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Abstract

Two impatient players bargain about the division of a pie under a standard bargaining
protocol in discrete time with time-invariant recognition probabilities. Instantaneous utility
is linear, but players discount the future by a constant factor. Before bargaining starts,
a player can commit to a utility level. This commitment is perfectly binding initially.
However, once so much time has passed that even receiving the entire pie would yield
less than the committed level of utility, then the commitment becomes void. Intuitively,
this simply means that no player can remain committed to something which has become
impossible. If only one player can commit, his subgame–perfect equilibrium payoff varies
between one half and the entire pie, depending on the distribution of proposal power. If
both players commit sequentially before the bargaining starts, we find a unique perfect
equilibrium division. If both players commit simultaneously, there is a range of perfect
equilibrium divisions. However, no player obtains less than one third of the pie, even with
arbitrarily small proposal power. The equal split is the only division supported by a perfect
equilibrium for any choice of the discount factor and the recognition probabilities.

Keywords: Strategic Bargaining, Commitment, Subgame Perfect Equilibrium.

JEL codes: C72, D74.



1 Introduction

Two players bargain on how to divide a pie of unit size among themselves. They can only
consume the pie once they have agreed on its division. Players are impatient and thus
discount future consumption.

We are interested in the ability to commit as a source of bargaining power. We study
this question using a notion of commitment with the following two characteristics:

First, the commitment is not expressed as a share of the pie but rather in terms of the
pie’s time value discounted back to the beginning of the bargaining process. The simple
rationale behind this specification is that a commitment should be stated in the terms
which the impatient player cares about. Such “value–committing” has been introduced to
the literature earlier by Li (2007) and stands in contrast to idea of “share–committing”,
which is more standard in the literature.

Second, we will assume that the commitment to a certain time value is perfectly binding
as long as the pie has at least the committed value. However, as soon as so much time
has elapsed that even the receipt of the entire pie would not lead to the committed value
anymore, the commitment is assumed to become void. To the best of our knowledge, this
notion of commitment is new to the bargaining literature.

Our assumption simply means that we do not allow a player to remain committed
to something which is not feasible (anymore). This form of commitment confronts the
player with the following dilemma: A high commitment becomes void soon, whereas a low
commitment stays in effect for a long time.

It has long been recognized that an irrevocable (and perfectly credible) commitment
would be an extremely powerful tool. In fact, if only one player can make such a com-
mitment, the strategic situation would resemble that in an ultimatum game, and the
committed player would capture the entire surplus – a result which seems unattractively
lopsided. The literature has looked for ways to obtain more attractive or reasonable results
by limiting the commitment’s credibility. The standard approach which has been taken is
to introduce a cost at which a commitment can be revoked. For instance, Muthoo (1992)
presents a model of bargaining which generalizes the Nash (1953) demand game as well as
Rubinstein’s (1982) well-known alternating offer bargaining procedure. The former is seen
as a polar case of irrevocable commitments, and the latter as an extreme case of revocable
commitments, and the cost of revoking a commitment is used as the parameter scaling
between the two. A typical result in this literature is that the player with the higher cost
of revoking a commitment has an advantage, see, for instance, Muthoo (1996).

A different well-established approach is that of endogenous commitments. For instance,
Fershtman and Seidmann (1993) and Li (2007) consider the possibility that rejecting a
proposal commits a player not to accept any worse proposal in the future, an approach
which can be motivated by shifts in players’ reference points. This approach has been
extended and combined with the cost of revoking approach by Calabuig, Cunyat, and
Olcina (2002). In Cunyat (2004), a player can choose the strength of his commitment
before the bargaining starts. 1

1In a different stream of literature, players can be of a fully rational type or of a stubborn type.
Stubbornness is then a form of commitment. A typical issue within that literature is the possible incentive
of a rational player to try and mimic a stubborn type. Well-known examples are Abreu and Gul (2000)
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In what follows, we will study the following game: One out of two players has access
to the aforementioned commitment device. That player announces his commitment level.
Subsequently, a potentially infinite number of bargaining rounds follows. In each such
round, one of the two players is recognized as the proposer by a draw from a time-invariant
probability distribution. The proposing player makes an offer and the game ends if it is
accepted by the opponent. In case of a rejection the next round starts. However, any
consumption in the next round will be discounted by a constant factor δ(0 < δ < 1). In
line with our earlier discussion, the commitment device punishes the committed player if he
accepts less than his commitment level while the pie’s value is still higher than that level.
But once the “moment of truth“ where the the pie’s value shrinks below the commitment
level has passed, no punishment is given. One interpretation is that the device punishes
“treason“ but forgives “failure“ . Agreeing to less than the commitment while the pie is still
sufficiently valuable is akin to giving in to the opponent (treason, weakness), while making
an agreement after the moment of truth is giving in to the facts after the failure of an
excessively strong bargaining posture. One alternative commitment device would punish
the player if he breaks his commitment before the moment of truth, or as soon as the
moment of truth is reached. After all, in the latter case it is clear that his promise cannot
be fulfilled anymore. It can be shown that this seemingly stronger commitment device does
not confer any bargaining power and is therefore not useful. We will see, however, that
the more flexible commitment device which we propose, does confer substantial bargaining
power.

In any subgame perfect Nash equilibrium of the aforementioned game, we always find
immediate and efficient agreement. The subgame–perfect equilibrium division of the pie is
unique. If the pie shrinks very rapidly, then the ability to commit is extremely valuable.
The committed player can obtain almost the entire surplus even if his proposal power is
close to zero. If the pie shrinks very slowly, commitment creates less bargaining power and
the recognition probabilities become more important in determining the allocation of the
surplus. In the limit as δ goes to one, proposal power and commitment power are “equally
important” in the following sense: If one player can commit and the other player has a
recognition probability close to one, then the surplus is shared almost equally.

We present extensions of the model to games where both players can make a commit-
ment before the bargaining starts. If they do so sequentially, then in the limit as δ goes to
one, the first–mover receives a share between one half and two thirds of the pie, depending
on the recognition probabilities. With irrevocable and permanent commitment, one would
expect the first–mover to obtain the entire surplus.

We also consider the case where players make their commitments simultaneously. With
irrevocable and permanent commitment, one would expect all efficient pie divisions to be
supported by perfect equilibria irrespective of the value of the discount factor. With the
notion of commitment which we suggest, this is no longer true. If the discount factor is
chosen sufficiently large, then we find a rather narrow range of efficient divisions which
are supported by equilibria. More precisely, the part of the pie whose allocation is left
unpredicted by subgame-perfect equilibrium in the limit is at most one fifth. Moreover, a
player can never receive less than one third of the pie in a limit equilibrium – even with

and Kambe (1999). In this paper, we do not consider different types of the same player.
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arbitrarily small proposal power. An implication of this finding is that the equal split is
the unique division with the property that is is an equilibrium regardless of the parameter
choices for the discount factor and the recognition probabilities.

The rest of the paper is organized a follows: In the next section, we formally describe
the game in which only a single player can make a commitment. In section 3, we study
the bargaining stage of that game and solve for perfect equilibrium given the choice of
commitment. In section 4, the game as a whole is solved for perfect equilibrium and the
optimal commitment is thus derived. In section 5, the game is extended to the case where
both players can choose a commitment before the bargaining starts. Again, an analysis of
the bargaining stage given the commitment levels is given. The conclusions of section 4
will be essential for this analysis. Section 6 deals with the optimal choice of commitments
by both players. Section 7 concludes.

2 The game with one committed player

The player set is N = {1, 2}. The two players have a perfectly divisible pie of unit size
at their disposal. They consume the pie once they have agreed on its division. Each
player’s instantaneous utility is equal to his consumption of pie, but future consumption
is discounted by a constant and common factor δ ∈ (0, 1). This implies that at any time t,
the players can divide among themselves a surplus of value δt. In the sequel, we will mean
by the surplus the time value, discounted to time t = 0, of the pie to be divided.

The game G(i) consists of a commitment stage and a bargaining stage. The game starts
with the commitment stage in which player i chooses a level of commitment c ∈ [0, 1]. The
ensuing bargaining stage is set in discrete time t = 0, 1, . . .. At the start of each such round
t, one player is recognized as the proposer according to the probability distribution (β1, β2),
where βk > 0 for both k = 1, 2. This player then proposes a division of the surplus, i.e. a
pair (x1, x2) ∈ R2

+ such that x1 + x2 ≤ δt. If the other player rejects the proposal, round
t+ 1 starts. If the other player accepts the proposal, it is implemented and the game ends
with the following payoffs for the players:

ui(xi, c, t) =

{
xi − λ if xi < c ≤ δt

xi otherwise

uj(xj) = xj, j 6= i

If players disagree forever, payoffs are zero.
If c ≤ δt, we will say that the commitment c is effective at time t. If c > δt, we say that

the commitment c is void at time t.
The extensive form of the model admits two different interpretations. The main inter-

pretation we use here is that a pie of size one is available but the players are impatient.
Their commitments are expressed in terms of time value rather than the physical surplus.
Another interpretation of the model is that a pie of unit size is available initially but phys-
ically shrinks by the factor δ each round, while players are indifferent to the passage of
time. With this interpretation, the commitment is expressed in terms of the physical pie
and expires as soon as that pie has shrunk below the commitment level.
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If player i agrees to receive less than c while the commitment is still effective, he incurs
a cost λ. We are interested in commitments which are perfectly binding until they expire.
Therefore, we assume that λ is large enough so that ui(xi, c, t) < 0 whenever xi < c ≤ δt. 2

Thus, perpetual disagreement is better for player i than the violation of his commitment.
We will use subgame perfect Nash equilibrium as the solution concept and proceed by

backward induction.
Suppose that in the game G(i), player i has chosen the commitment level c at his initial

decision node. Given c, the game’s bargaining stage will start. We refer to this bargaining
stage as the subgame G(i, c), which will be analyzed in the next section. Moreover, we
will denote by G(i, c, t) some subgame of G(i, c) in which the chosen commitment level is
c and which starts in round t ≥ 1 of bargaining. Given a bargaining subgame G(i, c) and
a round t, there are many subgames G(i, c, t), all of which are, however, equivalent with
regard to strategies and payoffs.

3 Subgame perfect bargaining equilibrium

Define

τ(c) =

{
min{t ∈ N|t > ln(c)/ ln(δ)} if c > 0

0 if c = 0

so that in round τ(c) and all later rounds, the commitment c is void. We will say that
the commitment c expires at time τ(c).

Consider a subgame G(i, c, t) for any t ≥ τ(c). Any such subgame is equivalent to a
bargaining game without commitment. In fact, the only difference compared to the game
in Rubinstein (1982) is that proposals are not made in an alternating fashion but that
the proposer in each round is determined by a fixed recognition probability. In the lemma
below, we establish that in such a subgame following the expiry of the commitment, the
available surplus is divided in the proportion of the recognition probabilities.

Lemma 3.1 In any subgame G(i, c, τ(c)), player k’s (k = i, j) expected SPE payoff is
equal to βkδ

τ(c).

Proof: The same approach as in Shaked and Sutton (1984) 3 can be applied, as follows:
Let t ≥ τ(c) and suppose that m1(t) (M1(t)) is the infimum (supremum) of SPE payoffs
which player 1 can get in some particular subgame G(i, c, t). With probability β1, player
1 proposes in round t. In that case, he may offer player 2 a payoff of M2(t + 1). Since
no SPE in any subgame G(i, c, t + 1) gives player 2 a higher payoff, such an offer will be
accepted, and player 1 can secure the payoff δt −M2(t + 1) for himself. With probability

2This is ensured for any λ ≥ 1. A different appealing specification is that λ(c) = c for any c.
3Shaked and Sutton consider a deterministic alternating-offer protocol. Their important insight is,

however, that a player’s SPE payoff “coincides with the sum of shrinkages [of the cake] which occur during
these time periods“ where that player is the proposer. In the case at hand, we merely apply their insight
to the case with a probabilistic proposer protocol.
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β2, player 1 is the responder in round t, and he can guarantee himself a payoff of m1(t+1).
Formally,

m1(t) = β1[δ
t −M2(t+ 1)] + β2[m1(t+ 1)]

A similar consideration explains the supremum, M1(t): If player 1 proposes in round t+ 1,
he can never receive more than δt−m2(t+1) in equilibrium, whereas if he is the responder,
his SPE payoff is bounded above by M1(t+ 1). Hence,

M1(t) = β1[δ
t −m2(t+ 1)] + β2[M1(t+ 1)]

In SPE, no player will reject in round t any proposal which gives him more than the
supremum of his SPE payoffs in a subgame G(i, c, t + 1). Consequently, no player will
make a proposal which gives him less than the complement of the opponent’s supremum
payoff in the continuation game. We see that

m1(t) = δt −M2(t)

m2(t) = δt −M1(t)

Combining with the previous expression for player 1’s supremum gives

M1(t) = β1δ
t(1− δ) +M1(t+ 1)

= β1δ
t(1− δ) + β1δ

t+1(1− δ) +M1(t+ 2)

= . . .

= β1

∑∞
τ(c) δ

t(1− δ)
= β1δ

τ(c)

By the same token, the supremum of SPE payoffs to player 2 in the same subgame is
β2δ

τ(c). This implies the values for m1,m2. Since it turns out that m = M , and since the
choice of a particular subgame G(i, c, t) is arbitrary, SPE payoffs in every subgame G(i, c, t)
are unique. �

By setting a commitment of zero, player i can effectively choose to play the bargaining
game without commitment. The previous lemma implies that in an SPE of that bargaining
game, the surplus will be divided in the proportion of the recognition probabilities, as stated
in the following corollary. We see that the possibility to commit cannot weaken player i’s
bargaining position compared to a simple bargaining game without commitment.

Corollary 3.2 If c = 0, then the SPE payoffs in G(i, c) are (β1, β2).

In the next step, we will consider the case where c > 0 and, furthermore, c + (1 −
βi)δ

τ(c) ≤ 1. In that case, we define

a(c) = max{z ∈ N0|δz ≥ c+ (1− βi)δτ(c)}

In words, round a(c) is the latest round of bargaining in which the amount of pie is
sufficient to satisfy player i’s commitment level and player j’s reservation payoff from any
subgame G(i, c, τ(c)).

We will make use of the following notion of a player’s aspiration.

5



Definition 3.3 For any t = 0, 1, . . . and c ∈ [0, 1], denote by rtk(c) the highest payoff which
player k = i, j receives in any SPE of any subgame G(i, c, t). Then, player k’s aspiration
in round t− 1 is the smallest x such that

uk(x, c, t− 1) ≥ rtk(c)

The definition is illustrated by the following example. We have shown that in a subgame
starting in round τ(c), player i will receive an SPE payoff of βiδ

τ(c). Now consider round
τ(c) − 1. By delaying agreement, player i can guarantee himself a utility of βiδ

τ(c), his
reservation utility in the conventional terminology. However, in round τ(c) − 1, the com-
mitment is still effective. Consequently, player i requires at least an amount of c in order
to achieve (and, in fact, surpass) the aforementioned reservation utility. Our model admits
a difference between the reservation utility and the minimal surplus allocation needed at
a certain point in time to achieve that utility. The latter is what we have defined as the
player’s aspiration. It plays a crucial role in the next lemma.

Lemma 3.4 Suppose that c > 0 and c + (1 − βi)δτ(c) ≤ 1. Then, in the subgame G(i, c),
player i receives an expected payoff of

πi(c) = βi + (1− βi)c− βi(1− βi)δτ(c)

Proof: Consider any subgame G(i, c, t) such that a(c) < t < τ(c). In such a subgame,
player j can achieve an expected payoff of (1− βi)δτ(c) by delaying agreement until round
τ(c). Similarly, player i can achieve an expected payoff βiδ

τ(c). But in case of an agreement
which gives player i some xi < c, his payoff will be ui(xi, c, t) = xi − λ < 0. Consequently,
in round t, player i will not accept any less than c, and player j will not accept any less
than (1 − βi)δ

τ(c). But, since t > a(c), we know that δt is strictly less than the sum of
these two aspirations. Hence, no agreement can be reached in round t.

Now consider round a(c). If no agreement were reached at a(c), then delay would
result until round τ(c). In that case, players would receive payoffs of βiδ

τ(c) and βjδ
τ(c).

Consequently, their aspirations at a(c) are c and βjδ
τ(c). In a subgame at a(c), SPE requires

that the responder receive his aspiration and the proposer take the complement. Hence,
player i’s expected SPE payoff in a subgame starting at round a(c) is βi(δ

a(c)−βjδτ(c))+βjc.
Applying recursive equations to rounds 0, 1, . . . , a(c)−1 reveals that player i and j will

in addition share an amount 1 − δa(c) in the proportion of their recognition probabilities.
Then, we have that

πi(c) = βi(1− δa(c)) + (1− βi)c+ βi(δ
a(c) − (1− βi)δτ(c))

The statement is obtained by rewriting this equation. �

As an illustration of the argument in Lemma 3.4, the following figure depicts a timeline
where a solid line indicates periods in which an agreement can be reached and dotted lines
indicate periods in which delay occurs because the sum of aspirations is higher than the
current surplus.

In the case considered in Lemma 3.4 and illustrated by the above timeline, a(c) is
well–defined, that is, c is sufficiently small so that an agreement can be reached with the
commitment effective. We now turn to the opposite case.
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` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` -b bt = 0 a(c) τ(c)

Lemma 3.5 Suppose that c + (1− βi)δτ(c) > 1. Then, player k’s (k = i, j) expected SPE
payoff in the subgame G(i, c) is equal to βkδ

τ(c).

Proof: If c + (1 − βi)δτ(c) > 1, it is impossible to reach agreement before round τ(c).
The statement follows from Lemma 3.1. �

The following figure shows the delay until round τ(c), from which onwards bargaining
without commitment takes place on the remaining pie of size δτ(c).

` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` -bt = 0 τ(c)

We summarize the results of this section in the following theorem.

Theorem 3.6 Suppose that player i has chosen a commitment level of c. Then, all SPE
of the corresponding bargaining subgame G(i, c) lead to a payoff for player i given by

πi(c) =


βi + (1− βi)c− βi(1− βi)δτ(c) if c+ (1− βi)δτ(c) ≤ 1 and c > 0

βiδ
τ(c) if c+ (1− βi)δτ(c) > 1

βi if c = 0

In the first and third cases, an efficient agreement is reached immediately, so that
πj(c, δ) = 1 − πi(c, δ). Only in the second case, delay occurs. In that case, player j’s
payoff is πj(c, δ) = βjδ

τ(c).

We remark that while SPE payoffs in the bargaining subgame are unique, SPE strategies
are not. We have shown that in a round t such that a(c) < t < τ(c), no agreement is
possible, since the sum of players’ aspirations exceeds the available surplus. In SPE, no
agreement can therefore occur in such a round t. However, it is indeterminate which exact
proposal is made in round t so long as it will be rejected. For example, suppose that i
proposes in round t. He may propose any division (x, 1 − x) as long as x is at least his
aspiration and at most 1.
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4 Optimal commitment

In the previous section, we have found player i’s expected SPE payoff in the subgame
G(i, c) for any commitment level c. Now we proceed by backward induction to the game
G(i) and ask which level of commitment player i will choose in SPE. So far, we have not
used the assumption that each player has a strictly positive recognition probability. It will
become essential in this section.

Lemma 4.1 In any SPE of the game G(i), it is true that c > 0.

Proof: Since limc↓0[c + (1 − βi)δ
τ(c)] = 0, we can find c′ > 0 sufficiently small such

that c′ + (1 − βi)δ
τ(c′) ≤ 1. Then, it follows from Lemma 3.4 that πi(c

′, δ) = βi + (1 −
βi)c

′− βi(1− βi)δτ(c
′). By definition of τ(c), it holds that c > δτ(c) for any c > 0. If βi < 1,

this implies that πi(c
′, δ) > βi + (1− βi)2δτ(c

′), which readily implies πi(c
′, δ) > βi. But by

Corollary 3.2, βi is the payoff to player i from the choice of c = 0. �

Lemma 4.2 In any SPE of the game G(i), it holds that c+ (1− βi)δτ(c) ≤ 1.

Proof: Suppose not. Then, by Theorem 3.6, player i’s SPE payoff in the subgame
G(i, c) equals βiδ

τ(c1) ≤ βiδ. Player i may deviate from his choice of c to a commitment
level of zero. In that case, a payoff of βi > 0 will result. Since βi > βiδ, this deviation is
profitable, a contradiction. �

The two previous lemmas show that only the first case mentioned in Theorem 3.6 is
relevant in an SPE of the entire game, giving rise to the following corollary.

Corollary 4.3 In any SPE of the game G(i), an efficient agreement is reached immedi-
ately. The commitment level c of player i satisfies c > 0 and c + (1 − βi)δτ(c) ≤ 1. The
payoff to player i is given by

πi(c, δ) = βi + (1− βi)c− βi(1− βi)δτ(c)

and the payoff to player j is πj(c, δ) = 1− πi(c, δ).

The expression for player i’s payoff in the above corollary can be rewritten as πi(c, δ) =
c+βi(1−c−βjδτ(c)), and the concomitant payoff of player j as πj(c, δ) = βjδ

τ(c)+βj(1−c−
βjδ

τ(c)). Hence, given that player i’s commitment c satisfies c > 0 and c+ (1−βi)δτ(c) ≤ 1,
the resulting division of the surplus can be interpreted as follows: Player i obtains his
commitment level c, player j his resulting aspiration βjδ

τ(c), and the remainder is divided in
the proportion of the recognition probabilities – as it would be if there were no commitment.
This interpretation makes it intuitively clear that player i should choose the highest c which
satisfies the constraint c + (1 − βi)δτ(c) ≤ 1. This result will be derived formally in what
follows.

We will now define a particular commitment level ψi for player i and then prove that
it will be chosen in SPE.

8



ψi = min
{

1− δn∗βj, δn
∗−1
}
, where

n∗ = min

{
n ∈ N|δn < 1

1 + βj

}
Intuitively, the idea behind the definition of ψi is the following: As pointed out before,

we want to find the highest c which satisfies c+(1−βi)δτ(c) ≤ 1. We will show first that this
optimal level of c expires at time n∗. We then conclude that the optimal commitment is
bounded above by δn

∗−1. (Any higher commitment would expire before n∗.) This explains
the second argument in the minimum function defining ψi. The first argument of the
minimum function follows again from the restriction that c+ (1− βi)δτ(c) ≤ 1.

Theorem 4.4 In any SPE of the game G(i), player i commits to ψi. Agreement is reached
immediately on the division (ϕi, 1− ϕi), where

ϕi = βi + βjψi − βiβjδτ(ψi)

Proof: We have shown that in SPE, c > 0 and c + βjδ
τ(c) ≤ 1. We will now find

the highest level of commitment which satisfies these conditions. We observe first that
c+ βjδ

τ(c) ≤ 1 implies δτ(c) + βjδ
τ(c) < 1, and therefore δτ(c) < (1 + βj)

−1.
Now suppose that in some SPE δ−1δτ(c) + βjδ

−1δτ(c) < 1. Let c′ = δ−1δτ(c) + ε. If
ε > 0 is small enough, then c′ + βjδ

τ(c′) ≤ 1 holds. But then, Theorem 3.6 implies that a
deviation from c to c′ would be profitable.

We have now shown that in SPE

δτ(c) ∈
[
δ(1 + βj)

−1, (1 + βj)
−1
)

τ(c) = n∗

c ∈
(
δn
∗
, δn

∗−1
]

c ≤ 1− βjδn
∗

The second line follows from the first since by construction n∗ is the only natural number
n ∈ N such that δn lies in the specified interval. The third line follows from the second
since δτ(c) < c for any c > 0 by definition of τ(c). Finally, the fourth line follows from
substituting n∗ for τ(c) in the condition c+ (1− βi)δτ(c) ≤ 1.

Under the above conditions, Theorem 3.6 implies that player i’s payoff is given by
βi + βjc − βiβjδ

n∗ . This expression is strictly increasing in c. Hence the optimal level
of commitment is the highest c which satisfies the above set of conditions. Indeed, c =
min

{
1− δn∗βj, δn

∗−1
}

.
The fact that immediate agreement is reached on (ϕi, 1−ϕi) follows from Theorem 3.6. �

From the above expressions for ψi and ϕi, it follows that ϕi ∈ (βi, 1). For any δ, player
i can (strictly) benefit from the ability to commit compared to the situation without a
commitment possibility. However, player i will never receive the entire pie.

We can easily see that in the limit as δ → 1, both the SPE commitment ψi and the
SPE payoff ϕi converge to 1

1+βj
, whence the following corollary.

9



Corollary 4.5 In the limit as δ → 1, the SPE division of the surplus converges to
(xi, xj) = ( 1

1+βj
,

βj
1+βj

).

Let us suppose that βj is very high. Given that the distribution of proposal power
is very favorable to player j, can player i compensate for his weakness if he is given the
possibility to commit? Corollary 4.5 implies that if δ and βj are both close to one, player
i can obtain about one half of the pie. Hence, if δ is large, the power of one player to
commit is just sufficient to compensate for the fact that proposal power is concentrated
with the other player. If δ is small, however, the ability to commit is much more powerful
than that. In fact, for δ close to zero, the player who is able to commit can obtain close to
the entire pie even if his proposal power is arbitrarily small. We illustrate these findings
with the following numerical example.

Example 4.6 Let βj = 0.9. Suppose first that the discount factor is very small, say,
δ = 0.1. In that case, we have that n∗ = 1, and therefore ψi = min {1− 0.09, 1} = 0.91.
The resulting payoff to player i will be ϕi = 0.1 + 0.9× 0.91− 0.1× 0.9× 0.1 = 0.91. Now
suppose that δ = 0.9, then n∗ = 7.4 We have ψi = min {1− 0.478× 0.9, 0.531} = 0.531.
The resulting share of player i is ϕi ≈ 0.1 + 0.9× 0.531− 0.1× 0.9× 0.478 ≈ 0.535.

We see that for small δ, the implications of our notion of commitment are close to
those which one would expect of an irrevocable and everlasting commitment. For large δ,
however, the type of commitment which we propose leads to different results. This pattern
will be observed more often in the sequel of the paper, when we deal with games in which
both players have access to the commitment device.

5 Bargaining with two committed players

In this section, we will consider a bargaining (sub–)game GB(c1, c2). In this game, the
two players bargain according to the protocol specified earlier for the game G(i). That is,
in each round a proposer is determined by the probability distribution β. However, both
players k = 1, 2 are committed and thus have the following utility function.

uk(xk, ck, t) =

{
xk − λ < 0 if xk < ck ≤ δt

xk otherwise

We will find the SPE payoffs in the game GB(c1, c2).
Henceforth, we will use i to denote the player with the highest commitment level. That

is, we assume without loss of generality that ci ≥ cj.

Definition 5.1 Suppose both players use the commitment device (cj > 0). We will say
that cj expires soon after ci if cj > ψjδ

τ(ci).

4We note that 0, 96 ≈ 0.531 and 0.97 ≈ 0.478. The former is just above the relevant threshold of
1

1+0.9 ≈ 0.526.
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The condition cj > ψjδ
τ(ci) is equivalent to cj+βiδ

τ(cj) > 1. Moreover, if cj is sufficiently
small for a(cj) to be well–defined, then the condition is also equivalent to τ(ci) > a(cj).
Intuitively, if cj expires soon after ci, it is impossible to reach agreement when ci is already
void but cj is still effective. In the sequel, we will find the SPE payoffs by backward
induction. The resulting payoff function will distinguish four cases. One distinction is
whether cj does or does not expire soon after ci. The other distinction is whether or not
agreement is possible at t = 0.

To find the SPE payoffs, let us suppose first that delay lasts until round τ(cj), that is,
until even the lower of the two (strictly positive) commitments has just expired. Then, the
remaining surplus δτ(cj) will be divided in the proportion βi : βj. The argument is as in
Lemma 3.1.

Now go backwards to the situation just before cj expires. Here, player i’s aspiration is
βiδ

τ(cj). But player j is still committed, so that his aspiration is cj. If cj + βiδ
τ(cj) > 1, no

agreement can be reached before round τ(cj). If, to the contrary, cj + βiδ
τ(cj) ≤ 1, then

an agreement before round τ(cj) is only possible until round a(cj), when the surplus is at
least cj + βiδ

τ(cj). The argument is as in Lemma 3.4.
If (and only if) cj expires soon after ci as by Definition 5.1, then player i’s commitment

is effective at time a(cj). Suppose that this is indeed the case. Then, it remains impossible
to reach an agreement at a(cj) since now the aspirations are equal to the commitments
and hence the surplus would have to be at least ci + cj for an agreement to occur. Suppose
that ci + cj > 1. Then, it is impossible to find agreement before round τ(cj). Formally, we
have the following result.

Lemma 5.2 Suppose that commitments are strictly positive, cj expires soon after ci, and
sum up to strictly more than one. Then SPE payoffs in the bargaining subgame are given
by πk = βkδ

τ(cj) for k = i, j. 5

Continue to suppose that commitments are strictly positive and cj expires soon after
ci but suppose now that ci + cj ≤ 1. We have pointed out previously that no agreement
is possible between rounds a(cj) and τ(cj). Moreover, we have seen that at a(cj) and
any earlier round, the aspirations are equal to the commitments. Consequently, once the
surplus has shrunk below ci+cj, delay until τ(cj) will result. Consider round τ(ci+cj)−1.
Here, an agreement can be made. Under this agreement, the responding player will receive
exactly his commitment level, whereas the proposing player receives the rest of the available
surplus. Continuing backwards from the said round until the start of the game is done
easily in a way similar to Lemma 3.1. The following figure provides an illustration of the
timeline of bargaining in this case. Again, solid lines represent periods where agreement
can be reached.

Formally, we now arrive at the following result:

5In the main text, we have also discussed the case where the lower commitment cj is so high that
a(cj) is not well–defined. We have pointed out that delay until τ(cj) also occurs in that case. Since
cj + βiδ

τ(cj) > 1 implies ci + cj > 1, we do not treat this case in a seperate lemma.
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-` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `b b b bt = 0 τ(ci + cj) a(cj) τ(ci) τ(cj)

Lemma 5.3 Suppose that commitments are strictly positive, cj expires soon after ci, and
ci + cj ≤ 1. Then, SPE payoffs in the bargaining subgame are given by:

πi = βi(1− δτ(ci+cj)−1) + (1− βi)ci + βi(δ
τ(ci+cj)−1 − cj)

= (1− βi)ci − βicj + βi

= (1− βi)ci + βi(1− cj)

Remark 5.4 Since τ(1) = 1, Lemma 5.3 implies that if cj expires soon after ci and
ci + cj = 1, then each player receives a payoff equal to his commitment in equilibrium.

Next, we turn to the case where cj does not expire soon after ci. In round a(cj),
player i’s commitment is already void. Therefore, it is possible to reach an agreement at
a(cj). If player j is the responder, he will receive exactly his aspiration cj. If player j is
the proposer, he obtains the available surplus minus player i’s aspiration βiδ

τ(cj). Again,
continuing backwards until round τ(ci) is done in a similar way as in Lemma 3.1.

Formally, we find that player j’s payoff in any subgame starting in round τ(ci) will be:

Aj(ci, cj) = βj(δ
τ(ci) − δa(cj)) + βj(δ

a(cj) − βiδτ(cj)) + (1− βj)cj
= βjδ

τ(ci) + (1− βj)cj − βiβjδτ(cj)

The above expression is clearly analogous to Lemma 3.4. A subgame starting at τ(ci)
is equivalent to a game with one committed player whose commitment is sufficiently small
to reach agreement before it expires. We observe that Aj(ci, ψjδ

τ(ci)) = ϕjδ
τ(ci).

In any round t < τ(ci), player j will therefore have the aspiration Aj(ci, cj). Obviously,
player i’s aspiration is ci. Consider the case where ci + Aj(ci, cj) > 1. Clearly, it is
not possible to reach agreement before round τ(ci), since in any earlier round the sum of
aspirations exceeds the available surplus. Hence, the payoffs from a subgame starting at
τ(ci) are also the payoffs in the entire game. We depict this situation in a figure, and arrive
at the following lemma.

` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` b b̀̀ ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` b -
t = 0 τ(ci) a(cj) τ(cj)

Lemma 5.5 Suppose that commitments are strictly positive and cj does not expire soon
after ci. Furthermore, suppose that ci+Aj(ci, cj) > 1. Then, SPE payoffs in the bargaining
subgame are given by δτ(ci) − Aj(ci, cj) for player i and Aj(ci, cj) for player j.
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Let us continue to suppose that commitments are strictly positive and cj does not
expire soon after ci but now consider the case where ci +Aj(ci, cj) ≤ 1, which means that
an agreement can be reached with both commitments effective. We denote by b(ci, cj) the
round in which the surplus is just sufficient to cover the sum of the aspirations ci and
Aj(ci, cj), see figure below.

` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` -b b b bt = 0 b(ci, cj) τ(ci) a(cj) τ(cj)

Applying the same argument as above, we now find the payoff of player i in the entire
bargaining subgame:

πi = βi(1− δb(ci,cj)) + βi(δ
b(ci,cj) − Aj(ci, cj)) + (1− βi)ci

= βi − βiAj(ci, cj) + (1− βi)ci

Substituting for Aj(ci, cj) and rearranging leads us to the following result.

Lemma 5.6 Suppose that commitments are strictly positive, cj does not expire soon after
ci, and sum up to at most unity. Furthermore, suppose that ci +Aj(ci, cj) ≤ 1. Then, SPE
payoffs in the bargaining subgame are given by:

πi = βi + (1− βi)ci − (βi − β2
i )δ

τ(ci) − β2
i cj + (β2

i − β3
i )δ

τ(cj)

πj = 1− πi

Remark 5.7 An important special case of Lemma 5.6 occurs when ci + Aj(ci + cj) = 1.
Then, b(ci, cj) = 0 and hence the payoffs are πi = ci and πj = Aj(ci, cj).

In this section, we have established the SPE payoffs in the bargaining subgame – once
the commitment levels are taken as given. Doing so, we have assumed that the players’
commitments are strictly positive. The case with cj = 0 corresponds to the analysis in
earlier sections of the paper, where only one player was committed.

We collect the findings of this section in the following theorem.

Theorem 5.8 Suppose that ci ≥ cj > 0. Then, in any SPE of the bargaining (sub–)game
GB(ci, cj), payoffs are given by:

πi =


βiδ

τ(cj) if τ(ci) > a(cj), ci + cj > 1

(1− βi)ci − βicj + βi if τ(ci) > a(cj), ci + cj ≤ 1

δτ(ci) − Aj(ci, cj) if τ(ci) ≤ a(cj), ci + Aj(ci, cj) > 1

βi − βiAj(ci, cj) + (1− βi)ci if τ(ci) ≤ a(cj), ci + Aj(ci, cj) ≤ 1
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πj =


βjδ

τ(cj) if τ(ci) > a(cj), ci + cj > 1

βj − βjci + βicj if τ(ci) > a(cj), ci + cj ≤ 1

Aj(ci, cj) if τ(ci) ≤ a(cj), ci + Aj(ci, cj) > 1

βj − βjci + βiAj(ci, cj) if τ(ci) ≤ a(cj), ci + Aj(ci, cj) ≤ 1

In the second and fourth cases, SPE implies immediate and efficient agreement so that
πj = 1− πi. In the other cases, delay leads to an inefficiency.

6 Optimal commitment for two players

In the previous section, we have considered a bargaining game with given commitment
levels. In what follows, we will find the optimal commitment choices. In a sense, we
will now consider a game in which each player k = 1, 2 makes a choice ck ∈ [0, 1] from
a set of actions equal to the unit interval, and in which the payoff function is given by
Theorem 5.8. In a first step, we will construct a function which assigns one player’s best–
response commitment to any commitment chosen by the other player. Then, we will use
this best–response function to analyze the cases where players commit simultaneously and
sequentially.

From now on, we will abandon the notational convention ci ≥ cj. In Section 5, we had
used it to define the notion that the smaller commitment “expires soon after” the bigger
one. We will now adopt the following terminology.

Definition 6.1 We will say that a commitment level ci is

1. . . . high if 1− ci ≤ ϕjδ
τ(ci);

2. . . . intermediate if 1− ci > ϕjδ
τ(ci) but ci > ϕiδ

τ(1−ci);

3. . . . low if ci ≤ ϕiδ
τ(1−ci)

If the commitment level ci >
1
2

is intermediate, then 1 − ci (the smaller commitment)
expires soon after ci. If the commitment ci ≤ 1

2
is intermediate, then ci (the smaller com-

mitment) expires soon after 1−ci. However, it need not always be true that a commitment
which expires soon after its complement (or whose complement expires soon after it) is in-
termediate. The reason is that ϕi ≥ ψi may or may not hold with equality, depending on
the values of β and δ.

We will now define a function fj which maps the commitment of player i = 1, 2 to a
commitment for player j 6= i. It will then be shown that fj is j’s best–response function.
Let

fj(ci) =


ψjδ

τ(ci) if ci is high

1− ci if ci intermediate

γj(ci) if ci is low
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where γj(ci) = max{cj|cj + Ai(ci, cj) ≤ 1}.

Continue to denote by πj(ci, cj) the payoff of player i in the SPE of GB(ci, cj). We will
say that cj is a best–response to ci if πi(ci, c

∗
j) ≥ πi(ci, cj) for all cj. If the inequality holds

strictly, then cj is the unique best–response to ci.

Theorem 6.2 The unique best–response of player j to any commitment ci is given by the
function fi(cj).

Proof: Suppose first that ci is high. If j follows fj(ci), a payoff of ϕjδ
τ(ci) will result

since Aj(ci, ψjδ
τ(ci)) = ϕjδ

τ(ci). Let us consider a commitment cj which leads to delay until
round τ(ci) at least. Among all such commitments, ψjδ

τ(ci) is uniquely optimal by the
analysis in section 4. Now consider the case where j chooses any commitment cj which
leads to an agreement before round τ(ci). Then it must hold that cj < ψjδ

τ(ci). Hence, we
have that cj does not expire soon after ci and ci+Aj(ci, cj) ≤ 1, and under these conditions,
Lemma 5.6 implies that player j’s payoff is πj(ci, cj) = βj(1 − ci) + βiAj(ci, cj). Since ci
is high, it holds that 1 − ci ≤ ϕjδ

τ(ci). Furthermore, Aj(ci, cj) < ϕjδ
τ(ci). Consequently,

πj(ci, cj) < ϕjδ
τ(ci). Indeed, we have shown that fj gives the (unique) best–response to a

high ci.

Suppose that ci is intermediate , then ci expires soon after 1 − ci or 1 − ci expires
soon after ci, depending which is greater. Either way, if j follows fj(ci), payoffs of ci and
1− ci will result. If j instead chooses some cj 6= fj(ci) such that there will be delay until
τ(ci), then j’s payoff is bounded above by ϕjδ

τ(ci). Since ci is intermediate, this is strictly
less than 1 − ci. Now suppose that j chooses some cj such that agreement is reached in
round t < τ(ci). This requires ci + cj ≤ 1. If ci >

1
2

and cj expires soon after ci, then
πj(ci, cj) = βj(1− ci) + βicj. Clearly, cj < 1− ci cannot be optimal. If ci >

1
2

and cj does
not expire soon after ci, then πj(ci, cj) = βj(1− ci) +βiAj(ci, cj). Since Aj(ci, cj) ≤ ϕjδ

τ(ci)

and ϕjδ
τ(ci) < 1 − ci, we have that πj(ci, cj) < 1 − ci. If ci ≤ 1

2
and ci expires soon after

cj, then πj(ci, cj) = βj(1− ci) + βicj. Clearly, cj < 1− ci cannot be optimal. If ci ≤ 1
2

and
ci does not expire soon after cj, then cj ≥ 1− ci. But also ci + cj ≤ 1, a contradiction to
cj 6= 1−ci. We have now shown that fj gives the (unique) best–response to an intermediate
ci.

Suppose that ci is low. Consider first some cj such that cj > ci, and ci does not expire
soon after cj, and cj + Ai(ci, cj) ≤ 1. Among all such commitments, γj(ci) is uniquely
optimal by construction. Now suppose that cj > ci, and ci does not expire soon after
cj, but cj + Ai(ci, cj) > 1. In this case, πj(ci, cj) ≤ δτ(cj) − Ai(ci, cj). Substituting for
Ai, we obtain πj(ci, cj) ≤ βj(δ

τ(cj) − ci) + βiβjδ
τ(ci). But by Theorem 3.6, it holds that

πj(ci, 0) = βj(1− ci) + βiβjδ
τ(ci) > πj(ci, cj). Now we see that γj(ci) is optimal among all

those cj which are higher than ci and such that ci does not expire soon after cj.
If j chooses a cj such that cj expires soon after ci or ci expires soon after cj, then his

payoff is πj(ci, cj) = βj(1− ci) + βicj. Since this is expression is increasing in cj, it will be
without loss of generality to assume that cj > ci. Thus, we want to show that if cj > ci,
and ci expires soon after cj and ci is low, then it holds that
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πj(ci, cj) < πj(ci, γj(ci))

βj(1− ci) + βicj < βj(1− Ai(ci, γj(ci))) + βiγj(ci)

βj(Ai(ci, γj(ci))− ci) < βi(γj(ci)− cj)
βj(δ

τ(cj) − ci − βjδτ(ci)) < γj(ci)− cj

Since ci expires soon after cj and cj > ci, we have that ci + βjδ
τ(ci) > δτ(cj). Hence,

the left-hand side of the above inequality is strictly negative. But γj(ci)− cj > 0. Indeed,
some cj such that ci expires soon after cj or cj expires soon after ci is not optimal if ci is
low.

It remains to show that some cj < ci which does not expire soon after ci is not optimal.
Indeed, suppose that cj < ci and cj does not expire soon after ci. Then, πj(ci, cj) =
βj(1−ci)+βiAj(ci, cj). But j could deviate to a commitment of c′j = ci. Obviously, ci and c′j
expire at the same time and sum op to less than one. Hence, πj(ci, c

′
j) = βj(1−ci)+βic′j = ci.

Since Aj(ci, cj) < ci, the choice of cj is not optimal. We have now shown that fj gives the
(unique) best–response to a low ci, which completes the proof. �

By the sequential commitment game we mean the game in which player 1 initially
chooses c1, then player 2 chooses c2, and then the bargaining game GB(c1, c2) is played.
In the analysis of the sequential commitment game, we will write π1(c1) for π1(c1, f2(c1)),
so that an SPE of the sequential commitment game corresponds to a maximum of π1(c1).
For player i = 1, 2, define ηi = max{ci|ci + ϕjδ

τ(ci) ≤ 1}.

Theorem 6.3 For any δ, the SPE division of the pie in the sequential commitment game
is (η1, 1− η1).

Proof: Suppose that player 1 chooses a high c1. Then f2(c1) = ψ2δ
τ(c1). Suppose

further that c1+ϕ2δ
τ(c1) > 1. Then, the payoff to player 1 is π1(c1) = (1−ϕ2)δ

τ(c1) < 1−ϕ2.
But π1(0) = 1 − ϕ2. We see that player 1 does not choose a high c1 in SPE unless
c1 + ϕ2δ

τ(c1) = 1. But if the latter holds, then c1 = η1.
Suppose that player 1 chooses an intermediate c1. Then f2(c1) = 1−c1 and π1(c1) = c1.

By construction, η1 is optimal among all intermediate c1 if it is itself intermediate and
strictly dominates all intermediate c1 if it is itself high.

Finally, suppose that player 1 chooses a low c1. Then f2(c1) = γ2(c1) and π1(c1) ≤
1 − γ2(c1). We will complete the proof by showing that γ2(c1) ≥ 1

2
and η1 > 1

2
and,

therefore, π1(c1) ≤ η1. Suppose to the contrary that γ2(c1) <
1
2

for some c1. Then, by
definition of γj, it holds that 1

2
+A1(c1,

1
2
) > 1. But A1 is defined as 1’s payoff in a subgame

after round τ(c2). Hence, A1(c1,
1
2
) < δτ(

1
2
) < 1

2
, a contradiction. Similarly, let us assume

that η1 ≤ 1
2
. Then, by definition of η1, it holds that 1

2
+ ε + ϕ2δ

τ( 1
2
+ε) > 1 for all ε > 0.

Then, ϕ2δ
τ( 1

2
+ε) > 1

2
− ε for all ε > 0. Since δτ(

1
2
+ε) < 1

2
+ ε, this implies that ϕ2 >

1
2
−ε

1
2
+ε

for

all ε > 0. But for any β and δ, it holds that ϕ2 < 1, a contradiction. �

Passing to the limit as δ → 1 yields the following prediction.
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Theorem 6.4 In the limit as δ goes to one, the SPE division of the pie in the sequential

commitment game converges to (x1, x2) =
(

2−β2

3−β2
, 1

3−β2

)
.

If commitments were irrevocable and lasted forever, one would expect the first–mover
to obtain the entire surplus. With the notion of commitment under consideration in this
paper, this is still true if δ is close to zero. However, for large δ, the second–mover can
secure at least one third of the surplus.

By the simultaneous commitment game we mean the game in which initially players 1
and 2 simultaneously choose their commitment levels c1 and c2, and then the bargaining
gameGB(c1, c2) is played. In this game, the pair (c1, c2) is an SPE if it holds that fi[fj(ci)] =
ci for i = 1, 2 and j 6= i. Since fj(ci) = 1− ci for intermediate ci, Theorem 6.2 and Lemma
5.3 imply the following.

Corollary 6.5 If c1 and c2 = 1 − c1 are both intermediate, then there is an SPE of the
simultaneous commitment game in which commitments and payoffs are equal to c1 and c2.

Whether a given commitment is intermediate depends on the discount factor. It follows
from Definition 6.1 that, for δ sufficiently close to zero, a commitment ci is intermediate
if and only if ci ∈ (0, 1), and that, for δ sufficiently close to one, a commitment ci is

intermediate if and only if ci ∈
(

1
3−βi ,

2−βj
3−βj

)
.

Lemma 6.6 If fi[fj(ci)] = ci and ci is high (low), then fj(ci) is low (high).

Proof: Suppose that ci is high and fi[fj(ci)] = ci. It is easy to see that fj(ci)

cannot be high. (Otherwise, we would have ψiδ
τ [ψjδ

τ(ci)] = ci, which is impossible since
c > δτ(c) for any c.) If fj(ci) is intermediate, then ci satisfies the fixed point condition
ci = 1− fj(ci) = 1− ψjδτ(ci). Again, we obtain a contradiction since fj(ci) = ψjδ

τ(1−fj(ci))

means that fj(ci) is low rather than intermediate. We have shown the first part of the
lemma.

Suppose now that ci is low and fi[fj(ci)] = ci. Since γj(ci) > ci, it is clear that fj(ci)
cannot be low. Suppose that fj(ci) = γj(ci) is intermediate. Then, the fixed point condition
becomes ci = 1− γj(ci). Since Ai(ci, cj) ≥ ci, we have γj(ci) +Ai(ci, cj) ≥ 1. By definition
of γj, it follows that γj(ci) +Ai(ci, cj) = 1. But then, ϕiδ

τ [γj(ci)] ≥ 1− γj(ci), implying that
γj(ci) is high, a contradiction. �

Lemma 6.7 The division (ηi, 1 − ηi) can be supported by an SPE of the simultaneous
commitment game.

Proof: Suppose first that there exists a ci such that ci + ϕjδ
τ(ci) = 1. Then, ci = ηi,

and ηi is high. Thus, fj(ηi) = ψjδ
τ(ηi). But since Aj(ci, ψjδ

τ(ci)) = ϕjδ
τ(ci), it holds that

γi[fj(ηi)] = γi[ψjδ
τ(ηi)] = 1− ϕjδτ(ci). Indeed, we have shown that ηi = fi[fj(ηi)].

Now suppose that there does not exist ci such that ci+ϕjδ
τ(ci) = 1. Then, ηi+ϕjδ

τ(ηi) <
1. Hence, ηi is intermediate, in which case the claim follows from Corollary 6.5. �
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Theorem 6.8 A division (x1, x2) can be supported by an SPE of the simultaneous com-
mitment game if and only if x1 + x2 = 1 and, moreover, it holds that xi ≥ 1− ηj for both
i = 1, 2 and j 6= i.

Proof: If: Follows from Corollary 6.5 and Lemma 6.7.
Only If: Suppose that f1[f2(c1)] = c1. By Lemma 6.6, there are two cases two distin-
guish: Either c1 and c2 are both intermediate, or one of them is high and the other low.
Suppose first that c1 and c2 are both intermediate. Then, c1 + c2 = 1 by Theorem 6.2,
and furthermore each player receives his commitment. But by definition, an intermediate
ci, i = 1, 2 satisfies ci + ϕjδ

τ(ci) < 1, and thus ci ≤ ηi. But since commitments sum up to
one, cj ≥ 1− ηi for j 6= i. Now consider the case where one player has a low commitment
and the other a high commitment. Suppose without loss of generality that ci is high and
cj is low. Then, the fixed point condition becomes ci = γi[ψjδ

τ(ci)], in which case ci = ηi.
But then, the division of the pie is (ηi, 1− ηi), as desired. �

In the simultaneous commitment game, there is a range of divisions of the surplus which
can be supported by SPE. The endpoints of the range are the divisions that correspond to
the equilibrium of the sequential commitment game with either player as the first mover.

Passing to the limit as δ → 1, we find the following equilibrium range.

Theorem 6.9 If δ is sufficiently close to one, the pie division x can be supported by an
SPE of the simultaneous commitment game if and only if x is efficient (x1 + x2 = 1) and,
moreover, it holds that xi ≥ 1

3−βi for both i = 1, 2.

With the conventional notion of irrevocable share–commitments, one would expect the
simultaneous commitment case to be a mere coordination problem in which any distribution
can be supported by some equilibrium. In the model at hand, this is still true if δ is close to
zero. However, if δ is close to one, the range of equilibrium divisions shrinks considerably.
More precisely, in the limit as δ → 1, the share of the surplus whose allocation is left
unpredicted by SPE is at most one fifth. Conversely, for large δ, SPE is sufficiently strong
as a solution concept to determine eighty percent of the allocation. Moreover, we note that
each player’s share is bounded below by one third, even with arbitrarily low recognition
probability.

Comparing the results for the sequential and simultaneous commitment games, two
common points emerge.

First, our model yields predictions tantamount to what one would expect with irrevo-
cable, everlasting commitments if δ is close to zero, but produces very different results if
δ is close to one. The intuition is that with a small δ, the option to hold out until the
opponent’s commitment becomes void is very unattractive and hence commitment confers
a lot of power.

Second, for large δ, the ability to make a commitment of the type which we propose
ensures that a player will get at least one third of the surplus, even if his recognition
probability is arbitrarily small. In a sense, the ability to commit is worth one third of the
surplus to each player, while the value of proposal power lies in determining the allocation
of the remaining third.
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Theorem 6.10 A pie division x can be supported by an SPE of the simultaneous commit-
ment game for all δ and for all β if and only if x is the equal split solution.

Proof: If: By definition of τ , we have that δτ(
1
2
) < 1

2
. Moreover, ϕk < 1 for k = 1, 2.

As a result, ϕkδ
τ( 1

2
) < 1

2
for both k = 1, 2. We see that a commitment of 1

2
is always

intermediate. Corollary 6.5 implies the claim.

Only if: Consider a pie division in which player k = 1, 2 obtains a payoff of 1
2
− ε,

where ε > 0. By Theorem 6.9, if δ is sufficiently large, SPE requires 1
2
− ε ≥ 1

3−βk
.

This can be rewritten as βk ≤
1
2
−3ε

1
2
−ε . But we have assumed that ε > 0, thus

1
2
−3ε

1
2
−ε < 1.

Consequently, choosing δ sufficiently large and βk ∈ (
1
2
−3ε

1
2
−ε , 1) ensures that the pie division

under consideration is no SPE. �

Theorem 6.10 establishes the equal split solution as an appealing focal point. Any
allocation can be obtained as an SPE of the simultaneous commitment game for some
choices of β and δ. However, the equal split solution is unique in being consistent with
SPE for any β and δ.

7 Conclusion

We have studied the division of a shrinking surplus through a bilateral bargaining procedure
with commitment. The notion of commitment which we have proposed is new in the sense
that a commitment expires when it has become infeasible. If only one player can commit,
we find that such commitment is a source of bargaining power only for sufficiently large
values of the discount factor. If one player has a high recognition probability, the opponent’s
ability to commit is just sufficient to offset the proposal power advantage. This is a more
nuanced result than what would be obtained under perfect commitment, which would
effectively turn the strategic situation into an ultimatum game. If both players make a
commitment one after the other, then the share of the first mover is uniquely predicted by
the subgame perfect equilibrium concept, and it varies between one half and two thirds of
the pie, depending on recognition probabilities. If both players can simultaneously commit,
a traditional notion of perfect commitment has no predictive power since any efficient
division can be reached in equilibrium. Under the notion of commitment proposed here,
however, the range of divisions consistent with perfect equilibrium shrinks considerably
in the limit as the discount factor goes to one. In fact, the allocation of at most twenty
percent of the pie remains unpredicted by the standard perfect equilibrium concept in the
limit. Moreover, it turns out that the equal split solution is consistent with equilibrium for
any choice of the discount factor and the recognition probabilities. Conversely, the equal
split is the only division with this property.
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