratios.

Corollary 5 If two orthogonal performance measurement systems P1 ≡ (B1,Σ11) and P2 ≡
(B2,Σ22) are such that matrices Σ

−1/2
11 B1B

′
1Σ

−1/2
11 and Σ

−1/2
22 B2B

′
2Σ

−1/2
22 have the same first

eigenvalues λ1 and the multiplicities of λ1 in these two matrices are, respectively, k1 and

k2, then Π∗(P1) > Π∗(P2) if and only if the sum of squares of congruences of the first

k1 performance measures in P1 is larger than that of the first k2 performance measures in

P2,i.e.,
∑k1

i=1 Υ2
i1 >

∑k2

i=1 Υ2
i2.

Proof. See appendix.

We next discuss the value of additional performance measures to an existing set. Let

P1 = (B1,Σ11) represent a performance measurement system that reports m1 measures and
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let

P ≡ (B,Σ) =





 B1

B2


 ,


 Σ11 Σ12

Σ21 Σ22







represent a system that reports an additional m2 measures P2 = (B2,Σ22). P1 and P2 are

supposed to be orthogonal to each other. That is to say, Σ12 = 0,Σ21 = 0, B′
1B2 = 0, B′

2B1 =

0. Denote the set of eigenvalues of Σ
−1/2
11 B1B

′
1Σ

−1/2
11 and Σ

−1/2
22 B2B

′
2Σ

−1/2
22 , respectively, by

λi, i = 1, · · ·m1 and µj , j = 1, · · · ,m2. The first eigenvalues λ1 = max16i6m1
λi and µ1 =

max16j6m2
µj have multiplicities k1 and k2 respectively. The following corollary provides

a specification of the incremental expected value of the additional performance measures

provided by P.

Corollary 6 If λ1 > µ1, then Π∗(P) = Π∗(P1); if λ1 = µ1, then Π∗(P) = Π∗(P1) +

Π∗(P2) > Π∗(P1); if λ1 < µ1, then Π∗(P) = Π∗(P2).

Proof. See appendix.

In the environment of complete information (with observable costs and risk aversion),

Feltham and Xie (1994) show that the incremental value of additional performance measures

is always non-negative because the principal can always assign zero incentive to the additional

measures. In this case, the principal’s surplus obtained using the original performance system

P1 = (B1,Σ11) is

πfb(P1) =
δ

2
β′B′

1

(
B1B

′
1 +

r

δ
Σ11

)−1

B1β;

the surplus obtained using the augmented performance measurement system

P = (P1,P2) =





 B1

B2


 ,


 Σ11 Σ12

Σ21 Σ22







is

πfb(P1) =
δ

2
β′B′

(
BB′ +

r

δ
Σ

)−1

Bβ.

The incremental value of additional performance measures is thus:

∆π = πfb(P) − πfb(P1) =
δ

2
β′(D − D1)β,
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where

D1 = B′
1

(
B1B

′
1 +

r

δ
Σ

)−1

B1

D = B′
(
BB′ +

r

δ
Σ

)−1

B

= (B′
1, B

′
2)


 B1B

′
1 + r

δ Σ11 B1B
′
2 + r

δ Σ12

B2B
′
1 + r

δ Σ21 B2B
′
2 + r

δ Σ22




−1 
 B1

B2




= (B′
1, B

′
2)


 H11 H12

H21 H22




−1 
 B1

B2




= (B′
1, B

′
2)


 H−1

11 + H−1
11 H12H

−1
22·1H21H

−1
11 −H−1

11 H12H
−1
22·1

−H−1
22·1H21H

−1
11 H−1

22·1





 B1

B2




= B′
1H

−1
11 B1 + B′

1H
−1
11 H12H

−1
22·1H21H11B1 − B′

1H11H12H
−1
22·1B2

−B′
2H

−1
22·1H21H

−1
11 B1 + B′

2H
−1
22·1B2

Hij = BiB
′
j +

r

δ
Σij ,

H22·1 = H22 − H21H
−1
11 H12.

It follows that D−D1 = B′
1H

−1
11 H12H

−1
22·1H21H11B1−B′

1H11H12H
−1
22·1B2−B′

2H
−1
22·1H21H

−1
11 B1+

B′
2H

−1
22·1B2 = [B′

1H
−1
11 H12 −B′

2]H
−1
22·1[H21H

−1
11 B1 −B2] is a semi-positive definite matrix. It

in turn implies that ∆π = δ
2β′(D − D1)β > 0. As a special case, if P1 is orthogonal to P2,

D − D1 = B′
2H

−1
22 B2; therefore, ∆π = δ

2β′B2

(
B2B

′
2 + r

δ Σ22

)−1
B2β = πfb(P2) > 0.

The incremental value then is zero if and only if the measures provided by the original

performance measurement system are a sufficient statistic for the measures provided by the

augmented system, with respect to the agent’s effort. According to this result, adding a

performance measurement system which is orthogonal to the original one will increase the

surplus for sure. Our result, on the contrary, states that the incremental value is zero if

λ1 > µ1; is positive if λ1 = µ1; is ambiguous if λ1 < µ1. These new results come from the

assumption that w0 is based on the Σ−norm of w. Under this assumption, the performance

measures associated with non-largest eigenvalues are in fact redundant, and the incremental

value is therefore determined by the first eigenvalues of the original and new performance

measurement systems.

6 Conclusion

In this paper, we explain the phenomenon of low-powered incentives from a new perspective.

We consider a case where the agent possesses private information about his own risk aversion

and the cost of efforts. Besides the rents eliciting the agent’s efforts, the principal has to

give up some additional information rents to the agent in order to elicit his truthtelling.

She has to consider two tradeoffs when choosing the optimal incentive contract. One is the
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tradeoff between insurance and incentives; the other is the tradeoff between efficiency and rent

extraction. The former is the fundamental issue in moral hazard problem; while the latter

lies in the core of adverse selection problem. These two “tradeoffs” together lead to lower-

powered incentives. We further show that in the presence of mere unobservable risk aversion

or cost, the second-best incentive contract is flatter than the first-best one. In the case

with multidimensionally asymmetric information, we first assume that the deterministic and

stochastic components of a performance measurement system vary in a similar way. Under

this assumption, the agent’s private information relevant to his decision making is captured

in a single scalar variable. The power of incentive is lower than that in the case where

this scalar variable is observable. Furthermore, we reduce the complexity of computation

by delegating part of the principal’s decision-making authority to the agent. In this setup,

we find that most performance measures are redundant and are compensated by fixed wage.

This provides a new explanation to the frequently-observed phenomenon of missing incentive.
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[19] Rochet, J.-C., and P. Choné (1998), “Ironing, Sweeping, and Multidimensional Screen-

ing”, Econometrica 66: 783-826.

[20] Rochet, J.-C. (1987), “A Necessary and Sufficient Condition for Rationalizability in a

Quasi-linear Context”, Journal of Mathematical Economics 16: 190-200.

[21] Tian, G (1994), “On Informational Efficiency and Incentive Aspects of Generalized

Ratio Equilibria”, Journal of Mathematical Economics, 23:323-337

[22] Tian, G (2004), “A Unique Informationally Efficient Allocation Mechanism in

Economies with Consumption Externalities,” International Economic Review, 45:79-111

[23] Tian, G (2006), “The Unique Informational Efficiency of the Competitive Mechanism

in Economies with Production,” Social Choice and Welfare, 26, 155-182.

[24] Thiele, V (2010) “Task-Specific Abilities in Multi-Task Principal-Agent Relationships”,

Labour Economics, 17(4), 690-698.

[25] Walker, M (1977), “On the Informational Size of Message Spaces”, Journal of Economic

Theory, 15:366-375

[26] Williamson, O. (1985) “The Economic Institutions of Capitalism: Firms, Markets, Re-

lational Contracting”, New York: Free Press.

25



Appendix A.

Proof of Proposition ??. Using the envelop condition U ′(r) = − 1
2w′Σw, the participation

constraint U(r) > 0 simplifies to U(r̄) > 0. Incentive compatibility implies that only the

participation constraint of the most risk averse type can be binding, i.e., U(r̄) = 0. We

therefore get

U(r) =

∫ r̄

r

1

2
w(r̃)′Σw(r̃)dr. (A.1)

The principal’s objective function becomes

Π =

∫ r

r

{
β′C−1B′w(r) − 1

2
w(r)′

[
BC−1B′ + rΣ

]
w(r) −

∫ r̄

r

1

2
w(r̃)′Σw(r̃)dr

}
f(r)dr

which, by an integration of parts, gives

∫ r

r

{
β′C−1B′w(r) − 1

2
w(r)′

[
BC−1B′ +

(
r +

F (r)

f(r)

)
Σ

]
w(r)

}
f(r)dr.

Maximizing pointwise the above expression, we get

wsb(r) =
[
BC−1B′ + Φ(r)Σ

]−1
BC−1β

and

wsb
0 (r) =

1

2

∫ r

r

wsb(r̃)′Σwsb(r̃)dr̃ − 1

2
wsb(r)′

[
BC−1B′ − rΣ

]
wsb(r).

The only work left is to verify the convexity of U(r). Notice that

U ′′(r) = −(Drw
sb)′Σwsb = Φ′(r)wsb(r)′Σ

[
BC−1B′ + Φ(r)Σ

]−1
Σwsb(r).

The second equality comes from the fact that the derivative of wsb with respect to r is6

Drw
sb = −

[
BC−1B′ + Φ(r)Σ

]−1
Φ′(r)Σ

[
BC−1B′ + Φ(r)Σ

]−1
BC−1β

= −Φ′(r)
[
BC−1B′ + Φ(r)Σ

]−1
Σwsb.

It is clear that U ′′(r) > 0 because Φ′(r) > 0 and the matrix Σ
[
BC−1B′ + Φ(r)Σ

]−1
Σ is

positive definite. The proof is completed.

Proof of Proposition ??. Using integration by parts, we get

∫ δ

δ

U(δ)g(δ) =

∫ δ

δ

[
1 − G(δ)

g(δ)

]
w′BB′w

2
dG(δ).

Substituting it into the expression of the principal’s expected surplus and optimizing it with

respect to w, we get the second-best performance wage wsb(δ) , and wsb
0 (δ) is also easily

6Let A be a nonsingular, m × m matrix whose elements are functions of the scalar parameter α, then

∂A−1

∂α
= −A

−1 ∂A

∂α
A

−1
.
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obtained. We now check the convexity of U(δ). The first order derivative of wsb(δ) is

Dδw
sb(δ) = −

[
H(δ)BB′ +

r

δ
Σ

]−1
[
H ′(δ)BB′ − rΣ

δ2

] [
H(δ)BB′ +

rΣ

δ

]−1

Bβ

= −
[
H(δ)BB′ +

rΣ

δ

]−1 [
H ′(δ)BB′ − rΣ

δ2

]
wsb(δ)

= −
[
H(δ)BB′ +

rΣ

δ

]−1 {
−H(δ)

δ
BB′ − rΣ

δ2
+

[
H(δ)

δ
+ H ′(δ)

]
BB′

}
wsb(δ)

=
1

δ

{
(BB′)−1 −

[
H(δ)BB′ +

rΣ

δ

]−1

[H(δ) + δH ′(δ)]

}
BB′wsb(δ).

It can be verified that the matrix 1
δ

{
(BB′)−1 −

[
H(δ)BB′ + rΣ

δ

]−1
[H(δ) + δH ′(δ)]

}
is pos-

itive definite since δ + 1−G(δ)
g(δ) = δH(δ) is decreasing. Therefore

U ′′(δ) = Dδw
sb(δ)BB′wsb(δ)

=
1

δ
wsb(δ)′BB′

{
(BB′)−1 −

[
H(δ)BB′ +

rΣ

δ

]−1

[H(δ) + δH ′(δ)]

}
BB′wsb(δ) > 0,

which implies the convexity of U(δ).

Lemma A.1 E(Y |X) is nonincreasing in X if and only if Cov(X, Y ) 6 0.

Proof. Because Cov(X, Y ) = E(X)E(Y ) − E(XY ) = E(X)E[E(Y |X)] − E[E(XY |X)] =

E(X)E[E(Y |X)] − E[XE(Y |X)] = Cov[X, E(Y |X)], Cov(X, Y ) 6 0 if and only if E(Y |X)

is a nonincreasing function of X.7

Lemma A.2 Let A,B be m × m symmetric matrices and B > 0, then

max
x6=0

x′Ax

x′Bx
= λ1(B

−1/2AB−1/2)

and the optimal x satisfies: B−1/2x ∈ N (B−1/2AB−1/2 − λ1I).

Proof. Let B1/2x√
x′Bx

= y. Then

max
x6=0

x′Ax

x′Bx
= max

‖y‖=1
y′B−1/2AB−1/2y.

Since B−1/2AB−1/2 is a symmetric matrix, there exists an orthogonal matrix P such that

P ′B−1/2AB−1/2P = diag{λ1, · · · , λm}. λ1, · · · , λm are eigenvalues of B−1/2AB−1/2 in de-

scending order; λ1 has multiplicity k. Let P ′y = z, then

max
‖y‖=1

y′B−1/2AB−1/2y = max
‖z‖=1

z′diag{λ1, · · · , λm}z = max
16j6m

λj .

The optimal solution to this problem is z = (z1, · · · , zk, 0, · · · , 0)′ with
∑k

j=1 z2
j = 1. We get

y = Pz =
∑k

i=1 zipi. pi, i = 1, · · · , k are eigenvectors associated with λ1 = · · · = λk, there-

fore y ∈ N (B−1/2AB−1/2 − λ1I), which in turn implies that B−1/2x ∈ N (B−1/2AB−1/2 −
λ1I).

7Here we use a result in probability theory: Cov(ϕ1(X), ϕ2(X)) 6 0 iff ϕ′
1(X)ϕ′

2(X) 6 0.
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Lemma A.3 The maxima x∗ and maximized value Π∗ to program

max :
x

α′x, s.t. : ‖x‖ = a, x ∈ N (A − λI) (A.2)

are

(i) If α′QkQ′
kα 6= 0

x∗ = a
QkQ′

kα√
α′QkQ′

kα
,

Π∗ = a
√

α′QkQ′
kα

(ii) If α′QkQ′
kα = 0

x∗ is an arbitrary non-null element in N (A − λI) with norm a

Π∗ = 0

where λ is an eigenvalue of symmetric matrix A with multiplicity k, N (A−λI) represents the

eigenspace of A associated with λ, Qk = (q1, q2, · · · , qk) are a set of orthonormal eigenvectors

of A corresponding to λ.

Proof. Since A is a real symmetric matrix, there exists an orthogonal matrix Q = (q1, · · · , qn) =

(Qk, Q−k) such that

Q′AQ = diag{λ, · · ·λ, λk+1, · · · , λn}.

Qk = (q1, q2, · · · , qk) are a set of orthonormal eigenvectors associated with λ, Q−k =

(qk+1, · · · , qn) is the set of remaining orthonormal eigenvectors. Applying the spectral decom-

position theorem in matrix algebra, the spectral projector matrix QkQ′
k is unique although

Qk is in general not unique.

(A − λI)x = 0 ⇐⇒ Qdiag{0, · · · , 0, λ − λk+1, · · · , λ − λn}Q′x = 0

Letting Q′x = y, we get

diag{0, · · · , 0, λ − λk+1, · · · , λ − λn}y = 0,

which implies yi = 0, i = k + 1, · · ·n. Then the program (??) can be rewritten as

max :
y

α′Qy, s.t. : ‖y‖ = a, y = (y1, · · · , yk, 0, · · · , 0).

• If α′QkQ′
kα = 0, then Q′

kα = 0. Therefore,

α′Qy = (0, · · · , 0, α′qk+1, α
′qn)




y1

...

yk

0
...

0




= 0
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The maxima to the program (??) is therefore an arbitrary non-null vector in N (A−λI)

with norm a.

• If α′QkQ′
kα 6= 0, it is optimal to choose

y∗ =
a√

α′QkQ′
kα

(Qk,0)′α,

the corresponding optimal value is

Π∗ = a
√

α′QkQ′
kα.

The maxima for the original program is therefore

x∗ = Qy∗ = a
QkQ′

kα√
α′QkQ′

kα
.

Lemma A.4 (Uniqueness of Spectral Representation) A represents an n×n symmetric ma-

trix, Q represents an n × n orthogonal matrix, D = diag{d1, · · · , dn} is an n × n diagonal

matrix such that Q′AQ = D.(Note that every real symmetric matrix is orthogonally diago-

nalizable.) The ith columns of Q are qi, i = 1, · · · , n,respectively. λ1, · · · , λk represent the

distinct eigenvalues of A, ν1, · · · νk represent the (algebraic or geometric) multiplicities of

λ1, · · · , λk, respectively. For j = 1, · · · , k, Sj = {i : di = λj} represent the set comprising

the νj values of i such that di = λj. Then A can be expressed uniquely (aside from the

ordering of the terms) as

A =
k∑

j=1

λjEj (A.3)

where (for j = 1, · · · , k) Ej =
∑

i∈Sj
qiq

′
i, qi, i ∈ Sj are eigenvectors associated with λj.

Proof. Suppose that P is an n×n orthogonal matrix and D∗ = {di} an n×n diagonal matrix

such that P ′AP = D∗ (where P and D∗ are possibly different from Q and D). Further,

denote the first,· · ·nth columns of P by p1, · · · , pn, respectively, and (for j = 1, · · · , k) let

Sj = {i : d∗i = λj}. Then, analogous to the decomposition A =
∑k

j=1 λjEj , we have the

decomposition

A =
k∑

j=1

λjFj

where (for j = 1, · · · , k) Fj =
∑

j∈S∗

j
pjp

′
j . Now, for j = 1, · · · , k, let Qj = (qi1 , ...,qiνj

) and Pj = (pi∗
1
, · · · ,pi∗νj

) where i1, · · · , iνj and i∗1, · · · , i∗νj
are the elements of Sj and S∗

j

, respectively. Then, C(Pj) = N (A − λjI) = C(Qj) (the symbol C(A) denotes the column

space of a matrix A), so that Pj = QjLj for some νj × νj matrix Lj . Moreover, since clearly

Q′
jQj = Iνj

and P ′
jPj = Iνj

,

L′
jLj = L′

jQ
′
jQjLj = P ′

jPj = I,
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implying that Lj is an orthogonal matrix. Thus,

Fj = PjP
′
j = QjLjL

′
jQ

′
j = QjIQ′

j = QjQ
′
j = Ej .

We conclude that the decomposition A =
∑k

j=1 λjFj is identical to the decomposition A =
∑k

j=1 λjEj , and hence that the decomposition A =
∑k

j=1 λjEj is unique (aside from the

ordering of terms).

Proof of Corollary ??. Let P = (B,Σ) be an orthogonal performance measurement sys-

tem with Σ = diag{σ2
1 , σ2

2 , · · · , σ2
m}, BB′ = diag{‖b1‖2, · · · , ‖bm‖2}, then Σ− 1

2 BB′Σ− 1
2 =

diag{λ1, · · · , λm}, λi = ‖bi‖2/σ2
i , i = 1, · · · ,m are eigenvalues in descending order. λ1 =

λ2 = · · · = λk > λk+1 > · · · > λm. Let p = (p1, · · · , pm)′ ∈ Rm be the normalized

eigenvector associated with λ1. Then

p′Σ−1/2BB′Σ−1/2p = λ1

It follows that

λ1

k∑

j=1

p2
j +

m∑

j=k+1

λjp
2
j = λ1

m∑

j=1

p2
j

Then we obtain

pj = 0,∀j = k + 1, · · ·m.

Therefore we write

Qk =


 Q̃k

0


 ,

where Q̃k is a k × k orthogonal matrix. Substituting it into (??), we get

w∗(ϑ1) =
1

2λ1

ϑ1 + Eϑ2
(ϑ2|ϑ1)

H(ϑ1) + Eϑ2
(ϑ2|ϑ1)




b′1β/σ2
1

...

b′kβ/σ2
k

0
...

0




. (A.4)

The optimal wages paid for the performance measures associated with the non-largest eigen-

values are zero: w∗
i (ϑ1) = 0, for all i = k + 1, · · · ,m.

Proof of Corollary ??. For an orthogonal measurement system P = (B,Σ), eigenvalues

of diagonal matrix Σ−1/2BB′Σ−1/2 are in fact the signal-noise ratios of measures in P:

λi =
b′ibi

σ2
i

. Suppose that P1 and P2 are orthogonal systems with the same first eigenvalues

λ1 = λ1(Σ
−1/2
11 B1B

′
1Σ

−1/2
11 ) = λ1(Σ

−1/2
22 B2B

′
2Σ

−1/2
22 ), the multiplicities of λ1 are respectively

k1 and k2 in Σ
−1/2
11 B1B

′
1Σ

−1/2
11 and Σ

−1/2
22 B2B

′
2Σ

−1/2
22 . Then the surplus obtained using
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system P1 is

Π∗(P1) = κ(λ1)β
′B′

1Σ
−1/2
11 Q1Q

′
1Σ

−1/2
11 B1β

= κ(λ1)β
′B′

1


 Λk1

0

0 Λm1−k1





 Ik1

0

0 0





 Λk1

0

0 Λm1−k1


 B1β

= κ(λ1)β
′

k1∑

i=1

b1
i b

1′

i

σ2
i

β

= κ(λ1)

k1∑

i=1

‖b1
i ‖2‖β‖2 cos2(b̂1

i , β)

σ2
i

= κ(λ1)λ1‖β‖2
k1∑

i=1

cos2(b̂1
i , β)

= κ(λ1)λ1‖β‖2
k1∑

i=1

Υ2
i1

Where

κ(λ1) ≡ 1

8λ2
1

Eϑ1

[
(ϑ1 + Eϑ2

(ϑ2|ϑ1))
2

H(ϑ1) + Eϑ2
(ϑ2|ϑ1)

]

=
1

2
Eϑ1

[
(E(δ|ϑ1))

2

H(ϑ1) + Eϑ2
(ϑ2|ϑ1)

]

=
1

2

∫



( ∫
δf(δ,λ1δ−ϑ1)dδ

ψ1(ϑ1)

)2

1−Ψ1(ϑ1)
ψ1(ϑ1)

+
∫

ϑ2ψ(ϑ1,ϑ2)dϑ2

ψ1(ϑ1)

ψ1(θ1)


dϑ1 (A.5)

=
1

2

∫ 


(∫
δf(δ, λ1δ − ϑ1)dδ

)2

Pr(λ1δ − r > ϑ1) +
∫

ϑ2f
(

ϑ1+ϑ2

2λ1
, ϑ2−ϑ1

2

)
1

2λ1
dϑ2


dϑ1

=
1

2

∫ [ (∫
δf(δ, λ1δ − ϑ1)dδ

)2

Pr(λ1δ − r > ϑ1) +
(∫

(2λ1δ − ϑ1)f(δ, λ1δ − ϑ1)dδ
)
]

dϑ1

8 Λk1
= diag

{
1
σ1

, · · · , 1
σk1

}
,Λm1−k1

= diag
{

1
σk1+1

, · · · , 1
σm1

}
, b1

i , i = 1, · · · ,m1 are the

columns of B′
1, Υi1 = cos(b̂1

i , β). Similarly, the surplus obtained using system P2 is:

Π∗(P2) = κ(λ1)λ1‖β‖2
k2∑

i=1

cos2(b̂2
i , β) = κ(λ1)λ1‖β‖2

k2∑

i=1

Υ2
i2, (A.6)

where b2
i , i = 1, · · · ,m2 are columns of matrix B′

2, Υi2 = cos(b̂2
i , β). It follows that Π∗(P1) >

Π∗(P2) if and only if
∑k1

i=1 Υ2
i1 >

∑k1

i=1 Υ2
i2.

Proof of Corollary ??. The matrix

Σ−1/2BB′Σ−1/2 =


 Σ

−1/2
11 B1B

′
1Σ

−1/2
11 0

0 Σ
−1/2
22 B2B

′
2Σ

−1/2
22




has m1 + m2 eigenvalues λ1, · · · , λm1
, µ1, · · · , µm2

.

1. If λ1 > µ1, then the first eigenvalue of Σ−1/2BB′Σ−1/2 is λ1, its multiplicity is still k1.

If q ∈ Rm1 is an eigenvector of Σ
−1/2
11 B1B

′
1Σ

−1/2
11 associated with λ1, then q̂ = (q,0)′ ∈

8Here we drop the limits of integrations.
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Rm1+m2 is clearly the eigenvector of Σ−1/2BB′Σ−1/2 associated with λ1. Subsequently,

if Q1Q
′
1 is the spectral projector of Σ

−1/2
11 B1B

′
1Σ

−1/2
11 associated with λ1, then

Q̂1Q̂
′
1 =


 Q1

0




(
Q′

1 0
)

=


 Q1Q

′
1 0

0 0




is the spectral projector of Σ−1/2BB′Σ−1/2 associated with λ1. Then the expected

revenue of the principal with augmented performance system P is

Π∗(P) =
1

8λ2
1

Eϑ1

[
(ϑ1 + Eϑ2

(ϑ2|ϑ1))
2

H(ϑ1) + Eϑ2
(ϑ2|ϑ1)

]
β′B′Σ−1/2Q̂1Q̂

′
1Σ

−1/2Bβ

=
1

8λ2
1

Eϑ1

[
(ϑ1 + Eϑ2

(ϑ2|ϑ1))
2

H(ϑ1) + Eϑ2
(ϑ2|ϑ1)

]
β′B′

1Σ
−1/2
11 Q1Q

′
1Σ

−1/2
11 B1β

=Π∗(P1)

(A.7)

2. If λ1 = µ1, then the first eigenvalue of Σ−1/2BB′Σ−1/2 is λ1, but its multiplicity is

now k1 + k2. Let Q1(Q2) represent an m1 × k1 (m1 × k1) matrix whose columns are

orthonormal eigenvectors of Σ
−1/2
11 B1B

′
1Σ

−1/2
11 (Σ

−1/2
22 B2B

′
2Σ

−1/2
22 ) associated with λ1

(µ1). Then the columns of matrix

Q̂ =


 Q1 0

0 Q2


 ∈ Rm1+m2

k1+k2

form an orthonormal basis for eigenspace N (Σ−1/2BB′Σ−1/2 − λ1I)

Π∗(P) =
1

8λ2
1

Eϑ1

[
(ϑ1 + Eϑ2

(ϑ2|ϑ1))
2

H(ϑ1) + Eϑ2
(ϑ2|ϑ1)

]
β′B′Σ−1/2Q̂Q̂′Σ−1/2Bβ

=
1

8λ2
1

Eϑ1

[
(ϑ1 + Eϑ2

(ϑ2|ϑ1))
2

H(ϑ1) + Eϑ2
(ϑ2|ϑ1)

]
×

β′
(
B′

1Σ
−1/2
11 Q1Q

′
1Σ

−1/2
11 B1 + B′

2Σ
−1/2
22 Q2Q

′
2Σ

−1/2
22 B2

)
β

= Π∗(P1) + Π∗(P2)

> Π∗(P1)

3. The case λ1 < µ1 is similar to λ1 > µ1, the proof is thus omitted.

32


