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Abstract

A non-cooperative solution, the Equilibrium in Secure Strategies (EinSS), is defined
that extends the Nash equilibrium in pure strategies when it does not exist and is
meant to solve games where players are "cautious", i.e. looking for secure positions
and avoiding threats. This concept abstracts and unifies various ad hoc solutions
already formulated in various applied economic games that have been discussed
extensively in the literature. It complements usefully mixed strategy Nash equilibria
that are usually not explicit and difficult to interpret in these games. Like the Nash
equilibrium, the EinSS is a static concept, and the basic requirement of excluding at
equilibrium some deviations remains. But it also appeals to dynamic intuitions,
tolerating at equilibrium the possibility of some deviations, which would be blocked by
counter-deviations punishing the deviator. This is in line with the "objection-counter-
objection" rationale first introduced in cooperative games. A general existence
theorem is provided and then applied to the price-setting game in Hotelling location
model, to Tullock's rent-seeking contests and to Bertrand-Edgeworth duopoly. Finally
competition in the insurance market game is re-examined and the Rothchild-Stiglitz-
Wilson contract shown to be an EinSS even when the Nash equilibrium breaks down.
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1. Introduction

There are well-known economic games where a Nash-Cournot equilibrium does not exist.
Examples include Hotelling’s game of price competition on the line when the sellers loca-
tions are close!, Rothchild and Stiglitz game of competitive insurance markets with adverse
selection?, Tullock’s rent-seeking game with the success function parameter greater than
two3. This existence problem was highlighted by Dasgupta and Maskin in their seminal
paper (1986). They proved existence of mixed strategy Nash equilibria for a family of games
with discontinuous payoff functions that covers all mentioned models. However these equi-
libria are not easy to characterize in most cases. Also they are usually difficult to interpret
when applied to specific economic contexts. On the other hand, in some contexts there is
an intuitive expectation that a stable position in pure strategies should exist. In support
of this hypothesis a variety of ad hoc equilibrium concepts have been developed to describe
the specific behavior of players in particular models. For instance, Wilson (1977) and Riley
(1979) suggested two different pseudo-equilibrium concepts for the insurance market model.
Eaton and Lipsey (1978) proposed the ’zero conjectural variation solution’ to restore equi-
librium existence in Hotelling’s model. In d’Aspremont and Gabzewicz (1980) a concept
of quasi-monopoly is introduced, that ensures the existence of a pseudo-equilibrium in the
Bertrand-Edgeworth duopoly model when one capacity is small compared to the other. A
common feature of these and many other concepts is that they describe a particular logic
of rational behavior that takes into account the interaction of the players. This raises the
key question: is there a general rationale, independent of the specifics of a particular model,
behind these intuitively perceived equilibrium positions.

In this paper we try to address this question looking for some natural reasoning of
independent players, which follows purely from their strategic thinking. In addition, we
also assume that this logic is not associated with the formation of coalitions, agreements or
any other preliminary contracts about common rules. The main rationale at the basis of
the proposed concept (without excluding the possibilities of other concepts based on other
logics)?, is the assumption that players are looking for ”secure” positions, namely positions
where they cannot be ”threatened” by another player. For that purpose, a threat of one
player against another will be defined as a unilateral deviation of the first increasing his
own payoff and simultaneously decreasing the payoff of the other player. Clearly at a Nash-
Cournot equilibrium no player can threaten another: it is a "secure” strategy profile. We
shall maintain this property. But this first requirement will be supplemented by another,
appealing to some dynamic intuition, but without modeling this intuition explicitly. In this
respect we shall follow an idea that was already used in cooperative game theory, that we
will call for short the ”objection and counter-objection rationale” (Aumann and Maschler,

Hotelling (1929), d’Aspremont (1979).

2Rothchild and Stiglitz (1976), Wilson (1977).

3Tullock (1967, 1980) and Baye et al. (1994), for discussion and references.

4For example, another logic follows the general notion of ”rationalizability” and various coarsening of the
Nash equilibrium have been studied along this line (see Bernheim, 1984; Pearce, 1984; Basu and Weibull,
1991; Rubinstein and Wolinsky, 1994).



1964) to deal with the vacuity of the Core in cooperative games with side payments and
lead to the definition of the Bargaining Set concept. In general terms the concept can be
formulated as follows: defining the Core as the set of imputations at which there is no
objection from some coalition of players, the Bargaining set is the set of imputations at
which there is no ”justified objection” from some coalition, the objection being justified in
the sense that no other coalition has a counter-objection to it. Translated in our context the
idea becomes: defining the Nash-Cournot equilibrium as a (secure) strategy profile at which
there is no profitable deviation of some player, an Equilibrium in Secure Strategies (EinSS)
is a secure strategy profile at which there is no profitable ”secure deviation” of some player.
The deviation is secure in the sense that no other player has a counter-deviation, which will
be defined as a threat against the deviator making him worse-off than initially. By definition
when a Nash Equilibrium exists, it is an Equilibrium in Secure Strategies. Notice that we
apply the ”"objection and counter-objection rationale” while keeping the requirement that
an KinSS is a secure strategy profile. Without this requirement we get a much coarser
equilibrium concept (named threatening-proof profile in Iskakov and Iskakov, 2012a)°. In
many games the set of such equilibria is very large. As a refinement the EinSS reduces this
set drastically.

From the standpoint of applications our research is motivated by the fact that the EinSS
concept abstracts and unifies various concepts in applied models in which there is no Nash
equilibrium. The first formulation of an EinSS (Iskakov, 2005) has been applied to Hotelling’s
game (Iskakov and Iskakov, 2012b). For such economic models the EinSS concept offers
meaningful solutions, which in many cases are unique. At the same time the proposed
concept retains all Nash equilibria, when they exist.

In this paper we reformulate the EinSS concept and prove its existence in the four well-
known economic games that we mentioned above. For each game we provide a unique (or,
with symmetry, unique up to a permutation of players) EinSS solution and its intuitive
interpretation®. For the first three applications (including Hotelling’s game) existence is
derived from a general existence theorem. This theorem establishes the existence of an
EinSS in a class of games that may be neither continuous nor quasi-concave. For the last
application, the insurance game, a specific proof has to be derived.

Related Literature. The proposed equilibrium concept can be associated with several
areas of game theory. First, in applying the objection and counter-objection rationale, it is
not only related to the Bargaining Set literature (for more recent references, see Holzman,
2001), but also to the literature on farsighted solution concepts, defining profile stability by
checking wether a player (or group of players) can deviate non-myopically, that is, antici-
pating a possible sequence of deviations by other players. The farsighted solution concepts
originally arose as a result of the study of vNM stable set in coalitional games (von Neumann
and Morgenstern, 1944) and the non-myopic alternative proposed by Harsanyi (1974) and

°See also (Sandomirskaia, 2014; Iskakov and Iskakov, 2016).

6In general the set of EinSS is not large. From a theoretical point of view, this follows from the fact that
the problem of finding EinSS can be formulated as an optimization problem for players’ payoffs on the sets
of their secure strategies.



formalized and extended by Chwe (1994)7. Although these concepts can formally be used
to study also noncooperative games (Suzuki and Muto, 2005; Nakanishi, 2007; Jamroga and
Melissen, 2011), it raises questions concerning the tractability of the obtained results. The
first two papers assume that in the chain of deviations there could be unilateral deviations
that are not profitable for deviators. This assumption does not really fit in a non-cooperative
setting. As for the Farsighted Pre-Equilibrium (FPE) proposed by Jamroga and Melissen
(2011), it is closer to our concept of secure deviations, but with important differences. At an
EinSS, strategic thinking only goes for two deviations ahead, whereas at an FPE it goes for
three and more steps ahead, assuming (contrary to what we do) that the initiating deviator
has the opportunity to make a last unilateral deviation in order to recover his original pay-
off. Finally, a substantial difference between the EinSS and all farsighted solution concepts
is the requirement that an EinSS be a secure strategy profile. In particular, dropping this
assumption may lead to the emergence of multiple equilibria.

As we prove existence of an EinSS in a class of discontinuous games, our work is also
related to the literature on existence of Nash equilibrium in discontinuous games. Developing
ideas of Dasgupta and Maskin (1986), Reny’s (1999) important paper proposes a fairly simple
existence criterion covering most of previous existence results. The key concept of Reny is
that, at any strategy profile, some player has a deviation to "secure a payoff” with respect
to arbitrary local deviations of other players®. What we propose is another approach (and
another definition of secure deviation) for finding equilibria in discontinuous games. Rather
than imposing a condition on the game, we relax the requirements at equilibrium, allowing
for applications to games in which a pure Nash equilibrium does not exist.

In the following section, the concept of EinSS is defined and its basic properties are an-
alyzed. Then in section 3, we state and prove an existence theorem for discontinuous games
and apply it, successively, to Hotelling’s model, Tullock’s contest and Bertrand-Edgeworth
duopoly model. Section 4 gives an ad hoc existence results for the competitive insurance
market with adverse selection. Proofs omitted in the main text are given in Appendix.

2. Equilibrium in secure strategies

2.1. Equilibrium concept

Consider a non-cooperative game G = (S;,u;)~Y, of N players in normal form. We use
the standard notation s_; for strategies of all players other than ¢. If s; € S; is a deviation
of player i from the profile s into profile s’, we use the following notation s s & with the

obvious constraint s_; = s’ ;. The proposed equilibrium concept is based on the notions of
threat and secure deviation.

"Harsanyi’s definition has been recently modified by Ray and Vohra (2015) in order to respect coalitional
sovereignty.

8Reny’s conditions have been weakened or simplified in a number of ways. See, for example, Bagh and
Jofre (2006), Bich (2009), McLennan et al. (2011), Barelli and Meneghel (2013).
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Definition 2.1. A threat of player i against player j at strategy profile s is a deviation
s; such that w;(s;, s—;) > w;i(s) and u;(s;,s_;) < uj(s). A deviation of player i at strategy
profile s is a competitive deviation if it is a threat against some player at s.

A threat (and a competitive deviation) indicates a situation, in which it is profitable for
one player to worsen the situation of another. In that respect, an important property of a
strategy is to avoid such threats.

Definition 2.2. A strategy s; of player i is a secure strategy at strategy profile s if no
player 7 # 1 has a threat against player i at s. Otherwise it is an insecure strateqy at s. A
strategy profile s is a secure profile, if all players’ strategies are secure.

Alternatively, a strategy profile is secure if no player has a competitive deviation. Let
us now introduce a complementary notion to competitive deviation.

Definition 2.3. A non-competitive deviation of player i at strategy profile s is a
deviation s, such that w;(s},s_;) > w;(s) for player i and u;(s},s_;) > u;(s) for all other
players j # i.

In this way all profitable unilateral deviations of players can be divided into competi-
tive and non-competitive deviations depending on their effect on the other players. Non-
competitive deviations do not pose an immediate danger to other players. Thus, from the
standpoint of mutual security of players at unilateral deviations a Nash equilibrium can be
characterized in the following manner.

Definition 2.4. A secure strategy profile is a Nash Equilibrium if no player has a
non-competitive deviation.

Following the ”objection and counter-objection rationale” (Aumann and Maschler, 1964),
and reinforcing the security objective of the players, one can extend the applicability of a
non-cooperative equilibrium by enlarging the class of games for which an equilibrium exists.
The idea is that a non-competitive deviation by some player may give the opportunity to
some other player to threaten the deviator at the new strategy profile. Then there are two
possibilities after such a non-competitive deviation. Either the threat can make the deviator
worse off than before the deviation, in which case we assume the deviation to be insecure
for the deviator. This should induce the deviator, as a cautious player, to refrain from
deviating. Or the threat makes the deviator as well off than initially and in this case the
deviation can be considered as secure for the deviator. Formally, we have:

Definition 2.5. A secure non-competitive deviation of player i at strategy profile s
is a non-competitive deviation s; such that u(s}, s}, s_i;) > ui(s) for any threat s of player
J # i against player i at profile (s, s_;).



In order to formulate a concept of equilibrium in a game of cautious players, we may
assume that such players avoid insecure non-competitive deviations. Then it is sufficient
in the corresponding definition of equilibrium to only exclude secure non-competitive de-
viations at a non-cooperative equilibrium profile. Together with the requirement that the
equilibrium is a secure profile, this leads us to the proposed definition for an Equilibrium in
Secure Strategies:

Definition 2.6. A secure strategy profile is an Equilibrium in Secure Strategies
(EinSS) if no player has a secure non-competitive deviation.

Before looking at economic applications, analyze some of properties of the EinSS concept.

2.2. Basic properties
The first important property of the EinSS follows immediately from its definition:

Proposition 2.1. Any Nash equilibrium is an Equilibrium in Secure Strategies.

This means that the existence problem can not be worse for EinSS than for Nash equi-
librium. Whenever a Nash equilibrium exists an EinSS also exists. However for some
practically important problems without Nash equilibrium (such as Hotelling’s model and
Bertrand-Edgeworth duopoly which will be considered in this paper) the EinSS exists and
provides an interesting interpretation.

Let us now consider a simple matrix game example having no Nash equilibrium in order
to illustrate the definition:

| 4 lo
s | (L1) (2,0)
se | (2,2) (0,3)

One can find all threats in the game. First, in the strategy profile (s, t1) there is a threat
of t-player against s-player as we move from payoffs (2,2) to payoffs (0,3). Second, in the
strategy profile (s, ty) there is a threat of t-player against s-player as we move from payoffs
(2,0) to payoffs (1,1). And finally in the profile (s, %2) there is a threat of s-player against
t-player as we move from payoffs (0,3) to payoffs (2,0). In all three cases one player can
make himself better off and the other player worse off. These threats in the game can be
visualized graphically in the following way:

(L1) < (20)
T
(2,2) — (03)
The only secure profile in the game (which is secure for both players) is the profile (sq,t1)

with payoffs (1,1). If players were choosing best responses sequentially in the game they
would end up in an infinite cycle so that there is no Nash equilibrium in pure strategies.
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This situation can change if we take into account the considerations of security. The profiles
with payoffs (2,2), (0,3) and (2,0) can not be an equilibrium in secure strategies because
they pose threats. The profile (s1,¢;) is the only secure profile in the game. The t-player
can not increase his profit by any deviation from it. There is a profitable deviation for the
s-player from this profile into the profile (sq, t1) with payoffs (2,2). However it is not a secure
deviation since the s-player can lose more after the response deviation of t-player from the
profile (s, t1) with payoffs (2, 2) into the profile (sq,t2) with payoffs (0,3). Therefore, in the
profile (s1,t1), no player has a secure deviation and this profile is an EinSS. This means that
a cautious player would prefer the guaranteed payment of 1 in the (sy,%1) to the possibility
of gaining 2 in (s9,t;) accompanied by a high-risk to get zero in (s, ts).

For some games the reverse of Proposition 2.1 is true. For instance for strictly competi-
tive games (i.e., two-person games where all pairs of strategies are Pareto optimal), we get:

Proposition 2.2. In a strictly competitive game, any Equilibrium in Secure Strategies is
a Nash equilibrium.

Proof. Consider a strictly competitive game and suppose there is an EinSS which is not
a Nash equilibrium. Then there is at least one player who has a profitable deviation. But
(by Pareto optimality) the other player will get a strictly lower payoff. Therefore, this is a
competitive deviation so that the profile is not secure and can not be EinSS. [J

However this property may not hold if the condition of strict competitiveness is weakened.
For instance it does not hold for almost strictly competitive games introduced by Aumann
(1961) on the basis of the concept of twisted equilibrium. A twisted equilibrium point in the
two-player game is a pair of strategies at which neither player can decrease the other player’s
payoff by a unilateral change in strategy. A game is called almost strictly competitive if
(i) the set of payoffs vectors to Nash equilibrium strategy profiles is equal to the set of
payoffs vectors to twisted equilibrium strategy profiles and (ii) if the set of Nash equilibrium
strategy profiles and the set of twisted equilibrium strategy profiles intersect. Let us modify
the previous matrix game in the following way:

31 lo l3
si| (L) (20) (L1)
52 (272) (073) (_Ll)
53 (17'1) (17'1) (an)

There is a unique Nash equilibrium profile (s3,t3) with payoffs (0,0) which at the same
time is a unique twisted equilibrium. So the game is almost strictly competitive. The profile
(s3,t3) is also an EinSS. But there is another EinSS. This is the profile (s, ;) with payoffs
(1,1). It is not a Nash equilibrium. This example shows that cautious players (avoiding
threatening or being threatened by others) may enforce (as an EinSS) a strategy profile that
is not a Nash equilibrium but may dominate another EinSS which is a Nash equilibrium.

As the following example shows, a cautious player can even play a strictly dominated
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strategy at an EinSS, but the deviations offered to him at this equilibrium should be non-
competitive and non-secure.

tl tg
s1| (9,6) (4,5)
so | (10,7)  (8,8)

The strategy s, dominates strategy s;. There is a Nash equilibrium profile with payoffs
(8,8), which is an EinSS. But the strategy profile with payoffs (9, 6) is another EinSS solu-
tion, in which the s-player plays the strictly dominated strategy s;. If the s-player was using
the deviation (sy,t1) = (s2,;), both players would gain but the ¢-player would be able to
gain even more by deviating then to the profile (sq,t3) where the s-player is worse-off than
at the EinSS.

Another way to view the EinSS, is to consider that each player, whenever possible, re-
strict to secure strategies (strategies such that no other player has a threat against him).
In that respect, the definition of an EinSS implicitly implies that each player maximizes his
payoff functions over the set of secure strategies. We let Q;(s_;) € S; be the set of secure
strategies of player ¢ for given strategies s_; of the other players. We can define a profile
in which the ”secure strategy” of each player is the best one in the same way as the Nash
equilibrium is a profile in which the strategy of each player is a best response.

Definition 2.8. A secure strategy s € Qi(s_;) of player i is a best secure response
to strategies s_; of all other players if player © has no more profitable secure strateqy in
Qi(s_;). A profile s* is the Best Secure Profile (or BS-profile) if the strategies of all
players are best secure responses, i.e. sf € Q;(s*;) and u;(s*) = Ema(x* w; (8, 8%;) for alli.

There is a simple relation between EinSS and BS-profiles: the set of BS-profiles is larger
than the set of EinSS:

Proposition 2.3. Any Equilibrium in Secure Strategies is a BS-profile. A BS-profile may
not be an Equilibrium in Secure Strategies.

Proof. An EinSS is a secure profile by definition. And it must be the best secure response
for each player since otherwise there is a player who can increase his payoff by a secure
non-competitive deviation. Therefore an EinSS is a BS-profile. The reverse is not true.
Consider the following matrix game example:

t1 to ts3
S1 (an) (272> (272>
52 (2a2) (173) (371)
S3 (272) (371) (173)
The profile (si,t1) is the only secure profile in the game and therefore it is a BS-profile.

However it is not an EinSS because of secure non-competitive deviations (s1,t;) — (sg,%1)
or (Slytl) i> (83,t1). O




Hence a BS-profile is an EinSS if and only if no player has secure non-competitive devia-
tion. Even if the concept of BS-profile is weaker than the concept of EinSS, it will be useful
in applications (as we shall see later) as an intermediate step in finding an EinSS.

3. Existence

3.1. Existence result

Recall that a strategy s; of player ¢ is insecure at strategy profile s, if there is another
player j who has a threat against player ¢ at s. Pursuing on the BS-profile idea, and as a tool
to obtain an existence theorem, we shall associate to every game G = (S;, u;)¥, a modified
game G = (S;,v;)X, with same strategies but payoffs adjusted for insecure strategies by
taking into account the worst threat.

Definition 3.1. A secure payoff of player i at strategy profile s is the function:

inf u;(s},s—5), if s; is an insecure strategy for player 7 in GG
UZ‘(S> — { J#, s ug(sh,s—j)>u;(s)

u;(s), if s; is a secure strategy for player i in G

The following proposition is an immediate but useful consequence:

Proposition 3.1. If a secure strategy profile s* is a strict Nash equilibrium in the modified
game G, then it is an EinSS. If s* is an EinSS of the game G, then s* is a Nash equilibrium
of the modified game G.

On the basis of this observation, we now introduce a class of games for which the ex-
istence of an EinSS can be shown. Roughly speaking this is a class of games such that,
whenever a profile s is insecure (in the game G) for some player ¢, i.e. s; ¢ Q;(s_;), this
player can increase his secure payoff v; by deviating to a profile (s}, s_;) which is secure for
him, i.e. s} € Q;(s_;). Player i is then said to have a better secure alternative at profile s.
However this condition will be weakened by requiring its fulfillment only relative to some
box B = x| B;, where B; is assumed to be a compact convex subset of S;.

Definition 3.2. A player i has a better secure alternative in B, if for every
s_i € B there exists a non-empty subset Q,( i) C Qi(s_;)NDB; such that, for every strategy
si ¢ Qi(s_;) there exists a strategy s € Q;(s_;) such that u;(s), s_;) = vi(s), 5_;) > vi(si, 5_;).
A game G = (S;,u;)Y, is said to be a BSA-game relative to B if every player has a better
secure alternative in B.

For any s_; € B_;, the set Q; (s—:) in a BSA-game is always understood to be non-empty.
The graph of the multi-valued function Q;(s_;), T(Q;) = {(si, s_:) | si € Qi(s_:), 5_; € B_;}
is defined as a subset of B.



We shall use Debreu (1952) theorem to prove the existence of an EinSS in BSA games
in finite Euclidean spaces. For this class of games we relax the standard conditions for the
existence of a (pure) Nash equilibrium by requiring the fulfillment of these conditions only
in the corresponding box B. In this case a Nash equilibrium in the set B turns out to be an
EinSS in the original game.

Theorem 3.1. Let G be a BSA-game relative to B such that for all i, the graph I'(Q;) is

closed, u;(s) is a continuous function from T(Q;) to R, and ¢;(s_;) = max wu(s;, s_;) is
8 €Qi(s—i)

continuous. If for everyi and s_; € B_; the set M;_, = {s; € @i(s_i) | wi(si,s—i) = ¢i(s—i)}
s contractible, then there exists an EinSS in B.

Proof. As the basis of the proof we shall use the social equilibrium existence theorem of
Debreu (1952). Since the sets Q;(s—;) assumed to be non-empty for all s_; € B_; in a
BSA-game we can consider them as a multivalued function from B_; to B;. Next, following
Debreu we define a profile s* as a social equilibrium point, if for all i = 1,..., N: s¥ € Q;(s*,)
and u;(s*) = rgezx )ui(si, s*,). Then all conditions of Debreu’s Existence Theorem (1952)
8;,€Q4(s*;

are satisfied: there exists a social equilibrium point s* € B. Consider a profitable deviation
s; of any player i at profile s*. It is obviously non-competitive, because s* is a secure profile.
If s € Qi(s*;) then w;(s},s*,) < u;(s*) and the deviation is not profitable. If s} & Q;(s*,)
then according to BSA condition there exists s/ € Q;(s*,) such that u(s/, s*,) > vi(s}, s*,).
Since u;(s!,s*;) < u;(s*) we obtain v;(s}, s*;) < w;(s*). By Definition 3.1 of the function
v; this implies that the non-competitive deviation s, is not secure. Therefore in the secure
profile s* no player has a secure non-competitive deviation, i.e. s* is an EinSS in the original
game G. [

The rest of this section will be devoted to well-known economic games which can be
proved to be BSA-games and to satisfy the conditions of Theorem 3.1.

3.2. Applications of Theorem 3.1

To apply Theorem 3.1 it is necessary to examine the structure of the set of secure
strategies of players. This step seems inevitable when searching for the EinSS. Nevertheless,
in the following economic games the set of secure strategies is rather simple. In this case
Theorem 3.1 applies very well.

3.2.1. Hotelling’s model

In the Hotelling’s model (1929) two sellers of a homogeneous product are located on a
closed line of length [ at respective distances a and b from the ends of this line (a+b < [l,a >
0,b > 0). Customers are evenly distributed with a unit density along the line and consume
a unit of this product per unit of time. A customer will buy from the seller who quotes the
lowest delivery price, namely the mill price plus transportation cost, which is assumed linear

9



P2 7

0“"0.5“‘/p\‘11‘p1*“‘1.5“‘|:;12
Figure 1: Two cases of the best responses behavior in the price-setting Hotelling’s subgame.

with respect to the distance. Let p; and p, denote, respectively, the mill price of sellers and
let d =1 —a — b denote the distance between them. In the price-setting subgame, where the
two sellers are the players, the payoff function of seller 1 is

U{:pll, p1L<p2—d
ur(p1,p2) = Q ui’ =pia+ W)a Ip1 —pa| < d (1)
0, pL>p2+d

The payoff function of seller 2 is symmetric. These functions are two-peak. The best response
functions of the two players (drawn in red for player 2 and in blue for player 1 in Fig. 1)
are discontinuous respectively at the points p; and py, where there is a jump from one peak
to the other of the payoff functions of player 2 and player 1, respectively.

Two cases are possible (see Fig. 1). The best response functions can intersect at one
point (pf, p5) = (I+ “T*b, [+ b’T“), at which the price-setting game admits a Nash equilibrium.
This case occurs when pj < p; and p; < po. If on the contrary pj > p; or pd > p, then the
jump occurs before the two best response functions intersect. In this case there is no Nash
equilibrium in the game. These conditions can be written as (d’Aspremont et al.,1979):

Y Yo o (10070 < 0 ()
=l(a or = a
3 3 3 3

To apply Theorems 3.1 it is necessary to examine the structure of the sets of secure
strategies of the two players in the price-setting subgame. In the area p; < p_; — d, where
seller ¢ "undercuts” its competitor and take away the entire market, all strategies of i are
insecure, because the competitor can reduce its price and get positive profit. In the area
p; > p_;+d seller i gets zero payoff. Therefore, all secure profiles with positive payoffs for the
two players belong to the diagonal domain |p; — ps| < d of the strategy space. In this area
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there are two types of threats against a player i. If u’l(p;, p_;) < ul,(p; —d), the competitor

—1 can profitably "undercut” the price of seller + and take away the entire market. In the

contrary case, the best response of i’s competitor is simply BR_;(p;) = argmax u!L(p;,p",).
‘pi_pli‘gd

But, if p_; > BR_;(p;), the competitor —i can also profitably reduce the price and capture

a market share from player i. Therefore, the set of strategy profiles in the diagonal domain,

which are secure for player ¢ is defined by the condition

u(pi, p—i) > u;(pi — d)
{p—i < BR_;(p:) @

It remains to choose the box B so that for every (pi,ps) in B the inverse BR;*(p;) and
BR;!(ps) of the best response functions are defined and continuous, since then the strategy
of player —i in the profile (p;, BR;*(p;)) is clearly secure. The best response functions
BRy(p2) and BRy(p,) strictly increase up to the points of their discontinuity, respectively
at profiles (BR1(p2), p2) and (p1, BR2(p1)). Therefore, these points determine the size of B.
Finally we get:

B = By x B, = [0,p7] x [0,p7], with py’ = min{py, BR(p2)}, p; = min{ps, BRy(1)}.

Proposition 3.2. Under condition (2) the price-setting Hotelling’s subgame, with payoffs
given by (1), satisfies the conditions of Theorem 3.1 in B and admits an EinSS in B.

See proof in Appendix.

For locations outside condition (2), a Nash equilibrium (hence a EinSS) exists, which
coincides with the solution found by Hotelling. One can show in addition that at each
location pairs there is a unique EinSS (Iskakov and Iskakov, 2012b). The existence and
uniqueness of EinSS in the price-setting subgame allows for the correct solution (i.e. the
subgame perfect EinSS) of the two-stage location-price Hotelling’s game. In the first stage
seller 1 chooses its location a and seller 2 its location b, anticipating the equilibrium prices
(pi(a,b),ps(a,b)) of the second stage subgame. As shown by Iskakov and Iskakov (2012b),
the Nash equilibrium in locations gives

a* =31+ b"—6VIib*, b" > 1/4, and b* =3l + a* — 6Vlia*, a* > /4 (4)
There are no other EinSS equilibrium in the first stage game.

We see that the equilibrium locations lie on the boundary between the domain in which
the Nash equilibrium in prices found by Hotelling exists, and the domain in which it doesn’t
because of undercutting, i.e. at this boundary conditions (2) hold as equalities. By symme-
try, we get for the (unique) equilibrium locations: a* = b* = 1/4.

To sum, by taking explicitly into account the threat of undercutting, one gets a unique
solution at each location pair, the EinSS, which coincides with Nash where it exists, but exists
anyway because the sellers secure themselves against this threat. The resulting equilibrium

11



location pair minimizes the differentiation on the domain where the Nash equilbrium in
prices exists. The Principle of Minimum Differentiation applies only on this domain.

This is in contrast with the effect of the modified ZCV assumption introduced by Eaton
(1972, p. 269), saying ” the action of one producer does not completely eliminate the other”?.
In the EinSS concept sellers consider the possibility of being completely eliminated as a real
threat, and therefore, they keep prices sufficiently low to secure themselves against such
undercutting. Also, in contrast to the price solution in mixed strategies the EinSS solution
is obtained in explicit form and can be interpreted as an equilibrium of bilateral containment

by cautious players.

3.2.2. Tullock contest of two players

In the basic formulation of Tullock’s rent-seeking contest, N players compete for a prize
and each player exerts effort ; € [0, 1] so as to increase his probability of winning x;/ Zjvzl x;
(Tullock, 1980). A more generalized form of the game has the expected profits of the players
given by x¢/ Zjvzl ¢ — 15, a >0 (see, e.g., Skaperdas, 1996). Here we consider a contest
of two players with payoff functions defined as:

x{ iy
Ulzﬁ—l'l, UQ:ﬁ—$2,0d>O (5)
A S 7 + x5

This game has a unique Nash equilibrium («/4,a/4) when o« < 2 and there is no Nash

equilibrium when « > 2. When « > 1 the payoff functions u; have a double peak in z;. The
left peak arises at £'7°?* = () and the position of the right peak x2P¢®* is defined by

p2peak 571@72’) — {(§+)_ (x), 7>

, where

NS [ RN [e]

N (5_)_1 (), o <

a—1 1/a
E(xy) = <xi2 (a —2x; + v a? — 404952-)) ,  max {O, a

2

_l}gxiga/él (6)

a—1 1/«
5_(£BZ) = (xiQ <a—2xi— 052_4041‘1')) s Olega/él

When a > 2 the best response of player 7 is

f_l(x—i), T, < I = é(a _ 1)%1

BRi(z;) = { (7)

The player’s strategy is secure in the game G if and only if the competitor can not
increase his payoff by increasing his effort. Following this criterion consider the set of

9This rule is also known as the no-mill-price-undercutting restriction. See Eaton and Lipsey (1989) and
the references given in their survey.
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Figure 2: Secure strategies (gray area) and BSR function of player 2.

profiles at which the strategy of player 2 is secure. Let us define 7 = - (a + 1)“7+1 (v — 1)%1
and introduce an auxiliary invertible function 7 for @ > 2 on the interval 0 < z < % as
N(z) = w9 ur(w, 22) = ug(E71(x9), 22). As we know the payoff function u(z1, ) can be
two-peak in x; depending on x5. When 0 < 25 < 7 the right peak is higher than the left one
and player 1 has a threat at this profile against player 2 when z; < 22P°®* = ¢=1(2,). When
T < w9 < T the left peak is higher than the right one and insecure strategies for player 2
lie in the interval 77 (z3) < 1y < £ (x5). Finally when x5 > T the function u; decreases
monotonically in z; and all profiles are secure for player 2. The set of profiles (z1,x2) that

are secure for player 2 is shaded in gray in Fig. 2 and can be formally written as
{rg < Zyx > E N a) U T < a0 <Z, 71 <7 Hwp) or 21 > E M (2)} U {2 > 7},

or, alternatively, it can be written in the form:

{1 > a/4} U {z1 < afd, 29 > n(x1) or zy < & (1)} (8)
_ & (), a2;1 <z < §
where n(z1) = {302 D (@, 22) = w (5_1(352)7132)7 43”1 < ai;I 4 ¥

As can be seen from Fig.2 the set of secure strategies of player 2 at a given x1 < «/4 consists
of two intervals separated by the right peak o = 22P°®* of the function us. Therefore, the
best secure response BSRs(x1) of player 2 could be either at x5 = 0, or at xo = £ (1), or
at x9 = no(z1). The accurate estimation (which will be proven in the first step of the proof
of Proposition 3.3) shows that



This function BSRy(x1) is marked in Fig.2 by a thick line. This implies that the connected
subsets of secure strategies of player 2, including the more profitable secure strategies, can be
chosen for 71 < & as Q2(x1) = {ma(z1) < 29 < 1} and for x; > Z, as Qa(x1) = {0 < x9 < 5},
with 0 > 0 small enough. When z; = & any such BSA subset @2(331) must include the two
points 25 = 0 and xs = ny(x1), and hence the corresponding set M; from the Theorem 3.1
would be non-contractible. Thus, if we want to apply Theorem 3.1, the set B should not
include strategy profiles at x; = & and x5 = 2 (by symmetry). However, the above analysis
suggests that one can choose a strategy profile box B as (see Fig. 2):

B =By X By=[0,2 — €] x [ + ¢ 1] with an arbitrary small € > 0. (10)

Proposition 3.3. When o > 2 the two-person Tullock contest (5) satisfies the conditions
of Theorem 3.1 in B and admits an EinSS in B.

See proof in Appendix.

A full solution of the Tullock contest for two players in secure strategies as well as some
generalizations for many players were obtained in (Iskakov et al., 2014). In particular, when
a contest admits no Nash equilibrium, the following proposition applies:

Proposition 3.4. When o > 2 the two-person Tullock contest (5) admits the following
EinSS (which is unique up to a permutation of players):

a—1

(0,2*) or (z*,0), z*= é (—1) (11)
When there is no Nash equilibrium (i.e. a symmetric competition is unprofitable for
players), the EinSS concept allows us to discover a different type of non-cooperative equi-
librium in Tullock contest, where one player exerts a high level of effort to keep the prize
while the other player refuses to participate. In this situation the first player prefers to
fix his secure monopolistic position and maintains a high level of effort to create an entry
barrier into the contest for the competitor. The observed EinSS solution is unique up to a
permutation of players. The efficiency of equilibrium in the contest is usually characterized
by the rent dissipation, which is a ratio of the total effort of all players to the value of the
prize. The higher the rent dissipation, the lower the efficiency of equilibrium. When a pure
Nash equilibrium does not exist, the rent dissipation in mixed strategy equilibria is equal
to one, so the rent is completely dissipated (Baye et al., 1993). However, in the discovered
monopolistic EinSS the rent dissipation is significantly less. Thus, in this case the EinSS
provides a more efficient solution than the Nash equilibrium in mixed strategies.

3.2.8. Bertrand-FEdgeworth duopoly model

In this subsection we consider the Bertrand-Edgeworth model of price-setting duopolists,
selling an homogeneous product, under capacity constraints and with identical marginal
costs, normalized to zero. We assume a continuous strictly decreasing consumer’s demand
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function D(p). Each firm ¢ = 1,2, has productive capacity S; and it is assumed that
D(0) > S; + S5. Firms compete in prices (p1,p2) and play non-cooperatively. The firm
quoting the lower price serves the entire market up to its capacity and the residual demand
is met by the other firm. Consumers served at the lower price are randomly selected so that
the residual demand to the firm quoting the higher price is a proportion of total demand
at that price. If setting the same prices, firms share the market in proportion to their
capacities. Formally we define the payoff functions of players to be:

(prmin{Sy, D(p1)}, p1 < po
— ; S1 —
ur(p1, p2) = q prmin{Sy, mD(pl)}, P1 = D2
| p1min{5, gﬁﬁ;; max{0, D(p2) — S2}}, p1 > p2 (12)
(pymin{Sy, D(p2)}, p2 < p1
uz(pr,p2) = { pamin{Sy, g2 D(pa)}, p2=p1

| P2 min{ Sz, 525 max{0, D(p1) — S1}}, ps > pr

It is well known since Edgeworth (1925) that such model may not posses a Nash equi-
librium (see e.g. d’Aspremont and Gabszewicz, 1980). We now show that, unless capacities
are excessive (in some specific sense), there is an Equilibrium in secure strategies. Denote
by p* the price such that demand equal capacity, i.e. D(p*) = S; + S2. We have:

Proposition 3.5. Assume that the receipt function pD(p) is strictly concave. If the
Bertrand-Edgeworth game with payoff functions (12) satisfies the conditions:

arg rzr)lftg({P(D(p) —S)rsp h D(p*) =51+ S (13)
, where p) = + 2,
arg max{p(D(p) = S2)} < p* -

then it satisfies the conditions of Theorem 3.1 and admits an EinSS.

Proof. Let us take B = [0, p*] x [0, p*] as strategy profile box. If p € B the payoff functions
of each player, u; = p1.S7 and us = p9Ss, are independent of the other player strategies. All
strategy profiles in B are secure. Choose Q;(p2) = [0, p*], Q2(p1) = [0, p*]. Clearly, the graph
of each function Q;, I'(Q;) = B, is closed, the maximum payoff ¢;(p_;) = p*S; is constant,
and each set M, , consists of a unique point and so contractible. It only remains to prove that
G is a BSA-game in B. For that we need only to prove that player 1 with insecure strategy
p1 > p* always has a BSA in B when p, < p*. Observe that, at the profile (p1, p2), there exists

a deviation (pq, ps) 2 (p1,p*+¢), with € > 0 small enough so that p*+¢& < p1, So < D(p*+¢)
and player 2 strictly increases its payoff from py S, to (p*+¢)Sy. Then, if p*D(p*) > p1D(p1),
v1(p1,p2) < ui(pr,p*+¢e) < pr D?p(fjr)a) (D(p*+¢) —52) <p*(D(p*) — S2) = p*S1 = u1(p*, p2),
i.e. the deviation (p1, ps) RN (p*, p2) provides for player 1 a BSA in B;.

Now suppose p1 D(p1) > p*D(p*). If p*D(p*) = p1 D(p1) then it implies that p* < py; < p1
and that, anyway, (p1 —¢) D(p1 — €) > p*D(p*), with £ > 0 arbitrarily small. Then, at the
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profile (p1,ps), there exists a deviation (p1,p2) 2, (p1,p1 — €), at which player 2 strictly
increases its payoff from psSy to us(pr,p1 —¢) = min{(p; — €)D(p1 — €), (p1 — €)S2} >
min{p*D(p*),p*Se} = p*Sa > p2S;. From the condition (13) we obtain ui(p1,p; —¢€) =

max{0, p1 D(p(fl)g) (D(p1 —e) — S2)} < p*(D(p*) — S2) = p*S1 = u1(p*, p2), i.e. the deviation

(pl,pg) (p*,p2) provides for player 1 a BSA in B;. Arguments for player 2 follow by
symmetry. Thus G is a BSA game in B. J

Under strict concavity of the receipt function, it is known and easy to see that (p*, p*)
is the unique Nash Equilibrium if p* > py, = arg max {pD(p)}. In such a case, firm i,
P

anticipating that its competitor chooses p*, cannot do better than quoting price p* and
producing at capacity. For any larger price p;, p; D(p;) < p*D(p*) and its profit would only
be p; 2 D )) (D(p*) — S_;) < p*S;. The following proposition goes further and provides a full
characterization of EinSS in the Bertrand-Edgeworth game.

Proposition 3.6. Let the receipt function pD(p) be strictly concave and reach its maximum
at par. Then in the Bertrand-Edgeworth game with payoff functions (12), (p*, p*) is an EinSS
(withD(p*) = Sy + Sz) if and only if

*

argmax{p(D(p) — S1)} <p
p>0 (14)
arg I;lgg{p(D(p) —S)t <p*

If p* > par it s a Nash equilibrium. There are no other EinSS in the game.
Proof. Since the receipt function pD(p) is strictly concave then the function p(D(p) —S) at
a given S is also strictly concave in p and reaches the unique maximum at p > 0. Therefore

arg magc{p(D(p) — S)} can be considered as a function of S. See proof in Appendix. [
p>

Corollary. If function pD(p) is differentiable the condition (14) is equivalent to

d
(pD( ))‘ < min{S;, S} (14))
dp p=p*
Proof. One can easily check that p = arg max{p( (p)—9)} if and only £ = (pD( )) =9.
p=p
Besides &+ (pD( )> is strictly decreasing. Therefore p < p* if and only if < <pD ) <
p=p*

= S. Hence we get the equivalence of (14) and (14’). O

p=p

d—p(pD( ))

As an example let us consider the demand function D(p) = 1 —p. Then p* = 1—51— 955,
arg m>ag<{p(D(p) — 8)} = 52, par = 1/2 and conditions (14) take the form:
p

Sl + 252 S 1 and SQ + 281 S 1 (15)
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As mentioned, when the equilibrium price p* is equal to or exceeds the price py;, an EinSS
coincides with the Nash equilibrium solution. When a Nash equilibrium does not exist (when
1—-8, -85 < %) and (15) holds, there is a unique EinSS solution with equilibrium prices
(p*,p*). Then p* is less than the monopoly price (equal to maz {1/2,1 — S} — S3}). The
corresponding difference in price S; + Sy — % can be interpreted as an additional cost to
maintain security when duopolists secure themselves against the threat of being undercut in
the industry competition. This example also illustrates the fact that, for an EinSS to exist
when p* is less than p,, one firm should have a productive capacity which is not too large

(less than 1/3 in the example).

4. Insurance market model of Rothschild, Stiglitz and Wilson

In this section we shall consider the model of insurance market analyzed by Rothschild
and Stiglitz (1976) and Wilson (1977) and show that it always has an equilibrium in secure
strategies. The proof will not be an application of Theorem 3.1, but will follow the graphical
procedure introduced by Rothchild and Stiglitz.

Two insurance companies sell insurance contracts to consumers which fall into two
classes: there are ngy high risk consumers and ny, low risk consumers. High risk consumers
have accidents with probability pgy and low risk consumers with probability p;, < pgy. All
consumers have the same strictly positive initial endowment w = (wy,w,) € R? representing
their income in the two states of nature: wy if having an accident and w; if not. Preferences
of all consumers are represented by the same strictly concave utility function u. Each in-
surance contract is a vector ¢ = (¢, ¢3) € R?, where ¢; is the insurance premium and ¢, is
the accident benefit net of premium. The endowment of consumer with insurance contract
becomes (w; — ¢1,ws + ¢3). Consumers of a given risk class j buy at most one insurance
contract ¢ (if they prefer it to their initial endowment w) which maximizes their expected
utility:

Vi(e) = pju(ws + ¢2) + (1 — pj)u(wy — ¢1), where j=H or L (16)
Each insurance company offers a pair of Contracts (cf, ct), where without loss of generality
one can assume that high risk consumers find ¢ at 1east as desirable as c* and low risk
consumers find c¥ at least as desirable as ¢fI. The expected profit of the company from the
contract ¢ = (¢}, ¢}) sold to a customer of class j,

7;(d) = —p;c, + (1 — p;)cl, where j=H or L (17)

Suppose that company 1 offers contracts (c(1), c¢(1)) and company 2 (¢*(2), c#(2)). Then
the expected profit of company 1 is
nimi(c? (1)), if Vi(?(1)) > V;(¢/(2))
U= > S tmymi(d(1), i Vi(d(1)) = V;((2)) (18)

J=HL 0, otherwise

And expected profit of company 2 is defined symmetrically.
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The detailed interpretation and investigation of this model can be found in Rothschild
and Stiglitz (1976) and Wilson (1977). In particular it was shown that, if a pure strat-
egy equilibrium exists, both companies must offer the same contract pair ¢* = (c*#,c*t)
satisfying wy + ¢ = w; — ¥ (i.e. high risks are perfectly insured, and only them),
() = 7 (c**) = 0 (i.e. customers of each risk class generate zero expected profits
for companies) and Vi (c*) = Vg (c*) (i.e. high risk customers are indifferent between
the low risk contract and their own). Following Dasgupta and Maskin (1986) we will call
contract pair ¢* a ”Rothschild-Stiglitz-Wilson” or RSW contract pair. However if there is a
sufficiently high proportion of low risk customers one company can deviate from ¢* and earn
positive profit. It can offer a "pooling” contract ¢** that both high and low risk customers
prefer to ¢*. It was shown that there is no Nash equilibrium in this case. We can show
however that contract pair ¢* is still an EinSS.

Proposition 4.1. A RSW contract pair ¢* is always an Equilibrium in Secure Strategies
in the insurance market game.

See proof in Appendix.

For the described model Wilson (1976) introduced and analyzed an equilibrium concept
("E2 equilibrium”) based on the following assumption. Each insurance company believes
that after offering its contract, the other company would immediately withdraw any un-
profitable contract. Under this assumption an equilibrium in the insurance market game
always exists. In general this solution is different from EinSS. When the RSW contract
is a Nash equilibrium both the EinSS and the E2 equilibrium coincide with it. When the
RSW contract is not a Nash equilibrium, the unique EinSS is the RSW contract, and the
E2 equilibrium is the corresponding optimal pooling contract (which is also unique except
on the boundary of nonexistence of the Nash equilibrium).

Conclusion

The non-cooperative equilibrium that we have analyzed, the EinSS, is meant to extend
the Nash equilibrium concept in order to solve games where the Nash equilibrium does not
exist and where it is not unreasonable to introduce, as a behavioral assumption, that players
are cautious, namely that players are looking for secure positions and avoid threats. In that
respect this concept abstracts and unifies various ad hoc solutions already formulated in
various applied economic games that have been discussed extensively in the literature. It
complements usefully mixed strategy Nash equilibria that are not explicit and difficult to
interpret in these games. Like the Nash equilibrium, the EinSS is a static concept, and the
basic requirement of excluding at equilibrium competitive deviations remains. But it also
appeals to dynamic intuitions, tolerating at equilibrium the possibility of a non-competitive
deviation which would be blocked by some counter-deviation punishing the deviator. This is
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in line with the ”objection-counterobjection” logic first introduced in cooperative games.!°

In the first application, the Hotelling price-setting game, with no Nash equilibrium when
sellers are too close to each other but a unique EinSS for all location pairs, the subgame
perfect EinSS solution selects one location pair. This is the location pair that minimizes
differentiation on the domain where the Nash equilibrium in prices exists. It also mini-
mizes transportation costs. In the second example, the symmetric two-player contest, a
pure-strategy Nash-Cournot equilibrium does not exist when the success function param-
eter is greater than two, but there is an EinSS (unique up to permutations of players)
providing a more efficient solution than a Nash equilibrium in mixed strategies. In the no-
Nash-equilibrium cases (i.e. symmetric competition being unprofitable), one player exerts
a high level of effort while the other player refuses to participate. In the third example,
the Bertrand-Edgeworth duopoly with capacity constraints, we have shown that in many
cases where the Nash equilibrium does not exists, but with some restriction on firm pro-
ductive capacities, there is an EinSS with equilibrium prices lower than the monopoly price.
The corresponding difference in prices can be interpreted as an additional cost supported
by the firms to protect themselves from the threat of price undercutting. Existence of an
EinSS in these three applications can be derived from a general existence theorem for dis-
continuous games (the payoff functions or the best response functions being discontinuous).
Finally, we consider Rothchild-Stiglitz-Wilson (RSW) insurance game, in which at a Nash
equilibrium both companies must offer the same RSW-contract pair. However, if there is a
sufficiently high proportion of low risk customers, a single pooling contract will be preferred
by every customer and will therefore upset the RSW-contract as a Nash equilibrium. But a
RSW-contract always remains an EinSS.

These four applications are only examples, but they well illustrate the kind of determi-
nate solutions cautious players may reach in some classes of games. To confirm this analysis,
it would be interesting to enlarge this set of applications and, as required, the conditions for
existence of an EinSS.
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Appendix A. Omitted proofs

Proof of Proposition 3.2. The sets Q;(p_;) in the BSA condition that we select are the
sets of all secure strategies in the diagonal domain defined by (3). These sets are closed
segments, which can be explicitly described as:

Q1(p2) = [max{p2 —d,2py — 2b — d}, min {p2 +d,

p2(2b+d — po) + 2le B,

21—])2
(A1)
~2 1) = | max 1—d2 1—2a_d mln 1+d p1<2&+d_p1)+2dl mBZ
Qalpr) = | max{p; — d, 2p b min {py +d.
2l—p1

We now prove that the game G is a BSA-game in B. First let us prove that player 1
with insecure strategy p; always has a BSA in By when p, < p%. If min{d, 25} < p, < p¥

we have according to our choice of B: BR;(ps) € Q1(ps) # @. If p» < min{d, 2etd} player

1 always has secure strategies with a small enough price and we also have @1<p2) #+ O.
Therefore player 1 always has a deviation in secure strategy in B; with a positive payoff.
If v1(p1,p2) = 0 any such deviation provides a BSA in B; for player 1. Consider now the
case vi(p1,p2) > 0. If |p1 — p2| < d then the strategy p; is insecure only if ps > BRy(p1).
Because BRy(p;) is increasing at p; € By we obtain p; < BR;'(ps) < BRi(p») (the second
inequality follows from the condition py < p? < p3). Then due to the strict quasiconcavity

of ui(p) in p; at [p1 — po| < d the deviation p; EN BR;'(py) is a profitable deviation
in secure strategy, which provides a BSA in B; for player 1. If p; < py — d we have
0 < vi(p1,p2) < ui(p1,0) < pr(a+ ) < (p2—d)(a+d) = ull(py—d, ps). Therefore player
1 can profitably deviate in the profile (py — d, ps). If it is not secure, player 1 can deviate
profitably further (as was proven before) in a secure strategy, which provides a BSA in B
for player 1.

_Let us check the fulfillment of the other conditions of Theorem 3.1. Clearly, the graphs
['(Q;) of functions Q;(p—;) are closed sets. Payoff functions of players are continuous on
these graphs (as well as in the entire diagonal domain). Maximum payoffs of players ¢;(p_;)

on the sets Q;(p_;) are continuous, because the payoff functions are one-peak in the diagonal
domain, and the boundaries of segments Q;(p_;) change continuously with p_;. Finally, each
set M, , consists of a unique point, because of the strict quasiconcavity of payoffs in the

diagonal domain. Therefore these sets are contractible. By Theorem 3.1 G admits an EinSS
in B. U

Proof of Proposition 3.3. As sets @l(x,z) in B for the BSA condition, we choose the
closed segments

Qa(71) = {ma(21) < @2 <1}, Qulan) = {0 < 2y <5}, (A.2)

where ¢ > 0 is sufficiently small so that u;(z1) always decreases on the interval @1. Let us
prove that the game G is a BSA-game in B.

20



X2

X2 = n(x1) x2 = £ (x1)
N / / //;Dsj
it =B
T e
s
xep-4-= D+
t=0 X1 X1 % X1 X X

Figure A.3: Location of the considered domains and points on the curve £~1(t) for different values of ¢.

(1). Consider first the domain Dy = {0 < zy < &, 0 < 2y < £ (1)} with secure strategies of
player 2 and prove that it is always profitable for player 2 to deviate from it into x5 = n(x1)
(see Fig. A.3). Choose an arbitrary x; < Z. Since us(xy,22) is quasiconvex in D; with
respect to xg and uy(x1,0) = 0 < ug(z1,n(x1)) then it suffices to show that

ug(21, & (11)) < gy, n(ey)), 11 <2 (A.3)

A. Consider z; < aij. Introduce the notations: zo = & (z1), T2 = n(x1), T1 = 5 1(29),

Ug = up(r1,§ (11)) = m;ﬁfwg — &, where 2y = {1 (22), uj = ug(wy,n(x1)) = aﬂ — Iy.

From the definition (9) of n(xy) at z; < “4;1. O‘ﬁx —x = % — Z;. Tt follows that
o 2 T2

3;721,% =143 —x— ~a+~a and uj = I — 71 + =2em ~a+~a — Xy, where Z; = £ 1(Z,). The curve

r1 = £ (x9) can be conveniently parametrized using a monotonically increasing along it
a variable t : 0 <t < 3—ﬂ so that at t = y: x; = ﬁ, Ty = y/* . xy, and at t = §:

~1/a at+1

I = (13‘_—%)2, To = §'/“- 71, where parameters y, § € [0, 2==]. Using these notations we obtain

T a—1
ul —u§ = f(§) — f(y), where the function
t at(1 — t1/e) a+1
t) = t < A4
JO =3+ —gse 0 0Siso (A.4)

is quasiconcave and reaches maximum at t,,,, = 1, and admissible sets of parameters are
such that 15 < g < 24, 0 <y < 2o Notethaty<—andf( ) < f(5) (fy > 25,

then z;(y) > %1, ie. at a > 2 zl(y) > L(a —1)"+ = &y, according to (7) this means
that ug(x1,22) < 0 for any x in contradiction with the condition us(xq1,n(z1)) > 0). By
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direct substitution into (A.4) one can verify that f (T) (a 1) for all @ > 2 and
Fy) < F(2=) < F(2). Therefore, f(y) < min{f (<) . f (25)} and § € [17, 221).
Because of the qusiconcavity of f(t), it follows now that f (y) < f(9), and accordingly, the
required inequality (A 3) holds.
B. Con31der x> a2 . From the definition (9) of n(z1): uJ
and uS = ug(xy, & ( 1)). We use again the variable y = 5=
according to (5) and (6):
-1
QR AV VO S R T - 0<y<1

u2 1+y_1 1y ) u2 1+y 1y y L1 (1+y)<1+y_1>7 Yy .

It follows that ug — ug = 1 ((yl/a — gy — l(y y‘l)). When y = 1 the function

d = (ul —u)/zy = 0. Its derivative &= o (Ve vy o) - (y—iry_l)). When a >
3

2(00<l/a<1):0<y<yt’*<l=> gy 4yt <y+y'and P <O S >0, uj > us.
Hence we obtain the inequality (A.3).

g (21,1(71)) = uz(1,§7 (21)),

(a — 21 — Va2 — 4041:1). Then

(2). Consider the domain Dy = {0 < z; < &, £ (x1) < 2% < n(x1)} where the strategies
of player 2 are insecure. We prove that at any strategy profile in Dy there is a threat of

player 1 against player 2 to deviate profitably z; N x| into the strategy of its right peak
rh = &71(a}), which lies on tgle curve (6). Besides, ug(x1,n(z1)) > uz(2], 24) (see Fig. A.3).
A. Consider the case x; < “—. We use the function f(¢) (A.4) and the same notations as
1/

in the first part A of the proof. In addition, we denote z| = %, xhy =y - o) for the

parameter value t = 3'. Then,

/

_ o - ay B ay . /
Auy = ug(z1,n(21)) — (2], 25) = f(7) + 1+y) (1+y)? )

Let us prove that Auy > 0. Consider first ¥ > 1. Note that § > 3/ (because of Ty > z4) and

the function us(t) = 5 — C(“fflgg increases at t > 1. Therefore, uy (27, x2) =ua(y') < ua(g) =

ug(T1, Ta) < ug(w1,T2) = ug(x1,n(x1)), ie. Aug > 0. Consider now E <49y < 1. In this

case we have z(y) > <=t ie. at a > 20 7} > (o — 1)“c" = 7, and according to (7)

this implies that u2(x1, xh) < 0. Because of uy(xy,n(z1)) > 0 we obtain Aus > 0. Finally,
consider y <y’ < ;= In this case Aup > ug(z1,n(21)) — max  us(t). The function us(?) is
y<t<—

——a—1
quasiconcave on the interval ¢ € [0, 1]. Let ¢ = ¢ be the position of its maximum. If § € [0, y],
then max us(t) = uz(z1(y), 22(y)) = ua2(21,§ (21)) and the inequality Auy > 0 follows
y<t<—1

immediately from the previously proven condition (A.3). If § € (y, 1] then the following

estimate holds: y < min O‘—:,ﬁ It follows from direct verification that d“2|t a1 =

(etyl/e 2 < 0 when a > 2, and d“2|t,7 = (a—1)Y* —(a—1) < 0 when a > 2.

a—1

Therefore, max  us(t) = uz(21(7), 22(9)) = ug(gj), and
y<t<-=3

~

ay ay

1+9)?2 (1+y)?
22

Aug > ug(zy,n(z1)) — ua(9) = f(9) + —f@) > f@) - f(y) -



Since f(t) increases at ¢ < 1, then it follows from the above estimate that

o (51) (55} <o) o (520))

Because f(t) is quasiconcave and § € [, 2E2], we obtain f(7) > f(9) and the inequality
Augy > 0 is proved.

B. Consider the case x; > In this case the inequality required for the BSA con-
dition takes the form wus(zy,{T(x1)) > wa(z), xh). We use previously introduced nota-

a?-1

tions for y, ¥/ and y. Because of § = argmaxus(t) < +1’ it follows that the function
0<t<1
_ t attl/> a—1 a+l : :
us(t) = o5 0 +1)2 is quasiconcave on the interval [a I o 1} Then taking into account

that 2=1 1 <y <y <y <2 we obtain us(y') < max{uz(y),uz(y~")}. In the first part
B of the proof it was shown that us(y) < us(y~') when y < 1. Consequently, we obtain
us(y') < ug(y™'), or using initial notations us (), 74) < us(z1, T (1)), q.e.d.

(3). Let us now prove that the BSA condition holds for the set @1(@). For the convenience
of illustration we shall give the proof for the symmetrical set @g(xl) ={0<xy <0}, 1 > 7.
Consider an arbitrary zf, > 4. In strategy profiles where us(zq,25) < 0 the BSA condition is
met because ug (21, xh) < ug(x1,0) = 0. Consider the domain Dy = {(x1,2%)| 1 > Z, ab >
J, us(xy,xh) > 0}. The above proof of the inequality us(z1,£ (1)) < ua(xy,n(z1)) does
not use the condition x; < Z and thus it remains true when z; > z. Therefore, from the
condition uy(z1,n(x1)) < 0 at 1 > , it follows that us((z1,£ (21)) < uz(x1,n(z1)) < 0.
Since ug(x1,x9) is quasiconcave in xo when £~ (z1) < x2 < n(z1), the strategy of player 2
must belong to the interval £~ (z1) < z§ < n(x1) (see Fig. A.3), for all strategy profiles
(x1,24) € Ds. This implies that at any strategy profile in Dj there is a threat of player 1
against player 2 to deviate profitably z; EN 7 into the strategy of its right peak ) = £~ 1(z),
1/
t+L1 o 0(154:1;2 d
define the following values of the parameter t: y, ¥ and § so that ug(z1,£ (21)) = ua(y),
ua (2, 2h) = ua(y') and ue(E71(n(x1)),n(x1)) = ua(y). Since us(t) is quasiconvex on the
interval ¢ € [y, 2] and y <y < § < 2H, then us(y') = ua(2}, 24) < max{ua(y), u2(7)} <
max{us(x1, & (21)), ua(x1,n(x1))} < 0= u2(x 0), and consequently, the BSA condition
holds true also in the domain Ds.

which lies on the curve (6). Consider again the parametrization us(t) =

(4). Let us check the fulfillment of the other conditions of Theorem 3.1. Clearly, the graphs
r (@A;L,)) of the functions @Z(x,l) are closed sets. The payoff functions of players are
continuous on these graphs (as well as for all strategy profiles except for the profile (0,0)).
The maximum payoffs ¢;(x_;) on the sets Q;(z_;) are continuous, and the boundaries of
segments Q;(z_;) change continuously with x_;. Finally, each set M,_, consists of a unique

point, because of the strict quasiconcavity of payoffs on Qvl(as_l) Therefore, these sets are
contractible. By Theorem 3.1 G admits an EinSS in B. [
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Proof of Proposition 3.6. (1). Any EinSS in the game must be a BSR-profile with
positive payoffs (since any profile with zero payoffs always possesses a secure deviation into
profiles with positive payoffs). First, let us find all secure profiles in the game with positive
payoffs. Consider the case p* < p; < py. If D(p;) > S; player 1 can always threaten player
2 by slightly increasing his price p;. If D(p;) < S; then according to (12), us(p1,p2) = 0.
Symmetrically, if p* < py < pp either player 2 can threaten player 1 or ui(py,pe) = 0. If
p* < pa = p1, each player can undercut the other. If p; < p* < py player 1 can threaten player
2 by increasing his price to p*+0 which exceeds p* by an arbitrarily small amount. Indeed in
this case D(p1) > D(p*+0) > Sy and uy(p1,p2) = p15S1 < (p*+0)S1 = w1 (p* 40, p2). On the

other hand, ua(p* +0,p2) = p251f§l Sy < p2S> and us(p* + 0, p2) = p2D(p2) (1 - %) <

p2D(p2) (1 — DL(Z)) => uy(p* + 0,p2) < uz(p1,p2). Symmetrically, if po < p* < p; player
2 can threaten player 1. Therefore all secure profiles with positive payoffs must lie in the
set {(p1,p2) : 0 < p; < p*, i =1,2}. On the other hand if py < p*, wui(p1,p2) = Sip1
linearly increases in p; and does not depend on ps. Hence there are no threats available to
player 1. Symmetrically, if po < p* there are no threats available to player 2. Therefore
(p1,p2) is a secure profile with positive payoffs in the game (12) if and only if it lies in the
set M = {(p1,p2) : 0 <p; <p*, i=1,2}.

(2). The payoff functions (12) u; and uy increase in the set M linearly in p; and in po
respectively. Therefore there is only one BSR-profile (p*, p*) with positive payoffs in the set
M (otherwise one player could securely slightly increase his price). According to Proposition
2.3 there are no other EinSS in the game except this profile.

(3). Let us consider profile (p*, p*) and prove the conditions (14). Suppose for example
that p* < p(Ss2) = arg rgggc{p(D(p) — S3)}. Then player 1 can deviate pj — p. His payoff

will increase since p* < p < py = arg mggch(p) and wuy(p1,p2) is strictly increasing in
p

p1 if p1 < pyr according to (12). Any retaliatory threat of player 2 according to (12) can
not make the payoff of player 1 less than minu;(p, p2) = minuy(p, pa) = w1 (D, P2)|py=p—0 =
D2 p2<p

pmin{S;, D(p) — Sa}. The payoff of player 1 in the initial profile does not exceed this value.
Indeed p(D(p) — Ss) is strictly increasing at p < p and we have uy (p*, p*) < p*(D(p*) — 52) <
p(D(p) — Sz) and uy(p*, p*) = p*S1 < pSi. Therefore the deviation of player 1 into p(Ss) is
always a secure deviation according to Definition 2.5. Hence profile (p*, p*) is not an EinSS.
Symmetrically if p* < p(S;) then player 2 can make a secure deviation into p(S;) and profile
(p*,p*) is not an EinSS either. The necessity of (14) is proven.

(4). Let us now assume that (14) holds (i.e. p(S;) < p* and p(S2) < p*). Con-
sider an arbitrary deviation p* — p; of player 1. If p; < p* it can not be a profitable
deviation for player 1. Therefore p; > p*. Player 1 increases the payoft if and only if
uy(p*, p*) = p*Si = *D(p(; S2D(p*) < ui(pr,p*) = pPS52D(py), ie. p*D(p*) < p1D(p1)
should hold. Then there is retaliatory threat of player 2 to deviate from profile (py,p*)
into a profile (p;,p1 — 0), with p; — 0 arbitrarily close to p;. From p*Ss < p;S; and
p*D(p*) < p1D(p1) it follows that player 2 increases his payoff by this deviation. The payoff
of player 1 in this profile is arbitrarily close to ui(p1, p1 —0) = py min{.Sy, D(p;)—Sa
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Figure A.4: Deviations from RSW solution (¢*H,c*F) are not secure. Both "pooling” deviation v (on the

left) and separating deviation (¢, cF) (on the right) pose a threat 4/ to receive negative payoff.

p1(D(p1) — S2). Since p(D(p) — Sa) is strictly decreasing at p > p(S2) and p; > p* > p(Ss)
then uy(p*, p*) = p*(D(p*) — Sa2) > p1(D(p1) — S2) = w1 (p1,p1 — 0). Therefore the deviation
of player 1 into profile (p;,p*) is not a secure deviation. Symmetrically an arbitrary devia-
tion of player 2 is not a secure deviation either. No player can make secure deviation in the
profile (p*, p*). By definition it is an EinSS. The sufficiency of (14) is proven. [

Proof of Proposition 4.1. In our proof we will follow the graphical procedure introduced
in Rothschild and Stiglitz (1976). In Fig. A.4 the horizontal and vertical axis represent
income of customers in the states of no accident and accident respectively. The point F
with coordinates w = (wy,wy) is the uninsured state of customer. Purchasing the insurance
contract ¢ = (¢, ¢y) moves the individual from E to the point (w; — ¢, wy + ¢2). The set
of insurance contracts for low-risk customers that break even lies on the line L. The set
of contracts for high-risk customers lies on the line FH respectively. If company offers a
"pooling” contract which is the same for both groups (such that ¢! = ¢) should, in case
of equilibrium, lie on the market odds line EF. The pair of contracts (¢*, ¢*L') in Fig. A.4
represents the RSW solution of the insurance market game. The indifference curves through
c*H and ¢*! for high-risk and low-risk customers Uy and Uy, are shown by broken lines.

Let us consider position when both insurance companies offer the RSW contract ¢* and
obtain zero payoffs. If it is a Nash equilibrium it is also an EinSS according to Proposition
2.1. Consider the case when ¢* is not a Nash equilibrium. It is still a secure profile since
any change in the insurance policies of one company will not bring losses to the other
company. Its payoffs will still remain zero. Suppose one company can deviate by offering a
new insurance policy. It is either (A) a "pooling” insurance contract or (B) a separating
insurance contract.

(A) If it is a pooling contract « it must lie above the low-risk indifference curve Uy,
through ¢* in order to be profitable for both low- and high-risk customers (see Fig.A.4 on
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the left). A deviating company can make a positive profit only if v lies below the market
odds line EF in the shaded area. Let us draw the indifference curves Uy and U}, for low-
risk and high-risk customers through . Then the second company as a response to v can
offer a pooling contract 7' between curves U, and U; somewhere to the right from the ~
and below low-risk line FL. In this case all low-risk customers would choose <" and the
second company could make a profit. All high-risk customers would stay with v contract
and the first company would lose money. Hence there is a retaliatory threat to deviate into
~" such that the deviating company loses more money than it gains at deviation . Therefore
offering pooling contract v is not a secure deviation.

(B) Let us now assume that a deviating company offers a new separating contract
(¢, T) which is more profitable than (¢*, ¢*F) (see Fig. A.4 on the right). If it is more
profitable for low-risk customers it also must be more profitable for high-risk customers
(since in this case they always prefer ¢'* to ¢*#). In order to be more profitable for high-risk
customers ¢’ must lie above the high-risk indifference curve Uy through ¢*#. Therefore ¢/#
also lies above high-risk line FH and makes a loss for a deviating company. Consequently
¢’ must lie below low-risk line £L and make a profit for a deviating company. In this case
profits from 'L subsidize the losses of ¢ and (¢, L) can be more profitable than the
RSW solution (¢*¢*L). Let us draw the indifference curves Ul through ¢#. Then the
second company as a response to (¢’ ¢'L) can offer a pooling contract 7 at the intersection
of Uy with low-risk line EL. In this case all low-risk customers would choose " and the
second company could make a profit. All high-risk customers would stay with (¢'#, L)
contract and the deviating company would lose money. Hence there is a retaliatory threat
to deviate into 4 such that the deviating company loses more money than it gains at devia-
tion into (¢'#, F). Therefore offering separating contract (', ¢'F) is not a secure deviation
either. No company can make a secure deviation from (¢*#, ¢*F). Therefore it is an EinSS. O
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