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Abstract

When not all objects are acceptable to all agents, maximizing the num-
ber of objects actually assigned is an important design concern. We com-
pute the guaranteed size ratio of the Probabilistic Serial mechanism, i.e.,
the worst ratio of the actual expected size to the maximal feasible size. It
converges decreasingly to 1− 1

e
' 63.2% as the maximal size increases. It

is the best ratio of any Envy-Free assignment mechanism.

We are especially grateful to our colleagues David Manlove and Baharak
Rastegari for introducing us to their research project EPSRC Grant # EP/K010042/1,
and sharing the results already obtained with their colleagues at the University
of Liverpool. Special thanks also to Jay Sethuraman for guiding us through
the literature on online matching, and to Bettina Klaus, Tadashi Hashimoto,
and seminar participants in Warwick, Manchester and Toulouse, for stimulat-
ing conversations. The comments of three anonymous referees have been very
helpful.

1 The problem and the punchline

Lotteries are commonly used to allocate indivisible resources (objects), especially
so when monetary transfers are ruled out. Examples include the assignment of
jobs to time-slots, of workers to tasks or offi ces, the allocation of seats in overde-
manded public schools ([2], [21]), of students to dormitory rooms or courses, etc.
An excellent survey is [26]. Using cash transfers and prices in such problems
skews the distribution toward the wealthier agents, which is arguably ineffi cient
([11]); they are also ruled out by moral objections to commoditizing certain ob-
jects like human organs ([25]). Randomization is then a practical way to restore
fairness at the ex ante stage.
A great deal of recent economic research applies the methodology of mech-

anism design to the random allocation of objects. The earliest results (briefly
reviewed below) bear on the benchmark random assignment problem where each
agent wants at most one object, reports an ordinal preference ranking of those
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objects, and receives a random object, or no object. The compelling test of
ex ante fairness is the No Envy property: when Ann compares the probability
distribution of the object she will receive to the distribution of the object Bob
will receive, she finds that the her distribution stochastically dominates Bob’s.
We focus here on the tension between No Envy and the potential wastefulness
of the mechanism when agents have outside options.
Ouside options are pervasive in many practical instances of assignment: in

the school choice problem they are offered by private schools; college students
can live off campus; jobs have deadlines so a time slot beyond that date is worse
than dropping the job at the outset, and so on. An agent will not accept an
object worse than his/her outside option, and this affects the size of the realized
assignment (number of agents who receive an object). This size is a measure
of utilization of the resources, therefore maximizing it is important in its own
right: filling the largest possible number of seats/rooms/jobs, is a component
of the system performance, to which public shool administrators, the housing
offi ce on campus, the job manager, etc., are paying attention.
Note that the largest feasible size of an assignment only depends upon the

bipartite graph of acceptability, and ignores the finer information in the profile
of individual preferences. So it is not surprising that size maximization often
conflicts with fairness and incentive compatibility. This is obvious in the follow-
ing elementary example with two objects a, b and two agents Ann, Bob, who
both prefer a to b. If both objects are acceptable (better than his outside option)
to Bob but Ann only accepts a, then assigning a to Ann and b to Bob is the
only assignment of maximal size. It is obviously unfair to Bob who envies Ann’s
allocation. Moreover selecting this assignment also gives Bob the incentive to
report that only a is acceptable, if he prefers a 50% chance of getting a to a
100% chance of b.
We give a precise lower bound on the trade-off size versus fairness in the

random assignment problem with outside options. We define the size ratio of an
assignment at a given profile of preferences as the ratio of its size to the maximal
feasible size when we must only ensure that everyone gets an acceptable object.
The guaranteed m-size ratio of a random assignment mechanism is its worst
size ratio over all assignment problems such that the maximal size of a feasible
assignment is m.
We discuss first the Probabilistic Serial mechanism (hereafter PS; see next

section and section 5), the only known mechanism to date combining Envy-
Freeness with Effi ciency (Pareto optimality). We compute exactly the guar-
anteed m-size ratio of PS: it decreases with m from 3

4 for m = 2 (achieved
in the example above) and converges to 1 − 1

e ' 0.632 as m grows arbitrarily
large. Then we show that this is the greatest guaranteed m-size ratio among all
envy-free assignment mechanisms.
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2 Related literature

1) The first random assignment mechanism in [16] is a competitive equilibrium
with fiat money to buy lotteries, and relies on cardinal (von Neuman Morgen-
stern) individual utilities over objects. Such individual reports are too complex
in practice, so attention turned to the more realistic ordinal mechanisms where
a report is simply a ranking of the acceptable objects. The most natural ordinal
mechanism is the time honored Random Priority (RP), a.k.a. serial dictator-
ship, discussed first in [1] who offer a market-like interpretation of RP. Next [8]
proposed the alternative Probabilistic Serial mechanism that fares better than
RP in terms of effi ciency and fairness, but has worse incentive properties: PS is
Envy-Free but RP is not, while RP is strategyproof but PS is not. Subsequent
work considerably refined the comparison of RP and PS; for instance [14] dis-
cusses a different wasteful aspect of RP that PS does not share, while [7], and
[15] characterize PS axiomatically. Particularly relevant here is the asymptotic
equivalence of PS and RP along certain expansion paths of the economy with
a fixed, finite number of types of objects, while the number of copies of each
object grows at roughly the same rate as the number of agents. First estab-
lished in [12], this result was recently generalized in [23] to a broad class of
random assignment mechanisms. However for any fixed finite number of agents,
the expected sizes achieved by PS and RP are not comparable at all preference
profiles.

2) The goal of maximizing the assignment size appears first in the algorithmic
mechanism design literature. An early instance is [24], discussing the tradeoff
between Strategy-Proofness and the utilitarian minimization of aggregate cost.
Another seminal example, closer to home, is in the bilateral matching problem.
When preferences have ties and remaining single is preferred to some potential
partners, not all stable matchings are of the same size (the "rural hospital
theorem" does not apply), so it is natural to look for a stable matching of
maximal size ([17]), or for a maximal cardinality matching with the smallest
number of blocking pairs ([5]): both questions turn out to be NP-hard.

3) It results from our Theorem and earlier results in [13] that the guaranteed
m-size ratio of RP is always bounded above by rm, the guaranteed ratio of PS.
On the other hand, the results in [3] and [22] provide the lower bound 1− (1−

1
m+1 )m − 1

m , a sequence converging increasingly to 1 − 1
e , for the guaranteed

m-size ratio of RP. Thus, for problems with a large feasible assignment, RP
and PS have approximately the same guaranteed ratio 1 − 1

e . The interesting
fact is that the proof techniques in [3], [22] are radically different than ours.
They are closely related to the problem of designing an online bilateral matching
algorithm maximizing the match size relative to the maximal size feasible offl ine.
The Ranking algorithm of [19] selects randomly and uniformly an ordering of
the objects, then assigns to the incoming agent the highest acceptable object in
that ordering; its m-guaranteed size is no less than 1− (1− 1

m+1 )m (see also [4]
for a simpler proof and [18] for a generalization to multiple objects).
These results suggest that, for any m, RP may have the best guaranteed
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m-size ratio among all strategyproof mechanisms, despite the fact that it is
dominated by some less wasteful strategy-proof mechanisms ([14]). In fact The-
orem 6.2 in [22] establishes this conjecture for the case m ≤ 3. Thus our results
confirm the intuition that PS and RP are similar for large problems, but no
part of our Theorem can be deduced from existing results, even in an asymp-
totic sense.

3 Random assignment with outside options

Fix N the set of agents and A of objects, with respective cardinalities n and q.
A preference Ri of agent i ∈ N is a possibly empty ordered subset of A, written
Ri = (a1, a2, · · · , ak) where a1 is the best object for i and ak her least preferred
acceptable object. We write Ri = ∅ if no object is acceptable to i, and a ∈ Ri
means that a is an acceptable object for i. The set of individual preferences is
R(A).
A profile of preferences R ∈ R(A) defines a compatibility bipartite graph

E ⊆ N × A: ia ∈ E(R) ⇔ a ∈ Ri, describing which objects are acceptable
to which agents. An assignment problem is a triple ∆ = (N,A,R), and its
compatibility graph is written E(∆).
An assignment is a N × A substochastic matrix P = [pia] ∈ RN×A+ :∑
N pia ≤ 1 for all a and

∑
A pia ≤ 1 for all i. It is feasible at R if, in ad-

dition, pia > 0 ⇒ ia ∈ E(∆). We write P(E(∆)), or simply P(E), for the set
of feasible assignments at ∆, and Pd(E) for the subset of deterministic feasible
assignments (pia = 0, 1 for all i, a). A well known fact (a variant of Birkhof’s
Theorem) is that the convex hull of Pd(E) is P(E).
The expected number of objects (or agents) assigned at P is s(P ) =

∑
N×A pia,

we call it the size of P . Note that s(P ) ≤ min{n, q}. The following nice fact
refines Birkhof’s Theorem. A random assignment is implemented by determin-
istic assignments of (almost) equal size: any P ∈ P(E) is a convex combination
of deterministic assignments of size bs(P )c or ds(P )e (lower and upper integral
part).1 In particular the program

s∗(E) = max
P∈P(E)

s(P ) (1)

has at least one deterministic solution, and every solution is a convex combi-
nation of such deterministic assignments. We call s∗(E(∆)) the size of the
problem ∆, i.e., the maximal number of objects/agents it is feasible to assign.
The set of assignment problems of size m is denoted Am.
An assignment mechanism F associates to every assignment problem ∆ a

feasible assignment F (∆) = P ∈ P(E(∆)). We focus in this paper on the worst
possible size that a mechanism can achieve, relative to the size of the problem.
Define, for any m ≥ 1, the guaranteed m-size ratio of the mechanism F as
follows

σm(F ) = min
∆∈Am

1

m
s(F (∆)) (2)

1This follows from the results in [10].
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4 Effi ciency and guaranteed size

Given a problem ∆ and two deterministic assignments P, P ′ ∈ Pd(E(∆)), we
say that P ′ Pareto dominates P if P 6= P ′ and for all a, b

{p′ia = 1 and pib = 1} ⇒ aRib

{p′ia = 0 for all a} ⇒ {pia = 0 for all a}

An effi cient (Pareto optimal) deterministic assignment is one that is not Pareto
dominated.
In any problem ∆ ∈ Am there is at least one effi cient deterministic assign-

ment of size m (i.e., the maximum possible size). This follows because if an
assignment P ∈ Pd(E) is Pareto dominated by P ′, then s(P ) ≤ s(P ′). On the
other hand it is easy to construct problems with effi cient deterministic assign-
ments of size m

2 . The example in subsection 1.2 is the simplest one:
Ann Bob
a a
∅ b

Here m = 2 yet {a →Bob,∅ →Ann} is an effi cient assignment. If m is even
(resp. odd), we can replicate this two-agent×two-object pattern to get a problem
in Am with an effi cient assignment of size m

2 (resp. m+1
2 ).

A useful and well known observation is that in any problem of size m, any
effi cient deterministic assignment is of size at least m

2 .
2 Therefore any effi cient

deterministic mechanism has a guaranteed m-size ratio of at least 1
2 (for any

m).
For a general (random) assignment mechanism F , the weakest effi ciency

requirement is Ex Post Effi ciency (EPE), requiring that the assignment P be
a convex combination of effi cient deterministic assignments. Thus any ex post
effi cient assignment mechanism has a guaranteed m-size ratio of at least 1

2 as
well. This good news is mitigated by the fact that other normative requirements
of fairness and incentive compatibility place an upper bound on the guaranteed
size ratio of the match.

5 Three axioms and two mechanisms

Given a problem ∆, agent i compares two feasible assignments P, P ′ ∈ P(E(∆))
by means of her own allocations p(i) = (pia)a∈A and p′(i), the i-th rows of P and
P ′ respectively. We define a critical incomplete preference relation for agent i
with preferences Ri = (a1, · · · , ak), 1 ≤ k ≤ q. We say that p(i) is sd-preferred

2 If P ∈ Pd(E) is effi cient and of size m′, and both agent i and object a are not matched
at P , then ia /∈ E, otherwise assigning a to i would be a Pareto improvement of P . It follows
that any edge used by a matching feasible at E has at least one endnode matched in P , and
there are 2m′ such nodes.
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to p′(i) (where sd stands for stochastic dominance) if

t∑
1

piat ≥
t∑
1

p′iat for all t, 1 ≤ t ≤ k

and we write p(i)
sdi
� p′(i) (this relation is empty if Ri = ∅). Note that sd-

indifference is just equality. We say that p(i) is strictly sd-preferred to p′(i)

if p(i)
sdi
� p′(i) and p′(i) 6= p(i), so that at least one of the inequalities above is

strict; then we write p(i)
sdi� p′(i).

We can now define the three normative properties leading the discussion of
random assignment mechanisms. The feasible assignment P ∈ P(E(∆)) is

Ordinally Effi cient (OE) if for all P ′ ∈ P(E(∆)), {p′(i)
sdi
� p(i) for all

i ∈ N} =⇒ P ′ = P
For a deterministic assignment, OE and EPE are the same thing, but for

general random assignments OE is a strictly stronger requirement than EPE.

Envy-Free (EF) if p(i)
sdi
� p(j) for all i, j ∈ N

If a deterministic mechanism is Envy-Free, its guaranteed m-size ratio is
zero, as it must throw away all objects when agents have identical preferences.
Thus only randomized envy-free mechanisms can have a positive guaranteed
ratio.
The assignment mechanism F is

Strategy-proof (SP) if for all ∆, all i ∈ N , and all R′i ∈ R(A) we have

p(i)
sdi
� p′(i), where F (N,A,R) = P and F (N,A, (R′i, R−i)) = P ′

The simplest definition of the Probabilistic Serial (PS) mechanism PS
is recursive.3 Think of object a as one unit of (probabilistic) commodity a,
and consider the algorithm where each agent i fills his allocation by “eating”
at constant speed 1, from time t = 0 until at most time t = 1, from her best
acceptable object still available. At time 0, one unit of each object is available;
at time 1 each agent has eaten a substochastic allocation p(i), and each object
not fully consumed is unacceptable to each agent i such that

∑
A pia < 1.4

The PS mechanism is Ordinally Effi cient, Envy-Free, but not Strategy-
Proof. It is the only example to date of a random mechanism with these two
properties.
The simplest strategyproof mechanism is the deterministic π-priority mech-

anism, where π is an arbitrary ordering π = {i1, i2, · · · , in} of the agents in N :
3See [6] for another, more compact, though somewhat less transparent definition.
4Here is an example with five agents and four objects. Assume a is the best object for

agents 1, 2, 3, b is best for 4, 5, and c, d for nobody. Then a is fully eaten at time t = 1
3
, and

1, 2, 3 each get a 1
3
share of it. Suppose agent 1 only accepts a, then she is done; say the next

acceptable object is b for agent 2 and c for agent 3. Then starting from t = 1
3
we have 2, 4, 5

eating the remaining 1
3
unit of b, thus b is exhausted at t′ = 1

3
+ 1

9
, and is divided in 4

9
for

each of 4 and 5, and 1
9
for agent 2; and so on.
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agent i1 gets her best acceptable object in Ri1 , then agent i2 gets his best re-
maining acceptable object in Ri2 , if any, and so on. This mechanism is clearly
Strategy-Proof and Effi cient. The Random Priority (RP ) mechanism runs
the π-priority mechanism after selecting π randomly and with uniform probabil-
ity on all orderings of N . It is StrategyProof and Ex Post Effi cient, but neither
Ordinally Effi cient or Envy-Free.
There is in fact no assignment mechanism meeting OE, EF, and SP (Theorem

2 in [8]).

The guaranteed m-size of the π-priority mechanism is m
2 if m is even, and

m+1
2 if it is odd. This is easy to see from footnote 2. Next the two object

example in section 1 shows that the guaranteed m-size ratio of any deterministic
strategyproof mechanism cannot be more than 1

2 if m is even, or 1
2 (1 + 1

m ) if
it is odd.5 . Remarkably, our two randomized mechanisms RP and PS perform
significantly better.

6 The result

For any two integers k,m such that 1 ≤ k < m we define

S(m, k) =
1

k + 1
+

1

k + 2
+ · · ·+ 1

m

Noticing that S(m, k) decreases in k, we define for any m ≥ 2 the integer km
by the inequalities

S(m, km) ≤ 1 < S(m, km − 1) (3)

Finally we set rm = 1− km
m S(m, km).

For large k,m we have S(m, k) ' ln(mk ) hence for large m : ln( mkm ) ' 1⇐⇒
km ' 1

em, and finally rm ' 1− 1
e . We can say more:

Lemma 1 The sequence rm is decreasing and converges to 1− 1
e = 0.632 at

the speed O( 1
n ). For instance r2 = 0.750 , r3 = 0.722 , r4 = 0.708 , r5 = 0.687,

r10 = 0.662 , r20 = 0.648. (proof in the Appendix)

Theorem
i) The guaranteed m-size ratio of PS is σm(PS) = rm.
ii) The guaranteed m-size ratio of any Envy-Free mechanism is at most rm.
iii) The guaranteed m-size ratio of RP is strictly smaller: σm(RP ) < rm for
m ≥ 4; while σ2(RP ) = r2 and σ3(RP ) = r3.

The following diagonal problem ∆∗m of size m already played a role
in three relevant earlier papers: [19] , [13], and [9]. There are m agents,
N = {1, · · · ,m}, m objects, A = {a1, · · · , am}, and agent i’s preferences are
Ri = (am, am−1, · · · , ai). Note the inverted labeling, easier to read. One inter-
pretation is of a scheduling problem where objects are unit time slots (higher

5At the profile where both Ann and Bob report that only a is acceptable, if a is not
assigned, the size ratio is 0; if a is given to agent Bob, say, then by SP Bob still gets a at the
initial example.
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label means earlier time) and agents are jobs with a processing time of one unit;
each job prefers an earlier slot, and job i has a deadline at time i (cannot be
processed later than i). For instance ∆∗5:

5 4 3 2 1
a5 a5 a5 a5 a5

∅ a4 a4 a4 a4

∅ a3 a3 a3

∅ a2 a2

∅ a1

We check below s(PS(∆∗m)) = m · rm, implying σm(PS) ≤ rm. The
much harder proof that problem ∆∗m achieves the worst possible m-size ratio
min∆∈Am

s(PS(∆))
m in (2) is in the Appendix.

In the PS eating algorithm, object am is eaten first by all agents, who each
get a share 1

m ; next object am−1 is eaten by agents 1, · · · ,m − 1, , who each
get a share 1

m−1 ; if object ak is fully eaten, each agent j = 1, · · · , k gets a total
share 1

k + 1
k+1 + · · ·+ 1

m = S(m, k−1) of objects am, · · · , ak. The critical object
akm+1 defined by (3) is eaten in full because 1

km+1 + · · · + 1
m = S(m, km) ≤ 1,

but because agents km, km−1, · · · , 1, can only eat a full unit, their share of akm
is only 1− ( 1

km+1 + 1
km+2 + · · ·+ 1

m ) (strictly less than 1
km
), and object akm is

not fully eaten. Objects akm−1, · · · , a1, are not eaten at all, i.e., they are not
assigned to anyone. This yields the following assignment P = PS(∆∗m):

piaj = 0 if i > j and/or j < km

piaj =
1

j
if i ≤ j and j ≥ km + 1

piaj = 1− S(m, km) if i ≤ j and j = km

=⇒ s(PS(∆∗m)) =
∑

1≤i,j≤m
piaj = m−km+km(1−S(m, km)) = m−kmS(m, km)

⇒ 1

m
s(PS(∆∗m)) = 1− km

m
S(m, km) = rm

Remark: public indiff erences6 In many examples such as the allocation
of seats in public schools, courses to college students, even offi ces and tasks to
co-workers, we have different types of objects and several copies of each type; all
agents are indifferent between two copies of the same type of objects. We speak
of public indifferences to distinguish this case from the private indifferences case
where Ann can be indifferent between objects a and b while Bob is not. As
long as we insist that preferences over types and the outside option are strict,
ther extension of RP and PS to allow for public indifferences is straightforward.
To any such problem ∆in = (N,A,Rin) we can associate a standard problem
∆ = (N,A,R) by breaking ties arbitrarily for each agent, and note that ∆ and
∆in have the same size. The resulting matrices RP (∆) and PS(∆) depend

6We thank an anonymous referee for suggesting this extension of our Theorem.
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upon our tie-breaking choices, but the probability that a given agent i receives
an object of a given type does not, and it is all that matters to define RP (∆in)
and PS(∆in). In particular the sizes s(RP (∆)) and s(PS(∆)) are independent
of the tie-breaking rule and define the sizes s(RP (∆in)) and s(PS(∆in)). And
the critical inequality s(PS(∆in)) ≥ m · rm (section 8.2.1) remains true.7

It is equally easy to extend the proof of statements ii) and iii), so we conclude
that our Theorem is preserved when public indifferences are possible. We make
no such statement for the case of private indifferences, where the definition of RP
is relatively easy but that of PS requires more work (see [20], [6]). It is unclear
whether the guaranteed m-size ratio of PS and/or of RP decreases strictly in
that case.

7 Concluding comments

1. There are ineffi cient Envy-Free mechanisms with a worse performance than
PS, that are still better than throwing away all objects all the time. For instance
we can draw objects uniformly and offer them sequentially, uniformly among all
the still unmatched agents, throwing the winner and the object away if she does
not accept it. This is clearly an envy-free mechanism because once an object is
drawn, it is lost to agents other than the winner, therefore the distribution of
objects a given agent will be offered is independent of the choices of other agents,
and it is in fact the same for every agent. The size ratio of this mechanism is
below 1

2 at ∆∗m, for instance it is
3
8 for m = 2. The mechanism is also not even

Ex Post Effi cient.
We ask if the following refinement of statement ii) is true: the m-size

ratio of any Ordinally Effi cient and Envy-Free mechanism is rm. The intu-
ition comes from the following result about the class Dm of problems such
that A = {a1, · · · , am} and all individual preferences take the form Rk =
(am, am−1, · · · , ak) for some k. Thus Dm contains ∆∗m, as well as problems
with different numbers of preferences Rk for each k. Theorem 1 in [9] states
that if F is Ordinally Effi cient and Envy-Free, it coincides with PS on Dm. The
question is whether or not the problems∆∗m capture the worst case configuration
for F .
2. Other worst case indices to measure the welfare performance of RP ,

PS, and other random assignment mechanisms, are proposed in [3]. Their
linear welfare factor uses Borda scores as a proxy for cardinal utilities; the
performance of PS is nearly 2

3 , and is superior to that of RP . More work is
needed to understand the connection of those results to ours.
3. Many concrete instances of assignments to jobs, schools, etc.., forces

participants to report only a fixed number q0 of acceptable objects, while other
objects are deemed unacceptable by the mechanism. It is therefore natural to
look for the guaranteed sizes of RP and PS in this context.

7An alternative definition of PS(∆in) (though not of RP (∆in)) uses the augmented model
of step 1 in section 8.2.1, where types become the objects, and their capacity is the number
of copies.
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8 Appendix: proofs

8.1 Lemma 1

Step 1 k
mS(m, k) ≤ 1

e for all k, 1 ≤ k ≤ m − 1. The Euler constant is the

positive number C such that limm εm = 0 where εm
def
= ln(m) +C − (

∑m
j=1

1
j ).

It is easy to check that εm increases to zero, as εm+1 > εm ⇔ ln(1 + 1
n ) > 1

n+1 ,
which follows from ln(1 + x) > x

x+1 for x > 0. This implies

S(m, k) = ln(m)− εm − (ln(k)− εk) ≤ ln(
m

k
) (4)

Now for x ∈]0, 1] we have |x ln(x)| ≤ 1
e , hence

k
mS(m, k) ≤ k

m ln(mk ) ≤ 1
e as

desired.
Step 2 km

m S(m, km) increases strictly in m. Compare km and km+1. We
have S(m + 1, km − 1) > S(m, km − 1) > 1 hence km+1 ≥ km. Moreover
S(m + 1, km + 1) ≤ S(m, km) ≤ 1 implies km+1 ≤ km + 1. We distinguish two
cases. If km+1 = km = k we want to prove 1

m+1S(m+ 1, k) > 1
mS(m, k) which

easily reduces to S(m + 1, k) < 1, and the latter is true by definition of km+1,
and the fact that S(m, k) = 1 holds only for m = 1, k = 0. If km+1 = km + 1,
and we write simply km = k, a straighforward computation gives

k + 1

m+ 1
S(m+ 1, k + 1) >

k

m
S(m, k)

⇔ m− k
m(m+ 1)

S(m, k + 1) >
k

m(k + 1)
− k + 1

(m+ 1)2

⇔ S(m+ 1, k) > 1

and the latter inequality follows from the assumption km+1 > k.
Step 3 limm

km
m S(m, km) = 1

e . Set αm = km
m S(m, km). By definition of km

we have 1− 1
km
≤ S(m, km) ≤ 1, implying km

m −
1
m ≤ αm ≤

km
m . We know from

Steps 1,2 that αm converges to some α ≤ 1
e , so that limm

km
m = α as well. In

particular limm km =∞, therefore limm S(m, km) = 1. From the equality in (4)
we deduce limm ln( mkm ) = 1, and the conclusion α = 1

e follows.

8.2 Theorem

8.2.1 Statement i)

It remains to prove σm(PS) ≥ mrm, i.e., s(PS(∆)) ≥ mrm for any ∆ ∈ Am.
Step 1 an auxiliary result
In this step we consider the variant of the model where in addition toN,A,R,

a problem specifies a common positive capacity γ for each agent, and a profile of
non negative capacities δ = (δa)a∈A for the objects. An augmented assignment
problem is now ∆̃ = (N,A,R, γ, δ), and an assignment is a N ×A non negative
matrix P = [pia] ∈ RN×A+ such that

∑
N pia ≤ δa for all a and

∑
A pia ≤ γ for all

10



i. We drop the probabilistic interpretation of P , where pia was the probabilty
that agent i is assigned to object a, and think instead of the deterministic
assignment of q divisible commodities, such that the initial endowment of good
a is δa and agent i cannot consume more than γ units in total.The size of P is
s(P ) =

∑
N×A pia as before, and represents now the total capacity assigned at

P . Note that s(P ) ≤ min{nγ,
∑
A δa}.

Although the RP mechanism is no longer defined, the eating algorithm runs
for γ units of time and works as before, thus defining a feasible assignment
PS(∆̃).

Lemma 2 Fix ε > 0 and two augmented problems ∆̃ = (N,A,R, γ, δ) ,
∆̃′ = (N,A,R, γ, δ′), such that δ ≤ δ′. Then

s(PS(∆̃)) ≤ s(PS(∆̃′)) ≤ s(PS(∆̃)) +
∑
A

(δ′a − δa)

Proof By induction on the number of objects. The statement is obvious if
q = 1. Fix now q and assume the property holds until q − 1. Choose ∆̃, ∆̃′,
two augmented problems with q objects, that only differ in that δ′a = δa + ε for
a single object a and ε > 0. We must prove s(P ) ≤ s(P ′) ≤ s(P ) + ε, where
P, P ′ are the corresponding assignments under PS. We write D,D′ for the two
corresponding eating algorithms, and δb(z), δ

′
b(z) for the remaining capacity of

object b at time z in D,D′.
If in D object a is fully consumed at time γ, then D′ = D and we are done.

Now we assume that a “dies”at some time t, t < γ. If any other object dies at t
in D, then D and D′ coincide up to t, and the restriction of D[t,γ], D

′
[t,γ] to [t, γ]

is simply PS applied to two augmented problems with at most q − 1 objects,
capacities (γ − t) for agents, δ(t) and δ′(t) for objects, that only differ in that
δ′a(t) = ε while δa(t) = 0, so we can apply the inductive assumption. Thus we
assume now that only object a dies at t, and we define t′ to be the first time
after t where an object dies in D′, or t′ = γ if there is no such object. Note
that in D′, a is not dead at t, and no agent can die or switch objects during the
interval [t, t′], because this only happens when some object dies.
We check that δb(t′) ≤ δ′b(t

′) for all b ∈ A. This is clear for a because
δa(t) = 0, and also for any b that nobody is eating at t in D (and D′): in D′

nobody switches object in [t, t′], thus nobody eats b in that interval. Consider
finally b, b 6= a, that the agents in the subset Nb are eating at t in D (and D′):
in D′ the agents in Nb and only them continue to do so in [t, t′]; in D the agents
in Nb may be joined by new agents switching to b, and if b does not die before t′

nobody switches in Nb, thus δb(t′) ≤ δ′b(t
′) as desired; this is also true if b dies

in [t, t′].
We compare now D[t′,γ] and D′[t′,γ]: they are PS applied to two augmented

problems with at most q − 1 objects (for b dying at t′ in D′, we just showed
δb(t

′) = 0 as well), so by the inductive assumption

s(D[t′,γ]) ≤ s(D′[t′,γ]) ≤ s(D[t′,γ]) +
∑
b∈A

(δ′b(t
′)− δb(t′)) (5)

11



= s(D[t′,γ]) + δ′a(t′) +
∑

b∈A�{a}

(δ′b(t
′)− δb(t′))

We also have two accounting identities

s(D[t,t′]) =
∑
b∈A

(δb(t)− δb(t′)) =
∑

b∈A�{a}

(δb(t)− δb(t′))

s(D′[t,t′]) =
∑
b∈A

(δ′b(t)− δ′b(t′))

= ε− δ′a(t′) +
∑

b∈A�{a}

(δ′b(t)− δ′b(t′))

and the equalities D[0,t] = D′[0,t] , δb(t) = δ′b(t) for all b 6= a. Combining those
and the two previous equalities gives

s(D′[0,t′])− s(D[0,t′]) = ε− δ′a(t′) +
∑

b∈A�{a}

(δb(t
′)− δ′b(t′))

Plugging this in the right hand inequality in (5) gives s(D′) ≤ s(D) + ε. For
inequality s(D) ≤ s(D′), recall that in D′, no agent still alive at t dies in [t, t′],
and the agents still alive at t in D are a subset of those, therefore s(D[t,t′]) ≤
s(D′[t,t′]) completing the proof.�

A useful consequence of Lemma 2 is the following monotonicity result:

Lemma 3 Consider two (non augmented) problems ∆ = (N,A,R),∆′ =
(N,A,R′) where for all i ∈ N , R′i is a truncation of Ri: for all i we have
{R′i = Ri} or {Ri = (a1, · · · , ak), k ≥ 2, and R′i = (a1, · · · , ak′) with k′ < k}
or {Ri = (a1) and R′i = ∅}. Then s(PS(∆′)) ≤ s(PS(∆)).

Proof We use the the notation of the previous proof. It is enough to assume
that a single agent i truncates her preferences from Ri = (a1, · · · , ak), k ≥ 2,
to R′i = (a1, · · · , ak−1), or from Ri = (a1) to R′i = ∅. If in the PS algorithm
D at R agent i eats no ak, then the PS algorithm D′ at R′ is identical. If i
eats αk units of object ak starting at time t, then it is the last object she eats.
Therefore the restriction D̃ of D to N�{i} and to interval [t, 1] is PS applied
to the augmented problem ∆̃ with capacities γ = 1− t for agents, δb(t) for each
b 6= ak, and δak(t) − αk for object ak. On the other hand agent i dies in D′
at time t, and the restriction D̃′ of D′ to [t, 1] is PS applied to the augmented
problem ∆̃′ on N�{i} with capacities γ = 1− t, and δb(t) for all b. Therefore
Lemma 2 implies

s(D′[t,1]) = s(D̃′[t,1]) ≤ s(D̃[t,1]) + αk = s(D[t,1])

and the conclusion follows from combining this inequality with D′[0,t] = D[0,t].�
Step 2 proof of statement i)
We fix now an arbitrary (non augmented) problem ∆0 = (N,A,R) of size

m, and we must prove s(PS(∆0)) ≥ mrm. We construct first another problem

12



∆ resembling the canonical diagonal problem ∆∗m, and such that s(PS(∆)) ≤
s(PS(∆0)). Pick an effi cient deterministic assignment P ∈ Pd(E(∆0)) where m
agents are matched to m objects. It is well known, and easy to check, that we
can order these agents {1, · · · ,m} and these objects {am, · · · , a1} in such a way
that P assigns object ai to agent i, so ai ∈ Ri, and ai is the best object for agent
i among {ai, · · · , a1} (some of which may not be acceptable to i). By Lemma
3 if we fix Ri = ∅ for all agents unmatched at P , and for each i ∈ {1, · · · ,m}
we truncate Ri at ai, thus making all objects {ai−1, · · · , a1} unacceptable, then
the expected size of the resulting problem ∆ is weakly smaller than at ∆0.
We now show s(PS(∆)) ≥ mrm. Let {i1, i2, · · · , iH} the set of agents in

{1, · · · ,m} who do not get a full allocation in PS(∆) (
∑
A pia < 1), ordered

according to the time t1 ≤ t2 ≤ · · · ≤ tH at which they die in the PS algorithm.
Set τh = th − th−1, with the convention t0 = 0. Then agent ih eats

∑h
l=1 τ l,

therefore

s(PS(∆)) = m−H +

H∑
h=1

(H + 1− h)τh

We set k = m − H and list H inequalities that the non negative numbers τh
must satisfy:
(k +H)τ1 ≥ 1 , because at least object ai1 is dead at t1;
(k+H)τ1 + (k+H − 1)τ2 ≥ 2 , because at least objects ai1 , ai2 are dead at t2,
and in [t1, t2] one agent is absent;
and for all h, 1 ≤ h ≤ H:

h∑
l=1

(k +H + 1− l)τ l ≥ h (6)

because objects ai1 , · · · , aih are dead at th, and l−1 agents are dead in [tl−1, tl].
Define Θ = {τ = (τh) ∈ RH+ |τ meets (6) for all h, 1 ≤ h ≤ H}. Then

s(PS(∆)) ≥ k + minτ∈Θ

∑H
h=1(H + 1 − h)τh. We claim that the value of

the latter program is
∑1
h=H

h
k+h . To check this, we change variables to λh =

(k +H + 1− h)τh, so the program becomes

min

H∑
h=1

(H + 1− h)

k +H + 1− hλh

such that λ ≥ 0 and
h∑
l=1

λl ≥ h for all h, 1 ≤ h ≤ H

Its optimal solution is λh = 1 for all h. Indeed if λ1 > 1, a transfer from λ1 to
λ2 lowers the objective, so λ1 must be 1; and so on.
We just proved s(PS(∆)) ≥ k+

∑1
h=H

h
k+h , and this sum is k+

∑1
h=H(1−

k
k+h ) = m − kS(m, k). Finally we check that the sequence k → kS(m, k) is
single-peaked with its peak at km, implying s(PS(∆)) ≥ m − kmS(m, km) =
mrm. This is because the inequality kS(m, k) ≥ (k+ 1)S(m, k+ 1) (resp. <) is
rearranged as S(m, k) ≤ 1 (resp. S(m, k) > 1).

13



8.2.2 Statement ii)

Consider the canonical diagonal profile ∆∗m and an Envy-Free assignment P ∈
P(E(∆∗m)). We check s(P ) ≤ mrm.
Because am is the top object for everyone, EF implies piam = pjam = xm

for all i, j. Because am−1 is the second best object for agents 1, · · · ,m− 1, and
they all eat the same amount of am, EF implies piam−1 = pjam−1 = xm−1 for
all i, j ≤ m − 1. Repeating the argument we see that for all k, piak = xk is
independent of i ≤ k. Feasibility w.r.t objects gives kxk ≤ 1, and w.r.t. agent
1 it gives

∑m
k=1 xk ≤ 1. Moreover s(P ) =

∑m
k=1 kxk. Now we claim

mrm = max
x∈Rm+

{
m∑
k=1

kxk|
m∑
k=1

xk ≤ 1 ; kxk ≤ 1 all k}

If x is optimal, xk > 0 and xk+1 <
1
k+1 cannot both be true, otherwise a transfer

from xk to xk+1 improves the objective. Hence there is at most one k∗ such
that 0 < xk∗ <

1
k∗ , and then xk = 0 for k < k∗, and xk = 1

k for k > k∗. Call
this case 1. Case 2 is when no such k∗ exists, then xk = 0 up to some k̃, after
which xk = 1

k .
In Case 1 we have

∑m
k=1 xk = S(m, k∗)+xk∗ ≤ 1, in particular S(m, k∗) ≤ 1.

Moreover this constraint must be tight, else we can improve the objective by
raising xk∗ . Therefore 1−S(m, k∗) = xk∗ <

1
k∗ ⇔ S(m, k∗−1) > 1⇒ k∗ = km.

Now
∑m
k=1 kxk = m− k∗ + k∗xk∗ = m− kmS(m, km) as desired.

In Case 2 we have
∑m
k=1 xk = S(m, k̃) ≤ 1, implying k̃ ≥ km. Moreover∑m

k=1 kxk = m− k̃ ⇒
∑m
k=1 kxk ≤ m− km ≤ m− kmS(m, km).

8.2.3 Statement iii)

Theorem 1 in [13] states that s(RP (∆)) ≤ s(PS(∆)) for all m and all ∆ ∈
Dm (defined in Remark 1 after the Theorem). In particular s(RP (∆∗m)) ≤
s(PS(∆∗m)), and this inequality is strict as soon as m ≥ 4. Combined with
statement i), this implies σm(RP ) < rm for m ≥ 4. The statements about
σ2(RP ) and σ3(RP ) are Theorem 6.2 in [22].
Note that [13] also shows limm→∞ s(RP (∆∗m)) = 1 − 1

e , a much weaker
statement than limm→∞ σm(RP ) = 1− 1

e , discussed in point 2 of Section 2.
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