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Abstract

Brandenburger and Dekel have shown that common belief of rationality (CBR) characterizes
rationalizable strategies, which are also characterized by a refinement of subjective correlated equi-
librium called a posteriori equilibrium. It is possible that players’ beliefs are incompatible, in the
sense that player i can assign probability 1 to an event E to which player j assigns probability
0. One way to block incompatibility is to assume a common prior. We consider here a different
approach: we require players’ beliefs to be conservative, in the sense that all players must ascribe
the actual world positive probability. Aumann has shown that, under the common prior assumption
(CPA), common belief of rationality characterizes strategies in the support of an objective correlated
equilibrium. Under the CPA, without loss of generality, all players’ beliefs can be assumed to be
conservative. We consider the consequences of common convervative belief of rationality (CCBR),
without the common prior assumption. We show that CCBR characterizes strategies in the support
of a subjective correlated equilibrium where all players’ beliefs have common support. We also
define a notion of strong rationalizability, and show that this is characterized by CCBR.



1 Introduction

In the Bayesian view of the world, each player has a subjective probability distribution (describing her
beliefs) over the states of the world. In general, player’s beliefs may be incompatible, in the sense that
one player might believe that an event E has probability 1, while another might ascribe E probability 0.
(Technically, this says that player’s beliefs may not be absolutely continuous with respect to each other.)
One way to assure that players’ beliefs are compatible is to make the common prior assumption (i.e.,
each player’s beliefs are generated by conditioning a common prior on the player’s information). Here
we consider a different approach to ensuring that players’ beliefs are compatible: we restrict to beliefs
that are conservative, where player i’s beliefs are conservative if player i ascribes positive probability
to the actual state.1 If a player starts off with a subjective prior assigning non-zero probability to all
states of the world, and updates by conditioning on information received, then his beliefs will always
be conservative. Note that with conservative beliefs, players will never be “surprised”—they will never
find themselves in a position to which they initially assigned probability 0.

Tan and Werlang [1988] and Brandenburger and Dekel [1987] show that common belief of ratio-
nality (CBR) characterizes rationalizable strategies [Bernheim 1984; Pearce 1984]. Brandenburger and
Dekel [1987] further show that rationalizable strategies are exactly those in the support of an a posteri-
ori equilibrium, a special case of a subjective correlated equilibrium (SCE) [Aumann 1974].2 Aumann
[1987] shows that, under the common prior assumption (CPA), CBR is characterized by strategies in
the support of an objective correlated equilibrium (CE).3 Here we will be interested in what happens
to these results if we restrict to conservative beliefs; more specifically, we will be interested in the
consequences of common conservative belief of rationality (CCBR). Under the CPA, players’ beliefs re-
garding rationality can always be taken to be conservative, so under the CPA, CBR and CCBR coincide
(see Appendix B for a formalization of this statement). Without the CPA, this is no longer the case: as
is well known, in the normal-form version of the centipede game [Rosenthal 1982], all pure strategies
are rationalizable, and can thus be played in a world where CBR holds; in contrast, CCBR implies the
backward induction solution (even without a common prior).

Our main result is a characterization of CCBR without the common prior assumption. We first show
that CCBR characterizes strategies that satisfy a notion of strong rationalizability; roughly speaking,
this notion is identical to the traditional notion of rationalizability with an additional absolute conti-
nuity condition—if one player assigns positive probability to some strategy profile, then all players
assign positive probability to this profile. We next establish an analogue of the Brandenburger-Dekel
result, showing that strongly rationalizable strategies are exactly those in the support of a SCE where
all players’ beliefs have common support; we call this a common-support subjective correlated equilib-
rium (CS-SCE). Interestingly, Aumann already alluded to such a notion in his original paper defining
correlated equilibrium [Aumann 1974], but, as far as we know, it has not been investigated further.
Since every CE is a a CS-SCE, our charaterization of CCBR in terms of CS-SCE shows that strategies

1Actually, this is the case only if the state space is finite. In general, we require that the actual state be in the support of
player i’s beliefs.

2Roughly speaking, a subjective correlated equilibrium of a game G is an equilibrium resulting from augmenting G with
a mediator who gives players “advice”, where players may have different subjective probabilities on the likelihood of various
pieces of advice being given.

3That is, the players can now be viewed as playing with a mediator who gives advice, and have common beliefs about the
likelihood of various pieces of advice being given.
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consistent with CCBR always exists in finite games. So, to informally summarize this discussion, we
have three distinct “epistemic” solution concepts—“CBR+CPA = CCBR+CPA < CCBR < CBR”—
corresponding, respectively, to the equilibrium notions of CE, CS-SCE, and a posteriori equilibrium.

The work closest to ours is that of Stuart [1997], who considers the consequences of CBR under
the assumption that players’ beliefs satisfy a variant of the notion of mutual absolute continuity (MAC).
This condition implies that it is a common belief that players assign positive probability to the true
state of the world. That is, it is common belief that players’ beliefs are conservative (although this may
not be true). Stuart shows that in the finitely repeated prisoner’s dilemma, CBR+MAC suffices to get
the backward induction outcome, but, in general, CBR+MAC does not imply that a Nash equilibrium
outcome is played in games of perfect information. Stuart, however, does not provide a characterization
of the set of strategies consistent with CBR+MAC.

A strategy is consistent with CBR+MAC iff it is consistent with CCBR (see Appendix B for a for-
malization of this statement). Thus, in a sense, conservative beliefs and mutually absolutely continuous
beliefs, while different ways of charcterizing compatibility of players’ beliefs, turn out to be essentially
equivalent in the context of common belief of rationality. Our results thus also provide a characterization
of strategies consistent with CBR+MAC.

Ben-Porath [1997] considers conservative beliefs in the context of extensive-form games; roughly
speaking, he shows (in our language) that if CCBR holds and, in addition, the support of each player’s
beliefs is common belief, then the outcome of play is a Nash equilibrium outcome.

The rest of the paper is organized as follows. In the next section, we define a logical language and
models for reasoning about (conservative) belief and common (conservative) belief in games. In Sec-
tion 3, we define strong rationalizability, show that it is characterized by CCBR, and, finally, show that
strong rationalizability characterizes common-support subjective correlated equilibrium. To simplify
the exposition, we consider only finite models here. This means that we are considering only finitely
many types of players.4

2 Kripke structures for games

We consider normal-form games with n players. Given a (normal-form) n-player game Γ, let Σi(Γ)

denote the strategies of player i in Γ. To reason about the game Γ, we consider a class of proba-
bility structures corresponding to Γ. A finite probability structure M appropriate for Γ is a tuple
(Ω, s,PR1, . . . ,PRn), where Ω is a finite set of states; s associates with each state ω ∈ Ω a pure
strategy profile s(ω) in the game Γ; and, for each player i, PRi associates with each state ω ∈ Ω a
probability distribution PRi(ω) on Ω such that

1. PRi(ω)([[si(ω)]]M ) = 1, where for each strategy σi for player i, [[σi]]M = {ω : si(ω) = σi}, and
si(ω) denotes player i’s strategy in the strategy profile s(ω),

2. PRi(ω)([[PRi(ω), i]]M ) = 1, where for each probability measure π and player i, [[π, i]]M = {ω :

PRi(ω) = π}.
4The restriction to finite models is essentially without loss of generality if we assume that the support of all probability

measures in the model has probability 1. While this assumption does not hold in general, it is satisfied under a number of
standard topological assumptions; see [Halpern and Pass 2011] for more details.
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These assumptions say that player i assigns probability 1 to his actual strategy and beliefs. (We have
implicitly assumed that all sets in finite structures are measurable.)

Given a probability structure M = (Ω, s,PR1, . . . ,PRn), let

• play i(σi) (“player i plays σi”) be the set of states ω ∈ Ω such that σi = si(ω);

• RAT i (“player i is rational”) be the set of states ω ∈ Ω such that si(ω) is a best response, given
player i’s beliefs on the strategies of other players induced by PRi(ω); and let

• Bi(E) (“player i believes E”) be the set of states ω ∈ Ω such that PRi(ω)(E) = 1.

Let RAT = RAT 1 ∩ . . . ∩ RATn and play(~σ) = play1(σ1) ∩ . . . ∩ playn(σn).
We next define the conservative belief operator B∗. We want to capture the intuition that if a player

has a conservative belief, the player should not rule out anything he has not observed evidence against.
This, in particular, means that the player should assign positive probability to all events that occur in the
true state of the world (as he could never have observed evidence against them). One way to formalize
this would be to restrict to structures where all players’ beliefs satisfy this condition (as in Aumann’s
[1974] model). In order to consider statements involving both belief and conservative belief (and to be
able to compare CCBR with CPA+CBR), we want to allow models where worlds can have probablity
0. Roughly speaking, we say that conservative belief of event E holds in a world ω iff (a) the agent
believes E at ω (i.e., the agent’s probability measure at ω assigns E probability 1) and (b) the agent
assigns ω positive probability.5 Formally, let Supp(π) denote the support of the probability measure
π. Say that a state ω is i-conservative if ω ∈ Supp(PRi(ω))—roughly speaking, agent i’s probability
distribution at ω assigns positive probability to ω. Say that ω is conservative if ω is i-conservative for
all agents i.

• Let B∗i (E) (“player i conservatively believes E”) be the set of states ω ∈ Bi(E) such that ω is
i-conservative.

Let EB(E) (“everyone believes E”) be defined as B1(E)∩ . . .∩Bn(E); and define EBk(E) for all k
inductively by letting EB1(E) = EB(E) and EBk+1(E) = EB(EBk(E)). Let EB∗(E) (“everyone
conservatively believes E”) be B∗1(E) ∩ . . . ∩ B∗n(E), and define (EB∗)k analogously to EBk. Let
CB(E) (“common belief of E holds”) be ∩k>1EBk(E), and let CB∗(E) (“common conservative
belief of E holds”) be ∩k>1(EB∗)k(E). The following observation will prove useful.

Lemma 2.1: If Γ is a game, M = (Ω, s,PR1, . . . ,PRn) is a finite structure that is appropriate for Γ,
and ω ∈ CB∗(RAT ), then for all players j, Supp(PRj(ω)) ⊆ CB∗(RAT ).

Proof: Suppose that ω ∈ CB∗(RAT ) and ω′ ∈ Supp(PRj(ω)). Since ω ∈ (EB∗)k(RAT ), it
follows that ω ∈ Bj((EB∗)k−1(RAT )), so ω′ ∈ (EB∗)k−1(RAT ). Thus, ω′ ∈ CB∗(RAT ). Hence,
Supp(PRj(ω)) ⊆ CB∗(RAT ).

5In an earlier version of this paper [Halpern and Pass 2011], we used a logic-based approach, and defined events E based
on formulas ϕ in some underlying logic. We took conservative belief of ϕ to hold if ϕ was valid—true in all states in all
structures. This meant, for example, that an agent i would conservatively believe true in all states, even ones that he did not
assign positive probability. While this made the resulting logic more similar in spirit to standard modal logics, it was an ad
hoc assumption and made the semantics more complicated. Since the assumption played no role in any of our results, we have
not made it here.
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3 Characterizing CCBR

To put our result into context, we first restate the characterizations of rationalizability given by Tan and
Werlang [1988] and Brandenburger and Dekel [1987] in our language. We first recall Pearce’s [1984]
definition of rationalizability.

Definition 3.1: A strategy σi for player i in game Γ is rationalizable if, for each player j, there is a set
Zj ⊆ Σj(Γ) and, for each strategy σ′j ∈ Zj , a probability measure µσ′j on Σ−j(Γ) whose support is a
subset of Z−j such that

• σi ∈ Zi; and

• for each player j and strategy σ′j ∈ Zj , strategy σ′j is a best response to (the beliefs) µσ′j .

Theorem 3.2: [Brandenburger and Dekel 1987; Tan and Werlang 1988] σi is a rationalizable strategy
for i in a game Γ iff there exists a finite structure M that is appropriate for Γ and a state ω such that
ω ∈ CB(RAT ) ∩ play i(σi).

It is well-known [Pearce 1984] that a strategy is rationalizable iff it survives iterated deletion of
strongly dominated strategies. Thus, the characterization of rationalizability in Theorem 3.2 is also
a characterization of strategies that survive iterated deletion of strongly dominated strategies. As a
result, common belief of rationality is always consistent—that is, every finite game has a structure
where common belief of rationality holds. Furthermore, since iterated deletion of strongly dominated
strategies can be done in polynomial time, there exists an efficient procedure that for every player finds
a strategy that is consistent with common belief of rationality.

Clearly CCBR implies CBR, so in a state satisfying CCBR, the strategies used must be rationaliz-
able. However, not all rationalizable strategies can be played in a state satisfying CCBR (see Appendix
A for an example). We now introduce a strengthening of the notion of rationalizability called strong
rationalizability, which characterizes strategies consistent with CCBR. Roughly speaking, this notion
is defined just as the traditional notion of rationalizability, but with an additional “absolute continuity”
condition.

Definition 3.3: A strategy σi for player i in game Γ is strongly rationalizable if, for each player j, there
is a setZj ⊆ Σj(Γ) and, for each strategy σ′j ∈ Zj , a probability measure µσ′j on Σ−j(Γ) whose support
is a subset of Z−j such that

1. σi ∈ Zi;

2. for all players j and strategies σ′j ∈ Zj , σ′j is a best response to (the beliefs) µσ′j ; and

3. for all players j, h and all strategy profiles ~σ′ ∈ Z1×· · ·×Zn, if µσ′j (σ
′
−j) > 0, then µσ′h(σ′−h) >

0.
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We now show that a strategy is strongly rationalizable iff it is played in a world where CCBR holds.

Theorem 3.4: σi is a strongly rationalizable strategy for i in a game Γ iff there exists a finite structure
M that is appropriate for Γ and a state ω such that ω ∈ CB∗(RAT ) ∩ play i(σi).

Proof: For the “only if” direction, suppose that σi is strongly rationalizable. Choose Zj ⊆ Σj(Γ) and
measures µσ′j for each strategy σ′j ∈ Zj guaranteed to exist by Definition 3.3. Define an appropriate
structure M = (Ω, s,PR1, . . . ,PRn), where

• Ω = {~σ′ ∈ Z1 × · · · × Zn : there exists a player j such that µσ′j (σ
′
−j) > 0};

• s(~σ′) = σ′;

• PRj(~σ′)(~σ′′) = 0 if σ′j 6= σ′′j , and PRj(~σ′)(~σ′′) = µσ′j (σ
′′
−j) otherwise. (Note that this is a

well-defined probability distribution since, if σ′′−j ∈ Supp(µσ′j ), then (σ′j , σ
′′
−j) ∈ Ω.)

Since σi ∈ Zi, there exists some state ω ∈ Ω such that si(ω) = σi. By Condition 2 in the definition
of strong rationalizability, each player is best responding to his beliefs at every state, so we have that
~σ′ ∈ RAT for all states ~σ′. We next show that for every player j and every strategy profile ~σ′ ∈ Ω, we
have that PRj(~σ′)({~σ′}) > 0. This will show that every state in Ω is conservative. For suppose that
~σ′ ∈ Ω. By definition, PRj(~σ′)({~σ′}) = µσ′j (σ

′
−j). Furthermore, recall that ~σ′ ∈ Ω iff there exists

some h such that µσ′h(σ′−h) > 0. By Condition 3 in the definition of strong rationalizability, we have
that if µσ′h(σ′−h) > 0, then µσ′j (σ

′
−j) > 0, and thus PRj(~σ′)({~σ′}) > 0. It now easily follows that

~σ′ ∈ CB∗(RAT ) for all ~σ′ ∈ Ω. This proves the only if direction.
For the “if” direction, suppose that M = (Ω, s,PR1, . . . ,PRn) is appropriate for Γ, and ω ∈

CB∗(RAT ). We want to show that σi = si(ω) is strongly rationalizable. Note that by Lemma 2.1, we
have that for every j, ω′ ∈ CB∗(RAT ), the support of PRj(ω′) is a subset of CB∗(RAT ).

For each player j, let Zj = {sj(ω′) : ω′ ∈ CB∗(RAT )}. By definition, σi ∈ Zi. For each j and
each σ′j ∈ Zj , we now define µσ′j . For σ′j ∈ Zj , let Ωσ′j

= {ω′ ∈ CB∗(RAT ) : sj(ω) = σ′j}. Let µσ′j
be the result of projecting

∑
ω′∈Ωσ′

j

PRj(ω′)/|Ωσ′j
| onto Σ−j(Γ). Since, for every ω′ ∈ CB∗(RAT ),

the support of PRj(ω′) is a subset of CB∗(RAT ), we have that the support of µσ′j is a subset of Z−j .
Furthermore, since j is rational at each state in CB∗(RAT ), it follows that σ′j is a best response to the
projection of PRj(ω′) onto Σ−j(Γ) for each ω′ ∈ Ωσ′j

; thus, σ′j is also a best response to a convex
combination of these projections.

Finally, we need to show that for every strategy profile ~σ′ ∈ Z1× . . .×Zn and all players j and h, if
µσ′j (σ

′
−j) > 0 then µσ′h(σ′−h) > 0. So suppose that ~σ′ ∈ Z1× . . .×Zn and µσ′j (σ

′
−j) > 0; that is, there

exists some state ω′ ∈ Ωσ′j
such that PRj(ω′)([[σ′−j ]]M ) > 0. Since M is a structure appropriate for Γ,

we must have that PRj(ω′)([[σ′j ]]M ) = 1. Thus, PRj(ω′)([[σ′]]M ) > 0, and there must be a state ω′′

such that PRj(ω′)(ω′′) > 0 and s(ω′′) = ~σ′. Since the support of PRj(ω′) is a subset of CB∗(RAT ),
ω′′ ∈ CB∗(RAT ), and thus ω′′ ∈ Ωσ′h

. Since ω′′ ∈ CB∗(RAT ), we have that PRh(ω′′)(ω′′) > 0. It
follows that µσ′h assigns positive probability to σ′−h. Thus, σi is strongly rationalizable.

We next show that strongly rationalizable strategies are in the support of a subjective correlated
equilibrium where the players’ beliefs have common support. We first recall the definitions of objective
and subjective correlated equilibrium.
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Definition 3.5: An (objective) correlated equilibrium (CE) in a game Γ is a distribution π on Σ1(Γ) ×
. . .× Σn(Γ) such that, for all players i and strategies σi ∈ Σi(Γ) such that π(σi) > 0, we have that for
all σ′i ∈ Σi(Γ), ∑

σ−i∈Σ−i(Γ)

π(σ−i|σi)u(σ) ≥
∑

σ−i∈Σ−i(Γ)

π(σ−i|σi)u(σ′i, σ−i).

In a subjective correlated equilibrum, rather than there being one common probability measure π,
each player i has her own probability measure πi on Σ1(Γ)× . . .× Σn(Γ).

Definition 3.6: A subjective correlated equilibrium (SCE) in a game Γ is a profile ~π of probablity
measures on Σ1(Γ)× . . .×Σn(Γ) such that for all players i and strategies σi ∈ Σi such that πi(σi) > 0,
we have that for all σ′i ∈ Σi(Γ),∑

σ−i∈Σ−i(Γ)

πi(σ−i|σi)u(σ) ≥
∑

σ−i∈Σ−i(Γ)

πi(σ−i|σi)u(σ′i, σ−i).

As pointed out by Aumann, in an SCE each player i assigns (subjective) probability 0 to the event that
she wishes to deviate after receiving its signal, but some other player j might assign positive probability
to the event that i wishes to deviate. Aumann [1974] suggested two method for circumventing this
problem. The first was to require that all the πi’s have the same support; we call such an SCE a common-
support subjective correlated equilibrium.

Definition 3.7: ~π is a common-support subjective correlated equilibrium (CS-SCE) if it is a SCE and,
for all players i and j, the probability measures πi and πj have the same support.

Clearly, if π is an objective correlated equilibrium, then (π, . . . , π) is a CS-SCE. As the next example
shows, the converse does not hold in general.

Example 3.8: Consider the simple 2-player game where Σ1 = {L,R} and Σ2 = {`, r}. The payoffs in
the game are given in the first table, π1 is given in the second table, and π2 is given in the third table.
We leave it to the reader to check that (π1, π2) is a CS-SCE. Intuitively, player 1 justifies his moves by
believing that player 2 is more likely to play ` when he plays L and that player 2 is more likely to play
r when he plays R; player 2 has symmetric beliefs. Since π1 6= π2, (π1, π2) is not a CE.

L R

` (1, 0) (0, 1)

r (0, 1) (1, 0)

π1 L R

` .45 .05

r .05 .45

π2 L R

` .05 .45

r .45 .05

The second (and seemingly preferred) method of Aumann to circumvent the problem above was
to require that the equilibrium strategy remains optimal even after the players receive their signal, no
matter what the signal is. Aumann called this refinement an a posteriori equilibrium. This notion was
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further formalized by Brandenburger and Dekel [1987], who also show that it characterizes the set of
rationalizable strategies (and thus also characterizes strategies consistent with CBR).

As we now show, CS-CSE characterizes strongly rationalizable strategies, and thus, by Theorem
3.4, the set of strategies consistent with CCBR.

Theorem 3.9: σi is a strongly rationalizable strategy for i in a game Γ iff there exists a common-support
subjective correlated equilibrium ~π such that σi is in the support of the projection of πi onto Σi(Γ).

Proof: For the “only if” direction, for every player j, choose Zj ⊆ Σj(Γ) and the probability mea-
sure µσ′j for each strategy σ′j ∈ Zj guaranteed to exist by Definition 3.3; define πj as the distri-
bution obtained by uniformly sampling σ′j ∈ Zj and then sampling σ′−j according to µσ′j ; that is,
πj(~σ

′) = µσ′j (σ
′
−j)/|Zj |. Clearly ~π is a subjective correlated equilibrium and σi is in the support of

the projection of πi onto Σi(Γ) (since σi ∈ Zi). To show that ~π has common support, consider any
profile ~σ′. For all players j and h, if πj(~σ′) > 0, then σ′j ∈ Zj , and µσ′j (σ

′
−j) > 0 (by construction),

which means that σ′h ∈ Zh and µσ′h(σ′−h) > 0 (by definition of strong rationalizability); it follows that
πh(~σ′) > 0.

For the “if” direction, choose the profile ~π of probability measures guaranteed to exist by Defini-
tion 3.7. For every player j, define Zj as the support of the projection of πj onto Σj(Γ), and for every
strategy σ′j ∈ Zj , define µσ′j (σ

′
−j) = πj(σ

′
−j |σ′j); it follows that σ′j is a best response to µσ′j . Further-

more, σi ∈ Zi, since it is in the support of the projection of πi onto Σi(Γ). Since, for all players j and h,
the measures πj and πh have the same support, we have that for all strategy profiles ~σ′ ∈ Z1× . . .×Zn
such that µσ′j (σ

′
−j) > 0, µσ′h(σ′−h) > 0. Finally, for all players j and strategies σ′j ∈ Zj , to see that the

support of µσ′j is a subset of Z−j , note that the support of µσ′j is a subset of the projection of the support

of πj onto Σ−j(Γ). The support of µσ′j is thus is a subset of
∏
h∈[−j]Z

j
h, where for all players j′ and h,

Zj
′

h is the projection of the support of πj′ onto Σh(Γ). But since ~π has common support, we have that,
for all players j′ and h, Zj

′

h = Zhh = Zh, and thus the support of µσ′j is a subset of Z−j .
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A An example separating CBR and CCBR

As the following example shows, CBR does not imply CCBR in general.
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Example A.1: Consider an N -move centipede game [Rosenthal 1982] viewed as a normal-form game,
where N > 1 is even. More precisely, the action set Σ1 for player 1 is {1, 3, . . . , N − 1}, and the action
set Σ2 for player 2 is {2, 4, . . . , N}. (Intuitively, a move of k means that the player first stops at node k.)
We take u1(k,m) to be 2k + 1 if k < m and 2m−1 otherwise; similarly, we take u2(k,m) to be 2m + 1

if m < k and 2k−1 otherwise. Thus, for example, if player 1 stops at round 1, then player 1’s utility is
3 and player 2’s utility is 1; if player 1 stops first at round 3 and player 2 stops at round 2, then player
1’s utility is 2 and player 2’s utility is 5. It is easy to see that all strategies are rationalizable (that is, we
can take Z1 = Σ1 and Z2 = Σ2 in Definition 3.1.) For all strategies j ∈ Σ2, we can take µj to put
probability 1 on player 1 playing 1 (stopping right away). This belief clearly justifies player 2 playing
j (i.e., stopping at j), for all j. For strategy k ∈ Σ1, let µk put probability 1 on player 2 playing k + 1.
Clearly this belief makes playing k rational. Thus, all strategies for both players are rationalizable, and
therefore compatible with CBR. By way of contrast, as we now show, the only pure strategy for player
1 that is compatible with CCBR is playing 1.

For definiteness, we do this for a 20-move centipede. Define a (k, k′)-state to be a state where player
1 plays k and player 2 plays k′. We first claim that there is no (k, 20)-state with k > 1 where CCBR
holds. For if ω is such a (k, 20)-state, then player 2 must ascribe ω positive probability at ω. Consider
the largest k′ such that player 2 ascribes positive probability to a (k′, 20)-state at ω. By assumption,
k′ > 1. Then, given his beliefs, player 2 is strictly better off playing k′ − 1 than playing 20. This is a
contradiction. Thus, there is no (k, 20)-state compatible with CCBR and k > 1.

It now easily follows by Lemma 2.1 that there is no (19, k)-state compatible with CCBR (because
playing 19 can be justified for player 1 only if he ascribes positive probability to (19, 20), but, as we
have just argued, there is no such state compatible with CCBR). It follows that there is no (k, 18)-
state compatible with CCBR with k > 1 (since a (k, 18) state can be justified only by a (19, k) state).
Continuing in this way, an easy induction shows that the only state that can be compatible with CCBR
have the form (1, k). It is also easy to see that the strategies played in these states are in are in fact
compatible with CCBR.

This example shows that CCBR implies that the backward induction outcome is played in the cen-
tipede game. It follows from Corollary B.6 below and results of Stuart [1997] that the same is true
in finitely repeated prisoner’s dilemma. We might hope that the same is true in all games of perfect
information, but Stuart [1997, Figure3a] gives a simple example showing that this is not the case in
general; indeed, in general, with CCBR, not even the Nash equilibrium outcome is played. This obser-
vation follows as an easy corollary of our characterization of CCBR in terms of correlated equilibria: all
(objective) correlated equilibrium strategies satisfy CCBR, and it is already well known that correlated
equilibrium outcomes are not necessarily Nash equilibrium outcomes.

B Relating CCBR to CPA and MAC

In this appendix, we compare CCBR with (a) CBR in the presence of CPA and (b) Stuart’s [1997]
requirement of mutual absolute continuity.

We first make precise what we mean by CPA.

Definition B.1: A structure M = (Ω, s,PR1, . . . ,PRn) appropriate for Γ satisfies the CPA if there
exists a probability π on Ω and partitions Π1. . . . ,Πn of Ω such that, for all ω ∈ Ω and players i, the
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support of PRi(ω) is contained in Πi(ω) (where Πi(ω) is the cell of the partition Πi containing ω),
π(Πi(ω)) > 0, and for all ω′ ∈ Π(ω), PRi(ω)(ω′) = π(ω′ | Πi(ω)). That is, PRi(ω) is obtained from
π by conditioning on Πi(ω).6

Proposition B.2: Suppose that M = (Ω, s,PRi, . . . ,PRn) is a finite structure appropriate for Γ

satisfying the CPA. Then for every state ω ∈ Ω, if ω is i-conservative for some player i, then ω is
conservative. Furthermore, for every conservative state ω, we have

(a) ω ∈ Bi(E) iff ω ∈ B∗i (E), and

(b) ω ∈ CB(E) iff ω ∈ CB∗(E).

Proof: SinceM satisfies the CPA, there is some probability π on Ω and partitions Π1, . . . ,Πn satisfying
the conditions of Definition B.1. By definition of PR1, . . . ,PRn, we have that if ω is i-conservative
for some i, then it is conservative. Part (a) follows from the definition of B∗, while part (b) follows by
an easy induction, relying on the fact that all i-conservative states are conservative.

Corollary B.3: If M is a structure that satisfies CPA and ω ∈ CB(RAT )∩ play i(σi) for some state ω,
then σi is strongly rationalizable.

Proof: Let M = (Ω, s,PRi, . . . ,PRn), ω, σi be as in the statement of Corollary B.3. Let ω′ be
some state in the support of PRi(ω); by definition ω′ is i-conservative, and thus, by Proposition B.2,
conservative. Furthermore, ω ∈ CB(RAT ) ∩ play i(σi) which by Proposition B.2 means that ω ∈
CB∗(RAT ) ∩ play i(σi). Thus, by Theorem 3.4, σi is strongly rationalizable.

Turning to mutual absolute continuity, we first give Stuart’s definition in our setting.7

Definition B.4: A structure M = (Ω, s,PR1, . . . ,PRn) appropriate for Γ satisfies mutual absolute
continuity if, for all states ω, players i and j, we have PRi(ω)(ω) > 0 iff PRj(ω)(ω) > 0.

We can now prove a result similar in spirit to Proposition B.2.

Proposition B.5: Suppose that M = (Ω, s,PRi, . . . ,PRn) is a finite structure appropriate for Γ

satisfying mutual absolute continuity. Then for every state ω ∈ Ω, if ω is i-conservative for some
i ∈ [n], then ω is conservative. Furthermore, for every conservative state ω, we have

(a) ω ∈ Bi(E) iff ω ∈ B∗i (E), and

(b) ω ∈ CB(E) iff ω ∈ CB∗(E).

Proof: Mutual absolute continuity is equivalent to the statement that all i-conservative states are con-
servative. The rest of the proof is identical to the proof of Proposition B.2.

6The requirement that π(Πi(ω)) > 0 is implicitly made by Aumann, but not by all authors that consider the CPA (c.f.
[Halpern 2002]). Authors who allow π(Πi(ω)) to be 0 place no constraints on what PRi(ω

′) should be for ω′ ∈ Πi(ω).
7As Stuart [1997] points out, this definition of mutual absolute continuity is similar to, but not the same as, the standard

definition of the notion.

9



Corollary B.6: There exists a finite structure M satisfying mutual absolute continuity and a state ω
such that ω ∈ CB(RAT ) ∩ play i(σi) iff σi is strongly rationalizable.

Proof: The “only if” direction follows just as in Corollary B.3. For the “if” direction, note that the struc-
ture in the proof of Theorem 3.4 satisfies mutual absolute continuity (since all states are conservative).

Friedenberg and Meier [2010, Lemma 8.2] show that a structure that satisfies the CPA also satis-
fies mutual absolute continuity. Combining the Friedenberg-Meier result with Proposition B.5 gives
Proposition B.2.
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