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Abstract

We address the problem of extending the Shapley–Shubik index to the class of simple

games with externalities introduced in Alonso-Meijide et al. (2015). On the one hand, we

provide bounds for any efficient, symmetric, and monotonic power index. On the other

hand, we characterize the restriction of the externality-free value of de Clippel and Serrano

(2008) to the class of games under study by adapting well-known properties.
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1 Introduction

Since the seminal paper of Shapley and Shubik (1954) was published, the a priori assessment of

the power possessed by each agent participating in a decision making body has been an important

topic in game theory. Simple coalitional games can be used to describe these situations by

attaching 1 to any coalition that is strong enough to pass a proposal and 0 to the rest. If power

is understood as the ability of an agent to change the outcome of a ballot, then it is sensible to

use the agent’s contributions to coalitions to develop power indices. Thus, the value proposed by

Shapley (1953) to distribute the surplus generated from the cooperation of agents in economic

environments has been shown to also be valuable for evaluating the power in a legislature or

committee.
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In this paper, we aim to study the distribution of power in the presence of coalitional ex-

ternalities. We will use a real example of the mechanism used by the parliament of the Basque

autonomous region of Spain to elect the president of the regional government. Each party rep-

resented in the parliament can nominate a deputy for the presidency. At the voting stage, each

member of the parliament can either abstain or vote for one of the proposed candidates. The

candidate that gets more votes than any other (plurality rule) is the winner. That is, whether

a coalition is winning or not depends on the behavior of the other parties. We argue that coali-

tional games with externalities (Thrall and Lucas, 1963) are an appropriate framework in which

to study situations like these. Bolger (1986) has already employed games with externalities to

study multi-candidate elections and has proposed several power indices. One of the main nov-

elties of our approach is to consider a subclass of games with externalities that are monotonic.

This class of games generalizes the simple games (without externalities) introduced by von Neu-

mann and Morgenstern (1944). The aforementioned monotonicity property has recently been

proposed in Alonso-Meijide et al. (2015) and it makes special sense in situations with negative

externalities, such as the ones outlined previously.

The problem of extending the Shapley value to games with externalities was first tackled by

Myerson (1977). More recently, the topic has attracted some attention and several alternative

generalizations of the Shapley value have been proposed (Albizuri et al., 2005; Macho-Stadler

et al., 2007; de Clippel and Serrano, 2008; McQuillin, 2009; Dutta et al., 2010, among others).

The existence of so many different proposals can be explained by the difficult task of generalizing

the concept of a contribution in the presence of externalities. Indeed, if we want to measure

the change in the utility of a coalition when one of its members leaves it, then we should know

which coalition the defecting agent will join, if any. Albizuri et al. (2005) assume that the agent

can join any coalition and that all coalition configurations are equally likely. Macho-Stadler

et al. (2007) generalize this approach by considering a probability distribution over the different

events that could take place. However, de Clippel and Serrano (2008) argue that the intrinsic

marginal contribution is originated by an agent who leaves a coalition to become a singleton.

In a subsequent step, the agent could join any coalition, but the effect of this move should

not be considered. The approach used by McQuillin (2009) differs from the rest because it is

much broader and suggests that agents not participating in a coalition form a block. Finally,

Dutta et al. (2010) follow the potential approach and study a family of values that contains the

previous proposals.

In this paper, we aim to tackle the problem of extending the Shapley–Shubik index to simple
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games with externalities as devised by Alonso-Meijide et al. (2015). On the one hand, we adapt

the properties used by Young (1985) in the popular characterization of the Shapley value1 to

our setting. These three properties—namely efficiency, symmetry, and monotonicity—allow for

a variety of power indices when externalities are present, as is the case for general games in

partition function (de Clippel and Serrano, 2008). By imposing these conditions, we derive

simple bounds for the power index of an agent. On the other hand, we propose a natural way

to generalize the properties used by Dubey (1975) to characterize the Shapley–Shubik index.

Indeed, the monotonicity property of the games considered allows us to speak about minimal

winning embedded coalitions. This kind of coalition enables us to define null and symmetric

players while avoiding the use of contributions. We show that combining efficiency, symmetry,

null player property, and the transfer property yields a unique power index. This index is

the restriction of the value introduced by de Clippel and Serrano (2008) to simple games with

externalities.

The rest of the paper is organized in four sections. The preliminaries describe some of the

previous results and notations. In Section 3, we describe the bounds for an efficient, symmet-

ric, and monotonic power index. Section 4 presents our characterization result and Section 5

concludes.

2 Preliminaries

Let N be a finite set (|N | > 1) of players, which we keep fixed henceforth. A characteristic

function is a mapping v : 2N = {S : S ⊆ N} → R, satisfying v(∅) = 0. The set of characteristic

functions is denoted by CG. A value is a mapping f that assigns a unique vector f(v) ∈ RN to

every v ∈ CG. The Shapley value (Shapley, 1953), Sh, is defined for every v ∈ CG and i ∈ N by2

Shi(v) =
∑

S⊆N\i

(n− s− 1)!s!

n!
[v (S ∪ i)− v (S)] .

The set of partitions of N is denoted by P(N).3 An embedded coalition is a pair (S, P )

where P ∈ P(N) and S ∈ P . We sometimes refer to S as the active coalition in P and we say

1Recall that Young’s characterization is valid on the subclass of simple games and can, thus, also be considered

as a characterization of the Shapley–Shubik index.
2We abuse notation slightly and write T ∪ i and T \ i instead of T ∪ {i} and T \ {i}, respectively, for T ⊆ N

and i ∈ N . We use lowercase letters to denote the cardinality of a finite set.
3For convenience, we assume that the empty set is an element of every partition, even though we may omit

writing it; that is, for every P ∈ P(N), ∅ ∈ P .
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that a player i ∈ N belongs to an embedded coalition (S, P ) when i ∈ S. The set of embedded

coalitions is denoted by EC; that is, EC = {(S, P ) : P ∈ P(N) and S ∈ P}. Given P ∈ P(N) and

a nonempty coalition S ⊆ N , we let P−S ∈ P(N \S) denote the partition P = {T \S : T ∈ P}.

A partition function is a mapping v : EC → R such that v(∅, P ) = 0 for every P ∈ P(N).

The set of partition functions is denoted by G. It is easy to see that G is a vector space

over R. Indeed, de Clippel and Serrano (2008) develop the following basis of this vector space{
e(S,P ) : (S, P ) ∈ EC and S 6= ∅

}
where e(S,P ) ∈ G is defined for every (T,Q) ∈ EC by

e(S,P )(T,Q) =

1 if S ⊆ T and ∀T ′ ∈ Q \ T, ∃S′ ∈ P such that T ′ ⊆ S′, 4

0 otherwise.

In this paper, we focus on the so-called simple games with externalities that were introduced

in Alonso-Meijide et al. (2015). This subclass of games is a natural generalization of the class

of simple games without externalities. To define monotonicity in the class G, we consider the

following notion of inclusion between embedded coalitions.

Definition 2.1. Let (S, P ), (T,Q) ∈ EC. We say that (S, P ) is contained in (T,Q) and write

(S, P ) v (T,Q) when S ⊆ T and ∀T ′ ∈ Q \ T , ∃S′ ∈ P such that T ′ ⊆ S′.

Note that whenever S 6= ∅, (S, P ) v (T,Q) if and only if e(S,P )(T,Q) = 1. According to this

definition, an embedded coalition (S, P ) is a subset of another embedded coalition (T,Q) if the

active coalition in P is contained in the active coalitions in Q (i.e., S ⊆ T ) and, moreover, the

partition P−T is coarser than Q \ T . Notice that both P−T and Q \ T are partitions of N \ T .

We are now in a position to introduce the class of games under study.

Definition 2.2. A partition function v ∈ G is a simple game (with externalities) if it satisfies

the following three conditions:

i) For every (S, P ) ∈ EC, v(S, P ) ∈ {0, 1}.

ii) v(N, {∅, N}) = 1.

iii) If (S, P ), (T,Q) ∈ EC is such that (S, P ) v (T,Q), then v(S, P ) ≤ v(T,Q).

An embedded coalition, (S, P ) ∈ EC, is winning if v(S, P ) = 1 and losing otherwise. The set of

simple games is denoted by SG.

4As before, we may omit the braces and write Q \ T instead of Q \ {T} for every T ∈ Q ∈ P(N).
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The monotonicity property defined in point iii) allows us to properly speak about minimal

winning embedded coalitions. Let v ∈ SG. A winning embedded coalition, (S, P ) ∈ EC, is

minimal if every proper subset of it is a losing embedded coalition; that is, if (T,Q) @ (S, P )

implies that v(T,Q) = 0.5 The set of all minimal winning embedded coalitions of the simple

game v is denoted byM(v) and the subset of minimal winning embedded coalitions that contain

a given player i ∈ N is denoted by Mi(v); that is, Mi(v) = {(S, P ) ∈M(v) : i ∈ S}.

A player i ∈ N is a null player in v ∈ SG if i does not belong to any minimal winning

embedded coalition; that is, Mi(v) = ∅. In contrast, a player i ∈ N is a veto player in v ∈ SG

if it belongs to every minimal winning embedded coalition; that is, M(v) =Mi(v).

Two players i and j are symmetric in v if exchanging the two players in an embedded

coalition in which either player participates does not change its worth. Formally, let π : N → N

be defined by π(i) = j, π(j) = i, and for every l ∈ N \ {i, j}, π(l) = l. Then, i and j are

symmetric in v if for every (S, P ) ∈ M(v) such that i ∈ S and j /∈ S, (π(S), π(P )) ∈ M(v),

where π(S) = {π(l) : l ∈ S} and π(P ) = {π(T ) : T ∈ P}.

There are many ways in which a partition function v ∈ G can be converted into a charac-

teristic function (see for instance Macho-Stadler et al., 2007). Any such conversion is based on

each coalition’s expectation of how the other agents are going to be organized. For instance,

externalities in v ∈ G could be ruled out by using the associated optimistic game, which is the

characteristic function defined by v∗(S) = max
(S,P )∈EC

{v(S, P )} for every S ⊆ N . In contrast, the

pessimistic game associated with v is defined by v∗(S) = min
(S,P )∈EC

{v(S, P )} for every S ⊆ N .

Note that whenever the partition function is monotonic, in particular when v ∈ SG, the above

maximum and minimum are attained at the finer and coarser partitions, respectively; that is,

v∗(S) = v(S, {S, {j}j∈N\S}) and v∗(S) = v(S, {S,N \S}). The two games that we borrow from

de Clippel and Serrano (2008) and McQuillin (2009) play an important role henceforth.

Finally, it is convenient to consider the effect of a player’s change of affiliation. Formally,

given v ∈ SG, (S, P ) ∈ EC, i ∈ S, and T ∈ P \ S, we define the contribution of i to (S, P ) with

respect to T in v by

ci(v, S, P, T ) = v(S, P )− v(S \ i, {S \ i, T ∪ i} ∪ P \ {S, T}).6

Note that this contribution is always non-negative in a monotonic game. For games in SG, the

contribution is 1 if the affiliation change of i from T to S turns (S, P ) into a winning embedded

coalition, and 0 otherwise.

5A proper subset, (T,Q) @ (S, P ), is a subset (T,Q) v (S, P ) satisfying (T,Q) 6= (S, P ).
6Note that T could be the empty set, i.e., we allow the possibility of player i becaming a singleton.
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3 Monotonicity of solutions and bounds on the power

In this section we will focus on point-valued solution concepts for the class of games introduced

in Definition 2.2. A power index is a mapping, f, that assigns a vector f(v) ∈ RN to every simple

game v ∈ SG, where each coordinate fi(v) describes the power of player i ∈ N . Next, we present

three interesting properties that we would like to impose on a power index, f.

Efficiency (eff):
∑

i∈N fi(v) = 1 for every v ∈ SG.

Symmetry (sym): fi(v) = fj(v) for every (N, v) ∈ SG and every pair i, j ∈ N of symmetric

players in v.

Monotonicity (mon): fi(v) ≤ fi(w) for every v, w ∈ SG and i ∈ N such that for every

(S, P ) ∈ EC with i ∈ S and every T ∈ P \ S, ci(v, S, P, T ) ≤ ci(w, S, P, T ).

The three of them are based on the well known properties that Young (1985) used to char-

acterize the Shapley value. mon is the monotonicity property of de Clippel and Serrano (2008)

restricted to simple games. It states that if a player’s contribution vector weakly increases from

one game to another, then so should her power. These three properties allow for a variety of

solutions. In the next result, we derive simple bounds for any power index that satisfies these

three conditions.

Proposition 3.1. Let f be a power index satisfying eff, sym, and mon. Then, for every v ∈ SG

and i ∈ N ,

fi(v) ∈ [Shi(w),Shi(w)] ,

where w,w ∈ CG are defined for every S ⊆ N\i by w(S) = v∗(S), w(S∪i) = max {v∗(S), v∗(S ∪ i)},

w(S) = v∗(S), and w(S ∪ i) = v∗(S ∪ i).

Proof. Let v ∈ SG and i ∈ N .

First, observe that any characteristic function can be viewed as a partition function by just

taking the worth of every (S, P ) ∈ EC to be constant, for every S ⊆ N . Moreover, by the

monotonicity of v and the definition of the two games above, w and w are monotonic (see item

iii) in Definition 2.2). Then, since v ∈ SG, w and w are simple games without externalities.

Hence, fi(w) and fi(w) are well defined.

Next, let S ⊆ N \ i, (S ∪ i, P ) ∈ EC, and T ∈ P \ {S ∪ i}. If w(S ∪ i) = v∗(S) =

v
(
S, {S, {j}j∈N\S}

)
, then ci(w, S, P, T ) = 0. Otherwise, if w(S∪i) = v∗(S∪i) = v (S ∪ i, {S ∪ i,N \ (S ∪ i)}),
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then

w(S ∪ i)− w(S) ≤ v(S ∪ i, P )− v(S, {S, T ∪ i} ∪ P \ {S ∪ i, T}),

because (S∪i, {S∪i,N \(S∪i)}) v (S∪i, P ), (S, {S, T ∪i}∪P \{S∪i, T}) v (S, {S, {j}j∈N\S}),

and v is monotonic. In any case, ci(w, S, P, T ) ≤ ci(v, S, P, T ). Using the definition of w and the

fact that v is monotonic, we also get ci(v, S, P, T ) ≤ ci(w, S, P, T ). By mon, fi(v) ∈ [fi(w), fi(w)].

Finally, since both w and w are characteristic functions, using the characterization of Sh

that was developed by Young (1985), we obtain fi(w) = Shi(w) and fi(w) = Shi(w) for every

i ∈ N . �

For each player i ∈ N , the bounds are her Shapley value payoffs in two games. It should

be emphasized that each of these games depends on the player under consideration. The game

used to obtain the lower bound represents the worst case scenario for i; that is, the worth in

the optimistic game for every coalition in which i does not participate and the worth in the

pessimistic game for every coalition to which i belongs, as long as this value yields a monotonic

game. Similarly, the game used to obtain the upper bound can be interpreted as the best case

scenario from the perspective of player i. Indeed, the worth in the pessimistic game is used

for every coalition not containing i and the worth in the optimistic game for coalitions that do

contain i.

It is natural to wonder whether the bounds of Proposition 3.1 are tight. We are able to

identify some cases in which they are. For each agent, there are games where the two bounds are

attained by some power indices satisfying eff, sym, and mon. Since we have not yet introduced

any particular power index, we postpone the precise statement of the claim to Section 5 and

only present a remark that will facilitate this discussion.

Remark 3.1. Let i ∈ N be a veto player in v ∈ SG. Then, w = v∗ and w = v∗. Indeed,

since M(v) = Mi(v) it follows that for every S ⊆ N \ i, w(S) = w(S) = v∗(S) = v∗(S) = 0,

w(S ∪ i) = max{0, v∗(S ∪ i)} = v∗(S ∪ i), and w(S ∪ i) = v∗(S ∪ i).

4 The externality-free Shapley–Shubik index

In this section, we present two additional properties that a power index, f, may be asked to

satisfy. Again, they are adaptations of well known properties to the class of games under study.

Null player property (npp): fi(v) = 0 for every v ∈ SG and every null player i ∈ N in v.
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Transfer property (tra): f(v) + f(w) = f(v ∨ w) + f(v ∧ w) for every v, w ∈ SG.7

As we will shortly see, imposing these properties singles out a unique power index. Next,

as did Shapley and Shubik (1954) with the Shapley value, we consider the restriction of the

externality-free value (de Clippel and Serrano, 2008) to our class of simple games.

Definition 4.1. The externality-free Shapley–Shubik index, SSEF, is the power index defined

by SSEF(v) = Sh(v∗), where v ∈ SG.

Finally, we present our main result.

Theorem 4.1. SSEF is the only power index satisfying eff, npp, sym, and tra.

Proof. Existence: We show that SSEF satisfies the four properties.

eff. This follows from Definition 4.1 and the fact that Sh is efficient.

npp. Let i ∈ N be a null player in v ∈ SG. We will see that v∗(S ∪ i) = v∗(S) for every

S ⊆ N \ i. Suppose, in contrast, that there is a coalition S ⊆ N \ i such that v∗(S ∪ i) 6= v∗(S).

Then, by definition of v∗, v
(
S ∪ i,

{
S ∪ i, {j}j∈N\(S∪i)

})
6= v

(
S,
{
S, {j}j∈N\S

})
. Taking into

account the fact that
(
S,
{
S, {j}j∈N\S

})
v
(
S ∪ i,

{
S ∪ i, {j}j∈N\(S∪i)

})
and the definition of

v, we have that v
(
S ∪ i,

{
S ∪ i, {j}j∈N\(S∪i)

})
= 1 and v

(
S,
{
S, {j}j∈N\S

})
= 0. Since i is a

null player in v,
(
S ∪ i,

{
S ∪ i, {j}j∈N\(S∪i)

})
is not a minimal winning embedded coalition in

(N, v). Let (T,Q) ∈ M(v) be such that (T,Q) v
(
S ∪ i,

{
S ∪ i, {j}j∈N\(S∪i)

})
. Again, since i

is a null player in v, i /∈ T or, equivalently, T ⊆ S. Then (T,Q) v
(
S,
{
S, {j}j∈N\S

})
, which

contradicts the assumption that v
(
S,
{
S, {j}j∈N\S

})
= 0. That is, we have shown that i is a

null player in the classical sense in the characteristic function v∗. Finally, since Sh satisfies the

null player property (Shapley, 1953), SSEFi (N, v) = 0.

sym. Let i, j ∈ N be two symmetric players in v ∈ SG and let S ⊆ N \ {i, j}. Suppose that(
S ∪ i,

{
S ∪ i, {l}l∈N\(S∪i)

})
is a winning embedded coalition. We show that

(
S ∪ j,

{
S ∪ j, {l}l∈N\(S∪j)

})
is also a winning embedded coalition. Let (T,Q) ∈M(v) be such that (T,Q) v

(
S ∪ i,

{
S ∪ i, {l}l∈N\(S∪i)

})
.

If i /∈ T , then (T,Q) v
(
S ∪ j,

{
S ∪ j, {l}l∈N\(S∪j)

})
and we are done. Otherwise, suppose that

i ∈ T . Let π : N → N be defined by π(i) = j, π(j) = i, and for every l ∈ N \ {i, j},

π(l) = l. Note that since i and j are symmetric players, (π(T ), π(Q)) ∈ M(v). Moreover,

(π(T ), π(Q)) v
(
S ∪ j,

{
S ∪ j, {l}l∈N\(S∪j)

})
because π(T ) = (T \ i) ∪ j ⊆ S ∪ j. All in all,

we have shown that i and j are symmetric players (in the classical sense) in the characteristic

7The games v ∨w and v ∧w are defined for every (S, P ) ∈ EC by, (v ∨w)(S, P ) = min{v(S, P ), w(S, P )} and

(v ∧ w)(S, P ) = max{v(S, P ), w(S, P )}.
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function v∗. Finally, since Sh is symmetric (Shapley, 1953), the payoffs of i and j in v according

to SSEF coincide.

tra. Let v, w ∈ SG. Then

SSEF(v) + SSEF(w) = Sh(v∗) + Sh(w∗) = Sh(v∗ ∨ w∗) + Sh(v∗ ∧ w∗) = Sh((v ∨ w)∗) + Sh((v ∧ w)∗)

= SSEF(v ∨ w) + SSEF(v ∧ w),

where the first and last equalities hold by definition of SSEF, the second is due to the fact that Sh

satisfies the classic transfer property (Dubey, 1975), and the third follows from v∗∨w∗ = (v∨w)∗

and v∗ ∧ w∗ = (v ∧ w)∗. Indeed, if S ⊆ N , then

(v∗ ∨ w∗)(S) = max{v∗(S), w∗(S)} = max
{
v
(
S, {S, {j}j∈N\S}

)
, w
(
S, {S, {j}j∈N\S}

)}
= (v ∨ w)

(
S, {S, {j}j∈N\S}

)
= (v ∨ w)∗(S).

Exchanging the maximum with the minimum in this equation shows that v∗ ∧ w∗ = (v ∧ w)∗

and this concludes the existence part.

Uniqueness: Let f be a power index satisfying the four properties. We show that f is unique

by induction on the number of minimal winning coalitions.

First, let v ∈ SG be such that |M(v)| = 1. ThenM(v) = {(S, P )} for some (S, P ) ∈ EC and

v = e(S,P ). It is immediate to check that every i /∈ S is a null player in e(S,P ). Then, by npp,

fi
(
e(S,P )

)
= 0. Similarly, every two players in S are symmetric in e(S,P ). Then, by sym, they

get the same payoff and by eff we conclude that fi
(
e(S,P )

)
= 1
|S| for every i ∈ S.

Second, suppose that f is uniquely determined for every v ∈ SG with |M(v)| < r. Let v ∈ SG

with M(v) =
{(
S1, P

1
)
, . . . , (Sr, P

r)
}

. Next, since v is monotonic, for every (T,Q) ∈ EC,

v(T,Q) = max
(S,P )∈M(v)

e(S,P )(T,Q) = max
{
w(T,Q), e(Sr,P r)(T,Q)

}
,

where w(T,Q) = max
k∈{1,...,r−1}

e(Sk,Pk)(T,Q). Since v = w ∨ e(Sr,P r), by tra,

f(w) + f
(
e(Sr,P r)

)
= f(v) + f

(
w ∧ e(Sr,P r)

)
.

Note that the two payoffs on the left-hand side of this equation are uniquely determined by the

induction hypothesis. Then, it only remains to prove that the vector f
(
w ∧ e(Sr,P r)

)
is uniquely

determined.

Third, for every k ∈ {1, . . . , r − 1}, we define the coalition Tk = Sk ∩ Sr and the par-

tition Qk =
{
U ∩ V : U ∈ P k and V ∈ P r

}
. Observe that

(
Tk, Q

k
)
∈ EC. We claim that
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M
(
w ∧ e(Sr,P r)

)
=
{(
Tk, Q

k
)

: k ∈ {1, . . . , r − 1}
}

. Indeed, let (T,Q) ∈ EC. Then

w ∧ e(Sr,P r)(T,Q) = 1⇔

w(T,Q) = 1 and

e(Sr,P r)(T,Q) = 1

⇔

∃k ∈ {1, . . . , r − 1} : (Sk, P
k) v (T,Q) and

(Sr, P
r) v (T,Q)

⇔ ∃k ∈ {1, . . . , r − 1} :

Sk ∩ Sr ⊆ T and

Q \ T is finer than P k \ Sk and P r \ Sr

Notice that, by definition of Qk, any partition which is finer than both P k \ Sk and P r \ Sr is

necessarily finer than Qk \ Tk. Thus, the previous statement is equivalent to

∃k ∈ {1, . . . , r − 1} :

Tk ⊆ T and

Q \ T is finer than Qk \ Tk
⇔ ∃k ∈ {1, . . . , r − 1} : (Tk, Q

k) v (T,Q).

Since all of the previous statements are if and only if implications, we have shown the claim.

Fourth, and last, since
∣∣M (

w ∧ e(Sr,P r)

)∣∣ < r, by the induction hypothesis f
(
w ∧ e(Sr,P r)

)
is unique and the proof is concluded. �

Remark 4.1. The four properties of this characterization result are independent, as the follow-

ing examples show.

Let f1 be the power index defined by f1i (v) = 0 for v ∈ SG and i ∈ N . Then f1 satisfies npp,

sym, and tra, but not eff.

Let f2 be the power index introduced by McQuillin (2009) and defined as the Shapley value

of the game in characteristic function v∗(S) = v (S; {S,N \ S}). Then, f2 satisfies eff, sym,

and tra, but not npp.

Let f3 be the power index that is defined as the weighted Shapley value (Kalai and Samet,

1987) of the characteristic function v∗, where the weights are different for at least two players.

Then, f3 satisfies eff, npp, and tra, but not sym.

The DP-externality power index defined in Alonso-Meijide et al. (2015) satisfies eff, npp,

and sym, but not tra.

5 Concluding remarks

In this paper, we have specified the externality-free value of de Clippel and Serrano (2008) to

a class of monotonic, {0, 1}-valued games with externalities. We have shown that this is the

only power index satisfying eff, npp, sym, and tra. The main appeal of our characterization
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is that the properties are stated without making explicit use of contributions. Instead, we

use the participation of players in minimal winning embedded coalitions to determine null and

symmetric players. In this way, we consider players who are never part of the active coalition in

a minimal winning structure as null. Similarly, we consider players who can be replaced from

the active coalition while keeping it minimal winning as symmetric.

To relate npp with other properties in the literature, it can be shown that for every v ∈ SG,

Mi(v) = ∅ if and only if for every (S;P ) ∈ EC with i ∈ S, v(S;P ) = v (S; (P \ S) ∪ {S \ i, {i}}).

That is, a player is null when leaving the active coalition to remain singleton does not change

the worth of an embedded coalition. This notion of a null player is equivalent to that of de

Clippel and Serrano (2008) and to the type 2 dummy player of Dutta et al. (2010), for instance.

It could be reasonably argued that a player should only be considered null when any coalitional

move that she may make does not change the worth of an embedded coalition. This is the

approach followed by McQuillin (2009),8 which leads to a weaker version of the null player

property. Identifying the family of indices that satisfy eff, sym, tra, and the later version of

the null player property is a topic for future research.

Finally, we would like to elaborate a little on the bounds identified in Proposition 3.1.

Recall how Remark 3.1 shows that in games where there is a veto player (whose participation

is necessary for any coalition to be winning), the two games that are used to describe the

bounds are precisely the pessimistic and optimistic games. In other words, the lower bound

corresponds to the value studied by McQuillin (2009) while the upper bound corresponds to the

value introduced by de Clippel and Serrano (2008). Taking into account the fact that these two

values satisfy eff, sym, and mon, we can conclude that under these circumstances the bounds

are tight. However, this does not hold for every game. Indeed, the lower bound of Proposition

3.1 coincides with SSEF for null players but it is easy to find games for which SSEF is in the

interior of the interval for some players.
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Alonso-Meijide, J. M., Álvarez-Mozos, M., and Fiestras-Janeiro, M. G. (2015). Power indices

and minimal winning coalitions in simple games with externalities. Technical report, UB

Economics Working Papers.

Bolger, E. (1986). Power indices for multicandidate voting games. International Journal of

Game Theory, 15:175–186.

de Clippel, G. and Serrano, R. (2008). Marginal contributions and externalities in the value.

Econometrica, 76:1413–1436.

Dubey, P. (1975). On the Uniqueness of the Shapley Value. International Journal of Game

Theory, 4:131–139.

Dutta, B., Ehlers, L., and Kar, A. (2010). Externalities, potential, value and consistency. Journal

of Economic Theory, 145:2380–2411.

Kalai, E. and Samet, D. (1987). On weighted Shapley values. International Journal of Game

Theory, 16:205–222.
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