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Abstract

This paper provides a general characterization of subgame perfect equilibria for strate-
gic timing problems, where two firms have the (real) option to make an irreversible invest-
ment. Profit streams are uncertain and depend on the market structure. The analysis is
based directly on the inherent economic structure of the model. In particular, the deter-
mination of equilibria with preemptive investment is reduced to solving a single class of
constrained optimal stopping problems. The general results are applied to typical state-
space models, completing commonly insufficient equilibrium arguments, showing when
uncertainty leads to qualitatively different behavior, and establishing additional equilibria
that are Pareto improvements.

Keywords: Preemption, real options, irreversible investment, equilibrium, optimal stop-
ping.

JEL subject classification: C61, C73, D21, D43, L12, L13

1 Introduction

Preemption is a well-known phenomenon in the context of irreversible investment. In their
seminal paper, Fudenberg and Tirole (1985) argue that the commitment power of irreversibil-
ity and subgame perfectness together imply that any firm which is the first to adopt a new
technology in some industry can deter adoption by another firm; the second adopter’s ben-
efits will be reduced by competition and thus not worth the immediate adoption cost. In
consequence, the firms try to preempt each other to win the (temporary) monopoly profit.1

Such preemption is particularly remarkable when it is costly. In their deterministic model,
Fudenberg and Tirole (1985) assume that the adoption cost decreases over time, which gener-
ates an incentive to delay adoption and thus a conflict with the preemption impulse. Another
possibility is to introduce uncertainty, so that the option value of investing only in sufficiently
good states would make the firms want to wait. There is already a sizable literature on such
∗Center for Mathematical Economics, Bielefeld University, Germany. jsteg@uni-bielefeld.de
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1This effect does not appear in simple Nash equilibria as studied by Reinganum (1981), where firms pre-

commit to adoption times.
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real-option games that argues for the drastic impact of competition on the valuation of real
options, typically using the principles of Fudenberg and Tirole (1985).

However, transferring arguments from the deterministically evolving “state” time to a
state with stochastic dynamics is only possible to some extent and in fact the arguments often
remain incomplete. Analogies are typically drawn for certain reduced-form value functions on
the state space, which standard Markovian state dynamics conveniently allow to derive, but
current values at different states convey less information than discounted values. Discounting
is simple in a deterministic model but difficult to visualize if it is random which critical state
is reached next and when.

Figure 1 shows the discounted (to time t = 0) values of the firms in the model of Fudenberg
and Tirole (1985) if the first adoption happens at t ≥ 0. If a single firm is the first to adopt, its
value is L(t) and that of the other firm F (t); the value of simultaneous adopters is M(t). The
strategic structure is quite clear: Initially it is optimal to wait, to benefit from the increase
in L if the opponent does not adopt and from F > L > M else, then there is a phase with
first-mover advantage L > F that may induce preemption, and all payoffs are eventually
identical and decreasing, so that adoption becomes dominant.
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Figure 1: Two parameterizations of the model of Fudenberg and Tirole (1985).2
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Figure 2: A typical stochastic model and its deterministic limit.3

2Left: π0(0) = π0(1) = 0, π1(1) = 0.03, π1(2) = 0.012, r = 0.02, c(t) = e
−(r+a)t, a = 0.08. Right: same,

except π0(0) = 0.006, π1(1) = 0.022.
3Model from Section 4.1 with D00 = D01 = 0, D10 = 2.5, D11 = I

1 = I
2 = 1, r = 0.1, µ = 0.08, σ = 0.2

(left) and σ = 0 (right); cf. also fn. 11 on the deterministic limit.
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Only the same local orders can be seen in Figure 2, showing current values as functions of
the stochastic state x for a typical model, but not the dynamics of discounted values. In the
right panel the volatility is set to zero, so one can add discounting while x grows according to
its law over the shown range, which yields again the left panel of Figure 1. After discounting,
e.g. F is concave, although it is convex in the state. Figure 2 reveals the structure of the state
space concerning first- or second-mover advantages, but for a complete equilibrium analysis
the dynamics of discounted values need to be studied in greater detail than is often the case.

Here we formulate a strategic investment model based on revenue streams that keeps
the stochastic dimension completely general, to establish the structure of subgame perfect
equilibria by elementary arguments with immediate economic meaning. By directly comparing
revenue streams and implied opportunity costs, the verification of equilibria with preemption
is reduced to solving a single class of non-strategic optimal stopping problems for one firm.
Thereby, not only incomplete arguments for typical equilibria are amended, but the unified
view also provides more detailed economic insights into their structure; many economically
quite diverse models from the literature can be nested. As mutual preemption destroys value,
we also establish some principles in the general framework for when it can be avoided, and
we identify times when it is impossible to delay investment in equilibrium.

Alongside, important general questions for equilibria of real-option games are addressed,
such as:

• At what times is there a first-mover advantage for both firms that they may fight for
by trying to preempt each other?

• When and how is the first investment affected by a threat of preemption?

• Will a firm ever want to invest when it has a second-mover advantage?

Answers to these questions will be found by studying appropriate optimal stopping problems.
By applying the general results to two typical state-space models from the literature, those

of Grenadier (1996) and Pawlina and Kort (2006), we show how they complete insufficient
equilibrium arguments for these and similar other models, and we identify some neglected
equilibrium behavior that can qualitatively distinguish such stochastic models from determin-
istic ones. The common behavior in equilibrium is that the first investment occurs once the
state reaches a critical value, such as a certain level of demand. That threshold depends on
strategic considerations, but there is no risk to wait for it as no firm can find it profitable
to invest before. More complex behavior can result for higher state levels that are too prof-
itable to deter a follower but where profitability is still growing in the state. Then waiting for
the most profitable state bares a risk in stochastic models, that of investment due to a first-
mover advantage at lower levels, implying feedback effects. We further identify some neglected
equilibria for each model that may be Pareto improvements and thus more plausible.

More generally, some models that can be nested here are the deterministic ones of Rein-
ganum (1981) and Fudenberg and Tirole (1985), the stochastic model of Mason and Weeds
(2010), where revenue is linear in a geometric Brownian motion, as in the model of Pawlina
and Kort (2006), who add asymmetry in investment costs, which is further extended to an
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exponential Lévy process by Boyarchenko and Levendorskĭı (2014); the model of Weeds (2002)
includes Poisson arrivals of R&D success and the model of Grenadier (1996) includes a con-
struction delay, but they are both formally equivalent to a symmetric setting with geometric
Brownian motion again.

The paper is organized as follows. The general model is presented in Section 2. Section 3
characterizes equilibria with and without preemption, providing sufficient and some necessary
equilibrium conditions. The implications for typical state-space models are illustrated in
Section 4. Further specific arguments for such models help to analyze their equilibria in
detail, in particular so far neglected aspects. Section 5 concludes. Some technical results are
collected in Appendix A and all other proofs in Appendix B.

2 The model

Consider two firms i ∈ {1, 2} that each can choose when to make one irreversible investment.
For instance, firm i may wish to enter some new market, or to improve present operations
by updating technology or expanding production capacity. If the firms’ markets are related
or even the same, then each firm’s investment has a potential effect on both firms’ revenues.
Therefore assume that as long as no firm has invested, the revenues that any firm i incurs per
period are given by some stochastic process (π0i

t ). If firm i invests before its opponent, its
revenues switch to the process (πLit ), whereas if the opponent invests first, firm i’s revenues
switch to the process (πFit ). Once both firms have invested, firm i’s revenues follow the process
(πBit ). The revenues πLi· and πBi· that apply after firm i’s investment are understood net of
any capitalized investment cost.4 All revenues are already discounted to time 0 units.

Time is continuous, t ∈ R+, so only accrued revenues in intervals of time matter. Therefore
assume the revenues to be product-measurable w.r.t. a given probability space

(
Ω,F , P

)
and

the time domain. Assume them in fact to be P ⊗ dt-integrable, i.e. E
[∫∞

0
∣∣π0i
t

∣∣ dt] < ∞ etc.,
to ensure finite expectations throughout. Any (in-)equalities between revenue processes are
correspondingly understood to hold P ⊗ dt-a.e. – and any between random variables P -a.s.

Dynamically revealed information about the state of the world is represented by a filtration
F = (Ft) satisfying the usual conditions of right-continuity and completeness. Assume that
the past revenues (potentially) accrued up to any t ∈ R+ are Ft-measurable, i.e. the processes
(
∫ t

0 π
0i
s ds) etc. are adapted to F.5

As a further economic assumption, the following orders are imposed on the revenues. First,
any investment by a single firm rather harms the revenue of the opponent. For both i = 1, 2
let thus πLi· ≥ πBi· (e.g. as the first investor loses a monopoly premium when the laggard
invests) and also π0i

· ≥ πFi· (e.g. as the first investor steals some business from the laggard).
4Any investment cost that is strictly decreasing in discounted terms, like c(t) in Fudenberg and Tirole

(1985), can be capitalized by a change of variable defined by c(t) = e
−ry =

∫∞
y
e
−rz

r dz. If the discounted
investment cost is stochastic and strictly decreasing in expectation (a strict supermartingale), then one can
use the monotone part of the Doob-Meyer decomposition in place of c(t).

5This property holds e.g. if the processes (π0i
t ) etc. are progressively measurable, i.e. if the restricted mappings

π
0i
· : Ω× [0, T ]→ R etc. are FT ⊗ B([0, T ])-measurable for all T ∈ R+.
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The special case π0i
· ≡ π

Fi
· is typical for market entry models and has additional implications

that will be pointed out frequently.
Second, firm 2 rather has a disadvantage in the sense of smaller investment gains relative to

being laggard, formally πB2
· −π

F2
· ≤ π

B1
· −π

F1
· and πL2

· −π
F2
· ≤ π

L1
· −π

F1
· . That disadvantage

arises e.g. from a higher capitalized investment cost. Given the first part of the disadvantage,
that firm 2’s investment gain as laggard is at most that of firm 1, the second part would also
obtain if πLi· − π

Bi
· was not greater for firm 2 than for firm 1, which is the first investor’s

revenue loss due to the laggard’s investment.

2.1 The investment timing game

The firms’ investment timing decisions are strategic if some firm’s investment indeed affects
the other firm’s payoff, i.e. if {πLi· > πBi· } or {π0i

· > πFi· } have positive measure for some
i ∈ {1, 2}. We model the problem as a dynamic game in continuous time.

As continuous time is not well ordered, it is not possible to define consistent outcomes if
one lets the firms choose between the actions “invest” and “wait” at all times as in a game in
extensive form, unless one adds restrictions such as reaction lags (see Simon and Stinchcombe,
1989, or Alós-Ferrer and Ritzberger, 2008). We follow the typical approach for timing games
and let the firms form “plans of action”, which are dates when to invest if no other firm invests
before. Any firm whose plan is minimal invests at that planned date, which thus resolves the
strategic conflict of who invests first (cf. Fudenberg and Tirole, 1985, or Laraki et al., 2005).
The actual investment date of a firm whose plan is not minimal is determined conditionally
at the first investor’s date, as an optimal reaction to the changed history.

A plan of action is pursued as long as the trivial action history is observed, that no firm has
invested. Here plans may be contingent on other dynamic information: about the uncertain
state. The fundamental mathematical concept to determine a state-depend date dynamically
by the filtration F is a stopping time, a random variable τ : Ω→ R+∪{∞} := [0,∞] satisfying
{τ ≤ t} ∈ Ft for all t ∈ R+. The information at any time t must tell if the date τ (the choice
“stop”) has been reached or not. Let T denote the set of all stopping times and thus plans.

Plans of action also have to be formed off the path of play to support subgame perfectness,
in particular past an initial plan. Therefore we also consider any stopping time ϑ ∈ T as a
potential date at which no firm has invested, yet, and thus as the beginning of a subgame for
which plans of action are needed (cf. Riedel and Steg, 2014). The latter cannot be assembled
in a measurable way from (Ft-measurable) plans at deterministic times t ∈ R+, unless F is
countable. Nevertheless, plans shall be consistent.

A strategy for firm i in the timing game is thus a family of plans
{
τ iϑ, ϑ ∈ T

}
, which

is required to satisfy the feasibility condition τ iϑ ≥ ϑ for all ϑ ∈ T , i.e. a plan cannot date
in the past, and the time consistency condition τ iϑ = τ i

ϑ
′ on the event {ϑ′ ≤ τ iϑ} for any

two ϑ ≤ ϑ′ ∈ T , i.e. a plan is not revised while it is not reached, yet. In particular, if the
beginnings of two subgames agree in some states, then the plans must agree there, too.
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2.2 Payoffs and equilibrium

To determine an optimal reaction for a firm whose plan is not minimal and thus the resulting
conditional payoffs at the time of the first investment, suppose that the opponent of firm i is
the first investor at arbitrary τ ∈ T . Then firm i may invest at any stopping time τ ′ ≥ τ ,
aiming to attain the conditional follower payoff

F i(τ) =
∫ τ

0
π0i
s ds+ ess sup

τ
′≥τ

E

[∫ τ
′

τ
πFis ds+

∫ ∞
τ
′
πBis ds

∣∣∣∣Fτ

]
.6 (2.1)

By continuity and integrability of the process
∫ ·
τ π

Fi
s ds+

∫∞
· πBis ds to be stopped, there exists

a latest optimal – thus uniquely defined – stopping time τ iF (τ) ∈ T attaining the value F i(τ).
Now suppose on the contrary that firm i is the first investor at τ ∈ T . Then the other

firm j ∈ {1, 2} \ {i} is assumed to follow suit at τ jF (τ) to realize F j(τ), which yields firm i the
conditional leader payoff

Li(τ) =
∫ τ

0
π0i
s ds+ E

[∫ τ
j
F (τ)

τ
πLis ds+

∫ ∞
τ
j
F (τ)

πBis ds

∣∣∣∣Fτ

]
. (2.2)

Finally, if both firms invest simultaneously at τ ∈ T , firm i’s conditional payoff is

M i(τ) =
∫ τ

0
π0i
s ds+ E

[∫ ∞
τ

πBis ds

∣∣∣∣Fτ

]
≤ min

{
F i(τ), Li(τ)

}
. (2.3)

In particular, if no firm invests in finite time, then firm i realizes the payoff

M i(∞) =
∫ ∞

0
π0i
s ds = F i(∞) = Li(∞).

Remark 2.1 (Regularity of the payoff processes). By Lemma A.4 in Appendix A.3 there are
processes (Lit), (F it ) and (M i

t ), that, if evaluated at any stopping time τ ∈ T , yield the right-
hand side of (2.1), (2.2) and (2.3), respectively. We will use them in the following as it is
much more convenient to work with processes than families like {F i(τ), τ ∈ T }. Indeed, by
Lemma A.4 we may assume those processes to have right-continuous paths and thus to be
well measurable. The payoffs are also sufficiently integrable to be bounded in expectation and
such that pathwise limits at any stopping time induce the corresponding limit in expectation.

Given two plans τ1
ϑ , τ

2
ϑ ∈ T for the subgame beginning at ϑ ∈ T with no firm having

invested, yet, the first investment happens at min{τ1
ϑ , τ

2
ϑ} and firm i becomes leader where

τ iϑ < τ jϑ, follower where τ
i
ϑ > τ jϑ, and otherwise simultaneous investment occurs. Thus, given

the conditional payoffs at the first investment, firm i’s conditional expected payoff at ϑ is

E
[
Li
τ
i
ϑ
1
τ
i
ϑ<τ

j
ϑ

+ F i
τ
j
ϑ
1
τ
i
ϑ>τ

j
ϑ

+M i
τ
i
ϑ
1
τ
i
ϑ=τ jϑ

∣∣∣Fϑ

]
. (2.4)

6A random variable is measurable w.r.t. Fτ = {A ∈ F | ∀t ∈ R+ : A ∩ {τ ≤ t} ∈ Ft} if its value is known
whenever τ has occured. The value of a stochastic process at τ is an Fτ -measurable random variable if the
process is progressively measurable (cf. fn. 5), which holds for (

∫ t
0 π

0i
s ds) by adaptedness and path continuity.
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Obviously firm i can only become leader before any given τ jϑ; otherwise it will at most become
follower at τ jϑ.

Two strategies
{
τ1
ϑ , ϑ ∈ T

}
,
{
τ2
ϑ , ϑ ∈ T

}
are a subgame perfect equilibrium if there is no

i ∈ {1, 2} and ϑ ∈ T such that (2.4) can be increased with positive probability by choosing
any stopping time τ ≥ ϑ instead of τ iϑ, i.e. if any two plans τ1

ϑ , τ
2
ϑ are an equilibrium for the

subgame beginning at ϑ.

3 Equilibrium characterization

The assumed orders between different revenues have important consequences for equilibria
of the timing game, independently of any more specific model for the uncertainty. This
section illuminates the structure of possible equilibria just by comparing revenue streams, to
provide more detailed economic insights than analyses based on reduced functional forms of
the payoffs for specific state-space models, and to provide complete equilibrium arguments.
We show that it suffices to solve one particular class of constrained optimal stopping problems
to construct subgame perfect equilibria with preemption about any first-mover advantage. As
mutual preemption may destroy option values unnecessarily, we then identify times past which
investment cannot be delayed in any equilibrium. We finally consider alternative equilibria
that avoid preemption and provide arguments simplifying their verification.

3.1 Sufficient equilibrium conditions

In order to construct subgame perfect equilibria, it is first determined in which subgames
immediate investment is an equilibrium, possibly due to a mutual preemption scheme.

3.1.1 Simultaneous investment

Immediate investment by both firms is an equilibrium at ϑ ∈ T if both firms’ follower options
are worthless, i.e. if F iϑ = M i

ϑ for both i = 1, 2. If a firm i deviated to any plan τ iϑ > ϑ, it
would become follower and actually invest at τ iF (ϑ), which still attains F iϑ. In particular, if
ϑ = τ iF (ϑ) for both i = 1, 2, then a unilateral deviation from simultaneous investment would
not even change the physical outcome and both firms i still obtain Liϑ = F iϑ = M i

ϑ. Note that
even in this case – when any follower would merely forego profitable revenue by hesitating –
either firm i may nevertheless only be willing to invest proactively by the plan τ iϑ = ϑ because
the other firm does so. If a firm i’s investment was only triggered by τ iF (ϑ) = ϑ < τ iϑ, then
the opponent might want to delay investment (see Section 3.2 below).

Given the assumption πB2
· −π

F2
· ≤ π

B1
· −π

F1
· , firm 1’s follower option is not more valuable

than firm 2’s, so simultaneous investment is an equilibrium at ϑ ∈ T if τ ′ = ϑ attains F 2
ϑ .

Similarly, firm 1’s follower reaction time will never exceed firm 2’s.

Lemma 3.1. τ1
F (τ) ≤ τ2

F (τ) and F 1
τ −M

1
τ ≤ F

2
τ −M

2
τ for any τ ∈ T .

Lemma 3.1 is based on the fact that a follower’s opportunity cost of waiting is πBi· − π
Fi
· ,

which is not less for firm 1 than for firm 2. Thus, if firm 1 is follower, it cannot wait longer
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than firm 2 could. More generally, firm 1 cannot gain more from waiting until any time than
firm 2 could, so firm 1’s option value F 1

τ −M
1
τ as follower is at most what firm 2’s would be.

3.1.2 Preemption

Critical phases of a timing game are when both players have a first-mover advantage, i.e. the
set P := {L1

· > F 1
· } ∩ {L

2
· > F 2

· } ⊂ Ω × R+. If any player plans to become leader in such
a phase, e.g. because there is no subsequent continuation equilibrium promising at least the
same payoff in expectation, then a preemption scheme is triggered with both players trying to
stop waiting before each other to become leader. Therefore P will be called preemption region.
If simultaneous stopping is not an equilibrium, and if each player would prefer to wait without
preemptive pressure, then there may be no equilibrium at all, not even for deterministic, very
regular models and considering mixed strategies (see e.g. Fudenberg and Tirole, 1985).

As the players cannot plan to stop “immediately after” each other in continuous time,
additional outcomes have to be facilitated for plans to stop at the same date. The aim is to
sustain the preemption effect that if anyone hesitates, the respective other player becomes
leader. A player prefers to “exert pressure” by planning to stop at the same date as the other
rather than later if the former yields at least the follower payoff in expectation.

For modeling simplicity we here assume that if both firms plan to invest at any first hitting
time of the preemption region τP(ϑ) := inf{t ≥ ϑ | (L1

t > F 1
t ) ∧ (L2

t > F 2
t )} ∈ T , then this

is due to mutual preemption, and thus each firm obtains its follower payoff. These expected
payoffs arise from a suitable distribution over who invests first at τP(ϑ), i.e. firm 1, firm 2
or both. Then any firm i becomes leader (the best outcome, by right-continuity of Li· − F

i
· ),

follower or simultaneous investor (the worst outcome) with respective probabilities. Such a
distribution can be endogenized by extending the strategy spaces to capture outcome limits
from mixed strategies in discrete time; see Fudenberg and Tirole (1985) for deterministic
models and Riedel and Steg (2014, Proposition 3.1) for a generalization to stochastic models.
An exception is made if one firm is indifferent to become leader or follower at τP(ϑ); then the
other firm becomes leader. Now the plans τ1

ϑ = τ2
ϑ = ϑ are an equilibrium where ϑ = τP(ϑ).

Here, given τ1
F (·) ≤ τ2

F (·) and the assumption πL1
· − π

F1
· ≥ π

L2
· − π

F2
· , firm 1’s first-mover

advantage is never less than firm 2’s, so P = {L2
· > F 2

· } and τP(ϑ) = inf{t ≥ ϑ |L2
t > F 2

t }.

Lemma 3.2. L1
τ − F

1
τ ≥ L

2
τ − F

2
τ for any τ ∈ T .

Lemma 3.2 uses the fact that the revenue difference between being leader or follower is
πLi· − π

Fi
· until any follower would invest, which is not less for firm 1 than for firm 2. Firm 1

further prefers to be leader between its own follower reaction time and that of firm 2, because
it earns πL1

· instead of πB1
· . Firm 2, on the contrary, cannot gain from being leader between

those two times, as it can only realize πB2
· instead of πF2

· , which a follower never prefers before
its own reaction time.

Firm 2 can only have a first-mover advantage when πB1
· −π

F1
· is not too profitable for firm

1: if ϑ = τ1
F (ϑ), then L2

ϑ = M2
ϑ ≤ F

2
ϑ .

7 However, investment must be sufficiently profitable in
7If ϑ = τ

1
F (ϑ), then it is indeed not even on the boundary of P if τ ′ = ϑ does not attain F

2
ϑ , as then
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terms of the revenue difference πL2
· − π

F2
· – firm 2’s potential gain from being leader instead

of follower – and firm 2 can in fact only have a first-mover advantage if it still does at the
optimal times to start πL2

· − π
F2
· , see Appendix A.1. As πB2

· − π
F2
· ≤ πB1

· − π
F1
· , πL2

· must
exceed πB2

· enough. In particular, P = ∅ if πL2
· −π

F2
· ≤ π

B1
· −π

F1
· , because then firm 1 would

follow immediately at the latest optimal time to start πL2
· − π

F2
· . The latter nonstrategic

stopping problem is firm 2’s monopoly problem (3.4) considered below if π02
· ≡ πF2

· , like in
typical market entry models. For state-space models that admit threshold-type solutions for
these problems, it may even suffice to look at one threshold to see if P = ∅ (instead of at a
whole half-space where stopping is optimal), like for the applications in Section 4.

3.1.3 Subgame perfect equilibrium with preemption

The subsequent equilibrium construction is facilitated by the fact that independently of what
happens in the preemption region, no firm ever wants to invest when it has a second-mover
advantage. This finding is driven by the assumption that investment does not benefit the
other firm. In contrast to some suggestions in the literature, a second-mover advantage alone
does not suffice to delay investment in general.

Lemma 3.3. Investment is never optimal for any firm i ∈ {1, 2} where F i· > Li· . Further,
waiting until min

{
τP(ϑ), τ2

F (ϑ)
}
does not restrict firm 2’s payoff in the subgame at ϑ ∈ T for

any (even mixed) strategy of firm 1.

Where F i· ≥ Li· , firm i can realize at least the preferred follower payoff in expectation by
planning to invest at its follower reaction time. Indeed, the follower payoff is nondecreasing
in expectation (a submartingale) until that time – if the opponent invests in the meantime,
that does not affect firm i’s reaction and can only defer the laggard revenue πFi· ≤ π

0i
· – and

at the own reaction time, investing regardlessly is at least as good as becoming follower.
By Lemma 3.3 we may let firm 2’s plan for ϑ be to invest at min

{
τP(ϑ), τ2

F (ϑ)
}
, where

preemption or simultaneous investment is an equilibrium. In case of symmetric revenues,
the same plan is then a best reply for firm 1, but in general, firm 1 may have a strict first-
mover advantage before τP(ϑ) and may want to exploit it. Given the preemption payoffs from
Section 3.1.2 at τP(ϑ) and L1

· = F 1
· = M1

· at τ2
F (ϑ), firm 1 can realize L1

· anywhere before or
at min

{
τP(ϑ), τ2

F (ϑ)
}
, except where L2

· > F 2
· at τP(ϑ): there firm 1 will get F 1

· . As L
2
· > F 2

·
in fact only at τP(ϑ), the best reply problem for firm 1 at any ϑ ∈ T is

ess sup
ϑ≤τ≤τP (ϑ)∧τ2

F (ϑ)
E
[
L1
τ1{L2

τ≤F
2
τ }

+ F 1
τ 1{L2

τ>F
2
τ }

∣∣∣Fϑ

]
. (3.1)

If problem (3.1) has a solution τ1
∗ (ϑ), then its value is firm 1’s equilibrium payoff at ϑ, and that

of firm 2 is E
[
F 2
τ

1
∗ (ϑ)

∣∣Fϑ

]
, who gets the follower payoff also where τ1

∗ (ϑ) = min
{
τP(ϑ), τ2

F (ϑ)
}
.

We can summarize as follows.

L
2
ϑ = M

2
ϑ < F

2
ϑ and hence ϑ < τP(ϑ) by right-continuity of the processes.
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Theorem 3.4. If there is a family of solutions
{
τ1
∗ (ϑ), ϑ ∈ T

}
to (3.1) that satisfies the time-

consistency condition for a strategy, then it is firm 1’s strategy in a subgame perfect equilibrium
in which firm 2 uses the strategy

{
τ2
∗ (ϑ), ϑ ∈ T

}
given by τ2

∗ (ϑ) = min
{
τP(ϑ), τ2

F (ϑ)
}
.

If all revenues are symmetric, then there is a symmetric subgame perfect equilibrium in
which both firms use the given strategy of firm 2.

Time consistency can be ensured whenever there are solutions to (3.1), because then there
are respectively earliest ones due to right-continuity.8 It holds similarly if respectively latest
solutions can be chosen and for state-space models if the τ1

∗ (ϑ) are of threshold-type.
The existence of a solution to (3.1) is generally not clear, however, because the process

to be stopped has a discontinuity at τP(ϑ) if ϑ < τP(ϑ) < τ2
F (ϑ) and L2

τP (ϑ) > F 2
τP (ϑ); then

also L1
τP (ϑ) > F 1

τP (ϑ) by Lemma 3.2 and preemption causes a drop. A solution will exist if the
process L2

· −F
2
· is lower semi-continuous, because then L2

τP (ϑ) = F 2
τP (ϑ) on {ϑ < τP(ϑ)}, such

that (3.1) reduces to

ess sup
ϑ≤τ≤τP (ϑ)∧τ2

F (ϑ)
E
[
L1
τ

∣∣∣Fϑ

]
. (3.2)

Proposition 3.5. Assume that L2
· −F

2
· is lower semi-continuous from the left. Then there ex-

ists a subgame perfect equilibrium as described in Theorem 3.4, with each τ1
∗ (ϑ) the respectively

earliest solution of

ess sup
ϑ≤τ≤τP (ϑ)∧τ2

F (ϑ)
E

[∫ τ

0
π01
s ds+

∫ ∞
τ

πL1
s ds

∣∣∣∣Fϑ

]
. (3.3)

The solutions of problem (3.2) are the – by continuity existing – solutions of the concep-
tually much simpler constrained monopoly problem (3.3) because the follower reaction time
τ2
F (τ) in L1

τ remains constant for τ ∈ [ϑ, τ2
F (ϑ)], cf. also Lemma 3.7 below.

In this equilibrium the firms either plan to invest because the respective other does (as
soon as both have a first-mover advantage or both would invest as follower), or firm 1 exploits
that waiting is dominant for firm 2 and it thus acts like a constrained monopolist.

Only the constraint τ ≤ τP(ϑ) matters in (3.3) if πL1
· − π

01
· ≥ πB1

· − π
F1
· , like for market

entry with π01
· ≡ πF1

· , because then the solution is to invest no later than at τ1
F (ϑ) ≤ τ2

F (ϑ)
(cf. the discussion after Lemma 3.7). More generally, it is of course optimal to invest in (3.3)
whenever it is so for i = 1 in the unconstrained monopoly problem

ess sup
τ≥ϑ

E

[∫ τ

0
π0i
s ds+

∫ ∞
τ

πLis ds

∣∣∣∣Fϑ

]
. (3.4)

8The families
{
τP(ϑ), ϑ ∈ T

}
and

{
τ

2
F (ϑ), ϑ ∈ T

}
satisfy the time-consistency condition by construction

and thus also
{
τ

2
∗ (ϑ), ϑ ∈ T

}
. As the latter are the constraints in (3.1), any family of earliest solutions{

τ
1
∗ (ϑ), ϑ ∈ T

}
will then be time consistent, too.

10



3.2 Necessary equilibrium conditions

In the equilibria derived above, it may often be that investment is only optimal because the
other firm plans to invest at the same date. Possibly other equilibria exist with both firms
investing later, which then both prefer, but on which they have to coordinate. Now some
times are derived when investment is indeed unavoidable in equilibrium.

Equilibria are obviously related to optimal stopping of the leader payoff processes, typically
subject to certain constraints, cf. (2.4). The next lemma shows that given the assumptions
πLi· ≥ πBi· and π0i

· ≥ πFi· , equilibrium investment must not happen later than when firm i

would invest if it had the exclusive right to invest first, i.e. if it considered the unconstrained
problem of when to become leader.

Due to the dynamic follower reaction in Liτ , this is a complex problem. It may for instance
not be optimal to invest when the general circumstances are so favorable that any monopolist
or follower would invest immediately: When only πBi· can be realized, it may be better to
invest when the follower will react with a lag.9 To become leader optimally, it is however
necessary that a monopolist would invest, too.

Lemma 3.6. Wherever τ = ϑ is the latest stopping time attaining

ess sup
τ≥ϑ

E
[
Liτ

∣∣∣Fϑ

]
(3.5)

for some i ∈ {1, 2}, some firm must invest immediately in any equilibrium for the subgame
beginning at ϑ ∈ T . Further, where τ = ϑ attains (3.5), it also attains (3.4).

Lemma 3.6 rests on the observation that if it is optimal to become leader immediately in
(3.5), then there is no superior future follower payoff, either: If firm i had the choice when to
become follower, it would generally prefer times τ iF (τ) to avoid the low revenue πFi· ≤ π

0i
· . At

any τ iF (τ), however, becoming follower is not better than becoming leader due to πBi· ≤ π
Li
· .

The problem (3.5) becomes much easier by fixing continuation equilibria like simultaneous
investment at τ2

F (ϑ) that prevent becoming leader later. By such a constraint, firm 2’s follower
reaction will always be the same and firm 1 will not cannibalize any revenue πL1

· past τ2
F (ϑ) if it

invests before. Thus, firm 1’s leader problem becomes equivalent to a constrained monopolist’s
problem. For the following constrained version of Lemma 3.6, it is also important that firm 1
will not regret to receive πB1

· from τ2
F (ϑ) on by investing before.10

Lemma 3.7. Suppose that firm 2’s strategy in an equilibrium for the subgame at ϑ ∈ T

induces investment no later than at τ2
F (ϑ). Then investment must happen immediately where

τ = ϑ is the latest stopping time attaining

ess sup
τ∈[ϑ,τ2

F (ϑ)]
E
[
L1
τ

∣∣∣Fϑ

]
, (3.6)

9See Remark A.6 in Appendix A.3 on the monopolists’ and leaders’ problems for standard diffusion models.
10Firm 2, on the contrary, may prefer to become follower at τ1

F (ϑ) and effectively invest later. If firm 2 can
become leader up to τ2

F (ϑ), it may expect a delayed follower reaction and high revenue πL2
· in (τ1

F (ϑ), τ2
F (ϑ)]

and the problem cannot be simplified.

11



which has the same solutions as

ess sup
τ∈[ϑ,τ2

F (ϑ)]
E

[∫ τ

0
π01
s ds+

∫ ∞
τ

πL1
s ds

∣∣∣∣Fϑ

]
. (3.7)

If a monopolist’s investment gain πL1
· −π

01
· is not less than a follower’s, πB1

· −π
F1
· (like in

typical market entry with π01
· ≡ π

F1
· ), then the latest solution of (3.7) does not exceed τ1

F (ϑ),
where any delay only means foregone revenue for a follower in (2.1), and firm 1 would now
lose no less as prospective leader. In this case (3.7) has the same solutions as (3.4).

Another continuation equilibrium that potentially induces earlier investment is preemption
at τP(ϑ) as in Section 3.1.2. Given preemption in P (or P = ∅), firm 2 can never realize payoffs
exceeding F 2

· , and the game has to end immediately at all respectively latest optimal times
to become follower. Indeed, such times have to satisfy τ = τ2

F (τ) (as it is otherwise no loss
to become follower at τ2

F (τ) and receive π02
· ≥ πF2

· longer), and then firm 2 can enforce the
payoff F 2

τ = L2
τ = M2

τ by investing regardlessly.
A stopping time satisfying ϑ = τ iF (ϑ) can only maximize firm i’s follower payoff if it also

maximizes the simultaneous investment payoff. Conversely, an optimal time for simultaneous
investment must also be optimal to become follower, as the opportunity cost of waiting for
the former, πBi· − π

0i
· , is at most that for the latter by π0i

· ≥ π
Fi
· .

Lemma 3.8. Every stopping time τ iM ≥ ϑ that attains

ess sup
τ≥ϑ

E
[
M i
τ

∣∣∣Fϑ

]
= ess sup

τ≥ϑ
E

[∫ τ

0
π0i
s ds+

∫ ∞
τ

πBis ds

∣∣∣∣Fϑ

]
(3.8)

for some given ϑ ∈ T and i ∈ {1, 2} also attains

ess sup
τ≥ϑ

E
[
F iτ

∣∣∣Fϑ

]
. (3.9)

If τ iM ≥ ϑ attains (3.9), then τ iF (τ iM ) also attains (3.8). In particular, the respectively latest
solutions of (3.8) and (3.9) agree.

Thus, (3.8) and (3.9) have a latest solution τ iM ≥ τ
i
F (ϑ). That inequality may be strict in

general. If π0i
· ≡ π

Fi
· , however, like in typical market entry models, then (3.8) equals F iϑ and

τ iF (ϑ) is the latest time attaining (3.9).

3.3 Equilibria without preemption

There can be other equilibria without preemption, even if both firms have a strict first-mover
advantage at some times, i.e. if the region P of potential preemption is non-empty. Preemption
can be avoided by sufficiently profitable continuation equilibria, and this will then constitute
a Pareto improvement. For instance, joint investment at a future stopping time τJ can be
an equilibrium if that yields at least the same expected payoff as becoming leader at any
earlier time, like in the right panel of Figure 1. The firms can also plan to invest sequentially

12



if one accepts to become follower when the other invests. Such equilibria depend on the
relative magnitudes of the revenue processes, however, so existence cannot be ensured by
simple regularity properties like continuity in Proposition 3.5. On the contrary, if πFi· ≡ π0i

· ,
then F i· is nonincreasing in expectation (a supermartingale), as becoming follower later only
leaves less possibilities to invest optimally. Thus, if Liϑ > F iϑ, then firm i strictly prefers
immediate investment to waiting until firm j invests at some τj > ϑ, because waiting would
yield at most E

[
F iτj

∣∣Fϑ

]
≤ F iϑ.

It is therefore necessary that πFi· < π0i
· occurs (e.g. due to the first investment stealing

business) to have firm i wait until τj despite earlier first-mover advantages. Then it suffices
to check for deviations at very specific times identified in Proposition A.2 in Appendix A.2,
which also avoids to maximize the complex leader payoff directly, but uses simpler problems
like (3.7). For state-space models, it may even suffice to consider deviations at one threshold,
like for the applications in Section 4.

Proposition A.2 can be applied to candidate times τJ ≥ ϑ for joint investment, which
for both i = 1, 2 need to satisfy F iτJ = M i

τJ
and to maximize the expected joint investment

payoff E
[
M i
τJ

∣∣Fϑ

]
as considered in Lemma 3.8, at least up to some constraint. If delayed

joint investment is not feasible, then preemption may still be avoidable in an equilibrium with
sequential investment. In the equilibria of Theorem 3.4 for P = ∅, firm 1 becomes leader
at an optimal time before simultaneous investment would happen at τ2

F (ϑ). Simply ignoring
preemption in a non-empty P, firm 1’s problem becomes (3.6). Any solution τS ∈ T of (3.6)
or (3.7) is a best reply for firm 1 against τ2

F (ϑ). Optimality of the latter for firm 2 against
τS ≤ τ

2
F (ϑ) can be verified by a further simplification, Corollary A.3 in Appendix A.2. Under

an additional revenue order, it suffices to check that [τS ] is not in P.

4 Applications

As an illustration, the previous general results will now be applied to two typical models from
the strategic real options literature, in order to provide complete proofs for basic equilibrium
outcomes that are discussed extensively in the literature, to derive neglected equilibria that
may constitute Pareto improvements or actually display behavior that qualitatively differs
from deterministic models, and to argue that some equilibria analyzed in the literature only
exist under additional restrictions, if at all. The model of Pawlina and Kort (2006) first serves
as the main vehicle. Here we allow for weak orders among its parameters so that the models
of Weeds (2002) and Fudenberg and Tirole (1985) can be nested.11 Afterwards the results of
Grenadier (1996) will be revisited using the same arguments, although his economic setting

11In Weeds (2002), investment starts an R&D project with success arrival rate h > 0. The expected payoffs
are equivalent to those from (4.1) with augmented discount rate r + h instead of r, D00 = D01 = 0, D10 = h,
D11 = h(r+h−µ)/(r+2h−µ) and I1 = I

2 = K. The model of Fudenberg and Tirole (1985) with their concrete
discounted cost function c(t) = e

−(r+a)t is equivalent to (4.1) with D00 = π0(0), D01 = π0(1), D10 = π1(1),
D11 = π1(2), µ = a, augmented discount rate r + a instead of r and σ = 0. The solutions in Section 4.1
converge to the solutions for the deterministic case as σ → 0. In particular, β1 from fn. 13 increases to r/(µ+),
so the investment thresholds converge to those for the deterministic case by β1/(β1− 1)→ r/(r−µ+), as does
the expected discount factor for the first time that the state xt exceeds a threshold x > x0, (x0/x)β1 .
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is quite different.

4.1 Irreversible investment with asymmetric costs

The model of Pawlina and Kort (2006) is quite prototypic for the real options literature,
but the equilibrium analysis is not complete.12 Theorem 3.4 yields proper subgame perfect
equilibria. We will analyze them in detail, to show some remarkable neglected behavior and
to make the arguments applicable to other models. The revenue streams for firm i ∈ {1, 2} in
Pawlina and Kort (2006) are

π0i
t = e−rtxtD00, πLit = e−rt(xtD10 − rI

i),

πFit = e−rtxtD01, πBit = e−rt(xtD11 − rI
i),

 (4.1)

with discount factor r > 0 and demand uncertainty reflected by a geometric Brownian motion
(xt) satisfying

dxt = µxt dt+ σxt dBt, (4.2)

where (Bt) is Brownian noise, µ < r the expected growth rate and σ > 0 the volatility.
The constants D10 ≥ D11 and D00 ≥ D01 capture a negative impact of investment on the
opponent’s revenue, and I2 ≥ I1 > 0 are the firms’ constant investment costs, here capitalized.
The leader and follower processes are then continuous (as functions of the state xt), and the
present instances of the follower problems (2.1) and the monopoly problems (3.4) are solved
by investing when xt exceeds some thresholds xiF and xiL, respectively.

13 Thus, simultaneous
investment is an equilibrium for all states xϑ ≥ x

2
F .

If the preemption region in this model is non-empty, it is characterized by an open interval
(
¯
x, x̄) of the state space R+ with x̄ ≤ x1

F ≤ x2
F (where both inequalities are strict if I2 > I1

and D10 > D11 > D01), such that one can simply call (
¯
x, x̄) preemption region. The proof of

the following proposition generalizes to other models driven by a continuous Markov process
that affects revenues monotonically.

Proposition 4.1. Consider the specification (4.1). There are two numbers
¯
x ≤ x̄ ∈ (0, x1

F ]
such that L2

t > F 2
t ⇔ xt ∈ (

¯
x, x̄) for all t ∈ R+, with x̄ = x2

F if I1 = I2.

By Lemma A.1 in Appendix A.1 and the discussion thereafter it is enough to check if
L2

0−F
2
0 > 0 for x0 = x2

∆, the threshold solving (A.1), which is the case if the cost-disadvantage
I2/I1 is not too large; otherwise firm 2 prefers to invest much later than firm 1 and the pre-
emption region is empty (in particular if x2

∆ ≥ x
1
F , where firm 1 would follow immediately).14

12Their proposed preemption equilibrium investment, with the high cost firm 2 investing at its follower
threshold x2

F , can only be seen as an outcome, but not as an equilibrium strategy, because firm 1 is only willing
to invest at the preemption point if there is a preemption threat. Equilibrium verification is also incomplete
because – as in other papers – the argument of a current second-mover advantage is insufficient to justify
waiting, and only subgames with low initial states are considered despite the aim for subgame perfectness.

13If D11 > D01, then x
i
F = β1

β1−1 ·
I

i(r−µ)
D11−D01

, where β1 > 1 is the positive root of 1
2σ

2
β(β − 1) + µβ − r = 0.

If D11 ≤ D01, then x
i
F =∞. Analogously, xiL = β1

β1−1 ·
I

i(r−µ)
(D10−D00)+ . These are standard from option pricing.

14The precise condition (I2
/I

1)β1−1
< ((1 + c)β1 − 1)/(β1c) if c := (D10 − D11)/(D11 − D01) ∈ (0,∞) is
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We can now characterize the equilibria of Theorem 3.4 for this model, which also have
remarkable outcomes not captured in Pawlina and Kort (2006). Existence is guaranteed by
Proposition 3.5 thanks to continuity, and it suffices to solve the simpler constrained monopoly
problems (3.3). By the strong Markov property, this amounts to finding the region in the state
space R+ where immediate investment is optimal in the problem for t = 0,

sup
τ≤τP (0)∧τ2

F (0)
E

[∫ ∞
τ

e−rs(xs(D10 −D00)− rI1) ds
]
. (4.3)

The constraint here takes the form min{τP(0), τ2
F (0)} = inf{t ≥ 0 |xt ∈ (

¯
x, x̄) ∪ [x2

F ,∞)} =
inf{t ≥ 0 |xt ∈ [

¯
x, x̄] ∪ [x2

F ,∞)} (P -a.s.). Problem (3.3) is then solved by investing once the
state xt hits the investment region {x ∈ R+ | τ = 0 attains (4.3) for x0 = x} from time ϑ.

First consider a non-empty preemption region (
¯
x, x̄) that is connected to the unconstrained

monopoly investment region [x1
L,∞), as it holds for the market entry variant of the model with

D01 = D00, cf. Lemma A.1. Then immediate investment is optimal in (4.3) for any state x0 ≥
x̄ ≥ x1

L, as it is in the unconstrained problem. For states x0 < ¯
x the preemption constraint

in (4.3) is a constant upper threshold, so it is optimal to wait there until xt exceeds either
the constraint

¯
x or the unconstrained threshold x1

L, see Lemma A.7 in Appendix A.3. The
subgame perfect equilibrium is complete in this case: no investment for states strictly below
min{

¯
x, x1

L}, preemptive investment in [
¯
x, x̄] as described in Section 3.1.2, firm 1 investing as

the leader in [x1
L, x

2
F ) \ [

¯
x, x̄], and simultaneous investment for all states in [x2

F ,∞).
Next, if the preemption region is empty, then firm 1 only faces the upper constraint x2

F in
(4.3). Again by Lemma A.7, it is then optimal for firm 1 to invest as soon as xt exceeds either
the constraint x2

F or the unconstrained monopoly threshold x1
L. Note that for the market

entry variant with D00 = D01 < D11, x
1
L ≤ x1

F < x2
F < ∞. However, even if firm 1 uses the

unconstrained monopoly threshold, it is still constrained by firm 2’s plan. Firm 1 can only
maximize the leader payoff subject to firm 2 investing also proactively in [x2

F ,∞).
If D00 = D01, as for market entry, then preemption cannot be avoided and thus neither

simultaneous investment in [x2
F ,∞) by Lemma 3.8, and the equilibrium in each of the previous

cases is unique. Indeed, if the preemption region is non-empty, it must contain the optimal
stopping region for the continuous process L2

t − F
2
t , which takes positive values only there.

Then one also has to stop L2
t in that stopping region, the problem considered in Lemma 3.6,

because L2
t = (L2

t −F
2
t )+F 2

t and F 2
t is nonincreasing in expectation (a supermartingale) now.

So far, with x1
L ≤ x̄ or P = ∅, investment occurs if and only if demand is high enough, i.e.

if the state is at least min{
¯
x, x1

L} or min{x2
F , x

1
L}. This behavior is the same for the stochastic

model and its deterministic version, e.g. that in Fudenberg and Tirole (1985) (cf. fn. 11).

obtained by plugging x2
∆ = β1

β1−1 ·
I

2(r−µ)
(D10−D01)+ (cf. fn. 13) into the explicit functional expressions for L2(x0)

and F 2(x0), (8) and (9) in Pawlina and Kort (2006), who obtain the same condition by a graphical argument.
The condition implies x2

∆ < x
1
F . The constraint on the cost ratio strictly exceeds 1 and is strictly increasing

in c to infinity by β1 > 1. If D10 > D01 ≥ D11, then x
1
F =∞ and the preemption region is non-empty for all

I
2 ≥ I1. Finally, if D10 ≤ max{D11, D01}, then x

2
∆ ≥ x

1
F and the preemption region is empty.
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4.1.1 Preemption when demand falls

Qualitatively different behavior can be observed in the remaining case, a monopoly threshold
lying above a non-empty preemption region, x1

L > x̄ >
¯
x, which requires a sufficiently high

pre-investment revenue level D00 > D01. Firm 1 may then remain inactive even where it
would invest immediately as follower (in states above x1

F ), because it has higher opportunity
costs as prospective leader. This phenomenon is not addressed by Pawlina and Kort (2006),
who only consider states below

¯
x, where the same behavior as before holds: firm 1 waits

until xt hits the constraint
¯
x < x1

L. Problem (4.3) becomes more interesting for states in
(x̄, x2

F ), where both constraints may be binding if that interval intersects the continuation
region [0, x1

L) of the unconstrained problem, and behavior may be more complex.
A lower constraint like presently x̄ has a much stronger effect than any upper constraint

as considered before. Two cases can be distinguished for the problem of delaying the revenue
change πL1

t −π
01
t = e−rt(xt(D10−D00)−rI1) in [x̄, x2

F ]. The easier one is that x(D10−D00) >
rI1 on all of (x̄, x2

F ). Then it is optimal to invest immediately everywhere, as any delay is a
loss of revenue. The more difficult case is that x(D10−D00) < rI1 near the preemption region.
Firm 1 must wait where this inequality holds, in order not to start with running losses, so
one has to determine the investment region towards the upper constraint x2

F . Nevertheless,
it may now be optimal to invest far before the constraint is reached.

Proposition 4.2. Consider the specification (4.1) and suppose the corresponding preemption
region (

¯
x, x̄) ⊂ (0, x1

F ] from Proposition 4.1 is non-empty. If x̄(D10 − D00) ≥ rI1, then
the solution of problem (4.3) for all states x0 in (x̄, x2

F ) is to invest immediately, whereas if
D10 −D00 ≤ 0, the solution is to wait until the state exits (x̄, x2

F ).
If 0 < x̄(D10 − D00) < rI1, then there is a unique threshold x̂ ∈ [rI1/(D10 − D00), x1

L)
solving

(β1 − 1)A(x)xβ1 + (β2 − 1)B(x)xβ2 = I1 (4.4)

with (
A(x)
B(x)

)
=
[
x̄β1xβ2 − xβ1 x̄β2

]−1
(
xβ2 −x̄β2

−xβ1 x̄β1

)(
x̄D10−D00

r−µ − I1

xD10−D00
r−µ − I1

)
(4.5)

and β1 > 1 and β2 < 0 the roots of 1
2σ

2β(β − 1) + µβ − r = 0, and the solution of problem
(4.3) for all states x0 in (x̄, x2

F ) is to invest when (xt) exits (x̄, x̂ ∧ x2
F ).

The “smooth-pasting” condition that is frequently used to guess value functions only holds
in the last case and only if x̂ ≤ x2

F . If x
2
F (D10 −D00) ≤ rI1, then x̂ ≥ x2

F and the solution is
to wait until the state exits (x̄, x2

F ). It is easy to calculate the solutions x̂ of (4.4), which are
typically much lower than the upper constraint x2

F or the unconstrained threshold x1
L. Thus,

the risk of getting trapped at x̄ by preemption induces much earlier investment, as illustrated
in Section 4.1.4 below. This effect cannot be observed in the deterministic version of the
model with a growing market (or falling cost).
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4.1.2 Joint investment equilibria

If D00 > D01, then there are potentially many more equilibria than those from Theorem 3.4,
as one can now drop the premise that preemption occurs in the preemption region, and/or
that simultaneous investment occurs everywhere above x2

F .
First, Proposition A.2 is now applied to verify equilibria of delayed joint investment, which

cannot happen below x2
F for firm 2 to invest simultaneously. The highest expected value of

joint investment can be achieved by solving (3.8), which yields a maximal threshold, say x1
M for

firm 1. But one can also consider constrained versions of that problem, with some investment
threshold xJ ∈ [x2

F , x
1
M ]. Joint investment triggered by xJ is an equilibrium if firm 1 does not

want to become leader at the threshold solving problem (A.2), which is min{xJ , x
1
L} again

by Lemma A.7. Specifically, the cost difference cannot be too large, such that firm 1 cannot
enjoy a leader’s monopoly revenue for too long, which limits its leader payoff.

Proposition 4.3. Consider the specification (4.1) and let x1
M ≥ x1

L ∈ [0,∞] denote the
threshold solving problem (3.8) for firm 1.15 Suppose x1

M ≥ x
2
F . Then there exists a subgame

perfect equilibrium of simultaneous investment triggered by the threshold xJ ∈ [x2
F , x

1
M ] iff that

yields firm 1 at least the expected payoff L1
0 for x0 = x1

L < x2
F , which is iff

x1
L ≥ x

2
F ⇔ D10 ≤ D00 or I2

I1 ≤
(D11 −D01)+

D10 −D00

or if

(
I2

I1

)β1−1[
1 +

(
x1
L

xJ

)β1(
β1 − 1− xJ

x1
L

β1
D11 −D00
D10 −D00

)]
≤ β1

D10 −D11
D10 −D00

((D11 −D01)+

D10 −D00

)β1−1

(4.6)
with β1 > 1 from Proposition 4.2. The LHS of (4.6) is strictly positive and strictly decreasing
in xJ ∈ [x1

L, x
1
M ] if x1

L < x2
F .

Note that x1
L < x2

F implies D10 > D00. Then the second restriction on I2/I1 in the
proposition is weaker than the first if setting xJ = x1

L, and it is further relaxed if xJ increases.
If xJ = x1

M < ∞, then (4.6) coincides with the bound on I2/I1 identified by a graphical
argument in Pawlina and Kort (2006), who impose D11 > D00.

16 Proposition 4.3 also applies
for D11 ≤ D00, when the firms, after both have invested, end up no better than before. Then it
can still be optimal to invest at some threshold xJ only because the other firm does, although
both prefer that neither invests.

Indeed, there may be many equilibria with “inefficient” joint investment in states above x2
F

and where the expected joint investment payoff could be improved. If (D11 −D00)x2
F < rI1,

then the drift of M i
t is positive for states in the interval [x2

F , rI
1/(D11 − D00)+), and hence

it is optimal to wait in any constrained version of problem (3.8). Therefore one can partition
the latter interval into arbitrary subintervals of alternating joint investment and waiting.

15
x

1
M = β1

β1−1 ·
I

1(r−µ)
(D11−D00)+ , cf. fn. 13.

16
x

1
M <∞⇔ D11 > D00 and then xJ = x

1
M implies xJ/x

1
L = (D10 −D00)/(D11 −D00).
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4.1.3 Sequential investment equilibria

Sequential investment without any preemption may also be an equilibrium if the preemption
region is non-empty, which is a Pareto improvement compared to the equilibria of Pawlina and
Kort (2006) if delayed joint investment as in Section 4.1.2 is not feasible. Such an equilibrium
can be verified by Corollary A.3 and it exists for the current specification if and only if firm
2 does not have a strict first-mover advantage at x1

L, where firm 1 first invests.

Proposition 4.4. Consider the specification (4.1) and suppose x1
L < x2

F (whence D10 > D00).
Then there exists a subgame perfect equilibrium with firm 1 investing as soon as xt exceeds x

1
L

and firm 2 planning to invest when xt exceeds x
2
F iff x1

L 6∈ (
¯
x, x̄) from Proposition 4.1, which

is iff
x1
L ≥ x

1
F ⇔ (D10 −D00)+ ≤ (D11 −D01)+

or

(β1−1)I
2

I1 +
(
I2

I1

)1−β1((D11 −D01)+

D10 −D00

)β1

≥ β1

[
D10 −D01
D10 −D00

−D10 −D11
D10 −D00

((D11 −D01)+

D10 −D00

)β1−1]
(4.7)

with β1 > 1 from Proposition 4.2. The LHS of (4.7) is strictly increasing in I2/I1 and the
RHS is strictly positive if x1

L < x1
F .

Finally, there may be equilibria with sequential investment as in Proposition 4.4 or pre-
emption as in Proposition 4.2 where the joint investment is delayed to some threshold xJ > x2

F ,
such that firm 1 can optimize over larger intervals to become leader. This may separate the
investment regions in the sequential equilibria into one where firm 1 invests as leader and
one where simultaneous investment occurs, with a gap in between. Such equilibria are more
difficult to characterize explicitly. If x2

F is between two investment regions, the non-constant
follower reaction prevents the simplifications used in the previous propositions.

4.1.4 Comparison of leader investment regions

To illustrate the potentially strong impact of preemption on states in (x̄, x2
F ) for varying

parameter values in Figure 3, the model is re-parameterized as follows. First, r, µ and σ

determine β1,2 and together with the ratio I1/(D11−D01) also firm 1’s follower threshold x1
F ,

which we fix and which is an upper bound for x̄.
The distance between x̄ and x2

F , which is the region where firm 1 can invest as leader,
is growing in I2. Indeed, x2

F obviously grows with I2, and if the preemption region (
¯
x, x̄) is

non-empty, it is strictly shrinking if I2 grows;17 (
¯
x, x̄) collapses when I2/I1 = x2

F /x
1
F reaches

a bound given in fn. 14 in terms of c = (D10 − D11)/(D11 − D01), the loss of a monopolist
relative to the gain of the follower when the latter invests. We pick those limit values for I2

17Suppose x0 < x
2
F , such that firm 2’s first-mover advantage L2

0 − F
2
0 is non-trivial. If I2 is increased, that

has two negative effects on L
2
0 − F

2
0 . First, it increases the investment cost stream e

−rt
rI

2 up to firm 2’s
former follower investment time τ2

F (0), which reduces L2
0. Second, it delays τ2

F (0). The new revenue stream
difference e−rt(xt(D11−D01)−rI2) (with increased I2) between the former and the new τ

2
F (0) has non-positive

expectation by optimality of the new τ
2
F (0), and thus reduces L2

0 − F
2
0 .
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Figure 3: Constrained leader stopping regions.

and x2
F for simplicity, thus making both functions of c, although then just

¯
x = x̄ = x2

∆, the
threshold solving (A.1). Now c also determines x̄ by x2

∆ = x2
F /(1 + c).

Equation (4.4) for x̂ can be reduced to the parameters β1,2 and x1
L, the unconstrained

monopoly threshold, which is an upper bound on x̂ and itself satisfies x1
L = x1

F /(c + d) with
d := (D11−D00)/(D11−D01). The latter ratio comes close to 1 if the leader’s investment has
not much influence on the follower’s revenue, like in a market entry situation; it becomes small
when the leader steals considerable business from the follower, like by a drastic innovation. d
also controls the best simultaneous investment threshold by x1

M = x1
F /d.

In the equilibria from Theorem 3.4, firm 1 can freely decide when to invest in the interval
(x̄, x2

F ). Without the threat of preemption, it would not invest below min{x1
L, x

2
F }. However,

given the threat of preemption, firm 1 already invests when the state exceeds x̂, which may
be much earlier as Figure 3 shows. In the upper panel with a low value of d, the threat
of preemption strongly matters for c ≥ 0.45. Firm 1 never chooses to wait at all in the
lower panel with a moderate value of d. Joint investment at x1

M is an equilibrium avoiding
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preemption if x1
L ≥ x

2
F ; it is not an equilibrium for d = 0.6 and c ≥ 0.45.

4.2 Strategic real estate development with construction time

Similar reasoning as before shows on the one hand that equilibria discussed in Grenadier
(1996) only exist under certain parameter restrictions and on the other hand that there exist
additional equilibria that are Pareto improvements.

Grenadier (1996) models a real option game between two symmetric real estate owners,
who may each invest to redevelop their property in order to earn higher rents. His model needs
a slight translation to fit into the current framework, as it includes a delay of construction: if
an owner invests, it takes δ ≥ 0 time units until the new building yields any revenues. Before
investment by any owner, both earn the deterministic rent R ≥ 0. Investment at cost I > 0
terminates that rent, reduces the rent of the opponent to (1−γ)R with γ ∈ [0, 1] and initiates
new own rent D1xt after the delay δ. (xt) is a geometric Brownian motion as in (4.2). Once
both new buildings are completed, each owner earns the rent D2xt with 0 < D2 ≤ D1.

Grenadier’s model is strategically equivalent to specifying

π0i
t = e−rtR, πLit = e−rt(D1e

−(r−µ)δxt − rI),

πFit = e−rt(1− γ)R, πBit = e−rt(D2e
−(r−µ)δxt − rI)

in the general framework. The equilibria proposed in Grenadier (1996) are justified by the
insufficient argument that waiting is optimal if the current follower payoff exceeds the current
leader payoff. Nevertheless there exists a subgame perfect equilibrium as in Theorem 3.4 by
symmetry; it can be characterized as follows. The follower problems (2.1) are again solved
by investing once xt exceeds a threshold xF > 0, whence simultaneous investment is an
equilibrium for all states xϑ ≥ xF .

18 Problem (A.1) is solved by a threshold x∆ = xFD2/D1
and the preemption region P is in fact non-empty if and only ifD2 < D1. P can be represented
by an interval (

¯
x, x̄) of the state space by the same arguments as in the proof of Proposition

4.1, where now x̄ = xF .

4.2.1 Qualification of further equilibria

Depending on the parameter values, there may be other equilibria with delayed simultaneous
investment and/or no preemption. Let xL denote the threshold solving the present instance
of the unconstrained monopoly problem (3.4).19 For states above x̄ = xF , any investment will
be simultaneous. Contrarily to the claim made in Grenadier (1996), simultaneous investment
cannot be delayed past the threshold xM = xLD1/D2 ≥ xF solving problem (3.8). Indeed, in
any equilibrium with preemption in P, by symmetry both firms get at most the follower payoff
at the time of investment. The same holds for any equilibrium with only joint investment. In

18
xF = β1

β1−1 · e
(r−µ)δ(I + (1− γ)R/r)(r − µ)/D2 with β1 > 1 from fn. 13.

19
xL = β1

β1−1e
(r−µ)δ(I + R/r)(r − µ)/D1 with β1 > 1 from fn. 13. This should not be confused with XL in

Grenadier (1996), which corresponds to the present
¯
x.
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either case investment must occur as soon as the state exceeds xM , because any delay would
be a loss by Lemma 3.8.

With preemption occuring in P, one can only consider delaying simultaneous investment in
the interval [x̄, xM ], i.e. delaying the revenue change πBit −π

0i
t = e−rt(D2e

−(r−µ)δxt− rI−R).
This problem has the same form as the one with two-sided constraint considered in Proposition
4.2 (recall also the illustration in Section 4.1.4), with D2e

−(r−µ)δ replacing D10−D00, I+R/r

replacing I1 and xM replacing x2
F . Thus, given now x̄ = xF , if D2e

−(r−µ)δxF ≥ rI+R, which
means if

γ ≤
(
rI

R
+ 1

)(
1− β1 − 1

β1(r − µ)

)
, (4.8)

then investment cannot be delayed at all for states above xF , which is not recognized in
Grenadier (1996). In this case the preemption region extends to such high states that any
foregone revenue above it is a loss. Note that the RHS of (4.8) is strictly positive.

Only if (4.8) fails, there will exist a solution x̂ ∈ [(rI +R)e(r−µ)δ/D2, xM ) to the current
version of (4.4), such that investment can be held back in (xF , x̂). Only then the phenomenon
discussed extensively in Section V of Grenadier (1996) can arise, that preemption occurs when
demand falls to xF .

However, if γ is sufficiently large to violate (4.8), then delayed joint investment may be
attractive enough to avoid preemption altogether, which will be a Pareto improvement w.r.t.
Grenadier (1996). By the same arguments as for Proposition 4.3, preemption can be avoided
in an equilibrium of joint investment with the threshold xM ≥ xF if and only if that yields
firm 1 at least the expected payoff L1

0 for x0 = xL < xF , which is if and only if

xL ≥ xF ⇔ γ ≥
(
rI

R
+ 1

)(
1− D2

D1

)
or if

γ ≥
(
rI

R
+ 1

)(
1−D2

(
β1

D1 −D2

D
β1
1 −D

β1
2

) 1
β1−1

)
with β1 > 1 from fn. 13. The last restriction on γ is indeed weaker than the previous one.

5 Conclusion

The equilibrium analysis of the general model in Section 3 was based directly on its primitives
and not on derived analytic properties of value functions, as it frequently happens in the
growing literature on real option games. By that more general perspective, there is on the one
hand less risk to neglect any verification problems for equilibria and on the other hand a more
detailed view of their economic structure. For models that satisfy the general assumptions
made here, the number of equilibrium verification problems has been reduced considerably
by elementary economic arguments and it remains to solve a single class of optimal stopping
problems for one firm. Theorem 3.4 applies to many more examples from the literature
than the ones revisited in Section 4 (e.g. to those listed in the Introduction). The presented
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applications, which have quite distinctive economic properties, show how the general results
act in typical state-space models. By the more complete approach, some neglected equilibrium
behavior has been identified that qualitatively distinguishes stochastic from deterministic
models. In particular two-sided constraints induce feedback effects when the state evolves
randomly. The arguments developed for the identification of additional equilibria that may
be Pareto improvements also generalize to other models, e.g. for the source of uncertainty.

Thus the general perspective taken here provides a foundation for a more complete analysis
of models of preemptive investment that fit into the framework and a guideline for the analysis
of further models that do not satisfy the revenue orders assumed here.

A Appendix

A.1 Characterizing the preemption region

To see if the preemption region is empty, it suffices to consider stopping times that are optimal
for some simple stopping problems. They are the solutions of firm i’s permanent monopoly
problem (3.4) if π0i

· ≡ π
Fi
· (like in a market entry model).

Lemma A.1. For any ϑ ∈ T , L2
ϑ > F 2

ϑ only if E
[
L2
τ
i
∆
− F 2

τ
i
∆

∣∣Fϑ

]
> 0 for all times τ i∆ ∈ T

attaining

ess sup
τ≥ϑ

E

[∫ τ

0
πFis ds+

∫ ∞
τ

πLis ds

∣∣∣∣Fϑ

]
(A.1)

for some i ∈ {1, 2}. Where τ2
∆ = ϑ attains (A.1) for i = 2, there L2

ϑ − F
2
ϑ ≥ E

[
L2
τ − F

2
τ

∣∣Fϑ

]
for all τ ∈ [ϑ, τ1

F (ϑ)].

Lemma A.1 rests on the fact that for any τ ∈ [ϑ, τ2
F (ϑ)], the difference between L2

ϑ and
F 2
ϑ on [ϑ, τ ] is that between the monopoly or duopoly revenue and the laggard’s revenue, i.e.

at most πL2
· − π

F2
· . That difference is nonpositive in expectation up to any solution of (A.1),

where indeed τ2
∆ ≤ τ2

F (ϑ) by πL2
· ≥ πB2

· . Further, the revenue difference between L2
ϑ and F 2

ϑ

on [τ2
∆,∞) is at most that between L2

τ
2
∆

and F 2
τ

2
∆
, because firm 2’s follower reaction remains

the same and, by becoming leader later, firm 2 receives the monopoly revenue at least until
the same time.

For state-space models like in Section 4, we get the following characterization. First, as
noted in Subsection 3.1.2, a follower threshold for either firm i, say xiF ∈ R, is never contained
in the preemption region,20 not even in its closure if investment at x1

F is not optimal for firm 2.
As L2

· ≤ F
2
· for all states above such xiF , the latter must lie above any non-empty preemption

region. Second, by Lemma A.1, any non-empty preemption region must intersect the stopping
regions from (A.1) for both i = 1, 2; a threshold solving that problem, say xi∆ ∈ R, cannot
lie above the preemption region. In particular, if x2

∆ ≥ x1
F , the preemption region must be

empty. Third, if firm 2 has no first-mover advantage at x2
∆, then it has none at any value that

the state will attain before crossing x1
F . Thus, if the state, starting from some x2

∆ < x1
F , will

20Here “the preemption region” refers to an area in the same state space in which the thresholds are defined,
which is of course an abuse of terminology regarding the previous definition of P.
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attain any intermediate value before reaching x1
F , then it suffices to check whether there is a

first-mover advantage for firm 2 at x2
∆; otherwise the preemption region is empty, because x2

∆
cannot lie above it.

Proof of Lemma A.1. First note that there are solutions τ i∆ ≤ τ
i
F (ϑ) ≤ τ2

F (ϑ) to (A.1) for
i = 1, 2 as the respective process to be stopped is continuous and integrable. The estimate
follows from the assumption πLi· − π

Fi
· ≥ π

Bi
· − π

Fi
· , cf. the proof of Lemma 3.1.

By the optimality of τ i∆ in (A.1), E
[∫ τ i∆
ϑ (πLis −π

Fi
s ) ds

∣∣Fϑ

]
≤ 0. Therefore, as πL2

· −π
F2
· ≤

πLi· − π
Fi
· , (B.1) can only be strictly positive if

E

[∫ τ
1
F (ϑ)

τ
i
∆

(πL2
s − π

F2
s ) ds+

∫ τ
2
F (ϑ)

τ
1
F (ϑ)

(πB2
s − π

F2
s ) ds

∣∣∣∣Fϑ

]
> 0

(which can in fact only be the case if P [τ i∆ < τ1
F (ϑ)] > 0), and which implies

E
[
L2
τ
i
∆
− F 2

τ
i
∆

∣∣∣Fϑ

]
= E

[∫ τ
1
F (τ i∆)

τ
i
∆

(πL2
s − π

F2
s ) ds+

∫ τ
2
F (ϑ)

τ
1
F (τ i∆)

(πB2
s − π

F2
s ) ds

∣∣∣∣Fϑ

]
> 0

as τ1
F (τ i∆) ≥ τ1

F (ϑ), τ2
F (τ i∆) = τ2

F (ϑ) and πL2
· ≥ π

B2
· .

For all stopping times τ ∈ [ϑ, τ1
F (ϑ)], indeed τ iF (τ) = τ iF (ϑ), i = 1, 2, and thus L2

ϑ − F
2
ϑ −

E
[
L2
τ − F

2
τ

∣∣Fϑ

]
= E

[∫ τ
ϑ (πL2

s − π
F2
s ) ds

∣∣Fϑ

]
≥ 0 if τ2

∆ = ϑ attains (A.1).

A.2 Verification of equilibria without preemption

The following proposition helps to reduce the search for times at which firm i may want to
preempt firm j and thus to verify a best reply τ i∗ ≥ τ j∗ . It avoids to maximize the leader
payoff directly, which is a complex problem due to the follower reaction. Applied to state-
space models, it may suffice to consider deviations at a single threshold.

Proposition A.2. Consider any given ϑ ∈ T and i, j ∈ {1, 2}, i 6= j. If firm j plans to
invest at the stopping time τ j∗ ≥ ϑ, then τ i∗ ≥ τ j∗ is a best reply for firm i if F i

τ
j
∗

= M i
τ
j
∗
on

{τ i∗ = τ j∗} and

(i) E
[
F i
τ
j
∗

∣∣Fϑ

]
≥ ess sup

τ∈[ϑ,τ j∗ ]E
[
M i
τ

∣∣Fϑ

]
and

(ii) for each stopping time ϑ′ ≥ ϑ, on {ϑ′ < τ j∗} one of the solutions τ iD(ϑ′) ∈ T of the
problem

ess sup
τ∈[ϑ′,τ j∗∨ϑ

′]
E

[∫ τ

0
π0i
s ds+

∫ ∞
τ

πLis ds

∣∣∣∣Fϑ
′

]
(A.2)

satisfies either τ iD(ϑ′) ≥ τ jF (ϑ′) or Li
τ
i
D(ϑ′) ≤ E

[
F i
τ
j
∗

∣∣F
τ
i
D(ϑ′)

]
.

Where ϑ′ attains (A.2), it holds that Li
ϑ
′−E

[
F i
τ
j
∗

∣∣Fϑ
′
]
≥ E

[
Liτ−F

i
τ
j
∗

∣∣Fϑ
′
]
for all stopping

times τ ∈ [ϑ′, τ jF (ϑ′)].
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Further, if πL1
· − π

01
· ≥ πL2

· − π
02
· , πB1

· − π
01
· ≥ πB2

· − π
02
· , F 2

τ
2
∗

= M2
τ

2
∗
and (i), (ii) hold

for i = 1, then τ1
∗ = τ2

∗ are mutual best replies.

Condition (i) is obviously also necessary, as the terminal payoff is at most F i
τ
j
∗
(without

preemption modeled as in Section 3.1.2) and Li· ≥ M i
· . Condition (ii) says that it suffices to

check for deviations by firm i at solutions τ iD(ϑ′) < τ jF (ϑ′) of (A.2), so there is nothing to
check where ϑ′ = τ jF (ϑ′). The subsequent sentence implies that for threshold-type models, it
is typically enough to consider ϑ′ = τ iD(ϑ): If firm i does not want to become leader there,
it does not at any value that the state process will attain before crossing firm j’s follower
threshold that determines τ jF (ϑ). For states above that threshold, no deviations need to be
considered.

Proposition A.2 can be applied in particular to equilibria of joint investment at some time
τJ = τ1

∗ = τ2
∗ ≥ ϑ. Then on the one hand F 2

τJ
= M2

τJ
is necessary, which automatically implies

F 1
τJ

= M1
τJ

by Lemma 3.1. On the other hand, (i) is then the clearly necessary condition that
τJ must be an (at least constrained) optimal time for maximizing the expected joint investment
payoff E

[
M i
τJ

∣∣Fϑ

]
as considered in Lemma 3.8. Given such τJ , an equilibrium can be verified

by condition (ii), where it suffices to consider firm 1 if the additional revenue order holds.

Proof of Proposition A.2. Given τ j∗ ≥ ϑ, firm i’s expected payoff from any stopping time
τ i ≥ ϑ is E

[
Li
τ
i1
τ
i
<τ

j
∗

+ M i
τ
i1
τ
i=τ j∗

+ F i
τ
j
∗
1
τ
i
>τ

j
∗

∣∣Fϑ

]
≤ E

[
Li
τ
i1
τ
i
<τ

j
∗

+ F i
τ
j
∗
1
τ
i
∗≥τ

j
∗

∣∣Fϑ

]
. The

latter is attainable by the stopping time τ i1
τ
i
<τ

j
∗

+∞1
τ
i
∗≥τ

j
∗
, so τ i∗ is a best reply to τ j∗ iff

F i
τ
j
∗

= M i
τ
j
∗
on {τ i∗ = τ j∗} and τ = τ j∗ attains

ess sup
ϑ≤τ≤τ j∗

E
[
Liτ1τ<τ j∗ + F i

τ
j
∗
1
τ≥τ j∗

∣∣∣Fϑ

]
.

By iterated expectations, this is equivalent to Li
ϑ
′ − E

[
F i
τ
j
∗

∣∣Fϑ
′
]
≤ 0 on {ϑ′ < τ j∗} for all

stopping times ϑ′ ≥ ϑ. To establish the latter under conditions (i) and (ii), fix arbitrary
ϑ′ ≥ ϑ and let τ iD(ϑ′) ∈ T attain (A.2) (such τ iD(ϑ′) exists by continuity and integrability of
the process to be stopped), whence E

[∫ τ iD(ϑ′)
ϑ
′ (πLis − π

0i
s ) ds

∣∣Fϑ
′
]
≤ 0. On {ϑ′ < τ j∗} we then

have

Li
ϑ
′ − E

[
M i
τ
j
∗

∣∣∣Fϑ
′

]
= E

[∫ τ
j
F (ϑ′)

ϑ
′

(πLis − π
0i
s ) ds+

∫ τ
j
∗

τ
j
F (ϑ′)

(πBis − π
0i
s ) ds

∣∣∣∣Fϑ
′

]
(A.3)

≤ E
[∫ τ

j
F (ϑ′)∨τ iD(ϑ′)

ϑ
′

(πLis − π
0i
s ) ds+

∫ τ
j
∗

τ
j
F (ϑ′)∨τ iD(ϑ′)

(πBis − π
0i
s ) ds

∣∣∣∣Fϑ
′

]

≤ E
[∫ τ

j
F (ϑ′)∨τ iD(ϑ′)

τ
i
D(ϑ′)

(πLis − π
0i
s ) ds+

∫ τ
j
∗

τ
j
F (ϑ′)∨τ iD(ϑ′)

(πBis − π
0i
s ) ds

∣∣∣∣Fϑ
′

]
= E

[
1
τ
i
D(ϑ′)<τ jF (ϑ′)

(
Li
τ
i
D(ϑ′) −M

i
τ
j
∗

)
+ 1

τ
i
D(ϑ′)≥τ jF (ϑ′)

(
M i
τ
i
D(ϑ′) −M

i
τ
j
∗

)∣∣∣Fϑ
′

]
.
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The first equality uses the convention
∫ a
b · ds = −

∫ b
a · ds for a < b. The first inequality is due

to πLi· ≥ πBi· and the second due to the optimality of τ iD(ϑ′). The last equality is analogous
to the first, using iterated expectations and τ iD(ϑ′) < τ jF (ϑ′) ⇒ τ jF (τ iD(ϑ′)) = τ jF (ϑ′). After
replacing M i

τ
j
∗
by F i

τ
j
∗
in the first and last terms of (A.3), conditions (i) and (ii) make the last

nonpositive (taking iterated expectations at τ iD(ϑ′)), and thus also Li
ϑ
′ − E

[
F i
τ
j
∗

∣∣Fϑ
′
]
≤ 0.

To prove the next claim, note that for any stopping time τ ∈ [ϑ′, τ jF (ϑ′)] we have τ jF (τ) =
τ jF (ϑ′) and thus Li

ϑ
′ − E

[
Liτ
∣∣Fϑ

′
]

= E
[∫ τ
ϑ
′(πLis − π

0i
s ) ds

∣∣Fϑ
′
]
≥ 0 where ϑ′ attains (A.2).

For the final claim consider any stopping time τ2
∗ ≥ ϑ such that F 2

τ
2
∗

= M2
τ

2
∗
; then also F 1

τ
2
∗

=
M1
τ

2
∗
by Lemma 3.1. Suppose further that (i), (ii) hold for i = 1, so τ1

∗ = τ2
∗ is a best reply for

firm 1. To prove that τ2
∗ is also a best reply for firm 2 to τ1

∗ = τ2
∗ if πL1

· −π
01
· ≥ π

L2
· −π

02
· and

πB1
· −π

01
· ≥ π

B2
· −π

02
· , we show that then (A.3) is not greater for i = 2 than for i = 1. Therefore

note that for each i = 1, 2, F i
τ

2
∗

= M i
τ

2
∗
implies E

[
1A
∫ τ iF (ϑ′)
τ

2
∗

(πBis −π
Fi
s ) ds

∣∣Fϑ
′
]

= 0 for any set

A ⊂ {τ iF (ϑ′) ≥ τ2
∗ } (taking iterated expectations at τ2

∗ ), in particular for A = {τ1
F (ϑ′) > τ2

∗ }
as τ2

F (ϑ′) ≥ τ1
F (ϑ′). Further, E

[
1
τ

1
F (ϑ′)>τ2

∗

∫ τ2
F (ϑ′)

τ
1
F (ϑ′)

(πB2
s − π

F2
s ) ds

∣∣Fϑ
′
]
≤ 0 by optimality of

τ2
F (ϑ′) (and iterated expectations at τ1

F (ϑ′)), so E
[
1
τ

1
F (ϑ′)>τ2

∗

∫ τ1
F (ϑ′)

τ
2
∗

(πB2
s − π

F2
s ) ds

∣∣Fϑ
′
]
≥ 0.

Now, rewriting (A.3) for i = 2, we obtain

E

[∫ τ
1
F (ϑ′)∧τ2

∗

ϑ
′

(πL2
s − π

02
s ) ds+ 1

τ
1
F (ϑ′)≤τ2

∗

∫ τ
2
∗

τ
1
F (ϑ′)

(πB2
s − π

02
s ) ds

+1
τ

1
F (ϑ′)>τ2

∗

∫ τ
1
F (ϑ′)

τ
2
∗

(πL2
s − π

B2
s ) ds

∣∣∣∣Fϑ
′

]

≤ E
[∫ τ

1
F (ϑ′)∧τ2

∗

ϑ
′

(πL1
s − π

01
s ) ds+ 1

τ
1
F (ϑ′)≤τ2

∗

∫ τ
2
∗

τ
1
F (ϑ′)

(πB1
s − π

01
s ) ds

+1
τ

1
F (ϑ′)>τ2

∗

∫ τ
1
F (ϑ′)

τ
2
∗

(πL2
s − π

F2
s ) ds

∣∣∣∣Fϑ
′

]

≤ E
[∫ τ

1
F (ϑ′)∧τ2

∗

ϑ
′

(πL1
s − π

01
s ) ds+ 1

τ
1
F (ϑ′)≤τ2

∗

∫ τ
2
∗

τ
1
F (ϑ′)

(πB1
s − π

01
s ) ds

+1
τ

1
F (ϑ′)>τ2

∗

∫ τ
1
F (ϑ′)

τ
2
∗

(πL1
s − π

F1
s ) ds

+
∫ τ

2
F (ϑ′)

τ
1
F (ϑ′)

(πL1
s − π

B1
s ) ds

∣∣∣∣Fϑ
′

]
(A.4)

The last inequality uses the assumption πL1
· − π

F1
· ≥ πL2

· − π
F2
· as well as τ1

F (ϑ′) ≤ τ2
F (ϑ′)

and πL1
· ≥ πB1

· . Rearranging (A.4) using E
[
1
τ

1
F (ϑ′)>τ2

∗

∫ τ iF (ϑ′)
τ

2
∗

(πBis − π
Fi
s ) ds

∣∣Fϑ

]
= 0 yields

(A.3) for i = 1.

Proposition A.2 simplifies as follows for sequential investment.
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Corollary A.3. Consider any ϑ ∈ T and let τS ∈ T solve (3.6). Then it is an equilibrium
in the subgame beginning at ϑ that firm 1 plans to invest at τ1

∗ = τS and firm 2 at τ2
∗ = τ2

F (ϑ)
if condition (ii) of Proposition A.2 is satisfied for firm i = 2.

Further, if πL1
· − π

01
· ≥ π

L2
· − π

02
· , then τ2

D(ϑ′) = τS attains (A.2) where ϑ′ ≤ τ1
∗ = τS.

Note that in the setting of Corollary A.3, it suffices for condition (ii) of Proposition A.2
to hold that firm 2 does not have a local first-mover advantage where τ2

D(ϑ′) < τ1
F (ϑ′) attains

(A.2), as (F 2
t ) is a submartingale on [ϑ′, τ2

F (ϑ′)]. Under the additional revenue order in the
corollary, this simply amounts to τS not being in the preemption region P.

Proof of Corollary A.3. We only need to verify optimality for firm i = 2 by applying
Proposition A.2 with τ1

∗ = τS ≤ τ2
F (ϑ) = τ2

∗ . Then indeed F 2
τ

2
∗

= M2
τ

2
∗
. Further, condition (i)

is satisfied as M2
· ≤ F 2

· and (F 2
t ) is a submartingale on [ϑ, τ2

F (ϑ)] by πF2
· ≤ π02

· . Hence τ2
∗ is

optimal if the remaining condition (ii) is satisfied.
For the second claim note that if πL1

· −π
01
· ≥ π

L2
· −π

02
· , then E

[∫ τS
τ (πL2

s −π
02
s ) ds

∣∣Fτ

]
≤

E
[∫ τS
τ (πL1

s − π
01
s ) ds

∣∣Fτ

]
≤ 0 for any stopping time τ ∈ [ϑ, τS ] by the optimality of τS , cf.

Lemma 3.7, and thus τ2
D(ϑ′) = τS ∨ ϑ

′ attains the current instance of (A.2).

A.3 Technical results

Lemma A.4. In the setting of Section 2, consider four processes (πmt ) ∈ L1(dt ⊗ P ), m =
0, L, F,B, such that each process (

∫ t
0 π

m
s ds) is adapted, and let

{
τO(τ), τ ∈ T

}
be a family

of stopping times satisfying τ ≤ τO(τ) ≤ τO(τ ′) a.s. for all τ, τ ′ ∈ T with τ ≤ τ ′ a.s. Then
there exist optional processes (Lt) and (Ft) that are of class (D) and which satisfy

Lτ = L(τ) :=
∫ τ

0
π0
s ds+ E

[∫ τO(τ)

τ
πLs ds+

∫ ∞
τO(τ)

πBs ds

∣∣∣∣Fτ

]
and

Fτ = F (τ) :=
∫ τ

0
π0
s ds+ ess sup

τ
′≥τ

E

[∫ τ
′

τ
πFs ds+

∫ ∞
τ
′
πBs ds

∣∣∣∣Fτ

]
a.s. for every τ ∈ T . In particular, the process (Ft) can be chosen right-continuous. If
lim τO(τn) = τO(τ) a.s. for any τ ∈ T and sequence (τn)n∈N ⊂ T with τn ↘ τ a.s., then
also (Lt) can be chosen right-continuous.

All conditions are met when letting each τO(τ) be the latest stopping time attaining the
value of F (τ), or when letting each τO(τ) = τ .

Proof. First rewrite F (τ) as

F (τ) =
∫ τ

0

(
π0
s − π

F
s

)
ds+ E

[∫ ∞
0

πBs ds

∣∣∣∣Fτ

]
+ ess sup

τ
′≥τ

E

[∫ τ
′

0

(
πFs − π

B
s

)
ds

∣∣∣∣Fτ

]
. (A.5)

The first term on the RHS is a continuous process evaluated at τ which is by assumption
adapted and bounded by

∫∞
0
(
|π0
s | + |π

F
s |
)
ds ∈ L1(P ), hence optional and of class (D). The
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second and third terms are (super-)martingale-systems (cf. El Karoui, 1981, Proposition 2.26)
of class (D) – particularly the latter bounded by the family

{
E
[∫∞

0
(
|πFs |+ |π

B
s |
)
ds
∣∣Fτ

]
, τ ∈

T
}

of class (D). Thus there exist optional processes of class (D) that aggregate the two
(super-)martingale-systems, respectively. The former, being a martingale, may be chosen
right-continuous. The latter is in fact the Snell envelope UY of the continuous process (Yt) :=
(
∫ t

0(πFs − π
B
s ) ds), whence UY is (right-)continuous in expectation and thus may be taken to

have right-continuous paths, a.s.
L(τ) can be written like (A.5), with a third term X(τ) := E

[∫ τO(τ)
0

(
πLs − π

B
s

)
ds
∣∣Fτ

]
.

Suppose first that πLs − π
B
s ≥ 0 for all s ∈ R+, a.s. In this case

E
[
X(τ ′)

∣∣Fτ

]
= X(τ) + E

[∫ τO(τ ′)

τO(τ)

(
πLs − π

B
s

)
ds

∣∣∣∣Fτ

]
≥ X(τ)

for all stopping times τ ′ ≥ τ (as τO(τ ′) ≥ τO(τ)), so X :=
{
X(τ), τ ∈ T

}
is a submartingale-

system. X is bounded by
{
E
[∫∞

0
(
|πLs |+ |π

B
s |
)
ds
∣∣Fτ

]
, τ ∈ T

}
, hence of class (D). In general,

the last argument applies separately to
(
πLs − π

B
s

)+ and
(
πLs − π

B
s

)−, showing that X is the
difference of two submartingale-systems which can be aggregated by two optional processes
of class (D).

If lim τO(τn) = τO(τ) a.s. for any sequence (τn)n∈N ⊂ T with τn ↘ τ a.s., then X – being
of class (D) – is right-continuous in expectation and the aggregating submartingales can be
chosen with right-continuous paths.

Finally, as the process (Yt) defined above is continuous, the latest stopping time after
τ that attains F (τ) – τF (τ) – is the first time the monotone part of the Snell envelope UY
increases. That monotone part inherits continuity from (Yt). Thus chosen, τ ≤ τF (τ) ≤ τF (τ ′)
on {τ ≤ τ ′} for all τ, τ ′ ∈ T . Now consider a sequence of stopping times τn ↘ τ a.s., whence
also τF (τn) decreases in n. By construction we can only have lim τF (τn) > τF (τ) ≥ τ where
the monotone part of UY is constant on (τF (τ), lim τF (τn)]. By continuity it must then be
constant on [τF (τ), lim τF (τn)]. However, the monotone part of UY increases at τF (τ) by
definition, so we must have τF (τ) = lim τF (τn) a.s.

Remark A.5. As the proof of Lemma A.4 relies on the aggregation of supermartingales of
class (D), we may further assume that the processes (Lt) and (Ft) have left limits at any time
t (see El Karoui, 1981, Proposition 2.27).

Remark A.6. The solutions – and in particular the stopping regions – for the monopoly
problem (3.4) and the problem (3.5) of when to become optimally the leader typically differ.
Consider a model in which the profit streams are driven by a diffusion (Yt) such that each firm
i has a follower threshold, say yiF solving (2.1) with τ iF (τ) = inf{t ≥ τ |Yt ≥ yiF }, and firm 1
also has a monopoly threshold, say y1

L ≤ y
1
F solving (3.4), and where L1

t can be represented as
a continuous function of the state Yt. Now one can apply arguments of Jacka (1993) relying
on the semi-martingale property of (L1

t ), which the proof of Lemma A.4 actually establishes.
Denote the finite-variation part of (L1

t ) by (At). The Snell envelope (St) of (L1
t ), i.e. the value

process of optimally stopping (L1
t ), now is continuous (as a function of the state) as well and
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its monotone decreasing part (Bt) is given by dBt = 1
St=L

1
t
dAt + 1

2dL
0
t (St − L

1
t ). The last

term is the local time of (St−L
1
t ) spent at 0 (i.e. in the stopping region), which is absolutely

continuous w.r.t. 1
St=L

1
t
dAt ≤ 0.

Now suppose the stopping region {S· = L1
· } is that of the monopoly problem, {Y· ≥ y1

L},
whence dL0

t (St − L
1
t ) lives on the boundary {Y· = y1

L}. For Yt ∈ [y1
L, y

2
F ), (L1

t ) has a drift
given by the foregone monopoly profit stream, dAt = −πL1

t dt, whence dL0
t (St − L

1
t ) ≡ 0 if

(Yt) has a transition density, cf. Theorem 6 of Jacka (1993).
As (L1

t ) is of class (D), so is (St), which thus converges to S∞ = L1
∞ = 0 in L1(P ) as t→∞.

Therefore the martingale part of (St) is simply E[−B∞ |Ft] and St = E[−
∫∞
t 1

Ss=L
1
s
dAs |Ft].

Noting further that for Yt > y2
F , (L1

t ) has a drift given by the foregone duopoly stream,
dAt = −πB1

t dt, we then obtain

St = E

[∫ ∞
t

(
1
Ys∈[y1

L,y
2
F )π

L1
s + 1

Ys>y
2
F
πB1
s

)
ds−

∫ ∞
t

1
Ys=y

2
F
dAs

∣∣∣∣Ft

]
. (A.6)

By applying similar reasoning to firm 1’s monopoly problem (3.4), which is solved by τ1
L(t) =

inf{s ≥ t |Ys ≥ y1
L}, its value is E

[∫∞
τ

1
L(t) π

L1
s ds

∣∣ Ft

]
= E

[∫∞
t 1

Ys≥y
1
L
πL1
s ds

∣∣ Ft

]
, i.e.

E
[∫∞
τ

1
L(t) 1

Ys<y
1
L
πL1
s ds

∣∣Ft

]
= 0. Thus, if Yt ≥ y

1
L, (A.6) can be rewritten as

St = E

[∫ ∞
t

(
1
Ys<y

2
F
πL1
s + 1

Ys>y
2
F
πB1
s

)
ds−

∫ ∞
t

1
Ys=y

2
F
dAs

∣∣∣∣Ft

]
.

In this hypothesized stopping region for (L1
t ), also St = L1

t , in particular for Yt ≥ y
2
F ≥ y

1
L,

St = E

[∫ ∞
t

πB1
s ds

∣∣∣∣Ft

]
.

With y2
F in the stopping region, −1

Ys=y
2
F
dAs ≥ 0, and by assumption πL1

· ≥ πB1
· . Further,

1
Ys=y

2
F

is a P ⊗ dt nullset if Y has a transition density, such that equating the two last
expressions for St implies indeed

E

[∫ ∞
t

1
Ys<y

2
F

(
πL1
s − π

B1
s

)
ds

∣∣∣∣Ft

]
= 0

(and E
[
−
∫∞
t 1

Ys=y
2
F
dAs

∣∣Ft

]
= 0). This contradicts the typical strict ordering πL1

· > πB1
· .

Lemma A.7. Let (xt) be a geometric Brownian motion on
(
Ω,F , P

)
, satisfying

dxt = µxt dt+ σxt dBt

for a Brownian motion (Bt) adapted to F. Further let τx̃ := inf{t ≥ 0 |xt ≥ x̃} for any given
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constant x̃ ∈ R+. Then the problem

sup
τ∈T , τ≤τx̃

E

[∫ ∞
τ

e−rt(Dxt − rI) dt
]

(A.7)

with r > max{µ, 0}, D ∈ R and I > 0 is solved by τ∗ := inf{t ≥ 0 |xt ≥ x̃ ∧ x
∗}, where

x∗ = β1
β1 − 1 ·

I(r − µ)
D+

and β1 > 1 is the positive root of 1
2σ

2β(β − 1) + µβ − r = 0.

Proof. If D ≤ 0, then the integrand in (A.7) is always negative and the latest feasible stopping
time is optimal, which indeed satisfies τx̃ = τ∗ as now x∗ = ∞. For D > 0, Lemma A.7 is a
special case of Proposition 4.6 in Steg and Thijssen (2015), setting their Y0 = Dx0, µY = µ,
σY = σ, X0 = c0 = cB = 0 and yP = (r − µY )(I − cA/r) = x̃.

B Proofs

Proof of Lemma 3.1. The stopping problem in (2.1) is – up to a constant – equivalent to
ess infτ ′≥τ E

[∫ τ ′
τ (πBis −π

Fi
s ) ds

∣∣Fτ

]
. Optimality of τ iF (τ) and iterated expectations thus imply

E
[∫ τ iF (τ)
τ
′ (πBis −π

Fi
s ) ds

∣∣Fτ
′
]
≤ 0 for all τ ′ ∈ [τ, τ iF (τ)] and E

[∫ τ ′
τ
i
F (τ)(π

Bi
s −π

Fi
s ) ds

∣∣F
τ
i
F (τ)

]
≥ 0

for all τ ′ ≥ τ iF (τ), strictly on {τ ′ > τ iF (τ)} as τ iF (τ) is the latest time attaining (2.1). Thus,
with τ ′ = min{τ1

F (τ), τ2
F (τ)} and πB2

· − π
F2
· ≤ π

B1
· − π

F1
· we have

0 ≤ E
[∫ τ

1
F (τ)

τ
′

(πB2
s − π

F2
s ) ds

∣∣∣∣Fτ
′

]
≤ E

[∫ τ
1
F (τ)

τ
′

(πB1
s − π

F1
s ) ds

∣∣∣∣Fτ
′

]
≤ 0.

The first inequality is strict on {τ2
F (τ) < τ1

F (τ)} (up to a P -nullset), so τ1
F (τ) ≤ τ2

F (τ) (P -a.s.).
Finally, F iτ −M

i
τ = ess supτ ′≥τ E[

∫ τ ′
τ (πFis − π

Bi
s ) ds |Fτ ] is not greater for i = 1 than for

i = 2.

Proof of Lemma 3.2. We have

L2
τ − F

2
τ = E

[∫ τ
1
F (τ)

τ
(πL2
s − π

F2
s ) ds+

∫ τ
2
F (τ)

τ
1
F (τ)

(πB2
s − π

F2
s ) ds

∣∣∣∣Fτ

]
(B.1)

and

L1
τ − F

1
τ = E

[∫ τ
1
F (τ)

τ
(πL1
s − π

F1
s ) ds+

∫ τ
2
F (τ)

τ
1
F (τ)

(πL1
s − π

B1
s ) ds

∣∣∣∣Fτ

]
,

where τ1
F (τ) ≤ τ2

F (τ) by Lemma 3.1. By the optimality of τ2
F (τ) for stopping the stream

(πB2
s −π

F2
s ), the second integral on the RHS of (B.1) has non-positive conditional expectation,

cf. the proof of Lemma 3.1. The claim now follows from the assumptions πL1
· −π

F1
· ≥ π

L2
· −π

F2
·

and πL1
· ≥ π

B1
· .
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Proof of Lemma 3.3. We only use the assumptions πLi· ≥ πBi· and π0i
· ≥ πFi· (except for

the representation with τP(ϑ)). Let τ i1st(ϑ) = inf{t ≥ ϑ |Lit > F it } (= τP(ϑ) for i = 2), such
that M i

· ≤ Li· ≤ F i· on [ϑ, τ i1st(ϑ)), so investing is nowhere better than becoming follower,
but indeed inferior if the last inequality is strict. Next, by the optimality of τ iF (ϑ) in F iϑ
and π0i

· ≥ πFi· , F i· is nondecreasing in expectation on [ϑ, τ iF (ϑ)], so firm i prefers to become
follower as late as possible on that interval. Finally, Liτ ≥ F iτ at τ = min

{
τ i1st(ϑ), τ iF (ϑ)

}
–

at τ i1st(ϑ) due to right-continuity of Li· − F
i
· and at τ iF (ϑ) due to πLi· ≥ πBi· . Thus, in case

the opponent does not invest before τ = min
{
τ i1st(ϑ), τ iF (ϑ)

}
(with some probability), firm i

can reach at least its follower value there by the limit from planning to invest at τ + 1/n and
n → ∞ (in the limit, firm i obtains F iτ with the probability that the opponent invests at τ
and Liτ else as Li· is right-continuous).

Proof of Lemma 3.6. Where Liϑ > E[Liτ |Fϑ] for all stopping times τ > ϑ, there we must
also have Liϑ ≥ E

[
F iτ
∣∣Fϑ

]
for any τ ≥ ϑ, strictly on {τ > ϑ}, as follows. First note that

F iτ −E
[
F i
τ
i
F (τ)

∣∣Fτ

]
= E

[∫ τ iF (τ)
τ (πFis − π

0i
s )
∣∣Fτ

]
≤ 0 because τ iF (τ iF (τ)) = τ iF (τ). Furthermore

note that Li
τ
i
F (τ) ≥ F

i
τ
i
F (τ) by π

Li
· ≥ π

Bi
· . Together with the hypothesis it must thus hold that

Liϑ > E
[
F iτ
∣∣Fϑ

]
≥ E

[
M i
τ

∣∣Fϑ

]
on {τ > ϑ} for any τ ∈ T , and Liϑ ≥ F

i
ϑ ≥M

i
ϑ using τ = ϑ.

Then, in case that the opponent’s plan does not imply immediate investment with prob-
ability 1 (else there is nothing to prove), firm i cannot achieve a higher payoff than Liϑ with
the probability that firm j does not invest immediately and F iϑ with the probability that firm
j invests immediately. Thanks to right-continuity of Li· , that upper bound is the limit of firm
i planning to invest at ϑ + 1/n and n → ∞, but it is not attainable by any plan that does
not induce immediate investment with probability 1.

For the second claim suppose by way of contradiction that τ = ϑ attains (3.5), but that
there exists a stopping time τ ′ ≥ ϑ such that E

[ ∫ τ ′
ϑ (πLis − π

0i
s ) ds

∣∣Fϑ

]
< 0 with positive

probability. On that event,

Liϑ =
∫ ϑ

0
π0i
s ds+ E

[∫ τ
j
F (ϑ)

ϑ
πLis ds+

∫ ∞
τ
j
F (ϑ)

πBis ds

∣∣∣∣Fϑ

]

<

∫ ϑ

0
π0i
s ds+ E

[∫ τ
′

ϑ
π0i
s ds+

∫ τ
j
F (ϑ)

τ
′

πLis ds+
∫ ∞
τ
j
F (ϑ)

πBis ds

∣∣∣∣Fϑ

]
≤ E

[
Li
τ
′

∣∣∣Fϑ

]
as τ jF (τ ′) ≥ τ jF (ϑ) and πLi· ≥ π

Bi
· , which contradicts the optimality of τ = ϑ in (3.5).

Remark B.1. The F -events on which τ > ϑ ⇒ Liϑ > E[Liτ |Fϑ] a.s. for all stopping times
τ ≥ ϑ can be aggregated into an Fϑ-event as follows: With A(τ) := {τ > ϑ} ∈ Fϑ and
B(τ) := {Liϑ > E[Liτ |Fϑ]} ∈ Fϑ for any stopping time τ ≥ ϑ, the given property can be
written as 1B(τ) − 1A(τ) = 0 a.s. for all τ ≥ ϑ (as B(τ) ⊂ A(τ)). The latter holds for any F -
event if and only if it is a subset of C0 := {ess infτ≥ϑ(1B(τ)−1A(τ)) = 0} (up to a nullset). As
all 1B(τ)−1A(τ) are Fϑ-measurable random variables, so is ess infτ≥ϑ(1B(τ)−1A(τ)). Indeed,
as 1B(τ) − 1A(τ) ≥ ess infτ≥ϑ(·), also 1B(τ) − 1A(τ) ≥ E[ess infτ≥ϑ(·) |Fϑ] a.s. for all τ ≥ ϑ
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and thus ess infτ≥ϑ(·) ≥ E[ess infτ≥ϑ(·) |Fϑ] a.s. by the definition of ess inf(·). However, as
the left and right-hand sides have the same expectation, equality holds a.s.

Further, there exists a sequence of mutually disjoint sets (Cn) and a sequence of stopping
times (τn) such that

⋃
Cn = Ω \ C0 (up to a nullset), inf τn ≥ ϑ and, on each Cn, τn > ϑ

and Liϑ = E[Liτn |Fϑ] a.s. This follows from the fact that the family {1B(τ) − 1A(τ) | τ ≥ ϑ}
is directed downwards, as by all 1B(τ) − 1A(τ) being {−1, 0}-valued, for any τ1, τ2 ≥ ϑ also
τ3 := τ1 + (1A(τ2) − 1B(τ2))(τ2 − τ1) ≥ ϑ is a stopping time that satisfies 1A(τ3) − 1B(τ3) =
min(1A(τ1) − 1B(τ1),1A(τ2) − 1B(τ2)). Thus there exists a sequence (τn) ⊂ T with inf τn ≥ ϑ

and 1B(τn) − 1A(τn) ↘ ess infτ≥ϑ(1B(τ) − 1A(τ)) a.s., so P [{1B(τn) = 1A(τn)} \ C0] ↘ 0. Now
one can recursively set Cn = A(τn) \ (B(τn) ∪ Cn−1).

Proof of Lemma 3.7. First note that there exists an optimal stopping time for (3.7) (and
also a latest one), because the process to be stopped is continuous and integrable. For any
stopping time τ ∈ [ϑ, τ2

F (ϑ)], τ2
F (τ) = τ2

F (ϑ) and thus L1
ϑ −E

[
L1
τ

∣∣Fϑ

]
= E

[∫ τ
ϑ (πL1

s − π
01
s ) ds

∣∣
Fϑ

]
is the same payoff difference as that between ϑ and τ in (3.7). Thus, where ϑ is uniquely

optimal in (3.7), there also L1
ϑ > E

[
L1
τ

∣∣Fϑ

]
on {τ > ϑ}. Regarding the other possible payoffs,

as argued in the proof of Lemma 3.6, M1
τ ≤ F

1
τ ≤ E

[
F 1
τ

1
F (τ)

∣∣Fτ

]
≤ E

[
L1
τ

1
F (τ)

∣∣Fτ

]
, where now

τ1
F (τ) ≤ τ2

F (τ) = τ2
F (ϑ) for τ ∈ [ϑ, τ2

F (ϑ)]. Hence L1
ϑ is strictly superior to any future payoff on

(ϑ, τ2
F (ϑ)] and the game has to end by the same arguments as in the proof of Lemma 3.6.

Proof of Lemma 3.8. First note that there exists an optimal stopping time τ iM ≥ ϑ for
(3.8) and also a latest one, because the process to be stopped is continuous and integrable.
An optimal τ iM satisfies the necessary and sufficient conditions E

[∫ τ iM
τ (π0i

s − π
Bi
s ) ds

∣∣Fτ

]
≥ 0

on {τ ≤ τ iM} and E
[∫ τ
τ
i
M

(π0i
s − π

Bi
s ) ds

∣∣F
τ
i
M

]
≤ 0 on {τ ≥ τ iM} for all stopping times τ ≥ ϑ,

the last inequality being strict on {τ > τ iM} if τ iM is the latest solution. We will derive the
analogous properties for the process (F it ); thus consider an arbitrary stopping time τ ≥ ϑ.

For the first property, note that on {τ ≤ τ iM} we have

E
[
F i
τ
i
M∧τ

i
F (τ)

∣∣Fτ

]
− F iτ = E

[∫ τ
i
M∧τ

i
F (τ)

τ
(π0i
s − π

Fi
s ) ds

∣∣∣∣Fτ

]
≥ 0

by π0i
· ≥ π

Fi
· and τ iF (τ iM ∧ τ

i
F (τ)) = τ iF (τ). Further, on the subset {τ iM > τ iF (τ)} we have

E
[
F i
τ
i
M

∣∣F
τ
i
F (τ)

]
− F i

τ
i
F (τ) = E

[∫ τ
i
M

τ
i
F (τ)

(π0i
s − π

Bi
s ) ds+

∫ τ
i
F (τ iM )

τ
i
M

(πFis − π
Bi
s ) ds

∣∣∣∣Fτ
i
F (τ)

]
≥ 0

by the optimality of τ iM and the definition of τ iF (τ iM ), cf. the proof of Lemma 3.1. Together,
E
[
F i
τ
i
M

∣∣Fτ

]
− F iτ = E

[
F i
τ
i
M
− F i

τ
i
M∧τ

i
F (τ)

∣∣Fτ

]
+ E

[
F i
τ
i
M∧τ

i
F (τ)

∣∣Fτ

]
− F iτ ≥ 0.

For the second property, note that E
[
F i
τ
i
F (τ)

∣∣Fτ

]
−F iτ = E

[∫ τ iF (τ)
τ (π0i

s − π
Fi
s ) ds

∣∣Fτ

]
≥ 0,

again by π0i
· ≥ π

Fi
· and τ iF (τ iF (τ)) = τ iF (τ), hence it is sufficient to show E

[
F i
τ
i
F (τ)

∣∣F
τ
i
M

]
≤ F i

τ
i
M
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on {τ ≥ τ iM}. There, where τ
i
F (τ) ≥ τ iF (τ iM ), it holds that

E
[
F i
τ
i
F (τ)

∣∣F
τ
i
M

]
− F i

τ
i
M

= E

[∫ τ
i
F (τ iM )

τ
i
M

(π0i
s − π

Fi
s ) ds+

∫ τ
i
F (τ)

τ
i
F (τ iM )

(π0i
s − π

Bi
s ) ds

∣∣∣∣Fτ
i
M

]

≤ E
[∫ τ

i
F (τ iM )

τ
i
M

(π0i
s − π

Bi
s ) ds+

∫ τ
i
F (τ)

τ
i
F (τ iM )

(π0i
s − π

Bi
s ) ds

∣∣∣∣Fτ
i
M

]
≤ 0,

where we have used the definition of τ iF (τ iM ) in the first estimate, and the optimality of τ iM
in the last. The last inequality is strict on {τ > τ iM} if τ

i
M is the latest solution of (3.8).

Now suppose that the stopping time τ iM ≥ ϑ optimally stops (F it ) from ϑ ∈ T , i.e. it
satisfies E

[
F i
τ
i
M

∣∣Fτ

]
≥ F iτ on {τ ≤ τ iM} and E

[
F iτ
∣∣F

τ
i
M

]
≤ F i

τ
i
M

on {τ ≥ τ iM} for all stopping
times τ ≥ ϑ. As E

[
F i
τ
i
F (τ iM )

∣∣F
τ
i
M

]
≥ F i

τ
i
M

as noted above, we must then have equality, i.e.
τ iF (τ iM ) is optimal, too, and we may set τ iM = τ iF (τ iM ) for simplicity to show optimality of
τ iF (τ iM ) in (3.8). Therefore, consider again an arbitrary stopping time τ ≥ ϑ.

On {τ ≤ τ iM}, where τ
i
F (τ) ≤ τ iF (τ iM ) = τ iM , it then holds that

0 ≤ E
[
F i
τ
i
M

∣∣Fτ

]
− F iτ = E

[∫ τ
i
F (τ)

τ
(π0i
s − π

Fi
s ) ds+

∫ τ
i
M

τ
i
F (τ)

(π0i
s − π

Bi
s ) ds

∣∣∣∣Fτ

]

≤ E
[∫ τ

i
F (τ)

τ
(π0i
s − π

Bi
s ) ds+

∫ τ
i
M

τ
i
F (τ)

(π0i
s − π

Bi
s ) ds

∣∣∣∣Fτ

]

by the definition of τ iF (τ), which yields the first optimality property for τ iM in (3.8).
On {τ ≥ τ iM}, where τ

i
F (τ) ≥ τ iM , we have

0 ≥ E
[
F iτ
∣∣F

τ
i
M

]
− F i

τ
i
M

= E

[∫ τ

τ
i
M

(π0i
s − π

Bi
s ) ds+

∫ τ
i
F (τ)

τ
(πFis − π

Bi
s ) ds

∣∣∣∣Fτ
i
M

]
≥ E

[∫ τ

τ
i
M

(π0i
s − π

Bi
s ) ds

∣∣∣∣Fτ
i
M

]

again by the definition of τ iF (τ), yielding the second optimality property for τ iM in (3.8).

Proof of Proposition 4.1. By the strong Markov property it suffices to consider t = 0. If
the preemption region is empty, one can set

¯
x = x̄ and pick any number in (0, x1

F ]. The upper
and lower bounds for a non-empty preemption region are obtained as follows. First note that
L2

0 = M2
0 ≤ F 2

0 for all x0 ≥ x1
F . Second, for all x0 > 0, L2

0 ≤ E
[∫∞

0 e−rs
(
xsD10 − rI

2) ds] =
x0D10/(r − µ)− I2 by D10 ≥ D11 and F 2

0 ≥ E
[∫∞

0 e−rsxsD01 ds
]

= x0D01/(r − µ), the value
of never investing as follower. Thus, L2

0 − F 2
0 ≤ x0(D10 − D01)/(r − µ) − I2 ≤ 0 on the

non-empty interval (0, (r − µ)I2/(D10 −D01)+).
Now suppose L2

0 > F 2
0 for some x0 = x̂ ∈ (0, x1

F ) and also for some x0 = x̌ < x̂, and assume
by way of contradiction that L2

0 ≤ F
2
0 for x0 = x′ ∈ (x̌, x̂). Then we must have x′ > rI2/(D10−

D01)+, because otherwise L2
0 − F

2
0 = E

[∫ τ ′
0 e−rs

(
xs(D10 −D01)− rI2) ds]+E

[
L2
τ
′ − F 2

τ
′
]
≤ 0

if x0 = x̌ and x′ ∈ (x̌, rI2/(D10 − D01)+ ∧ x1
F ], where τ ′ := inf{s ≥ 0 |xs ≥ x′} ≤ τ1

F (0).
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By the same argument, we must also have L2
0 > F 2

0 for x0 = x̌ ∨ rI2/(D10 − D01) < x′.
But then, if we set x0 = x′ and τ̂ := inf{s ≥ 0 |xs 6∈ (x̌ ∨ rI2/(D10 − D01), x̂)} ≤ τ1

F (0),
we obtain L2

0 − F
2
0 = E

[∫ τ̂
0 e
−rs(xs(D10 −D01)− rI2) ds]+ E

[
L2
τ̂ − F

2
τ̂

]
> 0, whence the set

{x > 0 |L2
0 > F 2

0 given x0 = x} is convex. Further, that set is open as L2
0 − F

2
0 is continuous

in x0.
Suppose finally that I2 = I1 and that the preemption region is non-empty, i.e., by Lemma

A.1 and the discussion thereafter, that the threshold solving (A.1) satisfies x2
∆ < x1

F = x2
F .

Then, for any x0 ∈ [x2
∆, x

2
F ), L2

0 − F
2
0 = E

[∫ τ2
F (0)

0
(
xs(D10 −D01) − rI2) ds] > 0 as x2

∆ solves
(A.1) uniquely.

Proof of Proposition 4.2. x̄ < x2
F can be any two numbers from (0,∞] in this proof, i.e.,

we only assume x̄ finite. For initial states x0 ∈ (x̄, x2
F ), the constraint τP(0)∧τ2

F (0) in problem
(4.3) is the exit time from the given interval and (4.3) is equivalent to

sup
τ≤inf{s≥0 |xs 6∈(x̄,x2

F )}
E

[∫ ∞
τ

e−rs
(
xs(D10 −D00)− rI1) ds]. (B.2)

If x̄(D10 − D00) ≥ rI1, the expected payoff difference between stopping at time 0 and any
feasible τ ≥ 0 is E

[∫ τ
0 e
−rs(xs(D10 − D00) − rI1) ds

]
≥ 0, such that immediate stopping is

optimal. If D10 − D00 ≤ 0, also E
[∫ τP (0)∧τ2

F (0)
τ e−rs(xs(D10 − D00) − rI1) ds

]
≤ 0 for any

τ ≤ τP(0) ∧ τ2
F (0), such that waiting until the constraint is optimal.

Now suppose 0 < x̄(D10 −D00) < rI1, whence D10 > D00 and x1
L <∞. Note that

E

[∫ ∞
0

e−rs
(
xs(D10 −D00)− rI1) ds] = x0

D10 −D00
r − µ

− I1

is the value of stopping immediately in (B.2). Letting x0 = x, we will first verify that the
value function of problem (B.2) is

V (x) :=

A(x̂)xβ1 +B(x̂)xβ2 if x ∈ (x̄, x̂),
xD10−D00

r−µ − I1 else,
(B.3)

and thus (x̄, x̂)c the sought stopping region, under the hypothesis that either x̂ ∈ [rI1/(D10−
D00), x2

F ) solves (4.4) or “≤” holds for x̂ = x2
F . Afterwards we will establish existence of a

unique such x̂.
V (x) as defined in (B.3) is continuous because A(x̂) and B(x̂) given by (4.5) are the

solution to the continuity conditions

Ax̄β1 +Bx̄β2 = x̄
D10 −D00
r − µ

− I1,

Ax̂β1 +Bx̂β2 = x̂
D10 −D00
r − µ

− I1. (B.4)

V (x) is also twice continuously differentiable on (x̄, x2
F ), except possibly at x̂. At x̂ < x2

F ,
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the first derivative of V is continuous, however, because (4.4) is the differentiability condition
β1Ax̂

β1−1 +β2Bx̂
β2−1 = (D10−D00)/(r−µ) multiplied by x̂, minus the second continuity con-

dition in (B.4). Therefore one can apply Itō’s lemma to see that (e−rtV (xt)) is a continuous,
bounded supermartingale until τ = inf{t ≥ 0 |xt 6∈ (x̄, x2

F )}, with zero drift for xt ∈ (x̄, x̂) and
drift e−rt(rI1−xt(D10−D00)) dt < 0 for xt ∈ (x̂, x2

F ). As that supermartingale coincides with
the payoff process at τ = inf{t ≥ 0 |xt 6∈ (x̄, x2

F )}, it remains to show that V (x) dominates
the payoff process for x ∈ (x̄, x2

F ), which it does by construction for x ∈ [x̂, x2
F ].

For x ∈ (x̄, x̂), V ′′(x) = xβ2−2[β1(β1−1)A(x̂)xβ1−β2 +β2(β2−1)B(x̂)
]
. As βk(βk−1) > 0,

k = 1, 2, the difference V (x)−x(D10−D00)/(r−µ)+I1 would be convex if A(x̂), B(x̂) ≥ 0, and
it vanishes at both ends x̄, x̂. By (4.4), that difference’s derivative is non-positive at x̂, where
the difference would thus take its minimum. Hence it would vanish on all of [x̄, x̂], but V (x)
cannot be affine on non-empty (x̄, x̂). So we must have A(x̂)∧B(x̂) < 0. If we had B(x̂) ≥ 0,
then A(x̂) < 0 and V (x) would be strictly decreasing on (x̄, x̂), contradicting V (x̂) ≥ V (x̄);
thus B(x̂) < 0. Going back to V ′′(x), which can switch sign at most once, it must start strictly
negative at x̄. If it stays non-positive, the difference V (x)−x(D10−D00)/(r−µ)+I1 is concave
and thus non-negative on (x̄, x̂). If V ′′(x) eventually becomes positive, then the convex part
of V (x)−x(D10−D00)/(r−µ) + I1 takes its minimum 0 at x̂ as argued before, such that the
difference is non-negative at the transition, and thus non-negative for the first, concave part.
In summary, (e−rtV (xt)) is a supermartingale until xt leaves (x̄, x2

F ), dominating the payoff
e−rt(xt(D10 −D00)/(r − µ)− I1), which it coincides with for xt ∈ {x̄} ∪ [x̂, x2

F ], so the latter
is the stopping set in [x̄, x2

F ].
Next, we show that there is a unique threshold x̂ ∈ [rI1/(D10 − D00), x1

L) solving (4.4),
and then finally consider the constraint x2

F .
As the first step, note that B(x) < 0 in (4.5) for all x ∈ (x̄, x1

L]. Indeed, as the first
term

[
x̄β1xβ2 − xβ1 x̄β2

]−1
< 0 for x > x̄ by β1 > 1 and β2 < 0, we have B(x) < 0 ⇔

x−β1
[
x(D10 −D00)/(r − µ) − I1] > x̄−β1

[
x̄(D10 −D00)/(r − µ) − I1]. The derivative of the

latter function of x can be written as x−β1−1[β1I
1 − (β1 − 1)x(D10 −D00)/(r − µ)

]
> 0 for

all x < x1
L = β1(r − µ)I1/((β1 − 1)(D10 −D00)).

As the second step, note that with A = A(x1
L) and B = B(x1

L), we have A · (x1
L)β1 + B ·

(x1
L)β2 = I1/(β1−1) by using the definition of x1

L in (B.4), and thus (β1−1)A · (x1
L)β1 +(β2−

1)B · (x1
L)β2 = I1 + (β2 − β1)B · (x1

L)β2 > I1 compared to “=” in (4.4).
The third step is to show that “≤” holds in (4.4) for the candidate x̂ = rI1/(D10−D00) ∈

(x̄, x2
F ), where the inclusion is exactly the current considered case. By similar arguments as

above, using the continuity condition (B.4), V (x) then satisfies

V (x) = E

[∫ ∞
τ̂

e−rs
(
xs(D10 −D00)− rI1) ds], x0 = x ∈ [x̄, x̂],

where we let τ̂ := inf{s ≥ 0 |xs 6∈ (x̄, x̂)}. For x̂ = rI1/(D10 − D00), the integrand would
be strictly negative until τ̂ , so V (x) > x(D10 − D00)/(r − µ) − I1 for all x ∈ (x̄, x̂). At
x = x̂, however, equality holds by (B.4) and thus V ′(x̂−) = β1A(x̂)x̂β1−1 + β2B(x̂)x̂β2−1 ≤
(D10 −D00)/(r − µ). Together with (B.4), the latter inequality implies also “≤” in (4.4).
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As the last step, as the function (β1− 1)A(x)xβ1 + (β2− 1)B(x)xβ2 is continuous, it must
attain I1 at some x̂ ∈ [rI1/(D10−D00), x1

L) by the second and third steps. The latter interval
is non-empty by the estimate for x1

L at the beginning of the proof.
Concerning uniqueness, suppose x̂1, x̂2 ∈ [rI1/(D10 − D00), x1

L) solve (4.4). With either
solution, as we have proved above, V (x) is the value function of problem (B.2) for any x2

F ≥ x
1
L,

and (B.2) is solved by both τ̂k := inf{s ≥ 0 |xs 6∈ (x̄, x̂k)}, k = 1, 2. In particular, for any
x0 ∈ [x1, x2],

V (x0) = x0
D10 −D00
r − µ

− I1 = E

[∫ ∞
τ̂2

e−rs
(
xs(D10 −D00)− rI1) ds]

⇒ 0 = E

[∫ τ̂2

0
e−rs

(
xs(D10 −D00)− rI1) ds].

Thus, letting τ̌1 := inf{s ≥ 0 |xs ≤ x̂1} ≤ τ̂2 and still x0 ∈ [x1, x2],

0 = E

[∫ τ̂2

0
e−rs

(
xs(D10 −D00)− rI1) ds]

= E

[∫ τ̌1∧τ̂2

0
e−rs

(
xs(D10 −D00)− rI1) ds+

∫ τ̂2

τ̌1∧τ̂2
e−rs

(
xs(D10 −D00)− rI1) ds].

The second integral vanishes itself in expectation, whereas the first integrand is strictly positive
for xs ∈ (x̂1, x̂2). Therefore the latter interval must be empty.

The proof is complete for x̂ ≤ x2
F . Finally, if rI1/(D10 − D00) < x2

F < x̂, then the
“≤” in (4.4) that we derived above for the candidate x = rI1/(D10 − D00) must be strict,
and thus also “<” must hold in (4.4) for x2

F , because otherwise x̂ ≤ x2
F by continuity of

(β1−1)A(x)xβ1 +(β2−1)B(x)xβ2 . Now the verification argument above applies if we consider
instead x̂ := x2

F with “≤” in (4.4).

Proof of Proposition 4.3. The stopping times τJ(ϑ) := inf{t ≥ ϑ |xt ≥ xJ}, ϑ ∈ T ,
satisfy time consistency ϑ′ ≤ τJ(ϑ)⇒ τJ(ϑ′) = τJ(ϑ) for any two ϑ ≤ ϑ′ ∈ T by construction.
τJ(ϑ) is a mutual best reply at ϑ if the conditions from Proposition A.2 hold. By xJ ≥ x2

F ,
F 2
τJ (ϑ) = M2

τJ (ϑ). Under the current specification it suffices to verify conditions (i) and (ii) for
firm 1.

Condition (i) holds as waiting until the threshold xJ ≤ x
1
M is optimal for the constrained

problem of stopping M1
t up to it by Lemma A.7; cf. the unconstrained problem (3.8). Analo-

gously, the threshold min{xJ , x
1
L} solves problem (A.2). Thus condition (ii) holds if x1

L ≥ x
2
F

or, using the strong Markov property, if 0 ≥ DJ(x) := L1
0−E

[
M1
τJ (0)

]
given x0 = x ∈ [x1

L, x
2
F ).

By Proposition A.2, if x1
L < x2

F solves (A.2) and we let τ(x) = inf{t ≥ 0 |xt ≥ x} ≤ τ
2
F (0)

for any x ∈ [x1
L, x

2
F ), then DJ(x1

L) ≥ E
[
L1
τ(x) −M

1
τJ (0)

]
= E[DJ(x)], where the last identity

is due to xτ(x) = x. Therefore it remains to verify DJ(x1
L) ≤ 0 for x1

L < x2
F .

If x1
L < x2

F , the former is finite and we can write λ := xJ/x
1
L ∈ [1,∞]. Then also x1

L < xJ
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and thus (cf. equations (9), (10) in Pawlina and Kort (2006), accounting for possibly x2
F =∞)

0
!
≥ DJ(x1

L) = x1
LD10
r − µ

− I1 − x2
F (D10 −D11)

r − µ

(
x1
L

x2
F

)β1

− x1
LD00
r − µ

−
(
xJ(D11 −D00)

r − µ
− I1

)(
x1
L

xJ

)β1

= β1
β1 − 1I

1 − I1 − β1
β1 − 1I

1D10 −D11
D10 −D00

(
I1

I2
(D11 −D01)+

D10 −D00

)β1−1

−
(
λ

β1
β1 − 1I

1D11 −D00
D10 −D00

− I1
)
λ−β1 .

Rearranging yields condition (4.6). The derivative of the square bracket in (4.6) w.r.t. λ
is strictly negative for λ ∈ (0, x1

M/x
1
L) given β1 > 1, where it is important to note that

λ(D11 −D00) < D10 −D00, because D10 > D00 for x1
L < x2

F and (D10 −D00)/(D11 −D00) =
x1
M/x

1
L > λ if D11 > D00. Using the latter fact also shows that for λ = x1

M/x
1
L, the square

bracket is either 1− (x1
L/x

1
M )β1 ≥ 0 or 1, if x1

M is finite or not, respectively.
Finally, necessity of DJ(x1

L) ≤ 0 for x1
L < x2

F ≤ xJ is obvious.

Proof of Proposition 4.4. By the hypothesis x1
L < x2

F and Lemmas 3.7 and A.7, problem
(3.6) is solved by τS(ϑ) := τ1

L(ϑ) = inf{t ≥ ϑ |xt ≥ x1
L} ∈ T for any ϑ ∈ T . These stopping

times for firm 1 satisfy time consistency ϑ′ ≤ τS(ϑ)⇒ τS(ϑ′) = τS(ϑ) for any two ϑ ≤ ϑ′ ∈ T

by construction, as do firm 2’s stopping times τ2
F (ϑ) = inf{t ≥ ϑ |xt ≥ x

2
F }.

To verify the equilibrium at ϑ ∈ T by Corollary A.3, note that now πL1
· −π

01
· ≥ π

L2
· −π

02
· ,

whence problem (A.2) is solved by τ2
D(ϑ′) = τS(ϑ) ∨ ϑ′. Thus we have an equilibrium if

x1
L ≥ x1

F (≥ x̄) or, using the strong Markov property, if 0 ≥ DS(x) := L2
0 − E

[
F 2
τS(0)

]
given

x0 = x ∈ [x1
L, x

1
F ).

By Proposition A.2, if x1
L < x1

F and we let τ(x) = inf{t ≥ 0 |xt ≥ x} ≤ τ1
F (0) for any

x ∈ [x1
L, x

1
F ), then DS(x1

L) ≥ E
[
L2
τ(x) − F

2
τS(0)

]
= E[DS(x)], where the last identity is due

to xτ(x) = x. Therefore it remains to verify DS(x1
L) ≤ 0 for x1

L < x1
F , i.e., x

1
L 6∈ (

¯
x, x̄). The

latter condition is (cf. equations (8), (9) in Pawlina and Kort (2006), accounting for possibly
x1
F = x2

F =∞)

0
!
≥ DS(x1

L) = x1
LD10
r − µ

− I2 − x1
F (D10 −D11)

r − µ

(
x1
L

x1
F

)β1

− x1
LD01
r − µ

−
(
x2
F (D11 −D01)

r − µ
− I2

)(
x1
L

x2
F

)β1

= β1
β1 − 1I

1D10 −D01
D10 −D00

− I2 − β1
β1 − 1I

1D10 −D11
D10 −D00

((D11 −D01)+

D10 −D00

)β1−1

− 1
β1 − 1I

2
(
I1

I2
(D11 −D01)+

D10 −D00

)β1

.
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Rearranging yields condition (4.7). The derivative of its LHS w.r.t. I2/I1 is strictly positive
for x1

L < x1
F given β1 > 1, because then (D11−D00)+/(D10−D00) < 1. By the same fact the

RHS of (4.7) is strictly positive.
To show necessity of x1

L 6∈ (
¯
x, x̄), suppose the contrary, whence x1

L < x1
F and DS(x1

L) > 0
by definition. For any x ≤ x1

L,

DS(x) = E
[
DS(x1

L)
]

+ L2
0 − E

[
L2
τS(0)

]
= DS(x1

L) + E

[∫ τS(0)

0
(πL2
s − π

02
s ) ds

]

= DS(x1
L) + x(D10 −D00)

r − µ
− I2 − x1

L(D10 −D00)
r − µ

(
x

x1
L

)β1

,

which converges continuously toDS(x1
L) > 0 as x→ x1

L. ThusDS(x) > 0 for some x < x1
L.
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