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Abstract

A Nash Equilibrium is a joint strategy profile at which
each agent myopically plays a best response to the other
agents’ strategies, ignoring the possibility that deviating
from the equilibrium could lead to an avalanche of
successive changes by other agents. However, such
changes could potentially be beneficial to the agent,
creating incentive to act non-myopically, so as to take
advantage of others’ responses.

To study this phenomenon, we consider a non-
myopic Cournot competition, where each firm selects
whether it wants to maximize profit (as in the classi-
cal Cournot competition) or to maximize revenue (by
masquerading as a firm with zero production costs).

The key observation is that profit may actually be
higher when acting to maximize revenue, (1) which will
depress market prices, (2) which will reduce the produc-
tion of other firms, (3) which will gain market share for
the revenue maximizing firm, (4) which will, overall, in-
crease profits for the revenue maximizing firm. Implicit
in this line of thought is that one might take other firms’
responses into account when choosing a market strategy.
The Nash Equilibria of the non-myopic Cournot compe-
tition capture this action/response issue appropriately,
and this work is a step towards understanding the im-
pact of such strategic manipulative play in markets.

We study the properties of Nash Equilibria of
non-myopic Cournot competition with linear demand
functions and show existence of pure Nash Equilibria,
that simple best response dynamics will produce such an

∗The Blavatnik School of Computer Science, Tel Aviv Univer-
sity. This research was supported in part by the Google Inter-

university center for Electronic Markets and Auctions and in part
by a grant from the Israeli Science Foundation.

†Greece University of Athens.
‡Cornell University and Caltech. Research supported in part

by an NSF Mathematical Sciences Postdoctoral Fellowship.
§This research was supported in part by the Google Inter-

university center for Electronic Markets and Auctions, by a grant
from the Israel Science Foundation, by a grant from United States-

Israel Binational Science Foundation (BSF), and by a grant from
the Israeli Ministry of Science (MoS).

equilibrium, and that for some natural dynamics this
convergence is within linear time. This is in contrast
to the well known fact that best response dynamics
need not converge in the standard myopic Cournot
competition.

Furthermore, we compare the outcome of the non-
myopic Cournot competition with that of the standard
myopic Cournot competition. Not surprisingly, per-
haps, prices in the non-myopic game are lower and the
firms, in total, produce more and have a lower aggregate
utility.

1 Introduction

Understanding competition between firms is a funda-
mental problem in economics. One of the oldest and
most studied models in this area is the Cournot com-
petition [4]. In a Cournot competition there is a single
divisible good, each firm has a certain production cost
per unit to manufacture the good, and each firm must
select a quantity of the good to produce. The price is
then set as a function of the total quantity produced
by all of the firms. Naturally, as the quantity increases
the price decreases, and thus the firms face a tradeoff
between the amount produced and the market price.

A major and fundamental problem with the Nash
equilibrium is that it was conceived as a solution concept
for a single shot simultaneous play game, but it is
often invoked in other contexts, where it possibly makes
less sense. The Cournot-Nash equilibrium defines a
best response to a given strategy profile of the other
agents, a−i, to be the best action possible, under the
assumption that the other players will not deviate from
a−i. The Cournot competition model highlights some
potential problems with treating the Nash equilibrium
as the inevitable outcome of competitive play.

Consider the following example: There are two oil
producing firms, Wildcat Drillers and W. Petroleum.
Wildcat Drillers has a production cost of $0.5 USD
per mega-barrel; W. Petroleum has a production cost
of $0.3 USD per mega-barrel. If the price per mega-
barrel decreases linearly, specifically, if price = (1 - total
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supply in mega-barrels), then the Cournot competition
equilibrium price is $0.6. At this equilibrium price,
both firms are producing and no firm can benefit by
unilaterally changing its production quantity, assuming
that the other firm does not change its production
quantity. (In our toy example the price drops down to
zero when the world supply is one mega-barrel of oil.)

If W. Petroleum were to increase its production
such that the price dropped below $0.5, Wildcat Drillers
would be producing at a loss. The inherent assumption
in the Cournot-Nash equilibrium is that if this happened
Wildcat Drillers would indeed continue producing at
the same level as before, despite this loss, or that W.
Petroleum would never manipulate the market in this
manner. However, W. Petroleum may hypothesize that
if the price were driven down, Wildcat Drillers would
in fact cease production, rather than continuing pro-
duction at a loss. This hypothesis seems rather natu-
ral, but its predictions are not captured by traditional
Cournot-Nash equilibria.

The impetus for our work is a sense of unease
about the assumption that agents act myopically and
ignore responses to their own actions. In the context of
competition, it seems natural that firms should be able
to predict something about the behavior of other firms,
as a function of changes in pricing.

We are not the first to feel such unease. To
quote Abreu [1], “In recent times this model [Cournot-
Nash] has been criticized for being too static, and
thereby yielding predictions which are misleadingly
competitive”.

Our work follows a direction pioneered by Vickers
[13], Fershtman and Judd [6], and Sklivas [11]. The
model used in many of these papers is a fixed-depth
extensive form “delegation” game: the first stage1 is an
“owners game”, and the second stage is the “managers
game”. Essentially, the first stage players (sometimes
called the owners or principals) set parameters for the
second stage players (sometimes called the Managers or
the agents). Once the owners give these parameters to
their agents, the agents are expected to compute and
play equilibria of an underlying agent game.

While the existing literature seeks to optimize in-
centives for agents so as to maximize profits, our view
of this type of multistage game is quite different. A
delegation game can be interpreted as a way to make
sense of off-equilibria behavior: as the principal sets the
utility for the agent, this can encode arbitrary rules for
best responses.

We consider two natural strategies for the principal:
tell the agent to maximize revenue (select action RM),

1Some papers have delegation game models with three steps.

or tell the agent to maximize profit (select action PM).
When a principal selects PM the agent simply tries to
maximize firm profits (similar to the Cournot compe-
tition). However, when a principal selects RM, the
agent ignores production costs, and attempts to maxi-
mize firm revenue. After each selecting one of these two
strategies, agents for each firm participate in a Cournot
competition, where the PM agents use their true pro-
duction costs to determine production levels and the
RM agents use a production cost of zero to decide how
much to produce. As in the standard Cournot compe-
tition, firms experience utilities as determined by their
true production costs. The major difference between
the PM/RM game and the underlying Cournot compe-
tition is that when a principal changes its action in the
PM/RM game, it results in a change in the production
quantities of the other firms (by converging to an equi-
librium of the underlying Cournot competition).

Previous work on the delegation game has been in
the continuous case, allowing the principal to select
among convex (and even non-convex!) combinations
of revenue maximization and profit maximization; in
such settings it is easy to see that an equilibrium exists.
In our discrete, binary PM/RM model, we show that
there always exists a pure Nash equilibrium, and that
the resulting equilibrium price of the PM/RM game is
at most the Cournot competition market price and at
least half of it. On the other hand, the aggregate utility
of the firms participating in the competition might be
significantly lower in the PM/RM game. Conceptually,
we show that in our model, strategizing about others’
responses increases competition, reduces prices, and
improves social welfare, all while reducing corporate
profits.

We are also interested in the dynamics underlying
the Cournot competition and the PM/RM game. (We
believe we are the first to consider dynamics of the dele-
gation game.) Interestingly, a single change of strategy
in the PM/RM game may result in a dynamic cascade
of best response moves in the underlying Cournot com-
petition. For example, if W. Petroleum increases pro-
duction, then the market price will go down, and if it
goes down enough then some firms may drop out of the
market (e.g., Wildcat Drillers might stop production).
As firms drop out of the market, the total supply goes
down, and — possibly — firms that previously were not
producing anything (say, a new company called Texas
Oil) suddenly start production.2

2The dynamics described above are the dynamics of the under-
lying Cournot competition, and can be inferred as a consequence

of actions in the PM/RM game. In the PM/RM game, there may
also be meta-level cascading effects; for example, firms may move
from maximizing profit to maximizing revenue, and then, after
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We show that best response dynamics in the
PM/RM game always converge to a pure Nash equilib-
rium. We also demonstrate simple dynamics that con-
verge in a linear number of updates, and thus such an
equilibrium is polytime-computable. One could also ar-
gue that a combination of best response by principals
and regret-minimization by agents would give dynam-
ics that converge to the unique Nash Equilibrium of the
PM/RM game.

We also consider two important special cases of the
PM/RM game, in which we give a complete character-
ization of the pure Nash equilibria: (a) only two firms
in the game and (b) all firms have the same produc-
tion cost (the symmetric case). In the symmetric case
it is interesting to observe that there are non-symmetric
pure Nash equilibria. In fact, for any choice of i firms
selecting PM and m − i firms selecting RM, there is a
cost c for which this strategy profile is in equilibrium.
Except in the case of two firms, it seems that prior work
on the delegation game has been limited to studying the
symmetric case.

Related Work Cournot competition assumes a so-
called conjectural variation model, [2], i.e., the Cournot
conjectured variation is that if one firm changes its
production level then other firms will not adjust their
production level accordingly. Under this assumption,
the Cournot competition is a Nash Equilibrium; in this
setting the Nash equilibrium is sometimes referred to as
a Cournot-Nash equilibrium.

As noted above, this Cournot conjectured vari-
ation is a subject of much debate and criticism in
the economics literature, with conflicting conclusions.
Abreu [1] describes how the threat of punishment in
an extended game could support higher prices than the
Cournot equilibrium prices.

By contrast, Riordan [9] considers a setting with
imperfect information where firms only see the prices
they receive. In a multistage game, a firm could increase
it’s output to lower the market clearing price, this causes
rival firms to think that the demand curve has shifted
down, and hence induces them to lower their outputs in
the future. Thus, the market price will be lower than
that projected by the Cournot competition prices.

Without assuming an extensive form game,
Schelling [10] suggested that one could make “a cred-
ible threat” (that one might not act to maximize profit
alone) by delegating authority, e.g., using thugs for ex-
tortion or sadists for prison guards. In general, there
are a large number of papers dealing with delegation,

other firms respond (in the PM/RM game), they may go back to
maximizing profit.

and not only for making threats. Many of these papers
give examples of market competition between firms.

The delegation games we study here come out of
work of Vickers [13], Fershtman and Judd [6], and Skli-
vas [11]. We remark that similar ideas are due to
Kurz [8], who defined a “distortion game”, wherein
agents strategically misrepresent their types to a tax-
ation mechanism (in the context of the Autmann-Kurz
income distribution game).

Alternately and equivalently, one can view the dele-
gation problem as the question “What incentives should
the principal (owner) offer the agent (manager)?”.
By allowing arbitrary (not necessarily implementable)
“compensation functions”, Fershtman, Judd, and Kalai
[7] give a folk theorem for achieving Pareto efficiency
in delegation games (this directly implies Abreu’s com-
ment, without an extensive form game).

There is a strong connection between Stackelberg
equilibria and the delegation game, e.g., if only one
player strategizes in the owners’ game, and the others
don’t, then the strategic owner will become a Stackel-
berg leader, and the others Stackelberg followers (see
Berr [3] for this result and others, and for a large bibli-
ography).

In this paper we deal with the delegation game
in the context of competition on quantity (Cournot
competition). While many different types of agent
incentives have been considered, the basic literature
studies incentives of the form

α · profit + (1− α) · revenue 0 ≤ α ≤ 1 .

Also, except for 2 firms, it seems that only the sym-
metric case (wherein all firms have the same production
cost) has been studied.

The dynamics of the Cournot competition itself
have been studied at length, and it is well known that
best response dynamics do not necessarily converge [12].
However, it is known [5] that in regret minimization
the action frequencies converge to the Cournot-Nash
equilibrium.

2 The Model

2.1 Standard (Myopic) Linear Cournot Com-
petition We consider a set of m firms, M = {1, . . .m},
producing an identical good, where firm i has produc-
tion cost ci per unit of production. Every firm chooses
a production level xi ∈ [0, 1]. Let x = ⟨x1, x2, . . . , xm⟩
be the joint production levels of all m firms. The lin-
ear Cournot model we consider here assumes the market
price is a linearly decreasing function of the production
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levels, that is,

(2.1) p(x) = 1−
m∑
i=1

bixi,

for strictly positive constants b1, b2, . . . , bm. The profit
(utility) of firm i ∈ M is the profit per unit of
production times the quantity produced, i.e.,

ui(x) = (p(x)− ci) · xi.

Consider a linear Cournot competition with firms
i ∈ M = {1, . . . ,m} and production costs ci. A
Cournot-Nash equilibrium is a joint production level,
xeq = ⟨xeq

1 , xeq
2 , . . . , xeq

m⟩, where for each firm i, xeq
i

maximizes the utility for firm i, given xeq
−i.

3 That is,

xeq
i ∈ argmaxxui(x

eq
−i, x) for all 1 ≤ i ≤ m.

The following proposition, and variants thereof, are
well known. We give the proof only for the sake of
completeness.

Proposition 2.1. Given a linear Cournot competition
of m firms with production levels xeq at Cournot-Nash
equilibrium, let N ⊆ M = {1, . . . ,m} be the set of firms
with strictly positive production levels at equilibrium,
i.e., N = {i ∈ M | xeq

i > 0}, and let n = |N |.
The Cournot-Nash equilibrium has the following

characteristics:

1. For any firm i ∈ N (with strictly positive produc-
tion levels), we have

(2.2) xeq
i =

p(xeq)− ci
bi

.

2. The market clearing price at equilibrium is

(2.3) p(xeq) =
1 +

∑
i∈N ceqi

n+ 1
= peq(c).

3. The utility of non-producing firms (j /∈ N) is zero,
and the utility of producing firms (i ∈ N) is

(2.4) ui(x
eq) =

(peq(c)− ci)
2

bi
.

Proof. To compute the Cournot-Nash equilibrium we
take the derivative of ui(x) = (p(x)−ci)·xi with respect
to xi. It follows from Equation (2.1) that

(2.5)
∂

∂xi
ui(x) = (p(x)− ci)− bixi.

3We denote by x−i the vector x except for the i-th component,

and by (x−i, a) the vector x where the i-th component is replaced
by a.

It follows from Equation (2.5) that

bix
eq
i = p(xeq)− ci = peq(c)− ci .

Note that in equilibrium a firm i ∈ M has xeq
i > 0 iff

ci < peq(c). Taking the sum over all the firms N ⊆ M
with strictly positive production levels we have

|N |peq(c)−
∑
j∈N

cj =
∑
j∈N

bjx
eq
j = 1− peq(c) ,

where the second equality follows from the definition
of the market price in a linear Cournot competition
(Equation (2.1)). This implies that the market clearing
price at equilibrium is

p(xeq) = peq(c) =
1 +

∑
j∈N cj

n+ 1
.

Thus, the utility of a firm i ∈ N , at equilibrium, is
(peq(c)− ci) · xeq

i = (peq(c)− ci)
2/bi.

2.2 The PM/RM Game To address the issue that
actions of one firm may impact the actions of another,
resulting in an outcome other than a Cournot-Nash
equilibrium, we study a binary delegation game, which
we refer to as the PM/RM game. In the game, a firm’s
principal selects between two strategies for its agent:

1. PM (profit maximization), and

2. RM (revenue maximization).

In this PM/RM game, as in the Cournot competi-
tion, we have a set of M firms {1, . . .m}, and each firm i
has a production cost ci. Each firm has a principal that
selects an action in {PM,RM}; for simplicity, we will at-
tribute both the action and the resulting utility to the
firm itself. Let g(c,RM) = 0 and g(c,PM) = c. Given
a joint action z ∈ {PM,RM}m, we define a virtual cost
vector y(z) such that yi(z) = g(ci, zi).

Effectively, the principal determines a virtual cost,
which could be either the true production cost or zero.
In both cases, the agent takes this virtual production
cost and chooses a production level corresponding to
that production cost in the standard Cournot competi-
tion. When production costs are zero, profit and rev-
enue are identical, and thus we can consider such an
action as revenue maximizing.

We now consider the Cournot-Nash equilibrium of
this virtual Cournot competition, played with virtual
production costs yi(z) = g(ci, zi) rather than ci. For
this Cournot-Nash equilibrium we have production lev-
els xeq(y(z)), and price peq(y(z)). It follows from Equa-
tion (2.2) that the production levels derived from the
virtual Cournot competition are as follows:
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1. If firm i chooses profit maximization (PM) then the
production level is xeq

i (y(z)) = (peq(y(z))− ci)/bi.
4

2. If firm i chooses revenue maximization (RM)
then the production level xeq(z) = xeq

i (y(z)) =
peq(z)/bi.

Similar to the state of affairs for a (myopic) Cournot
competition, the utility of firm i ∈ M in the PM/RM
game is ui(z) = (peq(z) − ci)xi(z). Note that a firm’s
utility in the PM/RM game is determined using the true
production costs, not the virtual production costs.

In this model, market prices will always be positive,
i.e., peq(z) ≥ 0. Similarly, the production level of any
firm is always non-negative: xi ≥ 0, ∀i. Let Neq(z)
be the set of firms with strictly positive production
levels, given the joint action z of the PM/RM game.
Let PM(z) be set of PM players with strictly positive
production levels at joint action z, PM(z) = {r : zr =
PM, cr < peq(z)}, and let RM(z) be set of RM players
at z, RM(z) = {r : zr = RM}.

A principal i that selects zi = PM is guaranteed
a non-negative utility for his firm: Either it does not
produce (xi(z) = 0) or it produces (xi(z) = (peq(y(z))−
ci)/bi > 0), and in both cases ui(z) = bix

2
i (z). A

principal that chooses to maximize revenue always has
strictly positive firm production level, and the firm
may find itself with negative utility. However, in the
equilibria of the PM/RM game, all firms have non-
negative utility (since all principals always have the
option of playing PM).

We define the best response correspondence of a
firm i as BRi(z−i) to include all the best response
actions, given that the other firms’ actions are z−i.
Since we have only two actions, we sometimes abuse the
notation and talk about the best response action, when
it is unique. A best response sequence is a sequence of
joint actions z1, . . . , zk, in which each joint action zj+1

is derived from the preceding joint action zj by a single
firm making a best response move.

3 Nash Equilibria and Dynamics of the PM/RM
game

In this section, we study the properties of the PM/RM
game and establish the existence of pure Nash equilibria.

3.1 Market price vs. Production cost The next
lemma plays an essential role in understanding the
structure of Nash equilibria of the PM/RM game. It

4As y(z) is a function of z we will use the notation p(z)
and p(y(z)) interchangeably, and do likewise for arbitrary other
functions of y(z).

states that when a firm switches from revenue max-
imization to profit maximization, the price increases
(and therefore the number of producing firms cannot
decrease so long as the switching firm continues pro-
duction).

Lemma 3.1. Let z−i be a joint action of all firms except
of some firm i, and consider the two joint actions zpm =
(z−i,PM) and zrm = (z−i,RM) in which firm i has
action PM and RM, respectively. Let npm = |N(zpm)|
and nrm = |N(zrm)| denote the number of producing
firms in the two joint actions and let the corresponding
market prices be ppm = peq(z

pm) and prm = peq(z
rm).

Then

1. ppm > prm, and

2. if firm i produces at zpm, then npm ≥ nrm.

Proof. For Claim 1, we can derive ppm from prm by
doing the computation in two stages. In the first stage,
we consider the increase in the price as firm i changes
its action from RM to PM while the other firms do not
react; in the second stage, the other firms react to the
price change and the price drops. We will argue that
the price will stay above the original level.

In the first stage, after firm i changes from RM
to PM, the price increases regardless of whether firm
i keeps producing or stops producing. Specifically, if it
keeps producing, the price increases by ci

1+nrm
, and if it

stops producing, the number of producers decreases by
1, and the price increases by a factor of 1+nrm

nrm
.

In the second phase, some firms that were not
producing at price prm start producing. This affects
the price by increasing the numerator by the sum of the
production costs of the new producers; the denominator
increases by the number of new producers. The crucial
observation is that the new producers have production
cost at least prm (since they were not producing at this
price). It follows that the changes in the numerator and
the denominator of the price will leave the price above
prm.

Claim 2 follows directly from Claim 1: Since the
price goes up, every firm who produces before the
change keeps producing after the price increase; the only
exception may be firm i which changed its strategy to
PM, but the premise is that firm i produces.

The next lemma bounds the effect on the price when
a firm switches from PM to RM.

Lemma 3.2. With the same premises of Lemma 3.1 and
the additional assumption that firm i produces at zpm,
we have

prm +
ci

1 + npm
≤ ppm ≤ prm +

ci
1 + nrm

.
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Proof. Let C =
∑

y∈PM(zrm) cy and C ′ =∑
y∈PM(zpm) cy. By the premise of the lemma,

i ∈ PM(zpm), hence ci is one of the terms in C ′. The
difference C ′−C− ci is the sum of the production costs
of the firms that start producing when i switches from
RM to PM. There are (npm − nrm) such firms, which
by the previous lemma is non-negative. Since each of
these firms has production cost between prm and ppm,
we have

(npm − nrm)prm ≤ C ′ − C − ci ≤ (npm − nrm)ppm

According to the definition of peq(z) we have:

prm =
1 + C

1 + nrm
; ppm =

1 + C ′

1 + npm
.

Combining these two equations, we have

ppm(1 + npm)− prm(1 + nrm) = C ′ − C ,

which implies that

ci + (npm − nrm)prm ≤ ppm(1 + npm)− prm(1 + nrm)

≤ ci + (npm − nrm)ppm,

and the lemma follows.

Lemma 3.3. With the premises of Lemma 3.2 and the
extra assumption that ci ≤ prm:

1. If firm i prefers PM to RM, then

ci ≥ prm

(
1− 1

n2
rm

)
.

2. If firm i prefers RM to PM, then

ci ≤ prm

(
1− 1

n2
pm

)
.

Proof. The utilities of firm i in zpm and zrm are
ui(z

pm) = 1
bi
(ppm−ci)

2 and ui(z
rm) = 1

bi
prm(prm−ci).

If firm i prefers PM to RM, we have ui(z
pm) ≥ ui(z

rm),

prm
bi

(prm − ci) ≤ 1

bi
(ppm − ci)

2;

prm(prm − ci) ≤ (ppm − ci)
2;(3.6)

prm(prm − ci) ≤ (prm +
ci

1 + nrm
− ci)

2,(3.7)

where inequality (3.7) follows from inequality (3.6)
using Lemma 3.2 and the fact that the terms in the
right-hand side inside the square are non-negative; this
follows immediately from the premise of the lemma

that firm i produces at zpm. By simplifying the last
inequality, we get the first part of the lemma.

The second part is similar. Since firm i prefers RM
to PM, we have ui(z

pm) ≤ ui(z
rm). Therefore

(prm − ci)
prm
bi

>
(ppm − ci)

2

bi
;

(prm − ci)prm > (ppm − ci)
2;(3.8)

(prm − ci)prm > (prm +
ci

1 + npm
− ci)

2,(3.9)

where inequality (3.9) follows from inequality (3.8)
using Lemma 3.2. Again, the right-hand side terms
inside the squares are positive, and this is guaranteed by
the extra assumption that ci ≤ prm. The last inequality
is equivalent to the second inequality of the lemma.

3.2 Existence of pure Nash Equilibrium We first
relate the price after the best response move to the cost
of the firms.

Observation 3.1. Consider firms i and j with produc-
tion costs ci > cj. Consider a joint action z where
zi = zj = RM. Let p′ be the price if j changes to PM
from z, let p′′ be the price if i changes to PM from z.
Then, p′ ≤ p′′.

Proof. We argue that p′ ≤ p′′. One can view the cost
change of firm i in two stages. In the first stage it
increases its cost by cj , thus setting price p′ in the
system (it can be the case that i does not produce at p′).
In the second stage, firm i completes its cost change by
increasing it by the remaining ci−cj (in the case where i
does not produce after the first stage, we have p′′ = p′).
Since the price is monotone in the cost, we get p′ ≤ p′′.

We now show that if firm j prefers to switch from
RM to PM in the joint action z, then any firm i with
higher production cost that plays RM in z would also
prefer to switch to PM.

Lemma 3.4. Consider firms i and j with production
costs ci > cj. Consider a joint action z where zi = zj =
RM. If in z firm j prefers PM, i.e., BRj(z−j) = PM,
then firm i also prefers PM, i.e., BRj(z−i) = PM. (See
Figure 1(a).)

Proof. Let p = peq(z). If ci > p, then clearly i prefers
PM (since it has a negative utility when playing RM).
For the rest of the proof we assume that ci ≤ p.
Consider joint actions z′ = (z−j ,PM), z′′ = (z−i,PM)
with market prices p′ and p′′, respectively. The utility
of firm j in joint action z is uj(z) = p(p − cj)/bj ,
and the utility of firm j in joint action z′ is uj(z

′) =
(p′ − cj)

2/bj . The utility of firm i in joint action z is
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ui(z) = p(p − ci)/bi and the utility of firm i in joint
action z′′ is ui(z

′′) = (p′′ − ci)
2/bi. By assumption, j

prefers to switch to PM when the joint action is z, so
uj(z) < uj(z

′), i.e.,

(3.10) p(p− cj)/bj < (p′ − cj)
2/bj ,

and we wish to show that ui(z) < ui(z
′), i.e.,

(3.11) p(p− ci)/bi < (p′′ − ci)
2/bi .

Let n, n′, n′′ be the number of firms with non-zero
production levels in z, z′, z′′, respectively.

Using Lemma 3.3, since j prefers PM, we have
cj > p(1− 1

n2 ).
For fixed p and p′, define f(r) = (p′−r)2−p(p−r).

Rearranging equation (3.10), we have f(cj) > 0. We
will complete the proof by showing that f(r) is an
increasing function in the range r > p(1 − 1

n2 ). Given
that, since ci > cj > p(1 − 1

n2 ) and f(cj) > 0, we
will conclude f(ci) > 0, and thus p(p− ci) < (p′ − ci)

2.
Finally, from Observation 3.1 we have p′ ≤ p′′ and hence
p(p− ci) < (p′′ − ci)

2, which will complete the proof.
We now show that f is increasing in the desired

range. The derivative of f is f ′(r) = 2(r−p′)+p. From
Lemma 3.2, p′ ≤ p+

cj
1+n . For r ≥ cj we get

f ′(r) ≥ 2r − 2(p+
r

1 + n
) + p

= 2r
n

n+ 1
− p

≥ 2p

(
1− 1

n2

)
n

n+ 1
− p

≥ p(
2n− 2

n
− 1)

= p
n− 2

n
≥ 0 .

We now show that if firm i prefers to switch from
PM to RM in the common action z, then any firm j
with lower production cost that plays PM in z would
also prefer to switch to RM.

Lemma 3.5. Consider firms i and j with production
costs ci > cj. Suppose zi = zj = PM. If in joint
action z firm i prefers RM, i.e., BRj(z−i) = RM, then
firm j would also prefer to switch to PM from z, i.e.,
BRj(z−j) = PM. (See Figure 1(b).)

Proof. Let p = peq(z). We have zi = zj = PM.
Consider joint actions z′ = (z−j ,RM), z′′ = (z−i,RM)
with market prices p′ and p′′. The utility of firm j in the
joint action z is uj(z) = p(p − j)/bj , and the utility of
firm j in the joint action z′ is uj(z

′) = (p′ − cj)
2/bj .

The utilities of firm i are ui(z) = p(p − ci)/bi and
ui(z

′′) = (p′′ − ci)
2/bi, respectively.

i j
| |

z = **** RM **** RM ****
↓ ↓

PM ⇐= PM

(a)

i j
| |

z = **** PM **** PM ****
↓ ↓

RM =⇒ RM

(b)

Figure 1: Consider joint action z with firms i, j such
that ci > cj . Figure 1(a) corresponds to Lemma 3.4,
Figure 1(b) corresponds to Lemma 3.5.

By assumption, i prefers RM, so ui(z) < ui(z
′).

Assume by way of contradiction that firm j prefers PM,
i.e.,

(3.12) (p− cj)
2 > p′(p′ − cj) .

We will show that in this case firm i would also prefer
PM, i.e.,

(3.13) (p− ci)
2 > p′′(p′′ − ci) .

For fixed p and p′′, again define f(r) = (p−r)2−p′(p′−
r). Rearranging equation (3.12), we get f(cj) > 0. We
will show that f(r) is an increasing function in range
r > cj . Given that, since f(cj) > 0 and ci > cj , we can
conclude f(ci) > 0, and thus (p− ci)

2 > p′(p′ − ci).
We now show that f is increasing in the desired

range. The derivative f ′(r) = 2(r−p)+p′ ≥ 2cj−2p+p′.
Using Lemma 3.2, we have p ≤ p′ +

cj
1+n′ . According

to Lemma 3.3, since firm j prefers PM, we have cj >
p′(1− 1

n′2 ). Therefore,

f ′(r) ≥ 2cj − 2p′ − 2
cj

1 + n′ + p′

≥ 2cj
n′ + 1

(n′ + 1− 1)− p′

≥ 2p′
(n′ − 1)(n′ + 1)

n′2
n′

n′ + 1
− p′

≥ p′
2n′ − 2

n′ − p′

≥ p′
2n′ − 2− n′

n′

≥ p′
n′ − 2

n′ ,
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and therefore f(r) is a non-decreasing function for
n′ ≥ 2.

We have established that, assuming firm j prefers
PM, then (p− ci)

2 > p′(p′ − ci).
We now will argue, similar to Observation 3.1, that

p′ ≥ p′′. One can view the cost change of firm i in
two stages. In the first stage the cost decrease by cj ,
thus setting price p′ in the system (since utility of j is
positive at p′, we have cj ≤ p′, therefore j produces at
p′). In the second stage, firm i decreases the price by
the remaining ci−cj . Since the price is monotone in the
cost, we get p′ ≥ p′′. Therefore (p− ci)

2 > p′′(p′′ − ci),
contradicting our assumption that i prefers RM.

We now use the above lemmas to show that certain
sequences of joint actions cannot be part of any best
response sequence.

Lemma 3.6. Consider joint action z with zi = PM,
zj = RM and ci > cj. In addition, consider the fol-
lowing joint actions: z′ = (z−i,RM) , z′′ = (z′−j ,PM).
Then the sequence of joint actions z, followed by z′, fol-
lowed by z′′ cannot be a best response sequence. (See
Figure 2(a).)

Proof. If z′′ is a best response to z′, then uj(z
′′) >

uj(z
′). From Lemma 3.4 it follows that ui(z

′) > ui(z)
should also hold, which contradicts the assumption that
z followed by z′ is a best response sequence.

Lemma 3.7. Consider joint action z with zi = PM,
zj = RM and ci > cj. In addition, consider the follow-
ing joint actions: z′ = (z−j ,PM) and z′′ = (z′−i,RM).
Then the sequence of joint actions z, followed by z′, fol-
lowed by z′′ cannot be a best response sequence. (See
Figure 2(b)).

Proof. If z′′ is a best response to z′, then ui(z
′′) >

ui(z
′). From Lemma 3.5 it follows that uj(z

′) > uj(z)
should also hold, which contradicts the assumption that
z followed by z′ is a best response move.

The following lemma will play a central role in
showing that any best response dynamics converges to a
pure Nash equilibrium. The lemma shows that if there
is a sequence of firms switching from RM to PM, then
in the initial joint action, the lowest cost firm among
them would have a best response to switch from RM to
PM.

Lemma 3.8. Let z be a joint action with both firms i
and j playing RM. Let n be the number of producers at
z, such that n ≥ 3. Consider a best response move
of firm i followed by a best response move of j both
changing their strategy from RM to PM. If ci > cj,
PM is a best response action for j given z−j.

i j
| |

z = **** PM **** RM ****
↓

z’ = **** RM **** RM ****
↓

z” = **** PM **** PM ****

(a)

i j
| |

z = **** PM **** RM ****
↓

z’ = **** PM **** PM ****
↓

z” = **** RM **** RM ****

(b)

Figure 2: Impossible series of best response moves with
firms i, j such that ci > cj . Figure 2(a) corresponds to
Lemma 3.6; Figure 2(b) corresponds to Lemma 3.7.

Proof. Consider joint actions ẑ = (z−j ,PM), ž =
(z−i,PM), and joint action z̄ that differ from z by
actions of both firms i and j, i.e., z̄−i,−j = z−i,−j and
z̄i = z̄j = PM. Let p, p̂, p̌ and p̄ be market prices, and
let number of producers be n, n̂, ň and n̄, respectively.

By the assumption of the lemma we have n ≥ 3. If
cj > p, then firm j’s utility uj(z) < 0, thus it prefers
ẑ where its utility is non-negative. For the rest of this
lemma we consider cj < p.

By the assumption of the lemma, j prefers z̄ to ž.
Using Lemma 3.3 we have: cj ≥ p̌(1 − 1

ň2 ). Assume j
prefers z to ẑ. Using Lemma 3.3 we have: j ≤ p(1− 1

n̂2 ).
Combining these together, we have

(3.14) p̌(1− 1

ň2
) ≤ cj ≤ p(1− 1

n̂2
).

According to Lemma 3.1 we have p̌ > p. For
inequality (3.14) to hold, we need

1− 1

ň2
< 1− 1

n̂2
;

ň < n̂.

We can have ň < n̂ only if ci > p̌ and i stops
producing when it changes from RM in z to PM in ž.

From Observation 3.1 we have p̌ > p̂, therefore
PM(ẑ) \ {j} ⊆ PM(ž). Clearly,

RM(z) = RM(ẑ) ∪ {j} = RM(ž) ∪ {i} .

1000 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.



Hence, n̂ ≤ ň+ 1. Combining together, we get

ň < n̂ ≤ ň+ 1,

which holds only for n̂ = ň + 1, therefore PM(ẑ) =
PM(ž)∪ {j}. We also have |PM(ž)| − |PM(z)| = n̂− n.
In addition, each firm i that produces at ž and not in z
has production cost ci ≥ p. Using the above, we get

p =
1 +

∑
y∈PM(z) cy

1 + n
<

1 +
∑

y∈PM(ž) cy

1 + n̂

=
1 +

∑
y∈PM(ž) cy

n̂

n̂

1 + n̂
= p̌

n̂

1 + n̂
,

Therefore,
p

p̌
<

n̂

1 + n̂
.

Using Inequality (3.14) we obtain

p̌(1− 1

ň2
) ≤ p(1− 1

n̂2
);

p̌
(ň2 − 1)

ň2
≤ p̌

n̂

1 + n̂

(n̂2 − 1)

n̂2
;

(ň2 − 1)

ň2
≤ (n̂− 1)

n̂
;

1− 1

ň2
≤ 1− 1

n̂
;

ň2 ≤ n̂.

Since, n̂ = ň + 1, we have (n̂ − 1)2 ≤ n̂, that
holds only for n̂ ≤ 2. Since n ≤ n̂ it contradicts the
assumption of the lemma that n ≥ 3.

The following theorem establishes that any se-
quence of best response moves converges to a pure Nash
equilibrium.

Theorem 3.1. Any sequence of best response moves in
the PM/RM game converges to a pure Nash equilibrium.

Proof. Suppose that the game does not converge to
Nash equilibrium, so there is a sequence of best response
moves that cycles. Consider firm j with highest cost in
the cycle. Let P be the maximal chain of RM → PM
moves that includes j.

Consider P of length at most 2. If j is the first best
response move of P , then it contradicts to Lemma 3.6
(Figure 2(a)). If j is the last best response move of P ,
then it contradicts to Lemma 3.7 (Figure 2(b)).

We are left with P of size at least 3. Let z be a
joint action in the beginning of P . Applying Lemma
3.8 recursively, we get that BRj(z−j) = PM. Let i be
the firm that made the best response move before P (it
has to be BRi(z−i) = RM). Using Lemma 3.6 we arrive
at the contradiction that a cycle exists.

3.3 Best Response Dynamics Converge to Nash
Equilibrium Consider a joint action z in the PM/RM
game. If z is not a Nash equilibrium then at least
one of the firms prefers to switch its strategy. We will
show that a particular order of changing strategies leads
quickly to a Nash equilibrium.

To do this, let us define BRF (z) to be the set of
firms that prefer to switch strategy: BRF (z) = {i | zi /∈
BRi(z−i)}. Intuitively, among the firms in PM(z), the
one with the lowest production cost is most likely to
prefer to switch strategy. Similarly, among the firms
in RM(z), the one with the maximum production cost
is most likely to switch strategy. We will consider
the dynamics that take advantage of this intuition.
Let us define minPM(z) to be the firm with minimum
production cost among firms in PM(z) and maxRM(z)
to be the firm with maximum production cost among
firms in RM(z).

Consider the following natural best response dy-
namics:

While BRF (z) ̸= ∅, perform one of the following
actions

1. If minPM(z) ∈ BRF(z), firm minPM(z) changes
its strategy.

2. If maxRM(z) ∈ BRF(z), firm maxRM(z)
changes its strategy.
In the proof of the following lemma, we show that if
BRF (z) ̸= ∅ then one of the actions is applicable.

Lemma 3.9. The above procedure converges to a Nash
equilibrium in at most 2m steps.

Proof. According to Lemma 3.5, if minPM(z) /∈
BRF(z) then no firm PM(z) is in BRF(z). Similarly
if firm maxRM(z) /∈ BRF(z), then no firm in RM(z)
is in BRF(z). Therefore, one of the two steps can be
always performed while BRF(z) ̸= ∅.

If we order the firms in decreasing order according
to their production cost, the current joint action is a
vector in {PM,RM}m. The procedure either replaces
the rightmost PM or the leftmost RM. Furthermore,
the most recent action cannot be undone immediately
(otherwise it wouldn’t be a best response).

The claim is that the procedure terminates in at
most 2m steps. To see this, observe that at the
beginning the procedure changes the leftmost RM or the
rightmost PM until the vector consists of a sequence of
PM’s followed by a sequence of RM’s (or reaches Nash
Equilibrium in less than m steps). From that point on,
all the PM’s precede the RM’s in the current vector. It
follows that it takes at most m steps to reach the point
where the PM’s precede the RM’s and at most m more
steps to reach the final vector.

Starting from a joint action in which all firms play
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PM, the above dynamics will converge in at most 2m
steps to a Nash equilibrium (in fact, the proof shows
that only m steps suffice). It follows that

Corollary 3.1. There is a polynomial time compu-
tation to find some Nash equilibrium of the PM/RM
game.

One might mistakenly assume that in all of the Nash
equilibria, low production cost firms play RM and high
production cost firms play PM. The following shows
that this is false:

Example. Consider two firms that have costs 0.30 and
0.28. It is straightforward to see that (RM,PM) is
a Nash equilibrium (and also (PM,RM) is an equilib-
rium).

4 Comparison of the PM/RM game and
Cournot competition

In this section we compare the outcome of the PM/RM
game versus the myopic Cournot competition. We start
by comparing the prices. For simplicity we assume that
bi = 1.

Assume z is a pure Nash equilibrium of the PM/RM
game, where k firms are producing. Since this is an
equilibrium, all other firms that select PM do not
produce and have zero utility. Any producing firm
i ∈ M has production cost ci < p(z), and any firm
which has ci < p(z) is producing.

Consider the Cournot competition price, which is
equivalent to having all firms play PM. In this case, we
can think of computing the price in two steps: first, we
let the firms that selected RM switch to PM, and then
we let any firm that was not producing before (since
its cost was higher than p(z)) produce. After the first
stage, the price is at least the original price, and at most

p′ ≤ 1 + kp(z)

1 + k
= p(z) +

1− p(z)

1 + k
.

After the second step, since we are adding firms with
production cost ci ∈ [p(z), p′], the price can only go
down (but remains above the initial price of p(z)). We
can also lower bound p(z), since clearly p(z) ≥ 1

k+1 .
We can now bound the difference between the

Cournot competition price, pc, and the PM/RM game
price, as follows:

1 ≤ pc
p(z)

≤ p′

p(z)
= 1 +

1− p(z)

p(z)(1 + k)

= 1 +
1

p(z)(1 + k)
− 1

(1 + k)
≤ 2− 1

1 + k

≤ 2− 1

1 + n
,

(4.15)

where the first inequality uses the fact that p(z) ≥ 1
k+1 .

We can also show that the above bound is almost
tight. Consider the case of symmetric firms with pro-
duction cost c = 1

n − 1
n2 . The pure Nash equilibrium in

this case is all the firms selecting RM (see Section § 5.2).
The Cournot competition price is 1+nc

1+n =
2− 1

n

1+n while
when all the firms select RM, which is the pure Nash
equilibrium, the price is 1

1+n . In this case the ratio

between the prices is 2 − 1
n . We have established the

following theorem.

Theorem 4.1. Let pc be the Cournot competition price
and ppr be the PM/RM game price. Then,

1 ≤ pc
ppr

≤ 2− 1

1 + n
,

and there is a case where pc

ppr
= 2− 1

n .

In our setting the price p defines the total produc-
tion, since

∑
i∈M xi = 1−p. Therefore the total revenue

(of all firms) is p(1 − p) when the price is p. Since the
price in the PM/RM game is at least half the price of
the Cournot competition, the total revenue is at least
half. (Note that the produced amount increases while
the price decreases.)

We now can compare the utility of the firms in
the two settings. We will show that the utility can
be dramatically different. Consider again the case of
symmetric firms with production cost c = 1

n − 1
n2 . The

utility of each firm in the Cournot competition is(
2− 1

n

1 + n
− 1

n
+

1

n2

)2

=(
2n2 − n− n(n+ 1) + (n+ 1)

n2(1 + n)

)2

=

Θ(
1

n2
) .

(4.16)

The utility of each firm in the PM/RM game is(
1

1 + n
− 1

n
+

1

n2

)
1

1 + n
=(

n2 − n(1 + n) + (1 + n)

n2(1 + n)

)
1

1 + n
=

Θ(
1

n4
).

(4.17)

This implies that the ratio between the utilities can be
as large as n2. Since all the utilities are identical, the
same ratio holds for the sum of the utilities.

Theorem 4.2. There is a case where the sum of the
utilities in the Cournot competition is a factor of Θ(n2)
larger than the sum of the utilities in the PM/RM game.
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5 Instances of special interest for the PM/RM
Game

In this section we consider two cases: when only two
firms compete in the market and when all firms have
the same cost.

5.1 PM/RM game: Two firms, complete charac-
terization In this section we give a complete charac-
terization of all the pure Nash equilibria for the case of
two firms. The characterization is divided to four cases,
depending on the firms’ costs, compared to 1/2.

Theorem 5.1. For two firms in the PM/RM game,
there is always at least one pure Nash equilibrium, and
the characterization when a joint action is a pure Nash
equilibrium is as follows:

(RM,RM) when c1 < 1
4 and c2 < 1

4 .

(PM,RM) when either: 1. c1 ∈ [ 14 ,
1
2 ] and c2 < 1+c1

4 ,
or 2. c1 < 3

2

√
1− 2c2 − (1− 2c2) and c2 ≤ 1

2 .

(RM,PM) when either: 1. c1 < 1+c2
4 and c2 ∈ [ 14 ,

1
2 ],

or 2. c1 ≤ 1
2 and c2 < 3

2

√
1− 2c1 − (1− 2c1).

(PM,PM) when one of the cases below holds:

1. c1 ∈ [ 1+c2
4 , 1

2 ] and c2 ∈ [ 1+c1
4 , 1

2 ].

2. c1 ≤ 1
2 and c2 ∈ [ 32

√
1− 2c1− (1− 2c1),

1+c1
2 ].

3. c1 ∈ [ 32
√
1− 2c2− (1− 2c2),

1+c2
2 ] and c2 ≤ 1

2 .

4. c1 > 1
2 , and c2 > 1

2 .

Proof. We consider four cases, depending on the firms’
costs, compared to 1/2.
Case 1 {c1 ≤ 1/2 and c2 ≤ 1/2}: This is the most
interesting case, in which the two firms are producing, as
we will see later. We first define the price as a function
of the action of the firms.5

RM PM

RM 1
3

1+c2
3

PM 1+c1
3

1+c1+c2
3

Next we derive the production level xi(z), at each
joint action.

RM PM

RM
(

1
3b1

, 1
3b2

) (
1+c2
3b1

, 1−2c2
3b2

)
PM

(
1−2c1
3b1

, 1+c1
3b2

) (
1+c2−2c1

3b1
, 1+c1−2c2

3b2

)
Each entry of the production level matrix is non-

negative for ci ≤ 1/2. Therefore, firm i that plays PM

5In all matrices that we use, row firm is firm 1 and column
firm is firm 2.

will produce. For two firms we have the following payoff
matrix:

RM PM

RM

( 1
3b1

( 13 − c1),
1

3b2
( 13 − c2)

) (
( 1+c2

3 − c1)
1+c2
3b1

,

( 1−2c2
3 )2 1

b2

)
PM

(
( 1−2c1

3 )2 1
b1
,

( 1+c1
3 − c2)

1+c1
3b2

) (
( 1+c2−2c1

3 )2 1
b1
,

( 1+c1−2c2
3 )2 1

b2

)
To compute the pure Nash equilibria, we compute

the preference of the firms. We start with firm 1.

• Firm 1 prefers (PM,RM) to (RM,RM) when
1

3b1
( 13 − c1) < ( 1−2c1

3 )2 1
b1
, which holds for c1 > 1

4 .

• Firm 1 prefers (PM,PM) to (RM,PM) when
( 1+c2

3 − c1)
1+c2
3b1

< ( 1+c2−2c1
3 )2 1

b1
, which holds for

c1 > 1+c2
4 .

• Firm 2 prefers (RM,PM) to (RM,RM) for c2 > 1
4 .

• Firm 2 prefers (PM,PM) to (RM,PM) for c2 >
1+c1
4 .

The conditions for each joint actions to be a pure
Nash equilibrium, are as follows:

RM PM

RM c1 < 1
4 , c2 < 1

4 c1 < 1+c2
4 , c2 > 1

4

PM c1 > 1
4 , c2 < 1+c1

4 c1 > 1+c2
4 , c2 > 1+c1

4

Case 2 {c1 > 1
2 and c2 > 1

2}: If both firms select RM
then the price is 1/3 and they both have negative utility.
Assume firm 1 selects RM. If firm 2 selects PM then the
price is p = 1+c2

3 . Since c2 > 1/2, then c2 > p, and firm
2 is not producing. If the firm 2 selects PM and is not
producing then the price is 1/2 < c1, thus firm 1 has
negative utility. Therefore, in this case both firms have
PM as a dominating action.
Case 3 {c1 ≤ 1

2 and c2 > 1
2}: If firm 2 selects RM, then

the price is at most 1+c1
3 ≤ 1

2 . Therefore, in this case,
action PM will be a strictly dominating action for firm
2.

Consider joint action (RM,PM). We have produc-
tion level x2 = 1+c2

3 − c2 < 0, thus firm 2 is not produc-
ing. For joint action (PM,PM), firm 1 always produces
(production level x1 ≥ min { 1+c1+c2

3 , 1+c1
2 } − c1 > 0, so

we have firm 2 produces if p = 1+c1+c2
3 > c2.

In the case that c2 > 1+c1
2 firm 1 produces alone,

so her dominating action is PM, and her utility is
( 1−c1

2 )2 1
b1
.

For c2 < 1+c1
2 , since firm 2 dominating action is
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Figure 3: Characterization of two firms’ pure Nash
Equilibria

PM, the payoff values are:

u1(RM,PM) =

(
1

2
− c1

)
1

2b1
;

u2(PM,PM) =

(
1 + c2 − 2c1

3

)2
1

b1
.

Firm 1 will prefer action PM if

c2 ∈ [
3

2

√
1− 2c1 − (1− 2c1),

1 + c1
2

] ;

otherwise, when

c2 <
3

2

√
1− 2c1 − (1− 2c1) ,

firm 1 prefers RM.
Case 4 {c1 > 1

2 and c2 ≤ 1
2}: Similar to the previous

case, firm 1 will select PM. Firm 2 will prefer action PM
if c1 ∈ [ 32

√
1− 2c2 − (1 − 2c2),

1+c2
2 ]; otherwise, when

c1 < 3
2

√
1− 2c2 − (1− 2c2), firm 2 prefers RM.

In each of the four regions, we showed that for any
value of the production cost, there exists a pure Nash
equilibrium. (For some values there exist two pure Nash
equilibria; see Example 3.3.) A diagram of the pure
Nash equilibria appears in Figure 3.

5.2 Symmetric firms We consider the case of m
symmetric firms with cost c for each, playing the
PM/RM game. Namely, each firm selects an action
in {RM,PM}. The firms that select the action RM
will act as revenue maximizers (behave as though their
production cost is zero). The firms that select PM
will act as profit maximizers. Note that since this is
a symmetric case, at equilibrium all the firms will be
producing, i.e., n = m. We assume that for each firm i,
bi = 1.

Suppose that k firms select the action PM and
n − k firms select the action RM. In this case the
price is pk = 1+kc

n+1 . Firms that select PM will produce

xk
p = pk−c = 1−(n+1−k)c

n+1 , and firms that will select RM

will produce xk
r = pk = 1+kc

n+1 . The utility of firms that
select PM is

uk
p = xk

p(p
k − c) = (

1− (n+ 1− k)c

n+ 1
)2 ,

while the utility of firms that select RM will be

uk
r = xk

r (p
k − c) =

1 + kc

n+ 1
(
1− (n+ 1− k)c

n+ 1
) .

We will now compute for which costs c is it a Nash
equilibrium to have k firms selecting PM and n−k firms
selecting RM.

Theorem 5.2. Let ak = n−1
n(n−k)+k+n−1 for k ∈ [1, n],

a0 = 0, bk = n−1
n(n−k)+k for k ∈ [0, n− 1] and bn = 1. If

the players’ cost c ∈ [ak, bk] then there is a pure Nash
equilibrium with k firms selecting PM and n − k firms
selecting RM.

Proof. If a firm selecting RM deviates to PM (k ≤ n−1),

then its new utility would be uk+1
p = ( 1−(n−k)c

n+1 )2.
Action RM will be a best response if

1 + kc

n+ 1

(
1− (n+ 1− k)c

n+ 1

)
≥

(
1− (n− k)c

n+ 1

)2

⇒ (1 + kc)(1− (n+ 1− k)c) ≥ (1− (n− k)c)2

⇒ 1− (n+ 1)c+ 2kc− k(n+ 1− k)c2 ≥
1− 2(n− k)c+ (n− k)2c2

⇒ (n− 1)c ≥ ((n− k)2 + k(n+ 1− k))c2

⇒ n− 1

n(n− k) + k
≥ c

If a firm selecting PM deviates to RM (k ≥ 1), then
its new utility would be

uk−1
r =

1 + (k − 1)c

n+ 1
(
1− (n+ 2− k)c

n+ 1
) .

Action PM will be a best response if(
1− (n+ 1− k)c

n+ 1

)2

≥

1 + (k − 1)c

n+ 1

(
1− (n+ 2− k)c

n+ 1

)
⇒ (1− (n+ 1− k)c)2 ≥

(1 + (k − 1)c)(1− (n+ 2− k)c)

⇒ 1− 2(n+ 1− k)c+ (n+ 1− k)2c2 ≥
1− (n− 2k + 3)c− (k − 1)(n+ 2− k)c2

⇒ ((n+ 1− k)2 + (k − 1)(n+ 2− k))c2 ≥
(n− 1)c

⇒ (n(n− k) + k + n− 1)c ≥ (n− 1)

⇒ c ≥ n− 1

n(n− k) + k + n− 1
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This implies that for ck ∈ [ak, bk] there is a pure
Nash equilibrium with k firms selecting PM and n − k
firms selecting RM, where ak = n−1

n(n−k)+k+n−1 for

k ∈ [1, n] and bk = n−1
n(n−k)+k for k ∈ [0, n − 1]. Note

that ak = bk−1, and let a0 = 0 and bn = 1. This covers
the entire range of symmetric production costs.
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