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ABSTRACT
We initiate the study of markets for private data, through the lens
of differential privacy. Although the purchase and sale of private
data has already begun on a large scale, a theory of privacy as a
commodity is missing. In this paper, we propose to build such a
theory. Specifically, we consider a setting in which a data analyst
wishes to buy information from a population from which he can
estimate some statistic. The analyst wishes to obtain an accurate
estimate cheaply, while the owners of the private data experience
some cost for their loss of privacy, and must be compensated for
this loss. Agents are selfish, and wish to maximize their profit, so
our goal is to design truthful mechanisms.

Our main result is that such problems can naturally be viewed
and optimally solved as variants of multi-unit procurement auc-
tions. Based on this result, we derive auctions which are optimal
up to small constant factors for two natural settings:

1. When the data analyst has a fixed accuracy goal, we show
that an application of the classic Vickrey auction achieves the
analyst’s accuracy goal while minimizing his total payment.

2. When the data analyst has a fixed budget, we give a mecha-
nism which maximizes the accuracy of the resulting estimate
while guaranteeing that the resulting sum payments do not
exceed the analyst’s budget.

In both cases, our comparison class is the set of envy-free mecha-
nisms, which correspond to the natural class of fixed-price mecha-
nisms in our setting.

In both of these results, we ignore the privacy cost due to possible
correlations between an individual’s private data and his valuation
for privacy itself. We then show that generically, no individually ra-
tional mechanism can compensate individuals for the privacy loss
incurred due to their reported valuations for privacy. This is never-
theless an important issue, and modeling it correctly is one of the
many exciting directions for future work.
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1. INTRODUCTION
Organizations such as the Census Bureau and hospitals have long

maintained databases of personal information. However, with the
advent of the Internet, many corporations are now able to aggregate
enormous quantities of sensitive information, and use, buy, and sell
it for financial gain. Up until recently, the purchase and sale of pri-
vate information was the exclusive domain of aggregators – it was
obtained for free from the actual owners of the data, for whom it
was sensitive. However, recently, companies such as “mint.com”
and “Bynamite” have started acting as brokers for private infor-
mation at the consumer end, paying users for access to their sen-
sitive information [Loh10, Cli10]. Many others, such as Yahoo,
Microsoft, Google, and Facebook are also implicitly engaging in
the purchase of private information in exchange for non-monetary
compensation. In short, “privacy” has become a commodity that
has already begun to be bought and sold, in a variety of ad-hoc
ways.

Despite the commoditization of privacy in practice, markets for
privacy lack a theoretical foundation. In this paper, we initiate the
rigorous study of markets for private data. Our goal is not to pro-
vide a complete solution for the myriad problems involved in the
sale of private data, but rather to introduce a crisp model with which
to investigate some of the many questions unique to the sale of pri-
vate data. The study of privacy as a commodity is of immediate
relevance, and also a source of many interesting theoretical prob-
lems: we hope that this paper elicits more new questions than it
answers.

First, let us briefly consider some of the issues that make privacy
distinct from other commodities that we often deal with, and why
this may complicate its sale:

1. First and foremost, in order sell privacy, it is important to be
able to define and quantify what we mean by privacy. In this
regard, the commoditization of privacy has dovetailed nicely
with the development of the theoretical underpinnings of pri-
vacy: recent work on differential privacy [DMNS06] (Def-
inition 2.1) provides a compelling definition and a precise
way in which to quantify its sale. Importantly, as we will
discuss, the guarantee of differential privacy has a natural
utility-theoretic interpretation that makes it a natural quan-
tity to buy and sell.
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2. Private data is a good that exhibits intrinsic complementar-
ities: a data analyst will typically not be interested in the
private data of any particular individual, but rather in a rep-
resentative sample from a large population. Nevertheless, he
must purchase the data from particular individuals! Clearly,
if there may be unknown correlations between individuals
values for privacy and their private data, then the typical
strategy of “buying from the cheapest sellers” is doomed to
fail in this regard. How should an auction be structured by
an analyst who wishes to calculate some value which is rep-
resentative of an entire population?

3. An individual’s cost for privacy may itself be private infor-
mation. Suppose that Alice visits an oncologist, and sub-
sequently is observed to significantly increase her value for
privacy: this is of course disclosive! Is it possible to run an
auction for private data that compensates individuals for the
privacy loss they incur, simply due to the effect that their bids
have on the behavior of the mechanism?

1.1 Differential Privacy as a Commodity
Differential privacy, formally defined in Section 2, was intro-

duced by Dwork et al. [DMNS06] as a technical definition for
database privacy. Informally, an algorithm is ε-differentially pri-
vate if changing the data of a single individual does not change
the probability of any outcome of the mechanism by more than an
exp(ε) ≈ (1+ε) multiplicative factor. Differential privacy also has
a natural utility-theoretic interpretation that makes it a compelling
measure with which to quantify privacy when buying or selling it1.

An important property of an ε-differentially private algorithm A
is that its composition with any other database-independent func-
tion f has the property that f(A) remains ε-differentially private.
This allows us to reason about events that might seem quite far re-
moved from the actual output of the algorithm. Quite literally, a
guarantee of ε-differential privacy is a guarantee that the probabil-
ity of receiving phone calls during dinner, or of being denied health
insurance will not increase by more than an exp(ε) factor. This al-
lows us to interpret differential privacy as a strong utility theoretic
guarantee that holds simultaneously for arbitrary, unknown utility
functions: for any individual, with any utility function u over (arbi-
trary) future events, an ε-differentially private computation will de-
crease his future expected utility by at most an exp(−ε) ≈ (1− ε)
multiplicative factor, or equivalently, by an εE[u(x)] additive fac-
tor, where the expectation is taken over all future events that the
individual has preferences over. Therefore, there is a natural way
for an individual to assign a cost to the use of his data in an
ε-differentially private manner: it should be worth to him an ε-
fraction of his expected future utility. We expand on this in Ap-
pendix A.

1.2 Results
Our main contribution is to show that any differentially private

mechanism that guarantees a certain accuracy must purchase a cer-
tain minimum amount of privacy from a certain minimum number
of agents (both of which depend on the desired accuracy), which
reduces the problem of privately providing an accurate answer to
a relatively simple form of procurement problem. Specifically, we
study the following stylized model. There are n individuals [n],
each of whom possesses a private bit bi, which is already known by

1This utility theoretic interpretation has been used in another con-
text: the work of McSherry and Talwar, and Nissim, Smorodinsky
and Tennenholtz [MT07, NST10] using differential privacy as a
tool for traditional mechanism design.

the administrator of the private database (for example, a hospital).
Each individual also has a certain cost function ci : R+ → R+,
which determines what her cost ci(ε) is for her private bit bi to be
used in an ε-differentially private manner. Any feasible mechanism
must pay each individual enough to compensate him for the use of
his private data. Moreover, individuals may mis-report their cost
functions in an attempt to maximize their payment, and so we are
interested in mechanisms which properly incentivize individuals to
report their true cost for privacy. On the other side of the market, the
data analyst wishes to estimate the quantity s =

∑n
i=1 bi, and must

compensate each individual through the mechanism’s payments for
this estimate. The data analyst may either have a fixed accuracy ob-
jective and wish to minimize his payments subject to obtaining the
desired accuracy, or alternately have a fixed budget and wish to
maximize the accuracy of his estimate within this budget.

We first consider the simpler model, in which individuals must
be compensated for loss of privacy to their bits bi, but not for any
privacy-leakage due to implicit correlations between bi and their
cost function ci (i.e., if the mechanism does not use an individ-
ual’s bit bi at all in computing an estimate for the data analyst,
the mechanism does not have to compensate individual i, even if
changing her cost function would result in a different outcome for
the mechanism). In trying to design an auction that guarantees the
data analyst an accurate estimate of s, one might consider any num-
ber of complicated mechanisms that (for example) randomly sam-
ple individuals, and then attempt to buy from entire random sam-
ples – there are many variations therein, and indeed, this was the
direction from which we first explored the problem. Our main re-
sult is that it is not necessary to consider such mechanisms. We
show that we may abstract away the structure of the mechanism,
and without loss of generality consider multi-unit procurement auc-
tions. This has some immediate consequences: if we are inter-
ested in the setting for which the data analyst has a fixed accuracy
goal, subject to which he wishes to minimize his payment, then we
show that the standard VCG mechanism is optimal among the set
of envy-free mechanisms. If we are instead interested in the set-
ting for which the data analyst has a fixed budget subject to which
he wishes to maximize his accuracy, then we are in a more un-
usual procurement-auction setting: the buyer wishes to maximize
the number of sellers he can buy from, and the cost to the sellers
is a function of who else sells their data! In this setting, we give
a truthful mechanism that is instance-by-instance optimal among
the set of all fixed-price (envy free) mechanisms. We remark that
our choice of fixed-price mechanisms as a benchmark has become
standard in prior-free mechanism design (see, e.g. [HK07, HR08]),
but stands on firmer ground in auction settings for which Bayesian-
optimal mechanisms are known also to charge fixed prices. We
operate in a setting in which Bayesian-optimal mechanisms are not
known, and so justifying (or improving) this choice of benchmark
in our setting is an interesting open problem.

We then show a generic impossibility result: it is not, in general,
possible for any mechanism to compensate individuals for their pri-
vacy loss due to unknown correlations between their private bits bi
and their cost functions ci. If their costs are known to lie in some
fixed range initially, it is possible to offer them some non-trivial
privacy guarantee, but finding the correct model in which to study
the issue of unknown correlations between data and valuation for
privacy is another important direction in which to take this research
agenda.
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1.3 Related Work

1.3.1 Differential Privacy as a Tool in Mechanism
Design

McSherry and Talwar proposed that differential privacy could it-
self be used as a solution concept in mechanism design [MT07].
They observed that a differentially private mechanism is approx-
imately truthful, while simultaneously having some resilience to
collusion. Using differential privacy as a solution concept as op-
posed to dominant strategy truthfulness, they gave some improved
results in a variety of auction settings. Gupta et al. also used differ-
ential privacy as a solution concept in auction design [GLM+10].

In a beautiful follow-up paper, Nissim, Smorodinsky, and Ten-
nenholtz [NST10] made the point that differential privacy may not
be a compelling solution concept when beneficial deviations are
easy to find (as indeed they are in the mechanism of [MT07]). Nev-
ertheless, they demonstrated a generic methodology for using dif-
ferentially private mechanisms as tools for designing exactly truth-
ful mechanisms that do not require payments, and demonstrate the
utility of this framework by designing new mechanisms for several
problems.

In this paper, we consider an orthogonal problem: we do not
try to use differential privacy as a tool in traditional mechanism
design, but instead try to use the tools of traditional mechanism
design to sell differential privacy as a commodity. Nevertheless, we
also use the utility theoretic properties of differential privacy that
allow McSherry and Talwar to prove that it implies approximate
truthfulness to motivate why it is natural for individuals to have
linear cost functions for differential privacy.

1.3.2 Auctions Which Preserve Privacy
Recently, Feigenbaum, Jaggard, and Schapira considered (using

a different notion of privacy) how the implementation of an auction
can affect how many bits of information are leaked about individ-
uals bids [FJS10]. Specifically, they study to what extent informa-
tion must be leaked in second price auctions and in the millionaires
problem. Protecting the privacy of bids is an important problem,
and although it is not the main focus of this paper, we consider it in
the context of differential privacy in Section 5. We consider some-
what orthogonal notions of privacy and implementation that make
our results incomparable to those of [FJS10].

1.3.3 Privacy in the Economics Literature
Privacy and its relation to mechanism design has also been stud-

ied in the economics literature, although primarily in the context
of how preferences for privacy by agents may affect mechanisms,
rather than in the context of markets for privacy. For example,
Calzolari and Pavan study the optimal disclosure policy when de-
signing contracts for buyers who are in the position of repeatedly
choosing between multiple sellers [CP06], and the recent work of
Taylor, Conitzer, and Wagman [TCW10] studies the relationship
between the ability of consumers to keep their identity private, and
the ability of a monopolist to engage in price discrimination.

An exception is the essay of Laudon [Lau96], which proposes the
idea of a market for personal information— a ‘National Informa-
tion Market’— where individuals can choose to sell or lease their
information (possibly to be used in aggregation with other individ-
uals’ information) in exchange for a share of the revenue generated
from its use; he argues that only individuals whose cost from the
‘annoyance’ caused by releasing their information is lower than the
payment they receive will participate in this market. In the same
spirit, the work of Kleinberg, Papadimitrou and Raghavan [KPR01]
quantifies the value of private information in some specific settings,

and proposes that individuals should be compensated for the use of
their information to the extent of this value. Our individually ra-
tional auctions for privacy are conceptually similar to this, but are
investigated within the formal framework of differential privacy,
and from the perspective of auction design.

1.3.4 Relationship to the Privacy Literature
The now large literature on differential privacy (see [Dwo08]

for an excellent overview) has almost exclusively focused on tech-
niques for guaranteeing ε-differential privacy for various tasks,
where ε has been taken as a given parameter. What has been almost
entirely missing is any normative guidance for how to pick ε. There
is a natural tradeoff between the privacy parameter ε and the accu-
racy of privacy-preserving estimates (which is well-understood in
the case of single statistics, see [GRS09, BN10]). Therefore, this
paper proposes to answer the question of how ε should be chosen:
it should be the smallest value that the data analyst is able to afford,
given the individuals’ valuations for privacy (or equivalently, the
smallest value that the owners of the data are willing to accept in
exchange for their payment).

We also highlight in this work the explicit tradeoff between com-
pensating individuals for the use of their private information, and
the accuracy of our resulting estimates. Implicit in previous works
on privacy has been the idea that for fixed values of ε, individu-
als should be willing to participate in private databases given only
some small positive incentive. However, this incentive may be dif-
ferent for different individuals, and without running an auction, a
data collector is engaging in selection bias: he is only collecting
data from those individuals who value their privacy at a low enough
level to make participation in a given database worth while. Such
individuals might not be representative of the general population,
and resulting estimates may therefore be inaccurate. This source
of inaccuracy is hidden in previous works, but we point out that it
should be a real concern, and we explicitly address it in this paper.

2. PRELIMINARIES
We consider a database consisting of the data of n individuals
{1, . . . , n} whom we denote by [n]. Each individual i is associated
with a private bit bi ∈ {0, 1}. (We may think of this bit as rep-
resenting the answer to some arbitrary yes or no question). Each
bit bi is already known to a trusted database administrator (for ex-
ample, a hospital), and so throughout our discussion, we will not
endow individuals with the ability to lie about their private bit.

2.1 Differential Privacy
We say that the collection of all individuals’ private bits is a

database D ∈ {0, 1}n. Two databases D,D(i) ∈ {0, 1}n are
neighbors if they differ only in the private bit of a single individ-
ual, i.e., if Dj = D

(i)
j for all j 6= i. The quantification of pri-

vacy we employ is that of differential privacy, due to Dwork et al.
[DMNS06]:

DEFINITION 2.1. An algorithm A : {0, 1}n → R satisfies εi-
differential privacy with respect to individual i if for any pair of
neighboring databases D,D(i) ∈ {0, 1}n differing only in their
i’th bit, and for any S ⊂ R:

Pr[A(D) ∈ S]

Pr[A(D(i)) ∈ S]
≤ eεi

An algorithm A is εi-minimally private with respect to individual i
if εi = inf ε such that A is ε-differentially private with respect to
individual i. Throughout this paper, whenever we say that an al-
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gorithm is εi-differentially private, we mean that it is εi-minimally
differentially private.

REMARK 2.2. ε-differential privacy becomes less meaningful
for large values of ε. In this paper, we will restrict our attention to
values of ε < 1. Note that in this case, exp(ε) ≈ 1 + ε.

The following easy fact follows immediately [DMNS06]:

FACT 1. Consider an algorithm A : {0, 1}n → R that satis-
fies εi-differential privacy with respect to each individual i, and
let T ⊂ [n] denote a set of indices. Consider two databases
D,DT ∈ {0, 1}n at Hamming distance |T | that differ exactly on
the indices in T . Then:

Pr[A(D) ∈ S]

Pr[A(DT ) ∈ S]
≤ e

∑
i∈T εi

A useful primitive for differential privacy is the Laplacian dis-
tribution, adding random noise from which produces differentially
private output [DMNS06]:

DEFINITION 2.3. Denote by Lap(σ) the symmetric Laplacian
distribution with mean 0 and scaling σ. This distribution has prob-
ability density function:

f(x) =
1

2σ
exp

(
−|x|
σ

)
We will sometimes abuse notation and write Lap(σ) to denote the
realization of a random variable drawn from the Laplacian distri-
bution with parameter σ.

2.2 Mechanism Design
Every individual has some (unknown to the mechanism) cost

function ci : R+ → R+, where ci(ε) represents player i’s cost
for having his bit bi used in an ε-differentially private manner. Be-
cause we consider small values of ε for which exp(ε) ≈ (1 + ε),
it will be most natural to consider linear cost functions for which
ci(ε) = viε for some unknown vi ∈ R+. For clarity, we will as-
sume throughout that individuals have linear cost functions, but our
results will hold for any single-parameter family of cost functions
that admit a total ordering independent of ε. That is, the prop-
erty that our results will require is that for any i 6= j, and for any
ε, ε′ ∈ R+, it should hold that ci(ε) = ci(ε, vi) ≤ cj(ε, vj) if and
only if vi ≤ vj . Linear cost functions of course obey this prop-
erty, but so do many other natural choices, such as exponential cost
functions of the form ci(ε) = exp(εvi).

A mechanism M : Rn+ × {0, 1}n → R × Rn+ takes as input a
vector of cost functions v = (v1, . . . , vn) ∈ Rn+ and a database
D ∈ {0, 1}n, and outputs the evaluation of some algorithm A(D)
that is εi(v)-differentially private with respect toD to the data ana-
lyst, as well as a vector of payments p(v) ∈ Rn+ to each individual
in D. For any v′i ∈ R+ we let (v−i, v

′
i) denote the vector that re-

sults from changing entry vi in v to v′i. A player i derives utility
ui = pi(v)− viεi(v) from such an outcome. Since any individual
may opt against participating in our mechanism, we require first
that our mechanisms be individually rational:

DEFINITION 2.4. A mechanismM : Rn+×{0, 1}n → R×Rn+
is individually rational if for all v ∈ Rn+:

pi(v) ≥ viεi(v)

That is, each player must be guaranteed non-negative utility by par-
ticipating and truthfully reporting his value to the mechanism.

Since individuals may misreport their costs so as to maximize their
gain, we also require our mechanisms to be truthful:

DEFINITION 2.5. A mechanismM : Rn+×{0, 1}n → R×Rn+
is dominant-strategy truthful if for all v ∈ Rn+, for all i ∈ [n], and
for all v′i ∈ R+:

pi(v)− viεi(v) ≥ pi(v−i, v′i)− viεi(v−i, v′i),

that is, no player can ever increase his utility by misreporting his
value for privacy.

The mechanism is run on behalf of some data analyst, who
wishes to know an estimate of the statistic s ≡

∑n
i=1 bi. The

mechanism outputs some randomized estimate of this quantity
ŝ = A(D), where the randomization is to ensure differential pri-
vacy, and the analyst prefers more accurate answers. We choose
to focus on statistics which can be represented as sums of boolean
variables because of the central role that they play in the privacy
literature (in which they are known as counting queries or predi-
cate queries). In particular, the ability to accurately answer queries
of this sort is sufficient to be able to implement a wide range of
machine learning algorithms over the data (see [BDMN05]).

DEFINITION 2.6. A mechanism M satisfies k-accuracy if for
any D ∈ {0, 1}n, it outputs an estimate ŝ = A(D) such that:

Pr[|ŝ− s| ≥ k] ≤ 1

3

where the probability is taken over the internal coins of the mecha-
nism.

The constant 1/3 is of course inconsequential: it can be changed to
any desired constant without qualitatively affecting the results.

We may consider two dual objectives for our mechanism. Our
data analyst may have a fixed goal of k-accuracy for some k
in which case we want to design mechanisms which deliver k-
accurate estimates of s so as to minimize the sum of the payments.
Alternately, our data analyst may have a fixed budget B ∈ R+

(say an NSF grant that can be used for data procurement). In this
case, our goal is to design a mechanism which is k-accurate for the
smallest possible value of k, while under the constraint that the sum
of the payments never exceeds B.

3. CHARACTERIZING
ACCURATE MECHANISMS

In this section, we show necessary and sufficient conditions on
the amount of privacy that a mechanism must purchase from each
player in order to guarantee a fixed level of accuracy— to obtain
a given level of accuracy, we show that a mechanism must pur-
chase at least ε−privacy, from at least |H| people, where the val-
ues of ε and |H| depend on the desired accuracy. We emphasize
that these necessary conditions are independent of any truthfulness
requirements on the mechanism, and arise purely because of the
need to achieve accuracy. This greatly simplifies the mechanism-
design process for auctions for private data, because it allows us
to restrict our attention to multi-unit procurement auctions without
loss of generality. We remark that ε-differential privacy is inher-
ently a property of randomized mechanisms, so our lower bounds
of course hold even for mechanisms with randomized allocation
and payment rules.

THEOREM 3.1. Let 0 < α < 1. Any differentially private
mechanism that is α · n/4-accurate must select a set of users
H ⊆ [n] such that:

1. εi ≥ 1
αn

for all i ∈ H .

2. |H| ≥ (1− α)n.
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PROOF. Let M be a mechanism that is α ·n/4-accurate, and let
H ⊂ [n] be the set of individuals i such that εi ≥ 1/αn. For point
of contradiction, suppose that |H| < (1− α)n. Let H̄ = [n] \H .
We have that |H̄| > αn. Let S = {x ∈ R : |x− s| < αn

4
}, where

s =
∑n
i=1 bi. By the accuracy of the mechanism, we have that the

estimate ŝ output by the mechanism M(v,D) satisfies:

Pr[ŝ ∈ S] ≥ 2

3
.

Let H̄1 = {i ∈ H̄ : bi = 1} and let H̄0 = {i ∈ H̄ : bi = 0}.
Since H̄0 and H̄1 form a partition of H̄ , it must be that

max(|H̄0|, |H̄1|) > αn/2.

Without loss of generality, assume that |H̄0| > αn/2 (the other
case is identical). Let T ⊂ H̄0 such that |T | = αn/2. Let D′

be the database that results in setting each bit b′i = bi if i 6∈ T ,
and b′i = 1 otherwise. Note that D′ and D have hamming distance
|T | = αn/2, and differ exactly on the indices of T . Let ŝ′ be the
estimate generated by M(v,D′). By differential privacy of M , we
have, using Fact 1:

Pr[ŝ′ ∈ S] ≥ exp(−
∑
i∈T

εi) · Pr[ŝ ∈ S]

≥ exp(−αn
2
· 1

αn
) · 2

3

=
2

3
√
e

>
1

3
.

Let s′ =
∑n
i=1 b

′
i. Note that s′ = s + αn/2. If ŝ′ ∈ S, then

by definition: |ŝ′ − s| < αn/4. By the triangle inequality, we
must therefore have that |ŝ′ − s′| > αn/4 with probability strictly
greater than 1/3, contradicting the assumption that M is α · n/4
accurate.

This theorem can be thought of as our main result, quantifying the
necessary trade-off between accuracy and privacy: to guarantee
αn/4-accuracy, at least (1 − α) fraction of the population must
incur at least a 1

αn
privacy loss. The corollary below follows im-

mediately, translating this into a lower bound on payment.

COROLLARY 3.2. Any αn-accurate individually rational
mechanism must pay out a total payment of at least:

n∑
i=1

pi ≥
(1−4α)n∑
i=1

ci

(
1

4αn

)
where bidders are ordered such that c1(·) ≤ c2(·) ≤ · · · cn(·).

We remark that this corollary assumes only individual rationality,
and is in general achievable only by an omniscient mechanism that
knows all players’ cost functions. No truthful αn-accurate mecha-
nism is able to pay as little as this benchmark in general.

Theorem 3.1 gave necessary conditions on the privacy costs of
an accurate mechanism. Next, we show that up to small constant
factors, they are also sufficient conditions for an accurate mecha-
nism:

THEOREM 3.3. Let 0 < α < 1. There exists a differentially
private mechanism that is ( 1

2
+ ln 3)α · n-accurate and selects a

set of individuals H ⊆ [n] such that:

1. εi =

{
1
αn
, for i ∈ H;

0, for i 6∈ H .

2. |H| = (1− α)n.

PROOF. Let H ⊂ [n] be any collection of individuals of size
|H| = (1 − α)n, selected independently of their private bits bi,
and let t =

∑
i∈H bi + αn/2. Observe that for any database D,

|t − s| ≤ αn/2. Consider the mechanism that outputs ŝ = t +
Lap(αn). First, we claim that this mechanism is (1/2 + ln 3)αn-
accurate. This follows by the triangle inequality conditioned on the
event that Lap(αn) ≤ (ln 3)αn. It remains to verify that this holds
with probability at least 2/3. This is in fact the case:

Pr[|Lap(αn)| ≥ (ln 3)αn] =
1

2αn

∫ −(ln 3)αn

−∞
exp

(
− |x|
αn

)
dx

+
1

2αn

∫ ∞
(ln 3)αn

exp

(
− |x|
αn

)
dx

=
1

3
.

We now verify the differential privacy guarantee, which follows
from the analysis given in [DMNS06] of the Laplace mechanism.
Let ŝ be the estimate calculated on databaseD (via sum t) and let ŝ′

be the estimate calculated on neighboring database D(i) (via sum
t′). Clearly, for any i 6∈ H and for any S ⊂ R, Pr[ŝ ∈ S] =
Pr[ŝ′ ∈ S] and so εi = 0. Now consider some i ∈ H and S ⊂ R.
For any S ⊂ R and r ∈ R, let S − r denote {x− r : x ∈ S}.

Pr[ŝ ∈ S] = Pr[Lap(αn) ∈ S − t]

=

∫
x∈S−t

1

2αn
exp

(
− |x|
αn

)
dx

≤ exp

(
1

αn

)
·
∫
x∈S−t′

1

2αn
exp

(
− |x|
αn

)
dx

= exp

(
1

αn

)
· Pr[ŝ′ ∈ S]

where the inequality follows from the fact that |t− t′| ≤ 1.

Theorems 3.3 and 3.1 taken together have the effect of greatly sim-
plifying the space of possible mechanisms for private data that we
need to consider. They imply that without loss of generality (up
to small constant factors in their error term), when searching for
αn-accurate mechanisms, we may restrict our attention to a special
class of multi-unit procurement auctions, where we seek to pur-
chase exactly 1/αn units of some good (in this case, differential
privacy) from exactly (1 − α)n individuals. Once we do this, we
have purchased a sufficient quantity of privacy to run the Laplace
mechanism employed in Theorem 3.3, which guarantees the de-
sired accuracy! In the next section, we consider such mechanisms.

4. DERIVING TRUTHFUL MECHANISMS

4.1 Maximizing Accuracy Subject to a Budget
Constraint

In this section, following the characterization of accurate mech-
anisms in Section 3, we restrict our attention to algorithms that
guarantee O(αn)-accuracy by purchasing 1/αn units of privacy
from exactly (1 − α)n individuals. We consider the problem of
obtaining an estimate ŝ of maximum accuracy, subject to a hard
budget constraint2:

∑n
i=1 pi ≤ B. This is a natural objective, for

example, in the case of a data analyst who has B dollars of grant
2This question is related to the problem of designing budget feasi-
ble mechanisms in [Sin10, CGL11], but differs in that our privacy
auction has externalities: a seller’s cost for her good is a function of
how many other sellers are chosen as winners by the mechanism.
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money with which to buy data for a study, and wishes to buy the
most accurate data that he can afford. We give a truthful and indi-
vidually rational mechanism for this problem, and show that it is
instance-by-instance optimal among the class of envy-free mecha-
nisms. For clarity of exposition, we assume in this section that all
cost functions are linear, i.e., ci(ε) = viε.

FairQuery(v,D,B) :

Sort v such that v1 ≤ v2 ≤ . . . ≤ vn.
Let k be the largest integer such that vk

n−k ≤
B
k

.
Output ŝ =

∑k
i=1 bi + n−k

2
+ Lap(n− k)

Pay each i > k pi = 0 and each i ≤ k pi = min(B
k
,
vk+1

n−k ).

We first prove that FairQuery is truthful and individually rational.

THEOREM 4.1. FairQuery is truthful and individually rational,
and never exceeds the data analyst’s budget B.

PROOF. First note that by the analysis from Theorem 3.3, for
any i ≤ k, εi = 1

n−k , and for any i > k, εi = 0. For i > k

therefore, pi = vi · 0 = 0. For i ≤ k, pi = min(B
k
,
vk+1

n−k ) ≥
vi/(n− k) because vi/(n− k) ≤ B/k by construction and vi ≤
vi+1 by definition. Hence, individual rationality is satisfied. Note
also that

∑n
i=1 pi = k · min(B

k
,
vk+1

n−k ) ≤ B, and so the budget
constraint is also satisfied. It remains to verify truthfulness:

Fix any v, i, v′i and consider k = k(v), k′ = k(v−i, v
′
i), pi =

pi(v), p′i = p′i(v−i, v
′
i), εi = εi(v), and ε′i = ε′i(v−i, v

′
i). There

are four cases:

1. Case 1: v′i < vi and pi > 0. In this case, v′i moves earlier in
the ordering and εi = ε′i, and pi = p′i.

2. Case 2: v′i > vi and pi = 0. In this case, v′i moves later in
the ordering and εi = ε′i = pi = p′i = 0.

3. Case 3: v′i < vi and pi = 0. In this case, v′i moves earlier
in the ordering, but if p′i > 0 then by construction p′i =
min( B

k′ ,
vk′+1

n−k′ ) ≤ vi/(n − k′). This follows because k′ is
such that vk′+1 ≤ vi for all i > k such that p′i > 0.

4. Case 4: v′i > vi and pi > 0. In this case, v′i moves later
in the ordering, and either p′i = pi and ε′i = εi, or p′i = 0
and εi = 0. In the second case, by individual rationality,
pi − viεi ≥ 0 = p′i − viε′i.

Thus in all four cases, deviations are not beneficial, and the mech-
anism is truthful.

The next natural question to ask is: does FairQuery guarantee
the data analyst a good level of accuracy, given his budget? As is
always the case in prior-free mechanism design, it is important to
specify what our benchmark is – good compared to what? Because
mechanisms of the kind that we are considering always buy the
same amount of privacy from an individual from whom they buy
any privacy at all, a natural benchmark to consider is the set of all
“envy-free” mechanisms which guarantee that no individual would
prefer the outcome granted to any other.

DEFINITION 4.2. A mechanism for private data is envy-free if
for all possible valuation vectors v, and for all individuals i, j,
pi−εivi ≥ pj−εjvi. That is, after the mechanism has determined
the privacy costs and payments to each individual, there are no
individuals who would prefer to have the payment and privacy cost
granted to any other individual.

OBSERVATION 4.3. Any truthful envy-free mechanism which
buys either no privacy or ε-privacy from each individual (i.e., if
εi > 0, εj > 0 then εi = εj) must have the property that for all
i, j with εi > εj > 0, pi = pj . Call such mechanisms fixed pur-
chase mechanisms. That is, envy free fixed purchase mechanisms
must pay each individual from whom privacy is purchased the same
fixed price.

Note that by the characterization in Section 3, we may restrict our-
selves to considering fixed purchase mechanisms essentially with-
out loss of generality (we may lose only a small constant factor).
Therefore we can compare our mechanism to the envy free bench-
mark:

PROPOSITION 4.4. For any set of valuations v ∈ Rn+ (i.e., on
an instance-by-instance basis) FairQuery achieves the optimal ac-
curacy given budget B, among the set of all truthful, individually
rational envy-free fixed purchase mechanisms.

PROOF. First, observe the easy fact that FairQuery is indeed an
envy free fixed purchase mechanism. We then merely observe that
for any vector of valuations v, if FairQuery sets εi > 0 for k indi-
viduals, then by the definition of k, it must be that vk+1

(n−k−1)
> B

k+1
,

and so any mechanism that set εi > 0 for k′ individuals for k′ > k
must have pk+1 >

B
(k+1)

by individual rationality. But by envy-
freeness, it must have pi = pk+1 >

B
(k+1)

for all i ≤ k. But in this
case, we would have

n∑
i=1

pi ≥ k′ · pk+1 > (k + 1) · B

k + 1
= B

which would violate the budget constraint.

4.2 Minimizing Payment Subject to an Accu-
racy Constraint

In this section, we consider mechanisms for the dual goal of
truthfully obtaining a k-accurate estimate for some fixed accuracy
constraint k while minimizing the payment required. Again, we
restrict ourselves to the model of multi-unit procurement auctions
justified in Section 3. In this setting, we show that the VCG mech-
anism is in fact optimal.

Recall that for a fixed accuracy goal αn, by Theorem 3.3, it is
sufficient to buy (1/2+ln 3)

αn
units of privacy from (1− α

(1/2+ln 3)
)n

people. We may therefore view our setting as a multi-unit pro-
curement auction in which every individual is selling a single
good ( (1/2+ln 3)

αn
units of privacy), for which they have valuation

vi = ci(
(1/2+ln 3)

αn
) (note that vi is now the total cost for the

(1/2+ln 3)
αn

units of privacy). The constraint on accuracy simply
states that we must buy (1 − α

(1/2+ln 3)
)n) units of the good. In

this case, we can analyze a simple application of the standard VCG
mechanism:

MinCostAuction(v,D, α):
Let α′ = α

1/2+ln 3
and k = d(1− α′)ne.

Sort v = ci(
1

n−k ) such that v1 ≤ v2 ≤ . . . ≤ vn.
Output ŝ =

∑k
i=1 bi + n−k

2
+ Lap(α′n)

Pay each i > k pi = 0 and each i ≤ k pi = vk+1.

We first show that MinCostAuction does indeed satisfy the con-
straints of truthfulness and individual rationality, while obtaining
sufficient accuracy.
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PROPOSITION 4.5. MinCostAuction is truthful, individually
rational and αn-accurate.

PROOF. That MinCostAuction is αn-accurate follows imme-
diately from Theorem 3.3. Moreover, by Theorem 3.3, for each
i ≤ k, εi = 1/(α′n) and for i > k, εi = 0. Truthfulness and indi-
vidual rationality then follow immediately from the fact that each
vi = ci(1/(α

′n)) and MinCostAuction is an instantiation of the
classical VCG mechanism.

MinCostAuction achieves its target utility at a cost of
∑n
i=1 pi =

k · vk+1. We now show that no other envy-free multi-unit procure-
ment auction with the same accuracy guarantees (i.e. one that guar-
antees buying k units) makes smaller payments than MinCostAuc-
tion.

THEOREM 4.6. No truthful, individually rational, envy-free
multi-unit procurement auction that guarantees purchasing k units
can have total payment less than k · vk+1.

PROOF. For the sake of contradiction, suppose we have such a
mechanism M . Fix some vector of valuations v that yields pay-
ments p(v) such that

∑n
i=1 pi(v) < k · vk+1 (again, note that vi

now denotes the total cost for purchasing data, not the per-unit pri-
vacy cost). First, if it is not already the case, we will construct a
bid profile such that an item is purchased from some seller who
is not among the k lowest sellers. It must be that there exists
some i such that an item is purchased from i at a price of pi,
such that vi ≤ pi < vk+1 (otherwise

∑n
i=1 pi(v) ≥ k · vk+1).

Let v′ = (v−i, (pi + vk+1)/2) be a bid profile in which bidder
i raises his bid to be above pi while remaining below vk+1. Let
p′ = p′(v) be the new payment vector. By individual rationality
and truthfulness, it must be that in this new bid profile v′, player i
is no longer allocated an item: by individual rationality, he would
have to be paid p′i > pi if he were allocated an item, but if his
true valuation were vi, then this would be a beneficial deviation,
contradicting truthfulness. Because the mechanism is constrained
to always buy at least k items, it must be that in v′, an item is
now purchased from some seller j such that j ≥ k + 1. By in-
dividual rationality, p′j ≥ vj ≥ vk+1. But by envy-freeness, it
must be that for every seller i from whom an item was purchased,
p′i = p′j ≥ vk+1. Because at least k items are purchased, we there-
fore have

∑n
i=1 p

′
i ≥ k · vk+1, which contradicts the purported

payment guarantee of mechanism M .

5. PRESERVING THE PRIVACY OF THE
BID

In Section 4, we considered truthful, individually rational mech-
anisms that compensated users for the privacy loss due to the mech-
anisms’ use of the individual’s private bits bi, but not due to the
mechanisms’ use of their valuations for privacy, vi. Nevertheless,
as we observed in the introduction, it is quite reasonable to as-
sume that individual’s valuations for privacy are correlated with
their private bits. Can we design mechanisms that treat individu-
als’ valuations for privacy as private data as well, and compensate
individuals for the privacy loss due to the use of their valuations
vi? In this section, we show that the answer is generically ‘no’ if
we allow individuals to have arbitrarily high valuations for privacy.
Moreover, we note that if we try to impose an a-priori bound on
individual’s valuations for privacy, then we re-introduce the same
source of sampling bias that we had hoped to solve by running an
auction.

A mechanism has two outputs: the estimate ŝ, and the pay-
ment P that the data analyst must make. Note that if the bids are

private data as well, then a mechanism which is εi-differentially
private with respect to bidder i must satisfy, for every set of esti-
mate/payment tuples S ⊂ R2

+ and for each (v,D) ∈ Rn+×{0, 1}n,
Pr[M(v,D) ∈ S] ≤ exp(εi) Pr[M(v(i), D(i)) ∈ S], where v(i)

and D(i) are arbitrary vectors that are identical to v and D every-
where except possibly on their ith index.

THEOREM 5.1. If bidder valuations for privacy may be arbi-
trarily large (i.e., v ∈ Rn+) then no individually rational mechanism
M can protect the privacy of the bidder valuations and promise k-
accuracy for any k < n/2 (i.e., any nontrivial value).

PROOF. Assume that M is k-accurate for some k < n/2. Run
the mechanismM(v,D) and obtain an estimate ŝ and privacy costs
εi for each i ∈ [n]. Let P =

∑n
i=1 pi be the payment that the

data analyst makes. By individual rationality, P ≥
∑n
i=1 εivi ≥

mini vi ·
∑n
i=1 εi. We trivially have that either Pr[ŝ ∈ [0, n/2)] ≥

1/2 or Pr[ŝ ∈ [n/2, n]] ≥ 1/2. Without loss of generality, assume
Pr[ŝ ∈ [0, n/2)] ≥ 1/2. Let D′ = 1n, and let ŝ′ be the estimate
obtained by runningM(v,D′). By accuracy, we have that: Pr[ŝ′ ∈
(n/2, n]] ≥ 2

3
. However, by differential privacy, together with Fact

1 we have:

2

3
≤ Pr[ŝ′ ∈ (n/2, n]] ≤ exp(

n∑
i=1

εi) Pr[ŝ ∈ (n/2, n]]

≤
exp(

∑n
i=1 εi)

2

Solving, we find that
∑n
i=1 εi ≥ ln(4/3), independent of

v. We therefore have by individual rationality that Pr[P ∈
[0, ln(4/3) mini vi)] = 0. By differential privacy, this must hold
simultaneously for all inputs to the mechanism (v,D): that is, such
a mechanism can not charge a finite price P for any input, which
completes the proof.

REMARK 5.2. A natural (partial) way around the impossibility
result of Theorem 5.1 is to restrict bidder valuations to lie in a
bounded range (e.g. [0, 1]). This is unsatisfying, however, because
it re-introduces the very source of sampling bias that we wanted to
solve by running an auction. That is, bidders who happen to value
their privacy at a higher rate than allowed by the mechanism will
simply not participate in the auction, which might systematically
skew the resulting estimate in a way that we cannot measure.

6. FUTURE DIRECTIONS
The main contribution of this paper is to formalize the notion of

auctions for private data, and to show that the design space of such
auctions can without loss of generality be taken to be the simple set-
ting of multi-unit procurement auctions. This initiates an intriguing
new area of study that raises many questions. Among these are:

1. What is the proper benchmark for auctions in our setting?
In this paper, we used the class of fixed-price (or envy free)
mechanisms, which has become standard in the field of prior-
free mechanism design [HR08, HK07]. However, this ap-
proach is better motivated in settings in which Bayesian opti-
mal mechanisms are well understood and indeed charge fixed
prices to winners. Bayesian optimal mechanisms are not
known for our settings (e.g. budget constrained auctions with
the objective function of buying as many units as possible).
Studying Bayesian optimal mechanism design for these auc-
tions, which correspond to natural markets for privacy would
help identify and justify appropriate benchmarks.
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2. We have shown that generically, no mechanism can compen-
sate individuals for the loss of privacy which results from
correlations between their private data and their reported
costs for privacy. Nevertheless, such correlations exist! It
is unsatisfying to restrict individual valuations for privacy to
lie in a bounded range, because this reintroduces the very
source of bias that we hoped to overcome by designing auc-
tions. However, is there some restricted sense in which we
can protect (and compensate users for) the privacy of their
valuations for privacy? This requires the development of
new models.

3. We have assumed throughout this paper that the private bits
of the users, bi are already known to some database adminis-
trator, such as a hospital. Although this is a natural assump-
tion in some settings, what if it does not hold? Is there any
way to mediate the purchase of private data directly from in-
dividuals who have the power to lie about their private data?

4. In this paper we considered an extremely simple market, in
which there was a single data analyst wanting to buy data
from a population. How about a two sided market, in which
there are multiple data analysts, competing for access to the
private data from multiple populations? Can we privately
compute the market clearing prices for access to data in this
way?

5. In this paper we considered a one-shot mechanism. In real-
ity, the administrator of a private database will face multiple
requests for access to his data as time goes on. How should
the data analyst reason about these online requests and his
value for the marginal privacy loss that he will incur after
answering each request?
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APPENDIX
A. A UTILITY THEORETIC VIEW OF

VALUING DIFFERENTIAL PRIVACY
In this section, we provide a brief justification for why individ-

uals should be able to quantify their cost for experiencing an ε-
differentially private use of their private data. Say that A denotes
the set of all future events for which an individual i has preferences
over outcomes, and ui : A → R is a function mapping events to i’s
utility for that event. Suppose that D ∈ D is a data-set containing
individual i’s private data, and that M : D → T is a mechanism
operating on D promising εi-differential privacy to individual i.
Let D′ be a data-set that is identical to D except that it does not
include the data of individual i (equivalently, it includes the data
of individual i, but it is used in a 0-differentially private manner),
and let f : T → ∆A be the (arbitrary) function that determines
the distribution over all future events, conditioned on the output of
mechanism M .

A basic consequence of differential privacy is the following:

FACT 2. If M : D → T is εi-differentially private with respect
to individual i, and f : T → U is any arbitrary (randomized)
function independent of D, then the composition f ◦M : D → U
is also εi-differentially private with respect to individual i.

By the guarantee of differential privacy together with Fact 2, we
have:

Ex∼f(M(D))[ui(x)] =
∑
x∈A

ui(x) · Pr
f(M(D))

[x]

≤
∑
x∈A

ui(x) · exp(εi) Pr
f(M(D′))

[x]

= exp(εi)Ex∼f(M(D′))[ui(x)]

Similarly,

Ex∼f(M(D))[ui(x)] ≥ exp(−εi)Ex∼f(M(D′))[ui(x)]

Therefore, when individual i is deciding whether or not to allow
his data to be used in an εi-differentially private way, he is facing
the decision about whether he would like his data to be used in such
a way that could change his future utility by at most an additive
factor of

∆ui ≡ (exp(εi)− 1)Ex∼f(M(D′))[ui(x)]

and so this is a natural quantity for i to value his pri-
vacy at. Note that for small values of εi, this is approx-
imately εi · Ex∼f(M(D′))[ui(x)], which (by setting vi =
Ex∼f(M(D′))[ui(x)]) conveniently leads to the form of linear util-
ity functions that we explore in this paper.
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