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Abstract

Rules of k names are frequently used methods to appoint individuals to o¢ ce.

They are two-stage procedures where a �rst set of agents, the proposers, select k

individuals from an initial set of candidates, and then another agent, the chooser,

appoints one among those k in the list. In practice, the list of k names is often

arrived at by letting each of the proposers screen the proposed candidates by voting

for v of them and then choose those k with the highest support. We then speak of

v-rules of k names. Our main purpose in this paper is to study how di¤erent choices

of the parameters v and k a¤ect the balance of power between the proposers and

the choosers. From a positive point of view, we analyze a strategic game where the

proposers interact to determine what list of candidates to submit. From a normative

point of view, we study the impact of the choice of parameters v and k upon the

distribution of power among the proposers and the chooser, and we discuss how to

eventually balance it.
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1 Introduction

Appointing people to o¢ ce is one of the main ways how the powerful exert their in�uence

in society. But the ability of any authority to appoint o¢ cers is often limited by the

existence of other �de iure�or �de facto�powers.

In this paper we study a class of methods that allow several agents to share the power

to appoint. We call them rules of k names, and they work as follows. The set of deciders

is divided into two groups: the proposers and the chooser. Proposers consider the set of

all candidates to a position and screen k of them. Then, the chooser picks the appointee

out of these k names.

Indeed, rules of k names can vary, depending on the composition of the set of proposers,

on the value of k, and also on the voting procedure adopted to form a list of k candidates.

Here we focus in a speci�c family of rules of k names that are used in many practical

cases. This family adopts the following procedure to form the list of k names: each

proposer votes for v candidates, and then the k most voted candidates get into the list.

Though one can think of other methods to select the k names, the ones we consider are

simple and frequently used. We call the resulting systems v-rules of k names.

Rules of that form have been used in the past and are still very much used in the

present. They seem particularly �t to give partial decision power to di¤erent parties that

are interested in the workings of an institution, and want to have a voice when selecting

its o¢ cers. Historically, rules of k names were used within the Roman Church since the

early middle ages, when secular rulers tried to control the appointment of bishops, while

the clergy would rather decide on its leaders. And similar rules are still used to share

the power between Rome and the local congregations. At present, in many countries

(US, Argentina, Brazil, Canada, Chile, Haiti, Mexico, Spain, Turkey etc.), the seats in

appellate courts are �lled through the use of rules of k names. This is the case, for

example, of the commission-selection, political appointment method to select judges to

the state supreme courts of several US states, sometimes referred to as merit selection or

the Missouri Plan. They are also used in several countries (Brazil and Turkey) to appoint

the Rectors of public universities.

It is clear that the size k of the list to be submitted has an important e¤ect on the

distribution of power between the proposers and the chooser. In the extreme case where

the proposers must submit the whole list of candidates, all power goes to the chooser.
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In the opposite extreme case where k = 1, it is the chooser who has no room left, and

all the power stays in the hands of the proposers1. We shall focus in the intermediate,

non-degenerate cases where both the proposers and the chooser have in�uence on the

�nal decision, and study how the values of v and k a¤ect the actual distribution of

power between the two parties. Speci�cally, we shall be interested in the kind of ex ante

evaluation that a designer could make of di¤erent v-rules of k names.

The methods that are actually used in practice di¤er in the values of these de�nitional

parameters: the size of the list is not always the same, nor its relationship with the

number of votes that each proposer is allowed. There are instances where in order to

participate in the choice of k candidates, each voter is allowed to submit k names. The

rule used to elect Irish bishops or prosecutor-general in most Brazilian states are of this

sort, with k = v = 3. Yet, in most cases we know, each proposer is asked to submit a

vote for v candidates, with v less than k. This is the case, for example, when choosing

public university rectors in Brazil (k = 3; v = 1), members of Chile�s courts of justice

(k = 3; v = 2) or Chile�s Supreme Court (k = 5; v = 3).

In order to understand what is the actual power of each party under any given rule,

we �rst study the strategic behavior of di¤erent agents operating under it. This positive

point of view leads us to analyze a strategic game of interaction between the di¤erent

proposers, when determining what list to submit. Much of our work is geared to identify

the resulting equilibria for di¤erent values of v and k. Armed with this understanding of

equilibria, and the power distribution that they imply, we can then turn to more normative

questions. Can we balance the power among the parties? If so, what choices of parameters

will be appropriate?

The paper is organized as follows. In the next section we provide a summary of our

�ndings in preceding papers on rules of k names, and then discuss several related papers.

Section 3 provides the general setup and a discussion of the strategic issues that arise. In

view of their complexity, Section 4 concentrates on the analysis of power balance within

the limits of a speci�c but still rich model that focuses in the case where agents are

polarized. Conclusions follow in Section 5, and proofs appear in the Appendix.

1In that case, however, there is still room for analysis, to determine what candidate would arise,

depending on v and on the preferences of proposers.
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2 Literature review

There does not seem to be a body of literature speci�cally devoted to study appointment

rules with their checks and balances. Of course there exist many voting rules that can be

adapted to this speci�c purpose, and rules of k names can also be used for other purposes.

But we think it is useful to focus in the case of appointments, and to pay special attention

to methods that especially �t that purpose.

We have studied rules of k names in two preceding papers. Barberà and Coelho (2006)

focuses on the properties of set valued screening rules, the �rst-stage ingredient of rules

of k names. Speci�cally, we show that several screening rules that are used in practice,

including the ones we study in the present paper, may not always select weak Condorcet

sets of candidates when these exist and voters act straightforwardly2. This could be

a cause of instability if the proposers were not strategic, but we argue that this is an

additional reason to consider the performance of screening rules in connection with the

overall game that is generated by v-rules of k names.

Barberà and Coelho (2010) is a more substantial paper, concentrating in the charac-

terization of the strong Nash equilibria of di¤erent games that one can associate with the

use of rules of k names. In particular, we distinguish between two models. In one, to

be used again in the present paper, we concentrate in the strategic interactions among

the proposers. In a second model, we allow for the chooser to also join coalitions with

proposers. An important conclusion of our study was to establish that the exact form of

the internal rules used by the proposers is not always essential. What really matters is

whether these rules are or are not majoritarian. A rule is majoritarian if it is the case

that agents in any majority of proposers always have actions at their disposal allowing

them, if properly coordinated, to impose the full list of k names, whatever other agents

do3. For each one of the two games we consider, we show that the characterization of

the sets of strong Nash equilibrium outcomes is the same for all majoritarian rules of k

names, irrespectively of the details in the internal rules used by proposers. A drawback

of our analysis is that strong Nash equilibria may fail to exist. However, we were able to

prove existence for the case where the agents�preferences are single peaked, and perform

2A weak Condorcet set (Gehrlein, 1985) is one such that no candidate inside in it can be majority

defeated by any outside candidate.
3Notice that this does not mean that a majoritarian group will always use that potential.
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some comparative statics on the value of k.

The distinction between those rules that are majoritarian and those that are not is

important in our 2010 paper that we just summarized, and it also provides motivation

for our study of v-rules of k names in the present one. This is because v-rules of k names

are always majoritarian when v=k, while not necessarily if v<k, as in many rules used

in real life. The strong Nash equilibria of non-majoritarian rules require a more detailed

analysis, since the role of minority proposers becomes then more complex and interesting.

Concentrating on v-rules allows us to understand their workings in a context that covers

many more rules than those we considered in our preceding work.

We now turn attention to related papers dealing with procedures that are similar but

not exactly equal to our rules of k names. An exception is a recent paper by de Clippel,

Eliaz and Knight (2014), showing that the rule of k names where k is equal to c+1
2
(c is the

number of candidates) implements what they call the Veto-Rank mechanism where two

agents simultaneously veto c+1
2
candidates and the winner is the one with the minimal

sum of ranks among those who have not been vetoed. This result reinforces the idea that

our proposed rules, in general, are appropriate methods to achieve a compromise solution

among di¤erent participants in a collective decision.

Holzman and Moulin (2013) and Alon et al. (2011) concentrate on what they call

nomination rules, leading to the choice of a �xed number of candidates, when the candi-

dates are also the voters. Even if di¤erent from ours in many respects, these papers also

show that being speci�c on the nature of the choice to be made, and on the actors being

involved, allows to sharpen the positive and normative questions to be asked about ap-

pointment rules. This is also the case for a variety of sequential methods, where di¤erent

agents play di¤erent roles, as voters or vetoers. See, for example, Mueller�s (1978) voting

by veto, Moulin�s (1982) successive elimination procedures, or Stevens (1966) and Brams

and Merril�s (1986) �nal-o¤er arbitrage procedures.

Our normative analysis of rules of k names will be based in expected utility calcula-

tions, similar in spirit to those made by Rae (1969), Curtis (1972), Badger (1972), Coelho

(2004), Barberà and Jackson (2004) and Attanasi et al. (2010), when comparing di¤erent

voting schemes. However, these papers concentrate on societies that face dichotomous

choices, while we allow sets of alternatives of any size.

Although all of these related methods are of theoretical interest, it is fair to say that
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rules of k names stand out as being the most widely used in practice, among those de�ned

in a similar vein.

Finally, let us mention Ertemel, Kutlu and Sanver (2015), Sertel and Sanver (2004),

Polborn and Messner (2007), Moulin (1982) and Gardner (1977) as some of the papers

that characterize the strong Nash equilibrium outcomes of di¤erent voting games.

3 The setup

In this section we formally de�ne rules of k names and the games they induce. We observe

that, in addition to other structural features, like the number of proposers, the number of

candidates and the size k of proposed candidates, a full speci�cation of a rule of k names

also requires to de�ne the screening rules by which the proposers decide what names go

into the list. In principle, this method could remain unspeci�ed, or be rather complicated.

But in actual practice simple and speci�c screening rules are used, and we concentrate on

them. Proposers are allowed to vote for a number v of candidates, and then the k most

voted ones are selected (with a tie break if needed). These votes will typically be cast as

the result of strategic calculations that may involve the cooperative coordination among

players.

Let C be the �nite set of candidates and c be its cardinality. For any h < c, Ch

denotes the family of subsets of C with cardinality h. Let N= f1; :::; ng be the �nite
set of proposers. The set of agents is A =N[fchooserg, where chooser is interpreted as
an individual not in N . Let P be the set of all strict orders4on C. Elements in P are

denoted by �i;�j,....
Societies, or preferences pro�les, are elements of P n+1, denoted as (�1;�2; :::;�n

;�chooser)5. The �rst n components are interpreted to be the preferences of the proposers
and the last component stands for the preferences of the chooser.

In addition to stand for the preferences of agents, orders of the set of candidates will

also be used to break ties among alternatives, as we shall be later. Given an order �, and
4Transitive: For all x; y; z 2 C : (x � y and y � z) implies that x � z:
Asymmetric: For all x; y 2 C : x � y implies that :(y � x):
Irre�exive: For all x 2 C;:(x � x):
Complete: For all x; y 2 C : x 6= y implies that ( y � x or x � y):
5The superscript n refers to the n-fold Cartesian product of sets.
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any subset of candidates B �C; we denote by �(B;�) the best candidate in B according
to � :
We now de�ne v-rules of k names. Both k and v are integers, k � c is the size of the

set of candidates that the proposers must submit and v � k is the number of candidates
that each proposer can support. The parameter v must be k

n
� v � k:6

De�nition 1 Given any n-tuple (B1; :::;Bn) belonging to Cn
v , of sets of size v, the score

of a candidate x 2C at (B1; :::;Bn) is the number of Bi�s containing x, s(x;B1; :::;Bn) =

# fBijx 2 Big : A set T is most voted in (B1; :::;Bn) if for all x 2T and y 2CnT ;
s(x;B1; :::;Bn) � s(y;B1; :::;Bn): A v�screening rule of k names is a function g :Cn

v !Ck

that selects a set T of k most voted candidates for each n-tuple of sets of size v.

De�nition 2 A v�rule of k names is a function f :Cn
v�P!C de�ned so that f(B1; :::;Bn;�

) = �(g((B1; :::;Bn));�), for some v-screening rule of k names g.

Notice that our de�nition of a set of most voted candidates allows for some candidates

in T and some outside of T to get the same number of votes. This is because, in our

setting, there may be cases where several candidates get the same number h of votes,

the set of those getting more than h votes is smaller than k and the set of those getting

at least h votes is larger than k. In these cases, the screening rule must "break the tie"

between these candidates who just got h votes, and select enough of them to complete a

set of size k. From now on, we will assume that our "tie breaking rules" are given by an

order of candidates, and that this order is either �xed, or coincides with the preferences

of some predetermined agent7.

An important part of our work will consist in analyzing the type of strategic interac-

tions that may arise among the proposers, as a function of their preferences and those of

the chooser. We model these interactions as a normal form game with complete informa-

tion, and concentrate our analysis on the study of its strong Nash equilibria.

De�nition 3 (Barberà and Coelho, 2010) Given k 2 f1; 2; :::; cg and v 2 f1; 2; :::; kg, a
v-screening rule for k names g :Cn

v !Ck and a preference pro�le (�1;�2; :::;�n;�chooser
6The lower bound guarantees that there exists a voting con�guration where all the k selected candi-

dates receive at least one vote, while the upper bound is always respected in practice.
7For example, when k = 3 and C = (x; y; z; w), if x,y receive 3 votes and the remaining two candidates

z; w receive the same number of votes (say 2, one or none), the proposed set will be formed by x; y and

the highest ranked among z and w according to the tie breaking rule.
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) 2P n+1, the Constrained Chooser Game is the simultaneous game with complete

information where each player i 2N chooses a strategy Bi 2Cv. Given (B1; :::;Bn) 2Cn
v ,

g((B1; :::;Bn)) is the chosen list with k names and the winning candidate is

�(g((B1; :::;Bn));�chooser).

In the Constrained Chooser Game, the chooser�s strategy set is restricted to a single

element. In that sense, we could say that she is not an active player. Speci�cally, we take

it that the chooser will simply select the candidate that is best for her among those that

she will be presented with. Thus, the chooser�s preferences determine the game�s outcome

function, and will have an impact on the equilibrium play of the proposers. But, in the

spirit of subgame perfection, and given the sequential form of our rules, we exclude the

possibility that the chooser may select a candidate that is not her best in the list she is

presented with.

We choose to analyze the set of strong Nash equilibria of this game. This is consistent

with the idea that proposers have complete information about their preferences and those

of the chooser, and that they must �nd ways to cooperate among themselves, in order to

come up with a favorable list.

De�nition 4 Given k 2 f1; 2; :::; cg and v 2 f1; 2; :::; kg, a v-screening rule for k names
g :Cn

v �!Ck and a preference pro�le �� f�igi2N[fchooserg 2P n+1, a joint strategy

(B1; :::;Bn) 2Cn
v is a pure strong Nash equilibrium of the Constrained Chooser

Game if and only if, given any coalition G�N ; there is no (B0
1; :::;B

0
n) 2Cn

v with

B0
j =Bj for every j 2NnG such that �(g((B0

1; :::;B
0
n));�chooser) �i �(g((B1; :::;Bn));�chooser

) for each i 2G:

Finding the equilibria of the games generated under di¤erent v-rules of k names is

thus a necessary step, prior to the choice of normatively attractive values for v and k. In

our search for equilibria and their characterizations, we will face a number of di¢ culties,

that eventually lead us to concentrate on a simple model. But in order to give the reader

a feeling of the interesting problems that arise, let us present the following two examples.

Example 1 There are �ve candidates fc1; c2; c3; c4; c5g and eleven proposers. Each pro-
poser is allowed to vote for one candidate (v = 1) and a list will be formed with the names

of the three most voted candidates (k = 3), with ties being broken according to the order
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c1 � c3 � c4 � c5 � c2. The type (preferences) and the number of agents are given in

the following table.

Preference Pro�le

1 type 1 proposer 7 type 2 proposers 3 type 3 proposers Chooser

c1 c3 c2 c1

c3 c2 c3 c2

c4 c5 c4 c3

c5 c1 c5 c4

c2 c4 c1 c5

We shall argue, in what follows, that c2 can be the outcome induced from the strong Nash

equilibrium play of the proposers when the chooser always picks his best candidate in the

list.

Consider the following strategy pro�le that sustains c2 as a strong Nash equilibrium out-

come: the seven type 2 proposers cast four votes for c3 and three votes for c4. The only

one type 1 proposer casts a vote for c1, while the three type 3 proposers cast three votes

for c2. Thus, the selected list is fc3; c2; c4g and c2 is the winning candidate.
The argument behind this equilibrium is quite clear. Type 3�s go ahead in support of c2,

and then the type 2�s have to prevent c1 from becoming the outcome by "wasting" their

remaining votes in support of c4.

But there is another, maybe more interesting equilibrium. Notice that any coalition with

at least three proposers can impose at least one candidate in the list, and that the chooser

and the three proposers of type 3 prefer c2 to c3. In spite of this, candidate c3 can also

be sustained as a strong Nash equilibrium outcome! To verify it, consider the following

strategy pro�le: the seven type 2 proposers cast three votes for c3, two votes for c4, one

vote for c1 and one vote for c5. Type 1 proposer casts a vote for c1, while the three type 3

proposers cast two votes for c5 and one for c4. So, c3,c5 and c4 will have three votes each,

while c1 only two. Thus, the selected list is fc3; c5; c4g and c3 is the winning candidate.
The reader can check that no coalition of voters can pro�tably deviate.

Now, here is a intuition for this equilibrium, where the two proposers of type 2 cleverly

distribute their votes in order to prevent the type 3�s from being able to select c2, even if

they all vote for it. Voters of type 2 ensure that candidate c3, their favorite, is among

the proposed ones, by casting three votes in its favor. They also give enough support to
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candidate c1 so that, along with the vote of type 1, c1 is still not chosen, but would be as

soon as candidates with two votes enter the list. Then, since c1 has two votes, proposers

of type 3 cannot vote for their favorite, c2, because if they all spent their votes on c2,

which would make c2 eligible, then some alternative with two votes would come in, and in

this case it would be c1, which they hate but is the chooser�s best. Given that they cannot

get c2, they then concentrate, in alliance with type 2 people, in getting c4 and c5 into the

list, both above their worse alternative c1, in order to at least get their second alternative.

Thus, the presence of the type 1 proposer voting for c1 leads types 2 and 3 into a sort

of race: if one of them uses the most rewarding strategy in one of the two equilibria, the

other must concede. If both used their most rewarding strategies, then c1, that they both

hate, would come out!8

In this example, we can observe several types of strategic behavior on the side of agents.

The richness of the example also leads to the existence of several equilibria among which

it is hard to choose. Multiplicity of equilibria adds to the di¢ culty of characterizing any

of them. Hence, even if the steps to be taken toward any speci�c choice of optimal rules

are quite clear, we cannot expect simple, general explicit solutions. This is why we shall

eventually simplify the setting where we work.

Our second example is also clarifying. The choice of v and k has an impact on the

balance between the satisfaction of the chooser and that of the proposers. But our fol-

lowing example shows that this impact is complex: without any further restrictions, the

e¤ects of k and v on the agents�payo¤s are not monotonic.

Example 2 There are four candidates c2,c1,c3 and c4, and three proposers. Each pro-

poser votes for one candidate and the list has the names of the two most voted candidates

(v = 1; k = 2), with a tie breaking rule when needed: c3 � c4 � c1 � c2.
8Notice that the same outcome c3 could also be sustained by other strategy pro�les. For instance, if

the seven type 2 proposers cast two votes for c3, c4, and c5 each and one vote for c1, given the truthful

vote for c1 of the type 1 proposer, the type 3 proposers can do no better than cast one vote each for c3,

c4, and c5 in order to ensure that c1 does not make the shortlist on the tie-break. Thus, it is possible

to get c3 as a strong Nash equilibrium outcome even if type 2 proposers don�t ensure that c3 is on the

shortlist. We thank a referee for pointing this out.
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Preference Pro�le

Proposer 1 Proposer 2 Proposer 3 Chooser

c1 c2 c2 c1

c4 c3 c3 c2

c3 c4 c4 c3

c2 c1 c1 c4

Candidate c3 is the unique strong Nash equilibrium outcome under v = 1 and k = 2.

Here is an intuition for this result: notice that candidate c2 cannot be a strong equilib-

rium outcome, because as long as proposer 1 votes for c1, proposers 2 and 3 cannot get

c2 to be the outcome, even if they can force c2 to be in the list. Short of that, proposers

2 and 3 coordinate their actions so that one of them votes for c3 and the other for c4. If

1 persists in voting for c1, this creates a tie between the three candidates that is solved in

favor of c3 and c4, out of which the chooser selects c3. If 1 votes for c3 instead, the same

outcome ensues. And all other actions by any combination for agents would lead some of

them to outcomes that would be worse than c3 for some of them. Hence, c3 is the unique

strong Nash equilibrium under (v; k) = (1; 2). The case (v; k) = (1; 1) is simple and leads

to the election of c2.

The table below presents the set of strong Nash equilibrium for di¤erent values of v and

k.

Set of strong Nash equilibrium outcomes

k=1 v = 1 fc2g
k=2 v = 1 fc3g
k=2 v = 2 fc2g
k = 3 v = 1 fc1g
k = 3 v = 2 fc2g

Notice that, with v �xed at 1, the chooser prefers k = 1 to when k = 2. This is quite

surprising, since k = 1 means that the chooser has no power at all! Notice also that she

prefers k = 3 to k = 2 when v = 1. On the other hand, for k = 2, the chooser prefers the

higher value v = 2 to that of v = 1. However, for k = 3, she prefers the lower value v = 1

to that of v = 2.

In spite of the di¢ culties that these examples point to, we can still provide some partial
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characterization of strong Nash equilibria for the general case, and a statement regarding

their connection across di¤erent values of v and k. We now present these results, before

further specializing our model in the next section. Although a bit involved, our conditions

shed light on the type of coalitions one should focus in, and they are also useful to search

for equilibria in speci�c applications.

Notice that any v-screening rule of k names endows each group of proposers with

some power to determine what candidates are to be included in the list submitted to the

chooser. The following de�nitions and results apply for any given v-rule of k names and

any subset X of C with size smaller than or equal to k.9

De�nition 5 Let qvk(X) be the minimum integer bq such that, for any coalitionG of voters

with size at least as large as bq, agents in G can vote in such a way that all elements in

X are included in the list, for any vote of the proposers in NnG. That is, qvk(X) is
computed in such a way that any coalition of that size or larger can always guarantee

itself the inclusion of X in the list, if its members coordinate their votes.

Remark 1 The values of qvk(�) evolve monotonically with those of k and v. For any C
and v < v�< k < k�<c, we have that:

1. qvk(X) � qv
0
k (X) for any X 2Ck;

2. qvk�(X
0) � qvk(X) for any X 2Ck and X 0 2 fY 2Ck0jX � Y g;

3. qv
0
k (fxg) � qvk(fxg) for any x 2C;

4. qvk(fxg) � qvk0(fxg) for any x 2C:

Remark 1 tells us that, for every X 2Ck and x 2C; qvk(X) is increasing in k and
decreasing in v, while qvk(fxg) is decreasing in k and increasing in v. Thus, an increase in
k or a decrease in v alters the distribution of power among the proposers in the following

ways: (a) it a¤ects non-positively the cardinality of the set of possible coalitions of players

that are able to impose all the names in the list and (b) it a¤ects non-negatively the

9Notice that de�nitions 5 and 6 are closely linked to that of e¤ectivity functions studied by Peleg

(1984), Moulin and Peleg (1982), Abdou and Keiding (1991) and Sertel and Sanver (2004), among others.

The concept of e¤ectivity refers to the ability of agents to ensure that the outcome of a given rule belongs

to a target set, and admits several variants.
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cardinality of the set of possible coalitions of players that are able to impose at least one

name in the list. Notice that (a) implies that some strong Nash equilibrium outcomes

under (v; k) may not be a strong Nash equilibrium under (v � 1; k) or under (v; k + 1).
Notice also that (b) implies that the chooser�s best candidate in the list may become an

equilibrium outcome under (v�1; k) or under (v; k+1) in spite of not being an equilibrium
outcome under (v; k).

These qvk values may di¤er (but not too much) for sets of the same size, depending

on the names of the alternatives that they include, because the tie breaking rule treats

candidates asymmetrically. Hence, we may also de�ne some absolute bounds that work

for any set. In particular, we�ll use those bounds that apply for singletons or for sets of

size k, since they are the ones that will help in characterizing equilibria.

De�nition 6 Let qv1 �Maxy2Cfqvk(fyg)g and qvk �MaxY 2Ck
fqvk(Y )g:10

We are now ready to provide a necessary condition that must be satis�ed by any strong

Nash equilibrium outcomes for the Constrained Chooser Game, whatever the preferences

of agents might be. In addition to its intrinsic interest, the result will be later used in our

analysis of the polarized proposers�case.

Proposition 1 If candidate x is a strong Nash equilibrium outcome of the Constrained

Chooser Game, then it satis�es the following four conditions

C1: It is among the chooser�s (c�k + 1)-top candidates.

C2: If y 6= x is among the chooser�s (c�k + 1)-top candidates then #fi 2N jy �i xg <
qvk(Y ) for any Y 2Ck such that y is the chooser�s best candidate in Y .

C3: If y is the chooser�s best candidate then #fi 2N jy �i xg < qvk(fyg).

C4: If y is the chooser�s best candidate and also ranked above x by the tie breaking

criterion, then #fi 2N jx �i yg � qvk.11

10We can actually compute these bounds explicitly, as follows: qvk = d kn
(k+v)e + I(b

vd kn
(k+v)

e
k c � n �

d kn
(k+v)e) and q

v
1 = d vn

(k+v)e+ I(
vn

(k+v) = d
vn

(k+v)e); where I denotes the indicator function that takes value
1 if the expression in brackets is true, and 0 otherwise, bxc is the largest integer not greater than x and
dxe is the smallest integer greater or equal than x.
11In Appendix B, we show how Proposition 1 can be useful to locate an equilibrium outcome. We also

give an example where the set of strong Nash equilibrium outcomes is empty.
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In the general case where all preferences are allowed, no conclusive statement can be

reached regarding the gains for the chooser from parameter changes, as shown by Example

2. The di¢ culty to make de�nite statements under a universal domain of preferences

is compounded by the possibility that, when changing parameters, one of them may

guarantee existence of equilibria but not the other. In spite of these added di¢ culties, we

can prove the following result that holds for the universal domain of preferences:

Proposition 2 If the chooser�s best candidate is a strong Nash equilibrium outcome of

the Constrained Chooser Game under a v�-rule for k�names then it is also a strong Nash

equilibrium outcome of the Constrained Chooser Game under any other v-rule for k names

with v � v� and k � k�, provided that both screening rules use the same tie breaking

criterion.

4 Choosing among v-rules of k names under polar-

ized opinions.

In this section we study how the choice of the parameters v and k can help to satisfy

di¤erent normative properties, like the equalization of the power among di¤erent groups

of participants in an appointment. Before engaging in that analysis, we present a family

of societies to which we restrict attention. Examples 1 and 2 in the preceding section

suggest that we cannot expect to develop a full general characterization of the equilibrium

outcomes when proposers are su¢ ciently heterogeneous. This is a serious obstacle for the

kind of analysis we propose later in that section, and the reason why we focus in cases

where the opinions of voters are polarized. We shall argue that this particular case

provides signi�cant insights, while preserving the simplicity that we need to proceed.

4.1 The polarized opinions model.

From now on, we limit attention to societies where the number of proposers is odd.

Actually, we can take this as a natural condition that a designer would want to impose

from the onset, when �xing the appointment rule to be used under changing circumstances.

We say that a voting problem is polarized if it satis�es the following characteristics.

1. (A1). The set G of proposers is partitioned into two groups G1 and G2.
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2. (A2). All proposers in G1 share the same preferences over the set of candidates.

3. (A3). All proposers in G2 share with the chooser the same preferences over the set

of candidates.

4. (A4). The chooser�s preferences are used to break ties when this is needed to com-

plete the list of k names.

We think that this simple model captures much of what matters when applying rules

of k names. It allows for the chooser to have discrepancies with some of the proposers,

while agreeing with some others. Hence, it re�ects well the tension between two segments

of society whose views on the ruler�s judgement do not agree. In fact, there are instances

where this alignment between the chooser and some proposers may come from the very

nature of the institutions that use the rule. For example, in some of the US states where

judges of the State Supreme Court are appointed according to the Missouri Plan, the

merit committee that acts as the set of proposers is formed by lawyers appointed by the

Bar Association and also by non-lawyers appointed by the Governor, who are likely to be

aligned with the latter�s views.

An advantage of the Constrained Chooser Game associated to our Polarized Opinions

Model is that it always has an easy to describe and unique strong Nash equilibrium, as

stated in the following proposition.

Proposition 3 Consider the Polarized Opinions Model and any v-rule of k names. There

exists a unique strong Nash equilibrium outcome for the associated Constrained Chooser

Game. If #G1 � qvk, then the strong Nash equilibrium outcome is the best candidate of

the proposers in G1 out of the chooser�s (c�k + 1)-top candidates. Otherwise, the strong
Nash equilibrium outcome is the chooser�s best candidate.

Proposition 3 states that if the size of G1 is large enough, so that this group is able

to impose all names in the list (#G1 � qvk) then the equilibrium outcome is the best

candidate for this group out of the c � k + 1-top candidates of the chooser. Agents in
G1 can obtain this outcome by imposing a list containing the candidate they want to be

chosen, along with k � 1 candidates from the bottom of the chooser�s preferences. In the

rest of the cases, G2 is able to impose the top candidate of the tie breaking criterion.
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Since the tie breaking criterion coincides with the preferences of the chooser, her best

candidate will be the equilibrium outcome.

We can be even more speci�c for the special case where the partition of G is degenerate

and all proposers have identical preferences.

Corollary 1 If all proposers are homogeneous, i.e. G1 =N and G2 = �; then the unique

Strong Nash Equilibrium outcome is the best candidate of the proposers out of the chooser�s

(c�k + 1)-top candidates.

Example 3 Let C= fc1; c2; c3; c4; c5g and let N= f1; 2; 3g. Suppose that each proposer
votes for two candidates and the three most voted candidates form the list, with a tie

breaking rule when needed: c1 � c2 � c3 � c4 � c5. The preferences of the chooser and
the proposers are as follows:

Preference Pro�le

Proposer 1 Proposer 2 Proposer 3 Chooser

c5 c5 c1 c1

c4 c4 c2 c2

c3 c3 c3 c3

c1 c1 c4 c4

c2 c2 c5 c5

Notice that all the assumptions A1-A4 of the Polarized Opinions Model are satis�ed,

and the values of the parameters are n = 3;#G1 = 2;#G2 = 1; v = 2 and k = 3. Notice

also that qvk = 3, which implies that #G1 < q
v
k. Therefore, according to Proposition 3, the

equilibrium outcome is the chooser�s best candidate . The following strategy pro�le sus-

tains c1 as a strong Nash equilibrium outcome: Proposer 3 votes for c1 and c2, Proposers

2 and 3 vote for c4 and c5. The list will be formed by c1; c4 and c5 and c1 will be the

winning candidate.

The following two corollaries apply to the case where our v-rules of k names are used

in societies with polarized opinions. They follow from Proposition 3 and Remark 1.

Corollary 2 Whenever ev > v0, the chooser cannot be worse o¤ under a v0-rule for k

names than under a ev-rule for k names .
16



Corollary 3 Whenever k0 > ek, the chooser cannot be worse o¤ under a v-rule for k0
names than under a v-rule for ek names .
As shown by Corollaries 2 and 3 above, in the case of the Polarized Opinions Model,

the chooser will always weakly prefer a smaller v and a larger k. As for the proposers,

and given their polarization, some of them will gain and some will loose from any given

parameter change.

4.2 The ex-ante analysis of di¤erent rules

We will now present the type of calculations that a designer could make in order to

determine the utility that the proposers and the chooser may expect to obtain from the

use of alternative v-rules of k names, in societies with polarized opinions.

We will produce explicit computations under appropriate assumptions, that provide

insights on the trade-o¤s between the choices of v and k, and the impact of these choices

upon the agents involved in the decision process. Our computations are speci�c, but the

general method to be used, if given alternative data, will become apparent.

We compare the performance of di¤erent rules under the assumption that agents are

endowed with expected utility functions, and that the designer�s objectives involve cal-

culations regarding their expected payo¤s, as the preferences of agents change within the

bounds of the Polarized Opinions Model.

We will assume here that the designer takes the (negative of the) ranking of the

di¤erent candidates as a proxy for the utility they derive from their election. In what fol-

lows, and for simplicity, x will stand for the equilibrium outcome at each pro�le. Formally,

ui(x) = �ri where ri = 1+#fz 2Cjz �i xg. We denote by uG1(x), uG2(x) and uchooser(x)

the utilities of the proposers in groups G1 and G2 and of the chooser, respectively, given

that x is the equilibrium outcome.12

Under these simple speci�cations, each preference order is associated to one utility

function, and from now on we use the terms preference pro�le and utility pro�le inter-

changeably.

12One could argue directly that minimizing the expected ranking of the chosen alternatives is already

a natural objective. But we refer to this measure of performance as a utility, in order to emphasize

that a planner could attribute alternative objectives to its subjects, and change its optimization criteria

accordingly.
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If the designer is endowed with a distribution indicating the probability that each

pro�le of preferences is realized, then she is ready to compute the expected utility from

choosing each possible value of k and v.

For the purpose of illustration, all the results in this section are based on the as-

sumption that the agents�preferences over the set of candidates are the result of two

independent random draws from a uniform distribution over the domain of all strict pref-

erences: one to determine the preferences of agents inG1, and another to determine those

of the chooser and proposers in G2.

Consider the case where G1 is large enough such that it is able to impose all names in

the list (#G1 � qvk): By Proposition 3, the equilibrium outcome is the best candidate for

this group out of the c� k+ 1-top candidates of the chooser. Given this characterization
of the equilibrium outcome and the assumption of independence between the preferences

of the chooser�s and of those of G1, the random variable rG1 has the same distribution as

that of the smallest element of a random sample with size s = c � k + 1 drawn without
replacement from a uniformly distributed populationD = f1; 2; : : : ; cg with mean equal to
(c+1)
s+1

= (c+1)
(c�k+2) .

13 And the random variable rchooser (rchooser � 1 + #fy 2Cjy �chooser xg)
has the same distribution as that of a discrete random variable uniformly distributed over

f1; 2; : : : ; c� k + 1g with mean equal to (c�k+1)+1
2

.

Consider now the case whereG1 is not able to impose all names in the list (#G1 < q
v
k):

By Proposition 3, the equilibrium outcome is the chooser�s best candidate. Thus, the

random variable rG1 is a discrete random variable uniformly distributed over f1; 2; : : : ; cg
with mean equal to c+1

2
and rchooser is a constant equal to 1.

Proposition 4 Consider the Polarized Opinions Model and any v-rule of k names. The

agents�expected utilities are given by the following expressions:

1. If #G1 � qvk then:
E(uG1(x)jc; k; v) = �

(c+1)
(c�k+2)

E(uG2(x)jc; k; v) = E(uchooser(x)jc; k; v) = �
(c�k+2)

2

13For the readers not familiar with order statistics, an introductory text on this topic that has a proof

of this formula is available at http://www.math.uah.edu/stat/urn/OrderStatistics.html#mom1
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2. If #G1 < q
v
k :

E(uG1(x)jc; k; v) = �
(k+1)
2

E(uG2(x)jc; k; v) = E(uchooser(x)jc; k; v) = �1

Now, given these expected utility formulas, the designer can select a (v; k) satisfying

any desirable criteria. Notice that if #G2 � n+1
2
then #G1 < q

v
k and it implies that the

agents�s expected payo¤s are not a¤ected by the parameters k and v of the rule since the

chooser�s best candidate always win. So, we will only consider the case where #G1 � n+1
2
:

We have considered three possible criteria for selection. These criteria will treat the two

groups of agents as the two relevant entities participating in the distribution of power.

They are related to the notions of egalitarianism, utilitarianism and bargaining, as shown

in the following de�nitions. Yet, alternative criteria could be de�ned, as we shall comment

below.

De�nition 7 A pair (v; k), such that k 2 f1; :::; cg, v 2 f1; :::; kg and v � k, is an

egalitarian solution if jE(uG1(x)jc; k; v) � E(uchooser(x)jc; k; v)j � jE(uG1(x)jc; k�; v�) �
E(uchooser(x)jc; k�; v�)j for every k� 2 f1; :::; cg and v� 2 f1; :::; k�g: We denote by Se the
set of all values of (k,v) that are egalitarian solutions.

De�nition 8 A pair (v; k), such that k 2 f1; :::; cg, v 2 f1; :::; kg and v � k, is a utilitar-
ian solution if E(uG1(x)jc; k; v)+E(uchooser(x)jc; k; v) � E(uG1(x)jc; k�; v�)+E(uchooser(x)jc; k�; v�)
for every k�2 f1; :::; cg and v�2 f1; :::; k�g: We denote by Su the set of all values of (k,v)
that are utilitarian solutions.

De�nition 9 A pair (v; k), such that k 2 f1; :::; cg, v 2 f1; :::; kg and v � k, is a Nash
bargaining solution if (E(uG1(x)jc; k; v)�d)(E(uchooser(x)jc; k; v)�d) � (E(uG1(x)jc; k�; v�)�
d)(E(uchooser(x)jc; k�; v�)� d) for every k�2 f1; :::; cg and v�2 f1; :::; k�g where d, the status
quo expected utility for each of the players, is equal to � c+1

2
: We denote by SN the set of

all values of (k,v) that are Nash bargain solutions.

Interestingly, these three criteria lead to the selection of the same values for (v; k), in

our case when #G1 � n+1
2
. The reason is simple: the combination of expected utilities
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for the proposers in group G1 and for the chooser that we get as k changes, keeping v

such that #G1 � qvk (this condition always holds when v = k and #G1 � n+1
2
); constitute

a symmetric set. Since the egalitarian and the utilitarian solutions satisfy Nash�s axiom

of symmetry, and our bargaining problem is symmetric, they both coincide with Nash�s

solution in this nice case. In fact, they may lead to the choice of one or at most two values

of k depending on the number of candidates. At any rate, we can always say that the value

of k that balance the power is greater than half the number of candidates. That fact may

be a bit disturbing, since in real life we observe the use of small values of k. But this is due

to the speci�city of the polarized case and the complete information assumption, where

the majority proposer gets an advantage, that can only be compensated by a relatively

larger k.

Let us insist that these de�nitions exploit the fact that agents come in two distinct

groups, and treat each group as one of the two references for a division of power. If we

wanted to get close to the standard notion of utilitarianism, for example, we would have

had to consider the sums of the agents�utilities in each of the groups, and that would give

rise to more complex calculations and more controversy regarding the weights that each

of the parties should be give. At any rate, if we had to single out one of the three criteria,

we think that the egalitarian solution is the one that is more amenable to an analysis of

the distribution of power among single agents, rather than between blocks.

The following proposition expresses our preceding remarks more formally and with

additional detail.

Proposition 5 Consider the Polarized Opinions Model and#G1 � n+1
2
. The egalitarian,

utilitarian and Nash bargaining solutions of (v; k) coincide. Let z = c+ 5
2
�
q
2c+ 9

4
. If

z is an integer then the value of k in any egalitarian solution must be equal to z or z� 1,
otherwise k is equal to bzc :14 If (v; k) is an egalitarian solution then (v� = k; k) is also
an egalitarian solution. Full equalization of expected utilities is achieved if and only if

k = c�
p
2c+ 2+2 . The value of the optimal k�s according to any egalitarian, utilitarian

and Nash bargaining solution is always greater than or equal to c+1
2
.

Example 4 Consider the Polarized Opinions Model and let c = 7; n = 5 and #G1 = 4:

It implies that z = c + 5
2
�
q
2c+ 9

4
= 7 + 5

2
�
q
10 + 9

4
= 5:47. Thus, by Proposition

14bzc is the largest integer not greater than z.
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5, if (v; k) is an egalitarian solution then k = bzc = 5: Proposition 5 also tells us that if
k = c�

p
2c+ 2+ 2 = 5 then (v; k) (with v is such that #G1 � qvk) equalizes the agent´ s

expected utilities. Table 1 shows that only the following pairs of parameters equalize the

agents expected utilities: (v = 3; k = 5); (v = 4; k = 5) and (v = 5; k = 5).
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Table 1: Agents�expected utilities for di¤erent values of k and v when c = 7; n = 5;

#G1 = 4

(v; k) qvk
(A)

E(uG1
jc; k; v)

(B)

E(uchooserjc; k; v)
j(A)� (B)j (A) + (B) ((A)+ c+1

2
)((B)+ c+1

2
)

(1,1) 3 -1.00 -4.00 3.00 -5.00 0.00

(2,1) 4 -1.14 -3.50 2.36 -4.64 1.43

(2,2) 3 -1.14 -3.50 2.36 -4.64 1.43

(1,3) 5 -4.00 -1.00 3.00 -5.00 0.00

(3,2) 4 -1.33 -3.00 1.67 -4.33 2.67

(3,3) 3 -1.33 -3.00 1.67 -4.33 2.67

(4,1) 5 -4.00 -1.00 3.00 -5.00 0.00

(4,2) 4 -1.60 -2.50 0.90 -4.10 3.6

(4,3) 4 -1.60 -2.50 0.90 -4.10 3.6

(4,4) 3 -1.60 -2.50 0.90 -4.10 3.6

(5,1) 5 -4.00 -1.00 3.00 -5.00 0.00

(5,2) 5 -4.00 -1.00 3.00 -5.00 0.00

(5,3) 4 -2.00 -2.00 0.00 -4.00 4.00

(5,4) 4 -2.00 -2.00 0.00 -4.00 4.00

(5,5) 3 -2.00 -2.00 0.00 -4.00 4.00

(6,2) 5 -4.00 -1.00 3.00 -5.00 4.00

(6,3) 4 -2.67 -1.50 1.17 -4.17 3.33

(6,4) 4 -2.67 -1.50 1.17 -4.17 3.33

(6,5) 4 -2.67 -1.50 1.17 -4.17 3.33

(6,6) 3 -2.67 -1.50 1.17 -4.17 3.33

(7,2) 5 -4.00 -1.00 3.00 -5.00 0.00

(7,3) 5 -4.00 -1.00 3.00 -5.00 0.00

(7,4) 4 -4.00 -1.00 3.00 -5.00 0.00

(7,5) 4 -4.00 -1.00 3.00 -5.00 0.00

(7,6) 4 -4.00 -1.00 3.00 -5.00 0.00

(7,7) 3 -4.00 -1.00 3.00 -5.00 0.00
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5 Concluding Remarks

Rules that contemplate several stages to arrive at a �nal choice are widely used. Some

people are in charge of screening, then others choose among those candidates that were

not screened out. The very idea of dividing these tasks may arise from very diverse

reasons. One of them, that we consider important but we did not follow here, would

be in the line of Condorcet�s Jury Theorem for a common values setup: assigning to

each agent responsibility for those partial decisions that she is better informed about.

Another reason, the one we have focused on in this paper, is to divide the decision power

among interested parties whose views may be in con�ict. This is in line with Arrowian,

tradition, where the preferences of agents are taken as given, and voting rules are methods

to arbitrate among them.

In this spirit, we have studied the e¤ective distribution of power that is induced by

v-rules of k names, a family of two-stage voting procedures that are used to make many

appointment decisions around the world, especially in judiciary systems. These rules

induce a complete information game that may be described as follows:

1- Each of the proposers casts votes for v candidates;

2- A list of k most voted candidates (after tie-breaking) is provided to the chooser;

and,

3- From this list of k names, the chooser selects a single appointee.

We have focused on the strong Nash equilibrium outcome of this game, and discussed

the distribution of power that they imply, depending on the choice of the parameters

(v; k). Our more speci�c results are obtained in the context of what we call the polarized

opinions model. There, the proposers are partitioned into two groups; all the proposers

in each group share the same preferences, and all those in the smaller group also share

preferences with the chooser, who is allowed to break eventual ties. Even if simple, this

model is able to re�ect the potential tension between the majority of the proposers and

the chooser, while allowing for the latter to have some allies among those who propose.

The appointment procedure of the members of the State Supreme Court in some US

states is an example of institutions where this tension and also these alliances may arise,

since one part of the proposers is appointed by the chooser (the governor).

This model admits a relatively simple characterization of the unique strong equilibrium

outcome of the associated game. It then allows us to show how a larger gap between the
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parameters v and k can increase the power of the chooser, by allowing her allies to "sneak

in" more alternatives in the list, and to proved that the chooser always weakly prefers a

smaller v and a larger k. We can then also characterize the choice of parameters (v; k)

that would get closer to equalize the power of the proposers and the chooser, in terms

of the expected rank of the alternatives that they would obtain at equilibrium under a

uniform distribution of the potential societies that may be realized. Actually this most

egalitarian choice of (v; k) also coincides, in our simple model, with the one that would be

recommended through the alternative use of a Nash bargaining or a utilitarian approach.

After this short summary of results, let us now comment on possible extensions. Even

within our present framework, we are aware that our normative analysis can be enriched

by endowing agents with more complex preferences, considering a wider range of distribu-

tions over preference pro�les, relaxing the full information assumption and/or considering

alternative equilibrium concepts under maybe di¤erent speci�cations of the games within

which they interact. But our purpose here was to open a line of work, to provide guidelines

for a normative analysis of these widely used rules, and to exhibit the richness and the

di¢ culties involved in following a similar program under alternative assumptions: hence

our choice of relatively simple speci�cations, for utilities, probabilities and equilibrium

concept. We think that some of these modeling decisions could be altered without chang-

ing the essence of our exercise. Regarding the speci�cation of possible worlds, it is not

hard to extend it to cases where the preferences of agents are still based on the ranking

of the outcomes but exhibit di¤erent degrees of risk aversion. As for the informational

assumptions, one could also study easily the polar case where, once a pro�le is realized,

each agent is only informed about her own preference, but remains ignorant about those

of the rest. In that case, it becomes natural to assume that agents will behave sincerely,

rather than strategically, and the computations carry over in a similar manner.

Finally, let us re-emphasize that, even if widely used, v-rules of k names are only

one class among many others through which people are eventually appointed. Given the

power that comes attached with the possibility to appoint people to o¢ ces, we hope that

these, along with other rules, can be systematically scrutinized and compared. We would

like to think of our work as part of this potential stream of research.
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Appendix A

Proof of Proposition 1. Suppose that candidate x is the outcome of a strong

Nash equilibrium of the Constrained Chooser Game. In any strong Nash equilibrium

where x is the outcome, the screened set is such that x is the best candidate in this set

according to the chooser�s preferences. This implies that x is a chooser�s (c� k + 1)-top
candidate. To prove that Condition 2 is necessary, take any candidate y 6= x among

the chooser�s (c � k + 1)-top candidates, and let Y be any list with k names where y is

the chooser�s best candidate in Y . Notice that y cannot be considered better than x by

any coalition with at least qvk(Y ) candidates. Otherwise, this coalition could impose Y ,

preventing x from being elected. So, if y is a chooser�s (c � k + 1)-top candidate, then
#fi 2N jy �i xg < qvk(Y ) for any Y 2Ck such that y is the chooser�s best candidate in Y .

Now, to justify Condition 3, suppose, by contradiction, that it is not true that#fi 2N jy �i
xg � qvk(y). Let S1 � fi 2N jy �i xg; so #S1 � qvk(y): Then, the coalition of proposers
in C1 would be able to impose the inclusion of y in the list (since #S1 � qvk(y)); and the
chooser would select it instead of x. Hence, if y is the chooser�s best candidate, we have

that #fi 2N jy �i xg < qvk(y).
Finally, consider Condition 4. Let y be the chooser�s best candidate, and assume that

it is ranked above x by the tie breaking criterion. Suppose, by contradiction, that it is

not true that #fi 2N jx �i yg � qvk. Hence, at any strategy pro�le that includes x in

the selected list, the coalition S1 � fi 2N jy �i xg can �nd a pro�table deviation to
include y; and this becomes the winning candidate. Therefore, x cannot be a strong Nash

equilibrium outcome.

Proof of Proposition 2. Let x be the chooser�s 1-top candidate. First notice that,

since x is a strong Nash equilibrium outcome under a v�-screening rule for k� names, it

implies that any strategy pro�le where all proposers vote for x is a strong Nash equilibrium.

Take any strategy pro�le where all voters vote for x, and call it m�. Given that it is a

strong Nash equilibrium, no coalition of voters has a pro�table deviation. The voters
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that would wish to avoid the election of x are those that prefer another of the chooser�s

(c � k�+ 1)-top candidates, rather than x (recall that only the chooser�s (c � k�+ 1)-top
candidates can be the chooser�best name among the candidates of a set with cardinality

k�).The only way to avoid the election of x would be to avoid the inclusion of x in the

chosen list. Take any chooser�s (c � k�+ 1)-top candidate and call it y. If all the voters
who prefer y to x deviate from m�by not voting for x, x would still have enough votes to

stay in the k list. Otherwise, the strategy pro�le where all the voters vote for x would

not be a strong Nash equilibrium.

Now we show that x is also a strong Nash equilibrium for any v-screening rule for k names

where v � v�and k � k�, by exhibiting a strategy pro�le that sustains it under the new

rule. Take any strategy pro�le where all voters vote for x and call this strategy pro�le

m. Then, x will be one of the k listed names, and it will be the elected candidate, and

we need to show that no coalition of voters has a pro�table deviation from m. Clearly,

it is more di¢ cult to �nd pro�table deviations under a v-screening rule for k names than

under a v�-screening rule for k� names. This is because under a v-screening rule for k

names any coalition of voters that has incentives to avoid the election of x has less votes

to distribute among the k candidates in order to avoid the inclusion of x in the list. Thus,

since no coalition has a pro�table deviation from m�, no coalition has one from m, either.

Therefore, x is a strong Nash equilibrium outcome under v-screening rule for k names.

Proof of Proposition 3.

Consider the case where #G1 � qvk: Let x be the best alternative of the majoritarian

group out of the chooser�s (c�k+1)-top candidates. Since #G1 � qvk; by de�nition of qvk,
there is a strategy pro�le that the majoritarian group can adopt and guarantee that x is

elected, regardless of the minoritarian group�s actions. Notice also that the majoritarian

group will not have any incentive in changing this outcome. Therefore, there exists a

strategy pro�le that sustains x as a strong Nash equilibrium outcome.

Now let us show that x is the unique strong Nash equilibrium outcome. Suppose, by con-

tradiction, that there was another strong Nash equilibrium outcome y 6= x. By Conditions
1 and 2 of Proposition 1, we have that x and y are among the chooser�s (c � k + 1)-top
candidates and #fi 2N jx �i yg < qvk(X) where x is the chooser�s best alternative in X.
This is a contradiction since #fi 2N jx �i yg > #G1 > qvk > qvk(X):
Consider the case where qvk > #G1: Let x be the chooser�s best candidate. Notice that
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qvk > #G1 implies that#G2 � qvk(fxg) given that x is the top candidate according to the
tie breaking criterion. Consider the strategy pro�le where every proposer casts a vote for

x. Then, x will be in the selected list and it will be elected. No group can eliminate x

from the selected list by a unilateral deviation, since the two groups have size larger than

qvv(fxg). Since x is G2�s top candidate, none of the proposers have incentives to jointly

deviate from this strategy pro�le, which therefore sustains x as strong Nash equilibrium

outcome.

Now let us prove that x is the unique strong Nash equilibrium outcome. Suppose other-

wise, that there exists another strong Nash equilibrium with outcome y 6= x. By Condition
3 of Proposition 1, we have that #fi 2N jx �i yg < qvk(fxg). This is a contradiction since
#G1 > #G2 � qvk(fxg).
Proof of Proposition 5. Proposition 5 is a direct consequence of lemmas 1-6.

Lemma 1 Consider any number of candidates c such that c �
p
2c+ 2 + 2 is an in-

teger number and any pair (v; k) such that #G1 � qvk: If k = c + 2 �
p
2c+ 2 then

E(uG1(x)jc; k; v) = E(uchooser(x)jc; k; v):

Proof of Lemma 1. First notice that for every (v; k) such that #G1 � qvk, by

Proposition 4, we have that the product of E(uG1(x)jc; k; v) and E(uchooser(x)jc; k; v) is
equal to c+1

2
:

Take any k� 2 f1; :::; cg and v� 2 f1; :::; kg such that #G1 � qvk and E(uG1(x)jc; k�; v�) =
E(uchooser(x)jc; k�; v�): Thus,
E(uchooser(x)jc; k�; v�)2 = c+1

2
: It implies that:

E(uchooser(x)jc; k�; v�) = c�k�+2
2

= 2

q
c+1
2

Therefore, k� = c+ 2� 2
p
2c+ 2:

Lemma 2 A pair (v; k); such that#G1 � qvk; maximizes E(uG1(x)jc; k; v)+E(uchooser(x)jc; k; v)
if and only if it minimizes jE(uG1(x)jc; k; v)� E(uchooser(x)jc; k; v))j.

Proof of Lemma 2. First notice that for every (v; k) such that #G1 � qvk, by

Proposition 4, we have that:

E(uG1(x)jc; k; v)E(uchooser(x)jc; k; v) = c+1
2

The equality above implies that

(E(uG1(x)jc; k; v) + E(uchooser(x)jc; k; v))2 = E(uG1(x)jc; k; v)2 + E(uchooser(x)jc; k; v)2 +
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(c+ 1)

The expression above implies that, since that E(uG1(x)jc; k; v)+E(uchooser(x)jc; k; v) < 0;
a k 2 f1; :::cg maximizes E(uG1(x)jc; k) +E(uchooser(x)jc; k; v) if and only if it minimizes
E(uG1(x)jc; k; v)2 + E(uchooser(x)jc; k; v)2:
Notice also that:

(E(uG1(x)jc; k; v) � E(uchooser(x)jc; k; v))2 = E(uG1(x)jc; k; v)2 + E(uchooser(x)jc; k; v)2 �
(c+ 1):

The expression above implies that a k 2 f1; :::cgmaximizesE(uG1(x)jc; k; v)2+E(uchooser(x)jc; k; v)2

if and only if it maximizes (E(uG1(x)jc; k; v)� E(uchooser(x)jc; k; v))2:
Therefore, a k 2 f1; :::cg maximizes E(uG1(x)jc; k; v) +E(uchooser(x)jc; k; v) if and only if
minimizes jE(uG1(x)jc; k; v)� E(uchooser(x)jc; k; v))j:

Lemma 3 A pair (v; k); such that#G1 � qvk; maximizes E(uG1(x)jc; k; v)+E(uchooser(rc)jc; k; v)
if and only if it also maximizes (E(uG1(x)jc; k; v) � d)(E(uchooser(x)jc; k; v) � d) where
d < 0:

Proof of Lemma 3. First notice that for every (v; k) such that #G1 � qvk, by

Proposition 4, we have that:

E(uG1(x)jc; k; v)E(uchooser(x)jc; k; v) = c+1
2
.

Thus, (E(uG1(x)jc; k; v)� d)(E(uchooser(x)jc; k; v)� d) = c+1
2
+ d2� d(E(uG1(x)jc; k; v) +

E(uchooser(x)jc; k; v))
Since d < 0; the expression above implies that k maximizesE(uG1(x)jc; k; v)+E(uchooser(x)jc; k; v)
if and only if it maximizes (E(uG1(x)jc; k; v)� d)(E(uchooser(x)jc; k; v)� d):

Lemma 4 Consider any number of candidates c, (v�; k) and (v��; k � 1) such that k �
2;#G1 � qvk�and #G1 � qv��k�1:
1)If k < c + 5

2
�
q
2c+ 9

4
then E(uG1(x)jc;k; v�) + E(uchooser(x)jc;k; v�) > E(uG1(x)jc;k �

1; v��) + E(uchooser(x)jc;k � 1; v��) ;

2)If k = c + 5
2
�
q
2c+ 9

4
then E(uG1(x)jc;k; v�) + E(uchooser(x)jc;k; v�) = E(uG1(x)jc;k �

1; v��) + E(uchooser(x)jc;k � 1; v��) ;

3)If k > c + 5
2
�
q
2c+ 9

4
then E(uG1(x)jc;k; v�) + E(uchooser(x)jc;k; v�) < E(uG1(x)jc;k �

1; v��) + E(uchooser(x)jc;k � 1; v��)
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Proof of Lemma 4. Since (v�; k) and (v��; k � 1) such that k � 2;#G1 � qvk�and

#G1 � qv��k�1;by Proposition 4, we have the following equality:
(E(uG1(x)jc;k; v�)+E(uchooser(x)jc;k; v�))�(E(uG1(x)jc;k�1; v��)+E(uchooser(x)jc;k�1; v��)) =

c+1
(c�k+2)(c�k+3) �

1
2
:

Notice c+1
(c�k+2)(c�k+3) is decreasing with k and

c+1
(c�k+2)(c�k+3) =

1
2
when k = c+ 5

2
�
q
2c+ 9

4
.

Let P (k) = c+1
(c�k+2)(c�k+3) �

1
2
and k� = c+ 5

2
�
q
2c+ 9

4
: Thus, P (k�) = 0, P (k) > 0 for

any k < k� and P (k) < 0 for any k > k�:

Lemma 5 If c�
p
2c+ 2+2 is an integer number then it is equal to

j
c+ 5

2
�
q
2c+ 9

4

k
:

Proof of Lemma 5. Let z = c+ 5
2
�
q
2c+ 9

4
and y = c�

p
2c+ 2+2: Notice that

z � y =
p
2c+ 2 + 1

2
�
q
2c+ 2 + 1

4
: Thus, 1 > z � y > 0 for every c > 0. Therefore if

c�
p
2c+ 2+2 is an integer number we have that

j
c+ 5

2
�
q
2c+ 9

4

k
= c�

p
2c+ 2+2:

Lemma 6 Let z = c+ 5
2
�
q
2c+ 9

4
:

a) For any c�f3; 4; 6; 7; 8g, z is not a integer and bzc � c+1
2
;

b) If c = 5 then z is a integer and z � 1 � c+1
2
;

c) (z � 1)� (c+ 1)=2 � 0 for any c � 9:

Proof of Lemma 6. The itens a and b can be veri�ed in the table below that shows

the values of z and c+1
2
for every c�f3; 4; 5; 6; 7; 8g:

c z (c+1)=2

3 2.63 2

4 3.30 2.5

5 4 3

6 4.73 3.5

7 5.47 4

8 6.23 4.5

For any c > 8, let us prove that (z � 1)� (c+ 1)=2 � 0:
(z � 1)� (c+ 1)=2 = c+ 3

2
�
q
2c+ 9

4
� c+1

2
= 1

2
c+ 1�

q
2c+ 9

4

= 2c+4
4
�
q

8c+9
4
> 2c+4

4
�
q

9c+9
4
=

p
c+2

p
c+2

2
� 3

p
c+1
2
>

p
c+1
2
(
p
c+ 2� 3) =

=
p
c+1
2
(
p
c+ 2� 3) > 0.
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Appendix B
Proposition 1 helps us to locate equilibria and provides a �rst step toward their char-

acterization, when they exist. But knowing the necessary conditions alone is already of

great help. We illustrate this point though an example.

Example 5 Let C= fc1; c2; c3; c4; c5g and let N= f1; 2; 3g. Suppose that each proposer
votes for one candidate and the three most voted candidates form the list, with a tie break-

ing rule when needed: c2 � c1 � c5 � c4 � c3. The preferences of the chooser and the

committee members are as follows:

Preference Pro�le

Proposer 1 Proposer 2 Proposer 3 Chooser

c5 c5 c5 c1

c4 c4 c4 c2

c3 c3 c2 c3

c1 c1 c1 c4

c2 c2 c3 c5

Notice that, we have that qvk(fxg) = 1 for any x 2C and qvk(X) = 3 for any X 2Ck:

The �rst step in describing the equilibrium outcomes is to identify those candidates that

satisfy the three necessary conditions established in Proposition 1.

Inspecting the preference pro�le above, we have that:

1. Condition 1: fc1; c2; c3g.
2. Condition 2: fc1; c2; c3; c4; c5g:
3. Condition 3:fc1; c4; c5g:
4. Condition 4: fc1; c2; c4; c5g:
So, only candidate c1 that satis�es all four conditions. Now we have to check whether there

is a strategy pro�le that sustains candidate c1 as a strong Nash equilibrium candidate. The

following strategy pro�le sustains c1 as a strong Nash equilibrium outcome: Proposer 1

votes for c1, Proposer 2 votes for c4 and Proposer 3 votes for c2.

In the preceding example, the choice of candidates satisfying the necessary conditions

could in fact be sustained with an appropriate set of strong equilibrium strategies. But

this does not need to be the case. In fact, there may be candidates that satisfy the
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necessary conditions and yet cannot be the outcome of any equilibrium. Worse than that,

equilibria may not exist even if some candidates meet the necessary conditions, as shown

by our next example.

Example 6 Let C= fc1; c2; c3; c4; c5; c6g and let N= f1; 2; 3g. The proposers use the
rule of 4 names, (v = 1; k = 4), with the following tie breaking rule when needed:

c6 � c5 � c4 � c3 � c2 � c1. The preferences of the chooser and the committee

members are as follows:

Preference Pro�le

Proposer 1 Proposer 2 Proposer 3 Proposer 4 Proposer 5 Chooser

c5 c5 c5 c5 c1 c1

c6 c6 c6 c6 c3 c2

c4 c4 c4 c4 c2 c3

c2 c2 c2 c2 c4 c4

c3 c3 c3 c3 c6 c5

c1 c1 c1 c1 c5 c6

First, notice that qvk(fxg) = 1 for any x 2 fc3; c4; c5; c6g, qvk(fxg) = 2 for any x 2 fc1; c2g
and qvk(X) = 5 for any X 2Cknfc3; c4; c5; c6g and qvk(fc3; c4; c5; c6g) = 4. The �rst step
in describing the equilibrium outcomes is to identify those candidates that satisfy the three

necessary conditions established in Proposition 1.

Inspecting the preference pro�le above, we have that:

1. Condition 1: fc1; c2; c3g.
2. Condition 2: fc2; c3; c4; c5; c6g:
3. Condition 3: fc1; c2; c3; c4; c5; c6g:
4. Condition 4: fc1; c2; c3; c4; c5; c6g:
So, only candidates c2 and c3 satisfy all four conditions. However, there exists no strat-

egy pro�le that can sustain them as a strong Nash equilibrium outcome of the Constrained

Chooser Game. The reason is simple: for any strategy pro�le that would lead the election

of c2, Proposer 5 would have a pro�table deviation by casting a vote for c3 or c1 and

for any strategy pro�le that would lead the election of c3, proposers 1,2,3 and 4 have a

pro�table deviation by casting votes for c2.
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