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Abstract

We consider all-pay auctions in the presence of interdependent, affiliated valuations

and private budget constraints. For the sealed-bid, all-pay auction we characterize a

symmetric equilibrium in continuous strategies for the case of N bidders. Budget con-

straints encourage more aggressive bidding among participants with large endowments

and intermediate valuations. We extend our results to the war of attrition where we

show that budget constraints lead to a uniform amplification of equilibrium bids among

bidders with sufficient endowments. An example shows that with both interdependent

valuations and private budget constraints, a revenue ranking between the two auction

formats is generally not possible. Equilibria with discontinuous bidding strategies are

discussed.
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Suppose firms are lobbying for a lucrative government contract. The contract’s value

to each firm has an idiosyncratic component since the firms likely have different operating

costs. But also, each firm has a privately-known limit on how much it is able to spend on

the lobbying game. Perhaps the management of one firm is approving of restaurant meals

with officials but expenditures or bribes beyond some threshold are morally too much to

stomach. A competitor, in contrast, may be less hampered in its lobbying strategy. How

does the lobbying game unfold when competitors differ in their valuation for the prize and

in their ability or capacity to compete for it? Would some firms spend more on lobbying

believing that their competitors have to navigate within some private and binding constraints

on actions?

In this essay we consider a class of situations not unlike the above lobbying contest by

analyzing all-pay auctions. In a (first-price) all-pay auction, the highest bidder is the winner

of the item for sale; however, all bidders incur a payment equal to their bid. As a stylized

model of a lobbying contest, the all-pay auction has an established tradition in political

economy (Hillman and Riley, 1989; Baye et al., 1993).1

Despite the frequent application of the all-pay auction to models of contests, most anal-

yses fail to capture the exogenous, but private, limits on actions that are commonly encoun-

tered. In practice all participants face a budget constraint, a hard deadline, or a maximum

level of feasible effort. Ignoring these constraints has hitherto been a helpful modeling sim-

plification. We argue, however, that this simplification has masked much of the nuance

embedded in the situation. Our analysis introduces private constraints into the all-pay auc-

tion with interdependent and affiliated valuations. We identify sufficient conditions for the

existence of an equilibrium in continuous strategies. We also provide an extension of our

model to the (static) war of attrition to show the broader applicability of our analysis.

Although our model is phrased in the language of auctions (players are called “bidders,”

etc.), it applies to any situation where resources are irreversibly expended in pursuit of a

goal or a prize. The goal or prize can have a value that has both private and common

components. Our model accommodates both cases. The private constraints on bids or

effort that we introduce are often natural elements of the situation. The constraints may be

financial, physical, or amalgams of many component factors.

As one specific example of the range of applications, consider college admissions. Hickman

1We focus only on auction mechanisms where a bidder placing the highest bid is the winner. Probabilistic
contests in the sense of Tullock (1980) are beyond this paper’s scope. When we refer to “contests” we have
in mind the special case that we are analyzing. Konrad (2009) provides a survey of the literature on contests
more broadly, and includes a discussion of all-pay auctions.
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(2011) employs a version of the all-pay auction to model students competing for places in

a college. Those who “bid” the most, by exerting irreversible effort, are more likely to

gain a scarce spot in the school. It is clear that the benefit from a college degree varies

across students due to personal preferences and characteristics. Hence, different students

value college attendance to varying degrees. It is also natural to assume that idiosyncratic

shocks, such as health status, family background, parental savvy, or school location, place

an exogenous, heterogenous, and private cap on the effort that a particular student can exert

in the college admissions game.2

As another example, consider a patent race between competing firms. Such competition

is naturally modeled as either an all-pay auction or as a war of attrition (Leininger, 1991).

The expected value of the invention and the budget available to a company’s research di-

vision will determine the effort devoted to the race. Information asymmetries or agency

concerns can create a wedge between the available budget and the research division’s as-

sessment of the project’s value. Moreover, each firm likely faces a hard, short-run physical

resource constraint. This constraint will cap its feasible effort level. The interaction between

expected rewards and heterogenous resource constraints will shape how firms engage in this

competition.

While we are motivated by the range of social and economic situations that all-pay

auctions can model, our study also fills a gap in the growing literature on auctions with

private budget constraints. Our analysis builds directly on the work of Krishna and Morgan

(1997) who study the all-pay auction and the war of attrition with interdependent and

affiliated valuations. Their analysis extends the general symmetric model of Milgrom and

Weber (1982) to these more unusual auction procedures. To this setting we introduce private

budget constraints distributed continuously on an interval. Our environment parallels the

setting of Fang and Parreiras (2002, 2003) and Kotowski (2013) who study the second-price

and the first-price auction with private budget constraints, respectively. These latter studies

build directly on Che and Gale (1998b), which is the seminal paper in the literature on

standard auctions incorporating private budget constraints. Che and Gale (1996) develop

a simple model of an all-pay auction with private budget constraints where the item for

purchase has a common and perfectly known value. That model is a limiting case of our

environment. Finally, there is also a literature on publicly-known spending or bidding caps

in all-pay auctions, or in contests more generally (Che and Gale, 1998a; Gavious et al., 2002).

2For a discussion concerning the strategic aspects of college applications and admissions see Avery et al.
(2004).
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In our study, the spending or bidding limit of each bidder is private information.

In light of this literature, our study contributes along several dimensions. First, by fo-

cusing on all-pay mechanisms we put under scrutiny an important allocation mechanism in

resource-constrained environments. Many authors examining optimal auctions with budget-

constrained participants have resorted to mechanisms that feature “all-pay” payment schemes

(Laffont and Robert, 1996; Maskin, 2000; Pai and Vohra, Forthcoming). Our analysis there-

fore complements this literature, but we do not attempt the mechanism design exercise here.

Second, our model is set in a more general environment than traditionally employed when

analyzing auctions with private budget constraints. Hence, we are able to identify addi-

tional features of the environment that affect the existence of a well-behaved and (relatively)

tractable equilibrium. Previous studies lodged in the affiliated and interdependent-value

paradigm, such as Fang and Parreiras (2002) and Kotowski (2013), have focused on the two-

bidder case. While some of the intuition from the two-bidder case is relevant generally, the

case of two bidders masks many caveats. For example, in the all-pay auction we document

how changes in the number of bidders alone directly affect the existence of an equilibrium

within the class of strategies traditionally considered by this literature. This observation

may be particularly valuable to future empirical analyses as it may be difficult to exploit a

variation in the number of bidders to aid in model identification (Athey and Haile, 2007).

The equilibria that we construct in the all-pay auction and in the war of attrition are

in monotone, continuous strategies. As discussed by Araujo et al. (2008), non-monotone

equilibria often feature in multi-dimensional auction environments.3 In our setting, bidders

have two dimensions of private information—a value-signal and a budget constraint—and

interdependent valuations. Therefore the issues they address are related to our analysis.4 We

view our focus on monotone equilibria in continuous strategies as a pragmatic but reason-

able choice. Although monotonicity is not a necessary condition to leverage the differential

approach when characterizing equilibrium bidding (Araujo et al., 2008), it greatly simplifies

our argument. To construct our equilibrium, we follow Che and Gale (1998b) by focusing

on a specific class of bidding functions (explained below). In doing do, we effectively re-

parameterize our multi-dimensional problem into a simpler one-dimensional setting. The

analysis of Araujo et al. (2008) shows that a transformation of the type-space is often a key

step in analyzing multidimensional auction models.5 Our restriction notwithstanding, we

3See also Zheng (2001).
4Araujo et al. (2008) also propose an interesting application of the all-pay auction as a tie-breaking device

in more complex auction-like games. Except for the analysis of Section 4, ties do not occur in our model.
5Che and Gale (2006) also employ a transformation of bidders’ types to facilitate revenue comparisons in
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believe that the set of cases covered is rich and it offers insights that would carry over to

a discontinuous equilibrium as well. Undoubtably, continuous equilibria would receive the

bulk of attention in applications due to their relative tractability.

The remainder of the paper is organized as follows. Section 1 introduces the environment

and section 2 studies the symmetric equilibrium in the all-pay auction. We then consider

the equilibrium’s comparative static properties with focus on changes in the distribution of

budgets, changes in the number of bidders, and changes in the public information surrounding

the contest. Section 3 considers this model’s second-price analogue, the (static) war of

attrition. We explore the symmetric equilibria of this model and we discuss the scope for a

revenue ranking between the auction procedures examined in this study. We conclude with

a brief consideration of equilibria in discontinuous strategies in the all-pay auction. Here

we employ a stylized model to highlight features that we believe are economically salient

in situations where bidders are budget constrained.6 Proofs and supporting lemmas are in

the appendix. An online appendix collects additional results, extensions, and some technical

arguments.

1 The Environment

Consider an auction where one good (or prize) is available. Let N = {1, . . . , N} be the set

of bidders. Each bidder i ∈ N has a two-dimensional private type, (si, wi) ∈ [0, 1]× [w, w̄].

Suppose 0 < w < w̄.7 First we describe the two dimensions of a bidder’s type. Subsequently

we introduce assumptions concerning the distribution of types and their statistical properties.

A bidder’s realized value-signal, si, is her private information about the item for pur-

chase. For example, in a patent race it would be an estimate of the invention’s value. In a

political lobbying contest, it may correspond to an assessment of the proposed legislation’s

consequences. Let s = (s1, . . . , sN) be a profile of realized value-signals.8 We use capital

letters—such as Si—to refer to signals as random variables.

A bidder’s realized budget, wi, is a bound above which she cannot bid. We consider a

budget to be a hard constraint on expenditures. A budget may correspond to a bidder’s

cash holdings, her credit limit, or some other private limit on actions. Such limits may be

auctions.
6Kotowski (2013) discusses a similar model in application to the first-price auction.
7The case of w = 0 is addressed in the online appendix and is qualitatively similar to our main analysis.
8We use standard notation and shorthand: s−i = (s1, . . . , si−1, si+1, . . . , sN ), s = (si, s−i), etc.
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financial, physical, or psychological, depending on the application of interest.9

Bidder i’s valuation for the item can be described by a random variable: Vi = u(Si, S−i).

We assume that u : [0, 1]× [0, 1]N−1 → [0, 1] is strictly increasing in the first argument and

non-decreasing and permutation-symmetric in the last N − 1 arguments. As standard, we

suppose u is continuously differentiable. It is normalized such that u(0, . . . , 0) = 0 and

u(1, . . . , 1) = 1. We assume that bidders are risk neutral.

While a player’s realized type (si, wi) is private information, we assume that the distribu-

tion of types and the auction’s ambient environment is common knowledge. Two assumptions

concerning the distribution of bidders’ types define our environment and we maintain them

throughout our analysis. The first assumption concerns the distribution of value-signals

while the second concerns the distribution of budgets. Subsequent assumptions, which are

specific to the auction format considered, impose additional structure on our model.

Assumption A-1. Value-signals have a continuous, strictly positive joint density, h : [0, 1]N →
R++. Moreover, h(s1, . . . , sN) is invariant to permutations of (s1, . . . , sN) and log-supermodular.10

Assumption A-1 means that value-signals are “affiliated.” Affiliation is a standard assumption

introduced to the auction literature by Milgrom and Weber (1982). It amounts to a special

form of positive correlation that is amenable to the requisite formal arguments employed

within most auction models. Independent signals are affiliated. A density exhibiting strict

affiliation is, for example, h(s1, s2) = 4
5
(1 + s1s2). Although affiliation is a work-horse

assumption in the auction literature, it is a restrictive statistical property (de Castro, 2010).

Concerning the distribution of players’ budgets, we require budgets to be determined

independently of value-signals and to be identically distributed.

Assumption A-2. Each bidder’s budget is independently and identically distributed accord-

ing to the differentiable cumulative distribution function G(w). Its density, G′(w) ≡ g(w),

is strictly positive for all [w, w̄] and continuous.11

While the independence condition is strong, without it the model is not tractable. It

is standard in studies of auctions with budget constraints when there is some affiliation in

9We focus on hard budget constraints. Some studies, such as Zheng (2001) or Che and Gale (2006),
examine “softer” constraints on bidding, such as convex bid-financing costs. Extending our analysis in this
direction is a possible avenue for further research.

10h(·) is log-supermodular when it satisfies the following property: For any s and s
′, h(s)h(s′) ≤ h(s ∨

s
′)h(s ∧ s

′) where s ∨ s
′ (s ∧ s

′) is the component-wise maximum (minimum) of s and s
′.

11It is understood that w ≤ w =⇒ G(w) = 0 and w > w̄ =⇒ G(w) = 1.
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players’ value-signals. Our model naturally accommodates the case of w̄ = ∞, and occa-

sionally to present such examples, but for brevity we phrase our main discussion assuming

w̄ <∞.

A bidding strategy for bidder i is a (measurable) function βi : [0, 1] × [w, w̄] → R+.

Throughout, we adopt Bayesian-Nash equilibrium as our solution concept. An equilibrium

is symmetric if all bidders follow the same bidding strategy. We focus on symmetric equilibria

and we henceforth suppress player subscripts in our notation whenever possible.

Above we noted that we focus on a specific class of equilibrium strategies. To elaborate,

our analysis seeks to identify a symmetric equilibrium where all bidders follow a strategy of

the form

β(s, w) = min {b(s), w} (1)

where b(s) is strictly increasing, continuous, and piecewise differentiable. We say that a

bidding strategy with these properties is a canonical bidding strategy. Our focus on equilibria

meeting these criteria is consistent with previous studies of auctions with private budget

constraints. Che and Gale (1998b), Fang and Parreiras (2002, 2003), and Kotowski (2013)

examine equilibria that reside in this class of strategies.

Before presenting our analysis, we consolidate some notational miscellany. Suppressing

the “i” subscript, we let S be the value-signal observed by a bidder and we relabel the value-

signals of the other bidders as Y1, . . . , YN−1.
12 Let Ȳk = max(Y1, . . . , Yk) and define fk(y|s)

to be the density of Ȳk|S = s. For k ≥ 1, we define the following terms:

vk(s, y) = E[u(s, Y1, . . . , YN−1)|S = s, Ȳk = y] (2)

zk(x|s) =
∫ x

0

vk(s, y)fk(y|s)dy (3)

For k = 0, we adopt the convention that v0(s, y) = E[u(s, Y1, . . . , YN−1)|S = s] and z0(x|s) =
E[u(s, Y1, . . . , YN−1)|S = s]. Hence v0(s, y) is constant in y and z0(x|s) is constant in x.

Finally, we will frequently need to manipulate binomial terms to account for the likelihood

that a specific number of bidders has a budget less than some value. In these cases we will

employ the shorthand

γk(b) =

(
N − 1

k

)

G(b)N−1−k(1−G(b))k. (4)

12We only relabel the value signals. We do not reorder them as some authors do.
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γk(b) is the probability that exactly N − 1 − k (k) bidders out of N − 1 have a budget less

(greater) than b.

2 The All-Pay Auction

The rules of the all-pay auction are well-known. Each bidder i simultaneously submits a

bid bi. The highest bidder is deemed the auction’s winner. (Ties among high bidders are

resolved by a uniform randomization.) If bidder i is declared the auction’s winner, her payoff

given the realized signal profile s = (si, s−i) is u(si, s−i)− bi; otherwise, it is −bi. We assume

that a submitted bid must be feasible give a bidder’s budget constraint. Thus, a bidder of

type (si, wi) may only bid less than wi.

To motivate the sufficient conditions for equilibrium existence that we will propose below,

we begin with an heuristic discussion that is suggestive of their origin. Suppose that there

is a symmetric equilibrium in the all-pay auction where each bidder adopts the canonical

strategy β(s, w) = min {b(s), w}. Suppose a bidder places the bid b(x) for some x ∈ [0, 1].

This bid will defeat two categories of opponents assuming all other bidders are following the

strategy β(s, w). First it defeats all opponents who have a value-signal s < x. Second, it

defeats all opponents who have a budget w < b(x).13 Noting this fact, we can use (3) and

(4) to write the expected payoff of bidder i when she bids b(x) as

Ui(b(x)|s, w) =
N−1∑

k=0

γk(b(x))zk(x|s)− b(x). (5)

We outline in greater detail the derivation of (5) in the appendix. The binomial terms

account for the combinations of opponents who are defeated by b(x) due to having a low

value-signal or a low budget. When values are interdependent, defeating an opponent because

she has a low value-signal or a low budget carry distinct implications and our accounting in

(5) acknowledges this caveat. The final term in (5) is the bidder’s payment which she makes

irrespective of the auction’s outcome.

If in equilibrium we observe a bidder of type (s, w) bid b(s) < w, then the bid must satisfy

a local, first-order optimality condition. Specifically, assuming appropriate differentiability,

d

dx
Ui(b(x)|s, w)

∣
∣
∣
∣
x=s

= 0. (6)

13Given the maintained assumptions, ties are probability-zero events.
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Adopting the notation

z′k(x|s) ≡
∂

∂x
zk(x|s) =







0 if k = 0

vk(s|x)fk(x|s) if k 6= 0
,

we can evaluate (6) and rearrange terms to arrive at

b′(s) =

∑N−1
k=0 γk(b(s))z

′
k(s|s)

1−∑N−1
k=0 γ

′
k(b(s))zk(s|s)

. (7)

If there exists a symmetric equilibrium in canonical strategies, the differential equation in (7)

represents a first guess concerning the nature of b(s). Our subsequent discussion identifies

conditions ensuring that (7) has a solution that is consistent with a symmetric equilibrium.

Two initial observations regarding (7) are immediate. First, when b(s) < w equation (7)

reduces to

b′(s) = vN−1(s, s)fN−1(s|s). (8)

This is the differential equation identified by Krishna and Morgan (1997) as defining the

equilibrium bidding strategy in the all-pay auction absent budget constraints. In an envi-

ronment satisfying their regularity conditions, in equilibrium a bidder with a value-signal of

s will bid

α(s) =

∫ s

0

vN−1(y, y)fN−1(y|y)dy. (9)

Given the tight connection between (7) and (8), whatever sufficient conditions we propose

ought to generalize those proposed by Krishna and Morgan (1997). An immediate corollary

to this observation is that if budget constraints are “not relevant,” our model reduces to their

analysis. Thus, we henceforth assume that w ≤ ᾱ ≡ α(1). Otherwise, α(s) would be the

equilibrium and our analysis would be trivial.

Second, when b(s) > w, (7) does not reduce any further. Instead, the complex expression

accounts for the changing marginal effectiveness of bidding. Slight bid increases not only

defeat opponents with slightly higher valuations but they also defeat all opponents with

sufficiently low budgets regardless of their valuation. This second effect serves to ameliorate

the winner’s curse when values are interdependent.

Regrettably the derivation of (7) was heuristic and we made many implicit assumptions

along the way. Specifically, we need to ensure that the solution to (7) satisfying an appro-

priate boundary condition is strictly increasing (whenever less than w̄). For example, if the
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denominator of (7) is ever negative, then b′(s) < 0, contradicting our original working hy-

pothesis that b(s) is increasing. Furthermore, we must also ensure that first-order conditions

are sufficient to pin-down a bidder’s optimal bid, which in general may not be true.

To address the above concerns we introduce two additional assumptions. Speaking loosely

and intuitively, the first assumption will limit the “degree of affiliation” among bidders’

value-signals. The second assumption will place a restriction on the joint distribution of

value-signals and budgets. Both assumptions speak to the complicated interaction among

the conflicting incentives faced by bidders in the all-pay auction.

The first assumption generalizes the sufficient condition proposed by Krishna and Morgan

(1997) supporting α(s) as the equilibrium strategy in the all-pay auction without budget

constraints.

Assumption A-3. Let φ(x, w|s) =∑N−1
k=1 γk(w)vk(s, x)fk(x|s). For all (x, w), φ(x, w|·) : [0, 1] →

R is non-decreasing.14

Remark 1. When w ≤ w, φ(x, w|s) = vN−1(s, x)fN−1(x|s). Hence, Assumption A-3 gen-

eralizes a sufficient condition for equilibrium existence identified by Krishna and Morgan

(1997) in their model of the all-pay auction. In our notation, their condition states that

vN−1(·, x)fN−1(x|·) : [0, 1] → R is non-decreasing.

Intuitively, Assumption A-3 limits the degree of correlation among value-signals relative

to the impact of a player’s own value-signal on her valuation. The assumption always holds

if signals are independent but it can hold in other cases as well. For example, it is satisfied

when there are two bidders, u(si, sj) = (si + sj)/2 and h(si, sj) =
4
5
(1 + sisj).

Whereas Assumption A-3 places a restriction on the correlation among value-signals, we

additionally require an assumption structuring the joint distribution of value-signals and

budgets. Assumption A-4 presents this restriction. We defer interpreting Assumption A-4

until after presenting our main result and an example illustrating the identified equilibrium.

We define the value s̃α as the unique solution to α(s̃α) = w.

Assumption A-4. Let ξ(x, w|s) = 1 −∑N−1
k=0 γ

′
k(w)zk(x|s). Then the following conditions

hold:

1. For every s ≥ s̃α, there exists ws, w ≤ ws < w̄, such that w < ws =⇒ ξ(s, w|s) < 0

and w > ws =⇒ ξ(s, w|s) > 0.

14Alternatively, we can write φ(x,w|s) =∑N−1

k=0
γk(w)z

′
k
(x|s). Both notations are useful for different steps

in the analysis.
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2. There exists ǫ > 0 such that s ∈ (s̃α − ǫ, s̃α + ǫ) =⇒ ξ(s, w|s) > 0.

3. When x ≥ s̃α, ξ(x, w|·) : [0, 1] → R is non-increasing.

Although Assumption A-4 may appear to be a strictly technical statement, it has an

economic interpretation that we discuss after introducing our main result.

Theorem 1. Suppose Assumptions A-1–A-4 are satisfied. There exists a symmetric equilib-

rium in continuous strategies in the all-pay auction with private budget constraints. In this

equilibrium, all bidders follow the strategy β(s, w) = min{b(s), w} defined as follows:

• For all s < s̃α, b(s) = α(s) =
∫ s

0
vN−1(y, y)fN−1(y|y)dy.

• For all s ≥ s̃α, b(s) is the strictly increasing solution of the differential equation

b′(s) =

∑N−1
k=0 γk(b(s))z

′
k(s|s)

1−∑N−1
k=0 γ

′
k(b(s))zk(s|s)

(10)

satisfying the boundary condition b(s̃α) = w.

Remark 2. Noting Theorem 1 it is clear that Assumption A-2 is stronger than strictly

necessary. Theorem 1 requires g(·) to be smooth only in a “relevant range” of values so that

(10) has a well-defined solution. We maintain the more-restrictive-than-necessary conditions

of Assumption A-2 to unify or exposition of the all pay auction and the war of attrition.

Remark 3. If u(·, s−i)h(s−i|·) : [0, 1] → R+ is non-decreasing and absolutely continuous for

each s−i, Assumptions A-3 and A-4(3) are satisfied. This condition may be simpler to verify

in applications. It also allows for an alternative set of sufficient conditions supporting the

existence of an equilibrium in the all-pay auction (Kotowski and Li, 2012).

The following example highlights several features of the all-pay auction equilibrium.

Example 1. Suppose N = 2, Si
i.i.d.∼ U [0, 1], and Wi

i.i.d.∼ U [ 2
25
, 3
4
]. Let u(si, sj) = (si+ sj)/2.

The symmetric equilibrium strategy is β(s, w) = min{b(s), w}where b(s) is defined as follows:

• For s < s̃α = 2/5, b(s) = s2/2.

• For s ≥ s̃α = 2/5, b(s) is the solution to the differential equation

b′(s) =
25(3− 4b(s))s

25s(3s− 2) + 42

satisfying the boundary condition b(2
5
) = 2

25
.
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Figure 1: The functions b(s) and α(s) from Example 1.

Figure 1 plots the functions b(s) and α(s) = s2

2
, which is the equilibrium strategy in this en-

vironment absent budget constraints.15 The introduction of budget constraints rendered b(s)

concave for s > s̃α while α(s) is convex. Immediately to the right of s̃α = 2/5, b(s) > α(s);

therefore, some types of bidders with intermediate value-signals bid more following the intro-

duction of budget constraints. Corollary 1 demonstrates that such a targeted amplification

is a common feature of equilibrium bidding in the presence of budget constraints.

Corollary 1. Under the conditions of Theorem 1, lims→s̃+α
b′(s) > lims→s̃−α

b′(s).

The encouragement of more aggressive bidding by bidders with relatively large budgets

and intermediate valuations is due to a change in the marginal incentives that bidders expe-

rience in the presence of budget constraints. The prospect of defeating additional opponents

who are budget-constrained increases the marginal return of a higher bid; therefore, some

types of bidders respond to this incentive with more aggressive bidding.

2.1 Discussion and Interpretation

To interpret the sufficient conditions behind Theorem 1 it is useful to examine in detail

the role of Assumption A-4. Assumption A-4(1) asserts that the function ξ(s, ·|s) satisfies

15In all examples, plots of numerical solutions are obtained using the Runge-Kutta method.
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a single-crossing condition and ξ(s, w|s) is strictly positive for w sufficiently large. Thus,

the assumption ensures that the righthand side of the differential equation (7) is eventually

strictly positive. While this is Assumption A-4’s technical role, it also has an economic

interpretation.

Writing the condition ξ(s, w|s) > 0 explicitly16 gives

g(w)(N − 1)

[
N−2∑

k=0

(
N − 2

k

)

G(w)N−2−k(1−G(w))k(zk(s|s)− zk+1(s|s))
]

< 1. (11)

To simplify further, suppose values are private and value-signals are independent draws from

a common distribution with c.d.f. H(s). Under these additional assumptions, we benefit

from the simplification zk(s|s)− zk+1(s|s) = u(s)H(s)k(1−H(s)) and we are able to rewrite

ξ(s, w|s) > 0 as

g(w)(N − 1)u(s)(1−H(s)) (G(w) +H(s)−G(w)H(s))N−2 < 1

⇐⇒ u(s)
d

dw
[G(w) +H(s)−G(w)H(s)]N−1 < 1.

The term [G(w) +H(s)−G(w)H(s)]N−1 is the probability that all bidders other than i have

a value-signal less than s or a budget less than w. This corresponds to the probability with

which bidder i wins the auction when she bids β(s, w), as equilibrium bidding assumes. We

can therefore regard Assumption A-4 as imposing a subtle limit on the rate of change in the

probability of winning owing only to defeating opponents who have a smaller budget. If this

probability increases too rapidly at some point ŵ—for instance, due to an “atom”17 in the

distribution of budgets—then as b(s) crosses ŵ, b′(s) becomes undefined or negative and the

continuous strategy we are considering can no longer be an equilibrium. At such bid levels,

a bidder would have an incentive to drastically increase her bid to take advantage of others’

budget constraints.18

In an interdependent-value setting, the preceding intuition continues to apply. However,

it must be extended to incorporate the winner’s curse. Defeating low-budget opponents is

generally “good news” concerning the expected value of the item. Therefore in its fullest

form, (11) additionally incorporates a weighted average controlling for these effects on an

16See Lemma B1 in the appendix.
17We are assuming atom-less distributions of budgets, but the intuition in the extreme case of an atom in

G(w) is illuminating. Of course, there exist examples of a similar character when G(w) admits a continuous
density.

18Example 4 in the final section highlights this intuition explicitly.
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opponent-by-opponent basis.

Since the sufficient conditions in Assumption A-4 may be difficult to verify in practice, a

simple (but exceptionally conservative) alternative is that

g(w)(N − 1)E[u(1, Y1, . . . , YN−1)|S = 1] < 1. (12)

We demonstrate the sufficiency of (12) in the online appendix. Effectively, it bounds g(w)

and places a uniform limit on the concentration of budget constraints in the relevant range

of bids. Of course, this limit is not necessary for equilibrium existence as shown by Example

1 which does not meet this requirement.

Necessity A natural question to pose is to what extent our assumptions are necessary

to support a continuous symmetric equilibrium? First, any assumptions concerning the

differentiability of relevant functions are needed to ensure that the differential approach we

adopt is possible. We consider such conditions to be economically innocuous. It is therefore

more apt to examine the extent to which Assumption A-4 is necessary since it is the most

unusual of the proposed conditions.

First suppose that ξ(s, w|s) < 0 in a neighborhood of s̃α. In this situation, the solution

b(s) cannot be extended continuously to bids in the range above w. All solutions to the

differential equation (7) will be decreasing in a neighborhood immediately above w and near

s̃α. In this regard, Assumption A-4(2) cannot be relaxed while ensuring an equilibrium in

continuous strategies.

From a formal point of view Assumption A-4(1) is not necessary for the existence of the

equilibrium that we identify. From a practical perspective we view it as necessary. It is the

weakest assumption that guarantees increasing solutions to (7) on the domain [s̃α, 1] without

referring to the solution of (7) itself, which we view as too far removed from model primitives

to be economically meaningful. At minimum, A-4(1) enjoys an economic interpretation,

which we view as plausible. Weaker statements in lieu of Assumption A-4(1) would allow

ξ(s, ·|s) to fail its single-crossing condition provided the failure did not adversely affect the

solution to (7) that is intended to be used in defining equilibrium bidding.

2.2 Comparative Statics

To place the equilibrium in context and to foster intuition for its properties we investigate

several comparative statics. Throughout we focus on the effect of changes of the environment
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on changes in individual bidder behavior.

Changes in the Distribution of Budgets

It is natural to assume that the distribution of bidders’ budgets may vary with broader

economic and social conditions. More austere times may imply agents have on average less

resources to expend on the contest; an economic boom may encourage profligacy. Surpris-

ingly, however, exogenous “uniform” changes in the distribution of budgets may lead to a

non-uniform adjustment in the players’ bidding strategies. Some types of bidders may bid

more, while others may bid less.

For a concrete example, consider a change in the environment that makes budget con-

straints more lax on average. In principle, this relaxation can lead to two competing ef-

fects. First, when budget constraints are relaxed, bidders may be encouraged to bid more—

constraints on competition have been softened and its natural to posit that bids will rise.

The countervailing force, however, draws on the amelioration of the winner’s curse associated

with budget constraints. Conditional on winning, the item is of relatively higher value when

budget constraints bind since there is a good chance of having defeated a budget-constrained

opponent. Relaxing budget constraints dampens this effect. The result would tend to pull

bids down. In the context of the second-price auction, Fang and Parreiras (2002) conclude

that the latter effect can dominate. As a result, they are able to derive an unambiguous

comparative static in the second-price auction.

In the all-pay auction, however, there does not exist a simple ordering of equilibrium

strategies as we change G. This is true even under very restrictive stochastic orders. To

appreciate this conclusion, suppose N = 2 and fix a distribution of budgets G on [w, w̄] where

ᾱ < w̄. As shown by Lemma B4 in the appendix, the equilibrium bidding strategy in this case

will be bounded above by ᾱ. Consider a family of distribution functions indexed by a ≥ 1

defined as Ga(w) ≡ G(w)a. If a′ > a, then Ga′ likelihood-ratio dominates Ga.
19 Intuitively,

higher values of a imply more relaxed budget constraints as larger realizations of Wi are more

common. Denote by βa(s, w) = min{ba(s), w} an equilibrium strategy parameterized by a

and meeting the conditions identified in our analysis. Suppose for a = 1, the auction admits

an equilibrium β1. Since g(w) is bounded, for all a sufficiently large 1−g(w)aG(ᾱ)a−1 > 0 for

all w ∈ [w, ᾱ]. Therefore, for a sufficiently large, βa will define an equilibrium when budgets

are distributed according to Ga. By examining the main differential equation defining ba(s)

19See Krishna (2002, p. 260).
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as a→ ∞, we see that

(1−G(b)a)v1(s, s)f1(s|s)
1− ag(b)G(b)a−1

∫ 1

s
v1(s, y)f1(y|s)dy

→ v1(s, s)f1(s|s)

uniformly for all s and b ≤ ᾱ. Therefore ba(s) →
∫ s

0
v1(y, y)f1(y|y)dy, as expected. Recall

however that for each a, ba(s) > α(s) for s immediately to the right of s̃α while (generically)

ba(1) < ᾱ. Therefore a bidder’s strategy adjustment as budget constraints are relaxed is

not monotone across types. In general ba(·) is neither greater nor less than ba′(·) for a′ 6= a.

Thus, the same qualitative ordering that exists for the second-price auction does not carry

over to the case of the all-pay auction.

Changes in the Bidder Population

How will changes in the bidder population affect the auction’s equilibrium? While original

studies of auctions with budget constraints, such as Che and Gale (1998b), allowed for varia-

tion in the number of bidders, comparative statics exploring the sensitivity of equilibrium to

changes in N were not pursued systematically. The studies by Fang and Parreiras (2002) and

Kotowski (2013) limited attention to the case of two bidders. Surprisingly, in our model the

existence of an equilibrium in the canonical class is very sensitive to the number of bidders

in the auction. This conclusion applies even in an independent, private-value setting.

Fix an auction environment with private values and suppose there is an equilibrium of the

form β(s, w) = min{b(s), w} for some N ≥ 2. Changing N can lead to two main violations

of Assumption A-4. First, due to a change in N at the (new) critical value s̃α, the (new)

expression (11) is such that ξ(s̃α, w|s̃α) < 0, which violates Assumption A-4(2). Second,

even if A-4(2) is satisfied, following a change in the number of bidders ξ(s, w|s) may instead

violate the single-crossing condition from Assumption A-4(1). The violation can preclude

the existence of a strictly increasing solution to (7) for all s ≥ s̃α. We illustrate both failures

with an example. The example assumes private values and so the documented ill-behavior

of the equilibrium strategy is not a consequence of value-interdependence.

Example 2. Suppose there are N bidders with private values, i.e. u(si, s−i) = si. Value-

signals are distributed uniformly and independently on the unit interval. Budgets are dis-

tributed independently according to the distribution G(w) = 1 − exp(−4(w − w)) with

support [w,∞). Choose w = 0.1.

Adding a subscript to emphasize the dependence on N , we can express bN (s) for bids
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below w as

bN (s) =
N − 1

N
sN .

The associated critical value is s̃α,N = N

√
1
10

· N
N−1

. Similarly, for each N ≥ 2 we can calculate

ξ(s, w|s) to be

ξN(s, w|s) = 1 + 4(N − 1)(s− 1)se
2

5
−4w

(

(s− 1)e
2

5
−4w + 1

)N−2

.

Again, we have used an N subscript to emphasize this function’s dependence on N . We

consider three cases:

1. Suppose N = 2, then ξ2(s, w|s) = 4(s− 1)se
2

5
−4w + 1, which is strictly positive for all

(s, w) ∈ [0, 1]× [w,∞) except at the point (s, w) =
(
1
2
, 1
10

)
where it is zero. Since s̃α,2 =

1√
5
≈ 0.447, Assumption A-4 is satisfied and a symmetric equilibrium in canonical

strategies exists.

2. Keeping the environment otherwise the same, supposeN = 3. Now s̃α,3 =
3
√

3

5

22/3
≈ 0.531.

At this value, ξ3(s̃α,3, w|s̃α,3) = 11
5
− 2

(
6
5

)2/3
< 0. This is a violation of Assumption

A-4(2) and a continuous extension of b(s) at s̃α,3 into the range above w is not possible.

We note that A-4(1) is otherwise satisfied.

3. Finally, suppose N = 10. In practical terms this would be a setting with a large

number of bidders. Now, s̃α,10 = 1
5
√
3
≈ 0.803 and ξ10(s̃α,10, w|s̃α,10) = 5 − 4 5

√
3 ≈

0.017 > 0. Thus, Assumption A-4(2) is met. However, Assumption A-4(1) fails. We

illustrate this failure with Figure 2. The figure shows the function b(s) along with its

solution satisfying the boundary condition b(s̃α,10) = w.20 This extension of b(s) above

w necessarily needs to traverse a region, illustrated in gray, where ξ10(s, w|s) < 0.

Therefore, there does not exist a strictly increasing solution to (10) as required.

The main implication stemming from Example 2 concerns the possibilities and opportu-

nities for inference in auction environments where bidders may be budget constrained. While

there does not exist a good theory of inference and identification in auctions with budget

constraints (and it is far beyond the scope of this study to develop one), changes in N are

a common source of variation exploited in empirical auction studies.21 Fully exploiting this

20We construct Figure 2 by computing and plotting the inverse of b(s). This technique allows us to
accommodate instances where b′(s) = ∞ for some s.

21See Athey and Haile (2007) for a recent survey of identification in auction models. See Bajari and
Hortaçsu (2005) for an implementation.
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Figure 2: A failure of Assumption A-4. The gray region is the set {(s, w) : ξ10(s, w|s) < 0}.
Elsewhere, ξ10(s, w|s) ≥ 0.

variation in auctions with budget constraints may be problematic (or at best challenging)

due to the qualitative differences of equilibrium bidding as the environment changes with

N . For example, for some values of N (depending on the distribution of budgets and valua-

tions), one would not be able to employ first-order conditions to fully characterize a bidder’s

optimal bid. Much more research is required to develop precise conclusions and restrictions

accounting for such concerns.

Public Signals

Suppose prior to bidding players observe the realization of some public signal S0, which

is affiliated with bidders’ value-signals. We may further suppose that each bidder’s payoff

depends on the value of this signal, i.e. Vi = u(S0, Si, S−i). For example, this signal may

be some information released non-strategically by the auctioneer or some widely available

piece of economic news. Before examining how bidding may depend on the public signal, we

distinguish two (non-exclusive) types of public signals that the bidders may observe.

Definition 1. The public signal S0 is value-relevant if for a.e. (si, s−i), u(s0, si, s−i) is strictly

increasing in s0. S0 is said to be value-irrelevant if for all (si, s−i), u(s0, si, s−i) is constant

in s0.
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Definition 2. Let s̄0 and s0 be two realizations of S0. The public signal S0 is information-

relevant if there exists a set A, Pr[S−i ∈ A] > 0, such that s̄0 6= s0 =⇒ h(·|si, s̄0)|A <

h(·|si, s0)|A or h(·|si, s̄0)|A > h(·|si, s0)|A.

A signal that is value-relevant conveys information about the value of the item directly;

its realized value is effectively a parameter of a bidder’s utility function. An information-

relevant signal is correlated with other bidders’ private information. Therefore, it conveys

additional information about others’ signals beyond the information contained already in

Si. While nothing precludes a signal from being both value- and information-relevant—we

believe that most signals embody both characteristics—we will focus only on extreme cases

where public signals are either value- or information-relevant, but not both. This dichotomy

allows us to emphasize the competing effects of information in the all-pay auction. Signals

that are purely value-relevant encourage bidders to respond in the intuitive manner—“good

news” will encourage uniformly more aggressive bidding. In contrast, high realizations of

signals that are solely information-relevant may be a discouragement. Some types of bidders

place lower bids as a result.

Theorem 2. Suppose the conditions of Theorem 1 are satisfied. Let s̄0 > s0 be high and

low realizations of a public signal S0 observable to all bidders. Let β̄(s, w) be the symmetric

equilibrium strategy in the all-pay auction when the public signal is high. Define β(s, w)

analogously when the realized public signal is low.

1. If the public signal is value-relevant but h(·|·, s̄0) = h(·|·, s0), then β̄(s, w) ≥ β(s, w).

2. If the public signal is value-irrelevant but information relevant, then there exists an

ŝ > 0 such that for all 0 < s < ŝ, β̄(s, w) ≤ β(s, w).

The intuition behind Theorem 2 is simple. First, consider the case of purely value-relevant

information. Noting the preceding discussion, and viewing s0 as a parameter entering u it

is clear that our equilibrium characterization remains the same with statements conditional

on s0 replacing the unconditional statements. An implicit assumption, of course, is that

changes in s0 are sufficiently small to ensure that we maintain a symmetric equilibrium in

canonical strategies. With this qualification in mind, the associated comparative static is

intuitive.

In turning to information-relevant signals, we observe a different reaction. This conclusion

is independent of the presence of budget constraints per se but is instead a general feature
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of the all-pay auction.22 The intuition is straightforward. Conditional on observing a high

public signal s̄0 bidder i can infer that her opponent likely has a high signal and will in

consequence bid high. A high bid by the opponent decreases the probability with which

bidder i wins the auction, discouraging her from bidding aggressively. In contrast, if the

public signal also has a direct effect on a bidder’s value for the item, the resulting boost in

expected payoff may be enough to counteract the discouragement effect.

3 The War of Attrition

Given that the first-price, second-price, and all-pay auctions have symmetric equilibria of

the form β(s, w) = min{b(s), w}, a natural conjecture is that the war of attrition also has

an equilibrium in canonical strategies. In this section we extend our baseline model to ac-

commodate this auction format. We maintain our assumptions concerning the environment

from Section 1. Again, bidders will simultaneously submit bids and the highest bidder will be

deemed the winner. (Ties are resolved with a uniform randomization.) Unlike the preceding

analysis, in the (static) war of attrition the winning bidder makes a payment equal to the

second-highest bid. All losing bidders continue to incur a cost equal to their bid. Sometimes,

this auction format is called the second-price, all-pay auction. Our static treatment of the

war of attrition mirrors the analysis in Krishna and Morgan (1997). Therefore, we do not

model the war of attrition as an extensive game where bidders sequentially submit additional

(incremental) bids. Leininger (1991) and Dekel et al. (2006) consider such models with bud-

get limits and perfect information. Hörisch and Kirchkamp (2010) present an experimental

comparison of static and dynamic implementations of the war of attrition.

Many of the qualitative features of the all-pay auction’s equilibrium find natural analogues

in the equilibrium of the war of attrition. The major distinction is that under a very mild

technical condition the war of attrition features a uniform amplification of unconstrained bids

following the introduction of budget constraints. Bidders with large budgets will increase

their equilibrium bid relative to their equilibrium bid in the same environment absent budget

constraints. In the all-pay auction, such an amplification was present only for a subset of

types with intermediate value-signals.

As the derivation of the equilibrium strategy in the war of attrition parallels that from

the all-pay auction, we abbreviate our discussion accordingly. Before pursuing the details,

22We have not found this comparative static noted before in the literature on symmetric all-pay auctions.
Many studies, however, note similar “discouragement effects” in bidding games and contests, particularly
when players are ex ante asymmetric. See Dechenaux et al. (2012) for a survey.
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however, recall that under suitable assumptions Krishna and Morgan (1997) show that the

war of attrition without budget constraints has a symmetric equilibrium where all bidders

adopt the strategy

ω(s) =

∫ s

0

vN−1(y, y)fN−1(y|y)
1− FN−1(y|y)

dy. (13)

This strategy has two important properties. First, it is strictly increasing. Second, it is not

bounded: lims→1− ω(s) = ∞ (Krishna and Morgan, 1997, Proposition 1). Hence, there exists

a unique s̃ω such that ω(s̃ω) = w. This parameter is the analogue of s̃α from our study of

the all-pay auction.

We will identify an equilibrium in the war of attrition with budget constraints which

assumes the form β(s, w) = min{b(s), w}. Again, b(s) will be defined as an increasing

solution to a differential equation. It will be piecewise differentiable. The derivation of b(s)

in the war of attrition is somewhat more complicated than our argument for the all-pay

auction since a winning bidder’s payment is uncertain at the time of bidding. To begin,

suppose b(s) is a strictly increasing function. Let

Fk(x|s) =
∫ 1

0

· · ·
∫ 1

0
︸ ︷︷ ︸

N−1−k

∫ x

0

· · ·
∫ x

0
︸ ︷︷ ︸

k

h(y1, . . . , yN−1|s)dy1 · · ·dyN−1

and define

Ĥ(x, b(x)|s) =
N−1∑

k=0

γk(b(x))Fk(x|s).

If all bidders j 6= i are following a bidding strategy β(s, w) = min{b(s), w}, Ĥ(x, b(x)|s) is

the probability that all bidders j 6= i have a type (sj, wj) such that β(sj, wj) < b(x). We

can write the expected utility of a bidder placing the bid b(x), as

Ui(b(x)|s, w) =
N−1∑

k=0

γk(b(x))zk(x|s)− (1− Ĥ(x, b(x)|s))b(x)

−
∫ s̃ω

0

ω(y)fN−1(y|s)dy −
∫ x

s̃ω

b(y)
d

dz
Ĥ(z, b(z)|s)

∣
∣
∣
∣
z=y

dy

The first term is the expected benefit of winning the auction. The second term is the payment

the bidder must make if she loses the auction. This equals her own bid. The third and fourth

terms account for the payment she makes when she wins the auction.

Assuming appropriate differentiability, we can compute d
dx
Ui(b(x)|s, w)

∣
∣
x=s

= 0 leading
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to the differential equation

b′(s) =

∑N−1
k=0 γk(b(s))z

′
k(s|s)

1− Ĥ(s, b(s)|s)−∑N−1
k=0 γ

′
k(b(s))zk(s|s)

, (14)

which characterizes b(s).

Mirroring our analysis of the all-pay auction, we again propose two assumptions—alternatives

to Assumptions A-3 and A-4—that are sufficient to ensure that our preceding arguments are

reflective of a symmetric equilibrium. The first assumption places a limit on the relative de-

gree of affiliation and generalizes a condition proposed by Krishna and Morgan (1997). The

second assumption is the analogue of Assumption A-4. It structures the joint distribution

of value-signals and budgets.

Assumption A-5. Let

Φ(x, w|s) =
N−1∑

k=1

γk(w)(1− Fk(x|s))
∑N−1

k′=1 γk′(w)(1− Fk′(x|s))

(
vk(s, x)fk(x|s)
1− Fk(x|s)

)

. (15)

Φ(x, w|·) : [0, 1] → R is non-decreasing.

Like Assumption A-3, Assumption A-5 is a restriction on the relative degree of affiliation

among value-signals. It always holds if value-signals are independent. If w ≤ w, then (15)

reduces to
v(·, x)fN−1(x|·)
1− FN−1(x|·)

: [0, 1] → R

being non-decreasing for each x. This is Krishna and Morgan’s condition supporting (13)

as an equilibrium strategy when budget constraints are not present. Hence Assumption A-5

is a generalization of their original assumption. (15) simplifies similarly when N = 2. To

emphasize the parallel with Assumption A-3 above, we stated A-5 as a weighted average;

hence, the expression is not fully simplified. This notation stresses the interaction between

the number of bidders and the limit on affiliation that needs to hold given different subsets

of bidders.

Assumption A-6. Let

Ξ(x, w|s) = 1−
∑N−1

k=0 γ
′
k(w)zk(x|s)

∑N−1
k=1 γk(w)(1− Fk(x|s))

. (16)

Ξ(x, w|s) satisfies the following properties:
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1. For every s ≥ s̃ω, there exists ws, w ≤ ws < w̄ such that w < ws =⇒ Ξ(s, w|s) < 0

and w ∈ (ws, w̄) =⇒ Ξ(s, w|s) > 0.

2. There exists ǫ > 0 such that s ∈ (s̃ω − ǫ, s̃ω + ǫ) =⇒ Ξ(s, w|s) > 0.

3. When x ≥ s̃ω, Ξ(x, w|·) : [0, 1] → R is non-increasing.

The conditions in Assumption A-6 are direct adaptations of the conditions introduced in

Assumption A-4. Their interpretation and roles are also analogous. Some simplifications of

Assumption A-6 are possible in special cases. For example, Assumption A-6(3) is satisfied

automatically if value-signals are independent.

Theorem 3 collects the preceding assumptions and offers sufficient conditions for a sym-

metric equilibrium in the war of attrition in canonical strategies. The equilibrium strategy

resembles the equilibrium of the all-pay auction. Low value-signal bidders follow the usual

no-budget-constraints equilibrium strategy, ω(s). Only for bids above w will the change in

incentives introduced by budget constraints modify equilibrium behavior. Unlike the all-pay

auction, bidders with sufficiently large value-signals will desire to expend an arbitrarily large

amount in equilibrium. If w̄ = ∞, then the equilibrium strategy is unbounded.

Theorem 3. Suppose Assumptions A-1, A-2, A-5, and A-6 hold. Then there exists a sym-

metric equilibrium in continuous strategies in the war of attrition. In this equilibrium, all

bidders follow the strategy β(s, w) = min{b(s), w} defined as follows:

• For all s < s̃ω, b(s) = ω(s) where ω(s) is defined in (13).

• For all s̃ω ≤ s < ŝω, b(s) is the solution to the differential equation (14) satisfying the

boundary condition b(s̃ω) = w.

• For all s ≥ ŝω, b(s) = w̄.

The value s̃ω is the unique solution to w = ω(s̃ω) while ŝω is the smallest value such that

lims→ŝ−ω
b(s) = w̄.

The following example illustrates an equilibrium in the war of attrition.

Example 3. Suppose N = 2 and Si
i.i.d.∼ U [0, 1]. Let u(si, sj) = (si + sj)/2. Suppose

G(w) = 1 − e−(w−w) where w = − 7
20

+ log
(
20
13

)
≈ 0.081. With these parameters, our

equilibrium strategy in the war of attrition is β(s, w) = min{b(s), w} where

b(s) =







−s− log(1− s) if s ≤ 7
20

∫ s
7

20

4y
3(y−1)2

dy + w if s > 7
20

.
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Figure 3: The functions b(s) and ω(s) in the characterization of equilibrium bidding in
Example 3. Both functions are not bounded.

For s > 7/20, we can integrate the above expression to arrive at

b(s) =
1040(s− 1) log(1− s) + 1820(s− 1) log

(
20
13

)
− 1873s+ 833

780(s− 1)
.

For comparison, Figure 3 presents the functions b(s) and ω(s) = −s− log(1− s).

As seen in Example 3, bidders with a value-signal of only 0.65 desire to commit to a

bid greater than 1, which is the maximum possible value of the available prize. Such “over-

bidding” is a particular feature of the war of attrition, with or without budget constraints

(Albano, 2001). The example suggests that the introduction of budget constraints ampli-

fies the overbidding phenomenon further. This observation is formalized by the following

corollary.

Corollary 2. Under the conditions of Theorem 3:

1. lims→s̃+ω
b′(s) > lims→s̃−ω

b′(s).

2. If fk(s|s)
1−Fk(s|s) ≥

fN−1(s|s)
1−FN−1(s|s) for all k,23 then for all s such that b(s) < w̄, b(s) ≥ ω(s).

23This condition is satisfied when Si

i.i.d.∼ U [0, 1].

24



The equilibrium in the war of attrition exhibits similar comparative statics to the all-pay

auction. Again, the equilibrium strategy identified here will converge to the equilibrium

in an environment without budget constraints if the constraints are relaxed. Additionally,

the same bidder-level comparative statics apply concerning information revelation. The

distinction between value-relevant and information-relevant public signals continues to be

important.

Theorem 4. Suppose the conditions of Theorem 3 are satisfied. Then the conclusions of

Theorem 2 apply to the war of attrition.

3.1 Comparing the All-Pay Auction and the War of Attrition

We conclude our discussion of the war of attrition with a brief comparison to the all-pay

auction. Naturally, we restrict attention to environments where the all-pay auction has an

equilibrium of the form βα(s, w) = min{bα(s), w} and the war of attrition has an equilibrium

of the form βω(s, w) = min{bω(s), w}.24 Both βα and βω are assumed to exhibit the charac-

teristics identified in our preceding analysis. Our first comparison considers an ordering of

the bidding strategies.

Theorem 5. βω(s, w) ≥ βα(s, w) for all (s, w).

Noting Theorem 5, we can employ the arguments in Che and Gale (1998b) and also

outlined in Krishna (2002) to conclude that the all-pay auction will be more efficient on

average than the war of attrition when ex-post preferences reflect the ordering of bidder’s

value-signals.

With regards to revenues, there does not exist a general revenue ranking between the

war of attrition and the all-pay auction in the presence of budget constraints and affiliated

valuations. One can draw this conclusion by documenting the results in extreme cases. First,

suppose that budget constraints are very lax. For example, suppose budgets are distributed

according to the exponential distribution with a mean that is very large. Since budget

constraints in this case are almost irrelevant, the equilibrium bids submitted in both formats

are essentially the same as those submitted in the case of no budget constraints. Drawing on

Krishna and Morgan (1997) we can conclude that in the presence of value interdependence,

the war of attrition will revenue-dominate the all-pay auction.

24We employ α and ω subscripts to differentiate between the all-pay auction (α) and the war of attrition
(ω).
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When budget constraints are more meaningful, and they constrain bidders with non-

vanishing probability, the all-pay auction can generate more revenue. Consider the following

case. Suppose there are two bidders and value signals are distributed independently according

to the uniform distribution. Suppose budget constraints follow the exponential distribution

G(w) = 1− e−(w−w) on [w,∞). Choose w = log(10
3
)− 7

10
≈ 0.5039. Finally, assume bidders

have private values: ui(si, sj) = si.

In this situation, budget constraints are (just) irrelevant in the case of the all-pay auction.

The equilibrium strategy is βα(s, w) = min{bα(s), w} where bα(s) = s2

2
. The expected

revenue in the all-pay auction is Rα = 1
3
.

Since the bidding strategy in the war of attrition is not bounded, the introduced budget

constraints will directly affect the equilibrium strategy. It is straightforward to show that

the equilibrium bidding strategy is βω(s, w) = min{bω(s), w} where

bω(s) =







−s− log(1− s) if s < 7
10

∫ s
7

10

y
(y−1)2

dy + log(10
3
)− 7

10
if s ≥ 7

10

When s > 7
10

, we can write bω(s) in closed form as

bω(s) =
s
(
log
(
1000
27

)
− 10

)
+ 7 + log(27)− 3 log(10)

3(s− 1)
+ log

(
10

3
− 10

3
s

)

− 7

10
.

A direct calculation for the revenue (see the online appendix) gives

Rω =
1

1500

(

527− 270e
20

3

∫ ∞

20

3

e−x

x
dx

)

.

The terms in Rω are straightforward to approximate accurately to conclude that Rω < 0.328.

In this example the impact on revenue following the introduction of budget constraints is

slight for two reasons. First, only a small fraction of bidders in the war of attrition are

somehow directly impacted by the budget constraint. Additionally, some bidders adjust

their bids upward (Corollary 2) which partially ameliorates the revenue decline. However,

the adjustment is not sufficient to preclude a strict drop in revenue. Hence, Rα > Rω.

While tractability has guided our discussion of revenues towards comparisons of extreme

scenarios, its conclusions apply more generally. It is clear that we can modify our final

example by perturbing the distribution of budgets slightly such that it has full support

on [0,∞) without changing the conclusion. Similarly, one can perturb the distribution of
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value-signals such that they are strictly but “slightly” affiliated. For example, consider the

distribution h(s1, s2) =
4

1+4k
(k+ sisj) on [0, 1]2 and let k be very large. This change will not

compromise the strict difference in expected revenue. Finally, one can introduce strict value

interdependence by endowing bidders with the preferences u(si, sj) = (1− ǫ)si + ǫsj . As we

have shown, the boundary of the revenue dominance of one auction format over the other

will lie somewhere in between the two extreme cases considered.

Our conclusions regarding revenues have implications concerning the efficacy of different

fundraising procedures. Recently, Goeree et al. (2005) established the superiority of (lowest-

price) all-pay auctions over, for example, standard winner-pay auctions and lotteries in

raising funds for public goods or charity.25 The distinguishing feature of this application is

that auction participants benefit from acquiring the good for sale and from the contributions

raised for the charity. Goeree et al. argue that all-pay mechanisms are particularly good at

harnessing the latter externality; hence, they generate greater revenues. To be specific they

show that an appropriately calibrated lowest-price, all-pay auction raises the most revenue.

In such a mechanism, the highest bidder wins the item but all bidders pay a price equal to

the lowest submitted bid.

Our analysis qualifies Goeree et al.’s conclusion, at least when public-good externalities

are small.26 When there are only two participants, the lowest-price, all-pay auction is the

(static) war of attrition. As showed by our example, with private budget constraints the

(first-price) all-pay auction is revenue superior. More generally, we anticipate that the pres-

ence of private budget constraints will render the lowest-price all-pay auction comparatively

less attractive. Private budget constraints nearly always compromise the auction’s efficiency

and this inefficiency is exacerbated when equilibrium bids are on average higher. The net

result is a decline in collected revenue.27

4 Discontinuous Equilibria and Concluding Remarks

Our study has focused on equilibria in continuous strategies; however, we have already seen

that in many situations an equilibrium in continuous canonical strategies may not exist.

This occurs primarily when the distribution of budgets is “too dense” at some point. When

25See also Morgan (2000). Corazzini et al. (2010) provide a recent experimental comparison of lotteries
and all-pay auctions in a fundraising context.

26This would correspond to α ≈ 0 in Goeree et al. (2005).
27We conjecture that in the presence of private budget constraints, the optimal auction in the setting of

Goeree et al. (2005) will most often involve a k-th price all-pay auction where 1 < k < N .
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this is the case, equilibrium bidding will be more complicated. Discontinuous equilibrium

strategies cannot be ruled out. While a full characterization of such equilibria is beyond

the focus of this paper, we offer the following example that is suggestive of the qualitative

features that can emerge. Except for the unusual budget distribution, the set-up of Example

4 parallels the environment of Example 1 discussed above.28

Example 4. Suppose there are two bidders each of whom observes a value-signal Si
i.i.d.∼

U [0, 1]. Suppose that the item’s ex post value to bidder i is u(si, sj) = (si + sj)/2. Suppose

that budgets are distributed independently and identically in the following manner. With

probability 1/2 a bidder has a budget of wi = 1/5. With probability 1/2, a bidder has a

budget of wi = 1. For reference, we note that in the absence of budget constraints, the

equilibrium bidding strategy in the all-pay auction is α(s) = s2/2.

With private budget constraints equilibrium bidding in the all-pay auction will exhibit a

discontinuity. In fact, the equilibrium strategy becomes

β(s, w) =







s2

2
s ≤ ŝ

s2

4
+ (2

√
10−5)2

100
ŝ < s < ŝ′, w = 1

5

1
5

ŝ′ ≤ s, w = 1
5

s2

4
+ 4

√
10−9
20

ŝ < s, w = 1

,

where ŝ = −1+2
√

2
5
≈ 0.265 and ŝ′ = −1+

√

−36
5
+ 16

√
2
5
≈ 0.709. A proof that this strat-

egy characterizes a symmetric equilibrium is presented in the online appendix. The argument

is somewhat tedious due to its case-by-case nature; technically, it is straightforward.

The key feature of this equilibrium is the discontinuity in the bidding strategy at ŝ. For

relatively low value-signals—those below ŝ—each bidder bids according to the no-budget

constraints equilibrium strategy, much like they did in our analysis of continuous equilibria.

However, at ŝ, a high-budget bidder has an incentive to increase her bid by a substantial

amount. At this value-signal, a bidder with a large budget increases her bid discontinuously

from 1
2
(2
√

2/5 − 1)2 ≈ 0.035 to 0.2. The increased bid drastically increases her probability

of winning since she can outbid all budget-constrained opponents. The associated intuition

echoes our discussion concerning the non-existence of continuous equilibria when the distri-

bution of budgets is sufficiently concentrated on a single point, as noted in section 2.1. The

28Kotowski (2013) constructs a similar example in application to the first-price auction. An important
difference is that his example assumes private values while ours has interdependent values.
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discrete distribution of budgets is a particularly extreme example of this phenomenon.

While the discrete budget distribution in Example 4 places it outside of our baseline

environment, it is nevertheless suggestive of the strategic tradeoffs present in auctions with

budget constraints. The discrete budgets support the presence of discontinuous equilibrium

bidding strategies; however, we emphasize that the discontinuous strategies are not neces-

sarily artifacts of the budget discreteness. For example, Kotowski (2013) shows that under

appropriate conditions the first-price auction with continuously distributed budgets has an

equilibrium in discontinuous strategies exhibiting the qualitative features of the discrete-

budget model. We anticipate that a similar construction carries over to our model of the

all-pay auction and the war of attrition.

We motivated our investigation by noting the range of applications that all-pay auctions

have seen in the economics literature. They form the core of many models of lobbying,

student competition, or innovation. In another interesting application Baye et al. (2005)

use a cleverly generalized model of an all-pay auction to study the performance of different

legal systems. Specifically they investigate whether “who pays” a case’s legal fees matters

for the level of expenditures on litigation. For instance, in the United States each party in

a legal dispute typically pays its own legal fees. In contrast, in Britain the losing party is

customarily required to cover the legal fees of the winner in addition to its own.

Although absent from their formal model, Baye et al. (2005) recognize that budget and

liquidity constraints often shape the legal strategy of parties in a dispute. While our model

lacks their flexible parameterization spanning various legal systems, our analysis does allow

us to draw some preliminary conclusions. If we view the legal contest as a (first-price) all-pay

auction29 then the introduction of private budgets has mixed implications. Notably, some

participants will spend more than they otherwise would. Others might spend less. The war of

attrition is, of course, another credible model of a legal contest. Here our model offers a rather

sobering conclusion. The mechanical effects of budget constraints notwithstanding,30 the

possibility that opponents may be budget constrained may encourage even greater (planned)

expenditures. The ability to take advantage of others’ possible budget constraints is a

strategic option that many litigants undoubtably exploit in practice. More importantly,

however, the resulting inefficiency in the contest’s outcome may emerge as a miscarriage

of justice. While evaluating such implications is decidedly beyond our model’s immediate

29This is how Baye et al. (2005) characterize the “American system.” In their model, it corresponds to the
parameterization α = β = 1.

30In the presence of budget constraints, some agents will hit their spending cap. This mechanically
constrains their expenditure.
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scope, the inefficiency induced by practical constraints on bids is a salient, albeit under-

emphasized, fact. Further research—theoretical, empirical, and experimental—is required

to better evaluate the relative performance of different auction mechanisms in constrained

settings.
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A Appendix: Expected Payoffs in the All-Pay Auction

Suppose all bidders other than i are following the strategy β(s, w) = min{b(s), w} where b(s)

is strictly increasing. A bid of b(x) will defeat two classes of opponents. k opponents will

have a budget greater than b(x) and N − 1− k opponents will have a budget less than b(x).

The probability of this event is γk(b(x)) =
(
N−1
k

)
G(b(x))N−1−k(1 − G(b(x)))k. The value-

signal of the opponents who have a budget less than b(x) can be arbitrary. The value-signal

of the opponents who have a budget greater than b(x) must have a value-signal less than x.

Thus, the contribution to expected utility from this event is

γk(b(x))

∫ 1

0

· · ·
∫ 1

0
︸ ︷︷ ︸

N−1−k

∫ x

0

· · ·
∫ x

0
︸ ︷︷ ︸

k

u(s, y1, . . . , yN−1)h(y1, . . . , yN−1|s)dy1 · · · dyN−1.

Owing to symmetry, we have assumed without loss of generality that opponents 1, . . . , k are

in the first group while the remain opponents are in the latter. We can simplify the preceding

expression as follows:

γk(b(x))

∫ 1

0

· · ·
∫ 1

0
︸ ︷︷ ︸

N−1−k

∫ x

0

· · ·
∫ x

0
︸ ︷︷ ︸

k

u(s, y1, . . . , yN−1)h(y1, . . . , yN−1|s)dy1 · · ·dyN−1

= γk(b(x)) Pr[Ȳk ≤ x|S = s]E[u(S, Y1, . . . , YN−1)|S = s, Ȳk ≤ x]

= γk(b(x))

∫ x

0

E[u(S, Y1, . . . , YN−1)|S = s, Ȳk = y]fk(y|s)dy

= γk(b(x))

∫ x

0

vk(s, y)fk(y|s)dy

= γk(b(x))zk(x|s)

Recalling that z0(x|s) = v0(s, y) = E[u(s, Y1, . . . , YN−1)|S = s], we can sum over k to

arrive at Ui(b(x)|s, w) =
∑N−1

k=0 γk(b(x))zk(x|s) − b(x). Note that if b(x) < w, then for all

k = 0, . . . , N − 2, γk(b(x)) = 0 and γN−1(b(x)) = 1. Thus, the above expression reduces to

Ui(b(x)|s, w) = zN−1(x|s) =
∫ x

0

vN−1(s, y)fN−1(y|s)dy − b(x).
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B Appendix: Proofs

Throughout our formal arguments we use the properties of affiliated random variables freely.

We refer the reader to Milgrom and Weber (1982) or Krishna (2002, Appendix D) for a

detailed introduction to their properties.

Lemmas B1 and B2 present preliminary results that are used throughout our analysis.

Lemma B1.
∑N−1

k=0 γk(w)
′zk(x|s) ≡ g(w)(N−1)

∑N−2
k=0

(
N−2
k

)
G(w)N−2−k(1−G(w))k(zk(x|s)−

zk+1(x|s)).

Proof. To simplify notation, we let G ≡ G(w), g ≡ g(w), zk ≡ zk(x|s), and γk ≡ γk(w).

Differentiating γk(w) with respect to w gives

γ′k =

(
N − 1

k

)

(N − 1− k)GN−2−kg(1−G)k −
(
N − 1

k

)

GN−1−kgk(1−G)k−1.

Therefore,

N−1∑

k=0

γ′kzk =
N−2∑

k=0

(
N − 1

k

)

(N − 1− k)GN−2−kg(1−G)kzk

−
N−1∑

k=1

(
N − 1

k

)

kGN−1−kg(1−G)k−1zk.

For k ≤ N−2,
(
N−1
k

)
(N−1−k) = (N−1)!

(N−1−k)!k!
(N−1−k) = (N−1) (N−2)!

(N−2−k)!k!
= (N−1)

(
N−2
k

)

and for k ≥ 1,
(
N−1
k

)
k = (N−1)!

(N−1−k)!(k−1)!
= (N − 1) (N−2)!

(N−2−(k−1))!(k−1)!
= (N − 1)

(
N−2
k−1

)
. Shifting

the index of summation,

(N − 1)g
N−1∑

k=1

(
N − 2

k − 1

)

GN−1−k(1−G)k−1zk = (N − 1)g
N−2∑

k=0

(
N − 2

k

)

GN−2−k(1−G)kzk+1.
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Hence,

N−1∑

k=0

γ′kzk = g(N − 1)

N−2∑

k=0

(
N − 2

k

)

GN−2−kg(1−G)kzk

− g(N − 1)
N−2∑

k=0

(
N − 2

k

)

GN−2−k(1−G)kzk+1

= g(N − 1)

N−1∑

k=1

(
N − 2

k − 1

)

GN−1−k(1−G)k−1(zk−1 − zk)

= g(N − 1)

N−2∑

k=0

(
N − 2

k

)

GN−2−k(1−G)k(zk − zk+1).

Lemma B2. Let y = (y1, . . . , yN−1). Then,

1. For all k ≥ 1,

zk(x|s) =
∫ x

0

vk(s, y)fk(y|s)dy =
∫ 1

0

· · ·
∫ 1

0
︸ ︷︷ ︸

N−1−k

∫ x

0

· · ·
∫ x

0
︸ ︷︷ ︸

k

u(s,y)h(y|s)dy1 · · ·dyN−1.

2. For all k, zk(x|s)− zk+1(x|s) ≥ 0 and therefore,
∑N−1

k=0 γ
′
k(w)zk(x|s) ≥ 0.

Proof. 1. Working from the definition of zk(x|s):

zk(x|s) =
∫ x

0

vk(s, y)fk(y|s)dy

=

∫ x

0

E[u(S, Y1, . . . YN)|S = s, Ȳk = y]fk(y|s)dy

= Pr[Ȳk ≤ x|S = s]E[u(S, Y1, . . . YN)|S = s, Ȳk ≤ x]

=

∫ 1

0

· · ·
∫ 1

0
︸ ︷︷ ︸

N−1−k

∫ x

0

· · ·
∫ x

0
︸ ︷︷ ︸

k

u(s,y)h(y|s)dy1 · · · dyN−1.

2. Noting symmetry, we can write

zk(x|s)− zk+1(x|s) =
∫ 1

x

∫ 1

0

· · ·
∫ 1

0
︸ ︷︷ ︸

N−1−(k+1)

∫ x

0

· · ·
∫ x

0
︸ ︷︷ ︸

k

u(s,y)h(y|s)dy1 · · · dyN−2dyN−1.
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Whenever 0 < x < 1, the preceding expression is strictly positive.

Lemma B3 is used in the proof of Theorem 1. Remark B1 addresses a closely related

point concerning valid solutions to the differential equation that characterizes equilibrium

bidding.

Lemma B3. The differential equation

b′(s) =

∑N−1
k=0 γk(b(s))z

′
k(s|s)

1−∑N−1
k=0 γ

′
k(b(s))zk(s|s)

(B1)

has a strictly increasing solution b(s) : [s̃α, 1] → [w, w̄] satisfying the boundary condition

b(s̃α) = w.

Proof. Since all of the terms in (B1) are continuous, this lemma follows from standard

results in the theory of ordinary differential equations. It is readily verified that b′(s) is

strictly positive for all s ∈ [s̃α, 1] due to Assumption A-4. The basic intuition is presented in

Figure B1. {(s, b) : ξ(s, b|s) = 0}, denoted by dashed curves, is a set of points where b′(s) is

not defined and solutions to (B1) approach vertically. In grey regions, all solutions to (B1)

are downward sloping while in the white region b′(s) > 0.

We need to however verify that the solution meeting the boundary condition b(s̃α) = w

is defined for all s ∈ [s̃α, 1]. The sole alternative is that for some s̃′α < 1, lims→s̃′−α
b(s) = w̄.

This possibility is ruled out, however, by noting that the function b̃(s) = w̄ is a solution to

(B1) satisfying the boundary condition b̃(s̃α) = w̄. Thus, b(s) is bounded above by w̄ and

the solution b(s) has a maximal domain of [s̃α, 1].

Remark B1. An alternative argument, contained in an earlier working paper of this study,

analyzed instead the solution of the differential equation q(b) = ψ(b, q(b)) where

ψ(b, q(b)) =
1−∑N−1

k=0 γ
′
k(b)zk(q(b)|q(b))

∑N−1
k=0 γk(b)z

′
k(q(b)|q(b))

, q(w) = s̃α.

b(s) is then defined as the inverse of q(b). This approach assuages concerns related to the

set of points where ξ(s, b|s) = 0. For a similar approach, see Lebrun (1999) or Maskin and

Riley (2003), among others.

Proof of Theorem 1. Let Ui(b(x)|s, w) be the expected utility of bidder i when she

observes the value-signal s and places the bid b(x) ≤ w. Noting the definition of b(x), it is
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s

b

ξ(s, b|s) > 0

1

w̄

0

w
ξ(s, b|s) < 0 ξ(s, b|s) < 0

s̃α

α(s)

b(s)

Figure B1: Definition of b(s) in the all-pay auction. b(s) is confined to the white region
where all solutions to the differential equation (B1) are strictly increasing.

easily seen to be absolutely continuous. Moreover, since G(·) is continuously differentiable,

Ui(b(x)|s, w) =
∑N−1

k=0 γk(b(x))zk(x|s) − b(x) is absolutely continuous and in particular we

can write

Ui(b(x)|s, w) = Ui(b(s̃α)|s, w) +
∫ x

s̃α

d

dt
Ui(b(t)|s, w)

∣
∣
∣
∣
t=y

dy. (B2)

We proceed to verify that no type of bidder wishes to deviate to an alternative (feasible)

bid.

1. Consider a bidder with value-signal s < s̃α. When following the strategy β(s, w), this

bidder places the bid b(s) = α(s). From Krishna and Morgan (1997), we know that

this bidder will not have a profitable deviation to any bid b(x), x ∈ [0, s̃α].

Suppose instead that this bidder contemplates bidding b(x) for some x > s̃α. The

expected payoff from this bid is given by (B2). It is sufficient to verify that when

35



s < x, d
dt
Ui(b(t)|s, w) ≤ 0. Using Assumptions A-3 and A-4, we can see that

d

dt
Ui(b(t)|s, w)

=

N−1∑

k=0

γ′k(b(t))zk(t|s)b′(t) +
N−1∑

k=0

γk(b(t))z
′
k(t|s)− b′(t)

=

N−1∑

k=0

γk(b(t))z
′
k(t|s)−

N−1∑

k=0

γk(b(t))z
′
k(t|t)

[

1−∑N−1
k=0 γ

′
k(b(t))zk(t|s)

1−∑N−1
k=0 γ

′
k(b(t))zk(t|t)

]

≤
N−1∑

k=0

γk(b(t))z
′
k(t|t)−

N−1∑

k=0

γk(b(t))z
′
k(t|t)

[

1−∑N−1
k=0 γ

′
k(b(t))zk(t|t)

1−∑N−1
k=0 γ

′
k(b(t))zk(t|t)

]

= 0.

2. Consider instead a bidder with a value-signal s ≥ s̃α. An argument parallel to the

preceding case confirms that a bid b(x), x > s, will not be a profitable deviation.

Suppose instead this bidder bids b(x) ≤ w, x ∈ [s̃α, s). As above, we have

d

dt
Ui(b(t)|s, w) =

N−1∑

k=0

γk(b(t))z
′
k(t|s)−

N−1∑

k=0

γk(b(t))z
′
k(t|t)

[

1−∑N−1
k=0 γ

′
k(b(t))zk(t|s)

1−∑N−1
k=0 γ

′
k(b(t))zk(t|t)

]

.

By Assumption A-3,
∑N−1

k=0 γk(b(t))z
′
k(t|s) ≥

∑N−1
k=0 γk(b(t))z

′
k(t|t). There are two cases:

(a) If 1−∑N−1
k=0 γ

′
k(b(t))zk(t|s) < 0, then d

dt
Ui(b(t)|s, w) ≥ 0.

(b) Suppose 1−∑N−1
k=0 γ

′
k(b(t))zk(t|s) ≥ 0. Then by Assumption A-4,

1−
N−1∑

k=0

γ′k(b(t))zk(t|s) ≤ 1−
N−1∑

k=0

γ′k(b(t))zk(t|t).

Hence, d
dt
Ui(b(t)|s, w) ≥ 0.

Therefore, there is no profitable deviation to a bid b(x) when x ∈ [s̃α, s).

Finally, consider a deviation to a bid of b(x), x < s̃α. It is sufficient to show that
d
dt
Ui(b(t)|s, w) ≥ 0 for all t < s̃α. By Assumption A-3

d

dt
Ui(b(t)|s, w) = vN−1(s, t)fN−1(t|s)− vN−1(t, t)fN−1(t|t)

≥ vN−1(t, t)fN−1(t|t)− vN−1(t, t)fN−1(t|t) = 0.
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The above analysis is exhaustive of all the cases; thus, the considered strategy profile is a

symmetric equilibrium.

Proof of Corollary 1. By Assumption A-4, 1−∑N−1
k=0 γ

′
k(w)zk(s̃α|s̃α) > 0. However, from

Lemmas B1 and B2,
∑N−1

k=0 γ
′
k(w)zk(s̃α|s̃α) > 0. Therefore,

0 < 1−
N−1∑

k=0

γ′k(w)zk(s̃α|s̃α) < 1.

Also,
∑N−1

k=0 γk(b(s))z
′
k(s|s) =

∑N−1
k=1 γk(b(s))vk(s, s)fk(s|s). Since γk(w) = 0 for all k 6= N−1

and γN−1(w) = 1, we can take limits to conclude

lim
s→s̃+α

b′(s) = lim
s→s̃+α

∑N−1
k=0 γk(b(s))z

′
k(s|s)

1−∑N−1
k=0 γ

′
k(b(s))zk(s|s)

=

∑N−1
k=1 γk(w)vk(s̃α, s̃α)fk(s̃α|s̃α)
1−∑N−1

k=0 γ
′
k(w)zk(s̃α|s̃α)

=
vN−1(s̃α, s̃α)fN−1(s̃α|s̃α)
1−∑N−1

k=0 γ
′
k(w)zk(s̃α|s̃α)

> vN−1(s̃α, s̃α)fN−1(s̃α|s̃α) = lim
s→s̃−α

b′(s).

Lemma B4. Consider an all-pay auction where the environment meets the conditions of

Theorem 1 and N = 2. Let β(s, w) be a corresponding equilibrium strategy. Suppose α(s) is

defined as in (9). Then β(s, w) ≤ ᾱ.

Proof. It is sufficient to show that b(s) ≤ ᾱ. Let Uβ(s) =
∑N−1

k=0 γk(b(s))zk(s|s)− b(s) be the

equilibrium expected utility of a bidder placing the bid b(s). For k ≥ 1,

d

ds
zk(s|s) = vk(s, s)fk(s|s) +

∫ s

0

∂

∂s
vk(s, y)fk(y|s)dz = vk(s, s)fk(s|s) +

∂

∂x
zk(s|x)

∣
∣
∣
∣
x=s

.

While for k = 0,
d

ds
z0(s|s) =

∂

∂x
z0(s|x)

∣
∣
∣
∣
x=s

.
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Thus, for all s > s̃α we can write

U ′
β(s) =

N−1∑

k=0

γk(b(s))
∂

∂x
zk(s|x)

∣
∣
∣
∣
x=s

.

We have cancelled terms using the definition of b′(s) from (7).

Similarly, let α(s) =
∫ s

0
vN−1(y, y)fN−1(y|y)dy and Uα(s) =

∫ s

0
v(s, y)fN−1(y|s)dy−α(s).

By an analogous argument to that presented immediately above, we can show that

U ′
α(s) =

∂

∂x
zN−1(s|x)

∣
∣
∣
∣
x=s

.

Therefore,

U ′
β(s)− U ′

α(s) =
N−1∑

k=0

γk(b(s))

[
∂

∂x
zk(s|x)

∣
∣
∣
∣
x=s

− ∂

∂x
zN−1(s|x)

∣
∣
∣
∣
x=s

]

. (B3)

Before completing our argument, we verify one helpful fact: z0(s|·) − z1(s|·) : [0, 1] → R is

non-decreasing. To see this conclusion, note that for all x,

z0(s|x)− z1(s|x) =
∫ 1

s

u(x, y)h(y|x)dy

= Pr[Y1 ≥ s|S = x]E[u(x, Y1)|Y1 ≥ s, S = x].

Since, value-signals are affiliated and u(x, y1) is non-decreasing, Pr[Y1 ≥ s|S = x] and

E[u(x, Y1)|Y1 ≥ s, S = x] are non-decreasing in x.

Since z0(s|·)− z1(s|·) is non-decreasing, for a.e. s ≥ s̃α, U ′
β(s) ≥ U ′

α(s). But then, since

Uβ(s̃α) = Uα(s̃α),

Uβ(s) = Uβ(s̃α) +

∫ s

s̃α

U ′
β(x)dx ≥ Uα(s̃α) +

∫ s

s̃α

U ′
α(x)dx = Uα(s).

Taking s→ 1 and noting that zk(1|1) = zN−1(1|1) for all k,

Uβ(1) =
N−1∑

k=0

γk(b(1))zk(1|1)− b(1) = zN−1(1|1)− b(1) ≥ Uα(1) = zN−1(1|1)− α(1).

Thus, ᾱ = α(1) ≥ b(1). Since b(s) is non-decreasing, we can conclude that β(s, w) ≤ b(s) ≤
ᾱ.
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Lemma B5 is used in the proof of Theorems 2 and 4.

Lemma B5. Suppose (X, Y, Z) are affiliated random variables with a strictly positive, bounded,

continuous density f(x, y, z) defined on [0, 1]3. Define

f(x|y, z) = f(x, y, z)
∫ 1

0
f(x, y, z)dx

.

Let z′ > z and suppose that f(·|y, z) 6= f(·|y, z′) for all y. Then there exists 0 < ŷ < 1 such

that:

(a) f(x|x, z′) < f(x|x, z) for all x < ŷ.

(b) f(x|x,z′)
1−F (x|x,z′) <

f(x|x,z)
1−F (x|x,z) for all x < ŷ.

Proof. Let z′ > z and fix y. Since (y, z′) ≥ (y, z), by the properties of affiliated random

variables the function
f(·|y, z′)
f(·|y, z) : [0, 1] → R

is non-decreasing. It is also continuous and strictly positive.

Suppose f(0|y, z′) ≥ f(0|y, z). Then f(x|y, z′) ≥ f(x|y, z) for all x ∈ [0, 1]. Since

f(·|y, z) 6= f(·|y, z′) there exist an open set X ⊂ [0, 1] such that for all x ∈ X , f(x|y, z) >
f(x|y, z′). But this implies 1 =

∫ 1

0
f(x|y, z)dx <

∫ 1

0
f(x|y, z′)dx which is a contradiction.

Therefore f(0|y, z′) < f(0|y, z). Specifically, the above conclusion holds when y = 0:

f(0|0, z′) < f(0|0, z). Noting that f(·|·, z′) and f(·|·, z) are continuous functions, there

exists ŷ > 0 such that for all 0 < x < ŷ, f(x|x, z′) < f(x|x, z) as desired.

To derive the second conclusion, let x < ŷ. Then for all x̃ ≤ x,

1 ≥ f(x|x, z′)
f(x|x, z) ≥ f(x̃|x, z′)

f(x̃|x, z) .

Thus, F (x|x, z′) =
∫ x

0
f(x̃|x, z′)dx̃ ≤

∫ x

0
f(x̃|x, z)dx̃ = F (x|x, z). Hence,

1

1− F (x|x, z′) ≤ 1

1− F (x|x, z) .

Combining this observation with the first conclusion gives the second result.

Proof of Theorem 2. Let β̄(s, w) = min{b̄(s), w} and β(s, w) = min{b(s), w} be the

equilibrium bidding strategies conditional on the realized public signal. To prove part (1) it
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is sufficient to verify that b̄(s) ≥ b(s). Since the value-signal is only value-relevant we can

let ū (u) be a bidder’s utility function when the public signals is high (low). The values z̄k,

v̄k, zk, and vk are defined in the obvious way. Since ū > u a.e., it follows that v̄k > vk and

z̄k > zk. Moreover, z̄k−z̄k+1 ≥ zk−zk+1, and thus
∑N−1

k=0 γ
′
k(w)z̄k(s|s) ≥

∑N−1
k=0 γ

′
k(w)zk(s|s).

Thus, when b̄(s) ≤ w, we have

ᾱ(s) = b̄(s) =

∫ s

0

v̄N−1(y, y)fk(y|y)dy >
∫ s

0

vN−1(y, y)fk(y|y)dy = b(s) = α(s).

Thus, if ᾱ(˜̄sα) = w, there exists s∗ > ˜̄sα such that for all s ≤ s∗, b̄(s) ≥ b(s). Suppose that

at s∗, b̄(s∗) = b(s∗) = b∗ and for all ǫ > 0 sufficiently small, b̄(s∗+ ǫ) < b(s∗). Since b̄′(s) and

b′(s) are both continuous functions, we see that

b′(s∗) =

∑N−1
k=1 γk(b

∗)vk(s
∗, s∗)fk(s

∗|s∗)
1−∑N−1

k=0 γ
′
k(b

∗)zk(s
∗|s∗)

<

∑N−1
k=1 γk(b

∗)v̄k(s
∗, s∗)fk(s

∗|s∗)
1−∑N−1

k=0 γ
′
k(b

∗)z̄k(s∗|s∗)
= b̄′(s∗),

implying a contradiction. Therefore b̄(s) ≥ b(s) for all s.

Turning to part (2), we know that b(s) =
∫ s

0
vN−1(y, y)fN−1(y|y, s0)dy for all s > 0 suf-

ficiently small. Lemma B5 implies that if s̄0 > s0, then fN−1(y|y, s̄0) < fN−1(y|y, s0) for all

0 < y sufficiently small. Therefore, b(s) ≥ b̄(s) for all s > 0 sufficiently small.

Lemmas B6 and B7 are used to prove Theorem 3.

Lemma B6. Let

Fk(x|s) =
∫ 1

0

· · ·
∫ 1

0
︸ ︷︷ ︸

N−1−k

∫ x

0

· · ·
∫ x

0
︸ ︷︷ ︸

k

h(y1, . . . , yN−1|s)dy1 · · ·dyN−1

and let fk(x|s) = d
dx
Fk(x|s) be the associated density. Then for all k ≥ 1, fk(s|s)

1−Fk(s|s) ≥
(

k
k+1

) fk+1(s|s)
1−Fk+1(s|s) .

Proof. We note that Fk(x|s) ≥ Fk+1(x|s). Using the symmetry of h(·), we can compute
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fk(x|s) to conclude

fk(x|s)
1− Fk(x|s)

=

k

N−1−k
︷ ︸︸ ︷
∫ 1

0

· · ·
∫ 1

0

k−1
︷ ︸︸ ︷∫ x

0

· · ·
∫ x

0

h(y1, . . . , yN−2, x|s)dy1 . . . dyN−2

1− Fk(x|s)

≥
k

k+1
(k + 1)

N−2−k
︷ ︸︸ ︷
∫ 1

0

· · ·
∫ 1

0

k
︷ ︸︸ ︷∫ x

0

· · ·
∫ x

0

h(y1, . . . , yN−2, x|s)dy1 . . . dyN−2

1− Fk+1(x|s)

=

(
k

k + 1

)
fk+1(x|s)

1− Fk+1(x|s)
.

Lemma B7. The differential equation

b′(s) =

∑N−1
k=0 γk(b(s))z

′
k(s|s)

1− Ĥ(s, b(s)|s)−∑N−1
k=0 γ

′
k(b(s))zk(s|s)

(B4)

has a strictly increasing solution, b(s), satisfying the boundary condition b(s̃ω) = w. More-

over, there exists ŝω ≤ 1 such that lims→ŝ−ω
b(s) = w̄.

Proof. The existence of a strictly increasing solution follows from the same reasoning as

presented in the case of the all-pay auction. In particular, Assumption A-6 ensures that

b′(s) > 0 in the relevant range of values. We therefore focus on showing the final claim that

b̂(s) tends to w̄.

Applying Lemma B6 multiple times lets us conclude that

fk(x|s)
1− Fk(x|s)

≥
(

k

N − 1

)
fN−1(x|s)

1− FN−1(x|s)
≥
(

1

N − 1

)
fN−1(x|s)

1− FN−1(x|s)
.
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Also, noting Lemma B1,
∑N−1

k=0 γ
′
k(b(s))zk(s|s) ≥ 0. Thus,

b′(s) =

∑N−1
k=0 γk(b(s))z

′
k(s|s)

1− Ĥ(s, b(s)|s)−∑N−1
k=0 γ

′
k(b(s))zk(s|s)

≥
∑N−1

k=0 γk(b(s))z
′
k(s|s)

1− Ĥ(s, b(s)|s)

=

∑N−1
k=1 γk(b(s))vk(s, s)fk(s|s)
∑N−1

k=1 γ(b(s))(1− Fk(s|s))

≥ vN−1(s, s)

∑N−1
k=1 γk(b(s))fk(s|s)

∑N−1
k=1 γ(b(s))(1− Fk(s|s))

= vN−1(s, s)

N−1∑

k=1

γk(b(s))(1− Fk(s|s))
∑N−1

k=1 γk(b(s))(1 − Fk(s|s))
fk(s|s)

1− Fk(s|s)

≥ vN−1(s, s)
N−1∑

k=1

γk(b(s))(1− Fk(s|s))
∑N−1

k=1 γk(b(s))(1− Fk(s|s))

(
1

N − 1

)
fN−1(s|s)

1− FN−1(s|s)

=
1

N − 1

vN−1(s, s)fN−1(s|s)
1− FN−1(s|s)

=
ω′(s)

N − 1

Since b(s̃ω) = ω(s̃ω) = w, we have that for s ≥ s̃ω, b(s) = w +
∫ s

s̃ω
b′(x)dx ≥ w +

1
N−1

∫ s

s̃ω
ω′(x)dx = w + 1

N−1
(ω(s) − w). From Krishna and Morgan (1997, Proposition 1),

lims→1 ω(s) = ∞. Thus, for some ŝω ≤ 1, lims→ŝ−ω
b̂(s) = w̄.

Proof of Theorem 3. Noting Lemma B7, here we only verify that the proposed strategy

is an equilibrium. The argument proceeds similarly to the case of the all-pay auction. If

β(s, w) = min{b(s), w} is the proposed equilibrium strategy, the range of β equals the range

of b(s); therefore, we need to rule out deviations only to alternative bids b(x) for some x ≤ ŝω.

As in the case of the all-pay auction, we can write the expected payoff from the bid b(x) as

Ui(b(x)|s, w) = Ui(b(s̃ω)|s, w) +
∫ x

s̃ω

d

dt
U(b(t)|s, w)

∣
∣
∣
∣
t=y

dy.

1. Consider a bidder with a value-signal s < s̃ω. When following the strategy β(s, w),

this bidder places the bid b(s) = ω(s). From Krishna and Morgan (1997), we known

that this bidder will not have a profitable deviation to any bid b(x), x ∈ [0, s̃ω].

Suppose instead that this bidder contemplates bidding b(x) for some x > s̃ω. To

confirm this alternative is inferior, it is sufficient to verify that d
dt
Ui(b(t)|s, w) ≤ 0 for
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a.e. t ∈ [s̃ω, x]. Differentiating and simplifying as needed we see that

d

dt
Ui(b(t)|s, w)

=
N−1∑

k=1

γk(b(t))vk(s, t)fk(t|s)− b′(t)

(
N−1∑

k=1

γk(b(t))(1 − Fk(t|s))−
N−1∑

k=0

γ′k(b(t))zk(t|s)
)

=

[
N−1∑

k=1

γk(b(t))(1− Fk(t|s))
]

(Φ(t, b(t)|s)− b′(t)Ξ(t, b(t)|s))

≤
[
N−1∑

k=1

γk(b(t))(1 − Fk(t|s))
]

(Φ(t, b(t)|t)− b′(t)Ξ(t, b(t)|t)) = 0

The inequality follows from Assumptions A-5 and A-6. The final equality is due to the

observation that for t > s̃ω, b′(t) = Φ(t, b(t)|t)/Ξ(t, b(t)|t). Thus, the bid b(x), x > s̃ω

is not a profitable deviation.

2. Consider a bidder with a value-signal s > s̃α. The preceding argument continues to

apply and this bidder will not have a profitable deviation to any bid b(x) ≤ w such

that x ≥ s. Suppose instead x ∈ [s̃ω, s]. To rule out such a deviation, it is sufficient to

show that d
dt
Ui(b(t)|s, w) ≥ 0 for a.e. t ∈ [x, s]. By Assumption A-5, we know that

d

dt
Ui(b(t)|s, w) =

[
N−1∑

k=1

γk(b(t))(1− Fk(t|s))
]

(Φ(t, b(t)|s)− b′(t)Ξ(t, b(t)|s))

≥
[
N−1∑

k=1

γk(b(t))(1 − Fk(t|s))
]

(Φ(t, b(t)|t)− b′(t)Ξ(t, b(t)|s))

If Ξ(t, b(t)|s) ≤ 0, then d
dt
Ui(b(t)|s, w) ≥ 0. If instead Ξ(t, b(t)|s) ≥ 0, then from

Assumption A-6, Ξ(t, b(t)|s) ≤ Ξ(t, b(t)|t). Thus, d
dt
Ui(b(t)|s, w) ≥ 0 as required.

Finally, consider a deviation to a bid b(x), x ≤ s̃ω. It is sufficient to show that
d
dt
Ui(b(t)|s, w) ≥ 0 for t ∈ [x, s̃ω]. Differentiating and simplifying gives

d

dt
Ui(b(t)|s, w) = vN−1(s, t)

fN−1(t|s)
1− FN−1(t|s)

− vN−1(t, t)
fN−1(t|t)

1− FN−1(t|t)

≥ vN−1(t, t)
fN−1(t|t)

1− FN−1(t|t)
− vN−1(t, t)

fN−1(t|t)
1− FN−1(t|t)

= 0

Since the above analysis is exhaustive of all possible cases, we conclude that β(s, w) is an

43



equilibrium.

Proof of Corollary 2. The proof of part (1) is analogous to the proof of Corollary 1.

Additionally, we note that Ĥ(s̃ω, w|s̃ω) = FN−1(s̃ω|s̃ω). Thus,

lim
s→s̃+ω

b′(s) =
vN−1(s̃ω, s̃ω)fN−1(s̃ω|s̃ω)

1− FN−1(s̃ω|s̃ω)−
∑N−1

k=0 γ
′
k(w)zk(s̃ω|s̃ω)

>
vN−1(s̃ω, s̃ω)fN−1(s̃ω|s̃ω)

1− FN−1(s̃ω|s̃ω)
= lim

s→s̃−ω

b′(s).

For part (2) it is sufficient to verify that b′(s) ≥ ω′(s).

b′(s) =

∑N−1
k=0 γk(b(s))z

′
k(s|s)

1− Ĥ(s, b(s)|s)−∑N−1
k=0 γ

′
k(b(s))zk(s|s)

=

N−1∑

k=1

[

γk(b(s))(1− Fk(s|s))
∑N−1

k′=1 γk′(b(s))(1− Fk′(s|s))

]

vk(s, s)fk(s|s)
1− Fk(s|s)

1−
∑N−1

k=0
γ′

k(b(s))zk(s|s)∑N−1

k′=1
γk′ (b(s))(1−Fk′ (s|s))

≥
N−1∑

k=1

[

γk(b(s))(1− Fk(s|s))
∑N−1

k′=1 γk′(b(s))(1− Fk′(s|s))

]

vk(s, s)fk(s|s)
1− Fk(s|s)

≥ vN−1(s, s)fN−1(s|s)
1− FN−1(s|s)

= ω′(s).

Proof of Theorem 4. The argument is analogous to the proof of Theorem 2. It also calls

upon Lemma B5 where part (b) addresses the case of interest.

Proof of Theorem 5. Since vN−1(s, s)fN−1(s|s) < vN−1(s, s)
fN−1(s|s)

1−FN−1(s|s) , bω(s) > bα(s) for

all s ∈ (0, s̃α]. Noting the proof of Theorem 2 it is sufficient to verify that if there exists a

(s∗, b∗) such that b∗ = bω(s
∗) = bα(s

∗), then b′ω(s
∗) > b′α(s

∗) which will imply a contradiction.
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This however is straightforward since

b′ω(s
∗) =

∑N−1
k=0 γk(b

∗)z′k(s
∗|s∗)

1− Ĥ(s∗, b∗|s∗)−∑N−1
k=0 γ

′
k(b

∗)zk(s∗|s∗)

>

∑N−1
k=0 γk(b

∗)z′k(s
∗|s∗)

1−∑N−1
k=0 γ

′
k(b

∗)zk(s∗|s∗)
= b′α(s

∗).
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