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Abstract

People overestimate the probability that others share their values or preferences. I

introduce type projection equilibrium (TPE) to capture such projection in Bayesian

games. TPE allows each player to believe his opponents share his type with inter-

mediate probability ρ. After establishing existence, I address my main question:

How does projection affect behavior in games? I analyze auctions and distribu-

tion games. In auctions, projection implies an increased sense of competition,

which induces overbidding in all (first-price) auctions. In addition, it biases the

perceived value distribution, which induces cursed bidding in common value auc-

tions. Thus, projection induces a hitherto neglected bias in bidding. It is novel

in that it explains behavior across conditions and it is independently founded in

psychology. I test projection equilibrium in multiple ways on existing data and

find that it substantially improves on alternative concepts, both in isolation and in

addition to them. The findings are cross-validated by testing projection of social

preferences in distribution games.
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1 Introduction

The false consensus bias is the tendency to assume that one’s own opinions, prefer-

ences and values are typical and shared by others. Following its original observation

of Ross et al. (1977), this form of “projection” has been confirmed in a variety of

experiments, as Mullen et al. (1985) show in a meta-analysis. Projection may per-

sist even if subjects are provided with factually contradicting information (Krueger

and Clement, 1994). Thus, projection is of intuitive relevance in all choices under

incomplete information—not just in the non-strategic environments on which the psy-

chological literature traditionally focuses, but also in strategic interactions. Current

concepts studying projection in “games” focus on one-sided incomplete information.

In their seminal paper, Loewenstein et al. (2003) study projection of utility onto future

selves, finding that it explains anomalies in purchases of durable goods. In a different

context, Madarász (2012) studies projection of information from an informed player to

an uninformed one, which explains the hindsight bias in agency problems.

The purpose of the present paper is to study projection of generic “types” in games

with two-sided incomplete information. Types may capture social preferences or object

valuations. I set up a simple model of projection of types in Bayesian games where

players may overestimate the probability that their opponents share their type—ranging

from the special cases of zero projection (the original Bayesian case) to full projection

(disregarding all prior information).1 The degree of projection is denoted by ρ ∈ [0,1).

In equilibrium, players know their opponents’ strategies but compute their expected

payoffs with a projection bias. For each ρ, a corresponding type projection equilibrium

is shown to exist. In the analysis, I estimate the degree of projection ρ to be around 0.5

in simple distribution games and auctions, and find that allowing for projection better

describes and predicts behavior in these games. Aside from explaining behavior, the

relevance of projection also has policy implications, as the projection bias is reduced

when subjects are educated explicitly (Engelmann and Strobel, 2012).

My main application is the analysis of auctions with players who project their values.

Object values are personal traits, and thus intuitively projected in general, and their pro-

jection has been observed explicitly in bargaining (Bottom and Paese, 1999; Galinsky

1The case of full projection is regularly considered in analyses of social preferences. The present pa-

per provides a conceptual framework allowing the analyst to capture the more intricate case of imperfect

projection. This is critical for several reasons. First, full projection is rarely observed in psychology.

Second, I will estimate imperfect degrees of projection in auctions (where full projection does not fit),

and third, imperfect projection also explains behavior under social preferences, as shown below.
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and Mussweiler, 2001) and consumption decisions (Frederick, 2012; Kurt and Inman,

2013). The basic intuition for projection in auctions is simple. When bidding on say a

house, projecting bidders neglect competitors whose values are vastly inferior, against

whom they surely win, and competitors whose values are vastly superior, against whom

they surely lose. Rather, they focus on competitors with similar values, trying to en-

sure winning against them. This focus on close competitors is a form of the projection

bias—implicitly, the bidders overestimate the probability that competitors have values

similar to their own. It increases the sense of competition, which induces overbidding

in first-price auctions and explains the loser regret observed by Filiz-Ozbay and Ozbay

(2007). In addition, the biased perception of the value distribution obscures the infer-

ence of the object value in common value auctions, which “curses” one’s estimates and

yields the Winner’s Curse.

The increased sense of competition also relates to risk aversion in private value auc-

tions, but the projection bias is special in that it induces a similar sense of competition

in common value auctions, on top of the cursed value perception. Thus, the projection

bias provides a unified explanation of overbidding in both information conditions. This

is interesting, as differences between information conditions may be rather intranspar-

ent to both bidders and analysts. For example, the differences are small between affil-

iated private values and common values. If one believes that the behavioral source of

overbidding does not change between these fairly similar regimes, then the unified ex-

planation by the independently observed projection bias is promising. From this point

of view, the research question may be refined as follows: Knowing that people project

their values, which aspects of behavior does projection explain in auctions, and which

aspects are to be explained differently, by say risk aversion or cursedness (Eyster and

Rabin, 2005)? The short answer is that projection equilibria seem to fit behavior fairly

well and alternative models do not seem to add significantly to its explanatory content.

I test projection equilibria in many ways, by evaluating the testable predictions de-

rived in the theoretical analysis and by a structural analysis evaluating its quantitative

fit to individual choices. I allow for a variety of behavioral assumptions including

non-equilibrium beliefs and subject heterogeneity, and test the adequacy of projection

to describe, predict, and infer from behavior. The main findings are that projection

fits about similarly well as risk aversion in private values auctions, about as well as

cursed equilibrium in common value auctions, but overall it describes and predicts be-

havior better than these concepts (also in combination). That is, a specific degree of

projection, estimated to be around ρ ≈ 0.5, captures behavior consistently across con-
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ditions. In itself it explains around 65% of observed variance. Additionally accounting

for risk aversion does not improve the descriptive or predictive adequacy significantly,

but accounting for subject heterogeneity improves the model adequacy by around 10

percentage points.

I complement the findings by examining imperfect projection (ρ= 0.5) of social prefer-

ences. Relatedly, projection of guilt aversion was observed by Bellemare et al. (2011),

and projection of inequity aversion was observed by Blanco et al. (2014). In addition,

I show that projection allows to predict within-subject changes of behavior, using the

data of Blanco et al. (2011). In their experiment, each subject played six games, the in-

dividual degrees of envy and guilt were calibrated using two of these games and used to

predict behavior in the remaining four games (assuming either equilibrium or rational

expectations). Blanco et al. (2011) found that these predictions did not correlate with

the actual choices. Blanco et al. (2014) show that in simple sequential-move games,

projection of both strategies and preferences can be observed. Using type projection

equilibrium,2 I show that predictions using intermediate values of ρ do correlate with

behavior and thus help explain the apparent behavioral changes.

I conclude that the projection bias matters in games with incomplete information,

which extends existing evidence from psychology. At least in the games analyzed

here, behavior is better described and predicted by considering projection. Since un-

derstanding behavior in distribution games and auctions is of independent interest, as

large stocks of literature have been devoted to analyses of behavior in these games, the

result that the projection bias organizes much of the variance still remaining in these

games is a positive finding. In turn, as the projection bias may be reduced by explicit

information of subjects, the finding that projection helps explaining observed behavior

leads to potential policy implications that are discussed in the conclusion.

Section 2 defines type projection equilibrium and relates it to existing literature. Sec-

tion 3 derives theoretical predictions for auctions. Section 4 describes the data. Section

5 examines the testable implications of projection equilibrium using these data and

Section 6 analyzes the adequacy to capture individual behavior. Section 7 concludes.

There is comprehensive supplementary material with further analyses.

2Note that Blanco et al. (2011) consider either simultaneous-move games or games with strictly se-

quential moves where each player moves once. Projection equilibrium can be applied straightforwardly.
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2 Type projection equilibrium

2.1 Definition

Type projection equilibrium extends Bayesian Nash equilibrium by incorporating the

projection bias in a stylized manner. To simplify notation, I focus on games where

all players are ex-ante symmetric in the sense that their type spaces are identical, but

generalizations are possible. My formulation does not require “types” to represent

preference parameters, but the idea of projection equilibrium may appear particularly

natural if the reader wishes to keep this interpretation in mind.

Let Γ =
〈

N,(Ai)i∈N ,T0,(Ti)i∈N , p,(ui)i∈N

〉

denote a Bayesian game, including the set

of players N, and sets of actions Ai and types Ti for each player i ∈ N. The set of

Nature’s types is T0, the set of type profiles is T = T0×T1×·· ·×Tn, and the probability

distribution over T is denoted by p. Types may be correlated. The marginal distribution

on Ti is denoted by pi, and action profiles are denoted by a ∈ A = A1 ×·· ·×An.

Definition 1. A Bayesian game Γ is called finite if N,A,T are finite. It is called type-

symmetric if Ti = Tj and pi = p j for all i, j ∈ N.

Given action profile a ∈ A and type profile t ∈ T , i’s utility is ui(a, t). The strategy

σi(·|ti) ∈ ∆Ai of i maps i’s actions to probabilities contingent on type ti. As usual,

A−i =× j∈N\{i}A j and T−i =× j∈N∪{0}\{i}Tj, but slightly abusing notation, define

σ−i(a−i|t−i) = ∏ j 6=i σ j(a j|t j) as the product of the probabilities. The expected utility

of type ti ∈ Ti from action ai in response to σ−i may thus be written as

πi

(

ai|ti,σ−i

)

= ∑
t−i∈T−i

∑
a−i∈A−i

p(t−i|ti) ui

[

(ai,a−i),(ti, t−i)
]

σ−i(a−i|t−i).

A strategy profile σ = (σ1, . . . ,σn) is a Bayesian Nash equilibrium (BNE) if all types

ti ∈ Ti of all players i ∈ N put positive weight only on optimal actions,

σi(·|ti) ∈ arg max
σ′

i∈∆Ai

∑
ai∈Ai

σ′
i(ai) πi

(

ai|ti,σ−i

)

.

Type projection equilibrium extends BNE by allowing players to overestimate the

probability that their opponents are of the same type as they are. This biases their

beliefs about types. Formally, player i ∈ N assigns weight 1− ρ, ρ ∈ [0,1), to their

prior information that the types adhere to the prior p and weight ρ to their projection
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that all players’ types are equal to i’s type. The parameter ρ is called degree of projec-

tion. Due to the projection bias, players believe that their opponents’ strategy profile

is summarized as

σ̃−i(a−i|t−i, ti) = (1−ρ)∏
j 6=i

σ j(a j|t j)+ρ∏
j 6=i

σ j(a j|ti) (1)

rather than σ−i(a−i|t−i). A detailed discussion in relation to existing concepts and

psychological evidence follows shortly, but briefly, let me discuss two assumptions

inherent in this formulation. On the one hand, players project their types onto all

their opponents simultaneously. Alternatively, one might assume that players project

their type independently onto their opponents. The resulting predictions appear to

be qualitatively rather similar. Besides its analytical tractability, I assume correlated

projection, as it corresponds with the observations of Camerer et al. (2004) and Costa-

Gomes et al. (2009) that experimental subjects tend to believe their opponents make

correlated choices. On the other hand, players project their exact type. In Bayesian

games with ordered type sets, an intuitive alternative might be that players project by

putting extra weight on the belief that the opponents are of similar types, i.e. of types

that are proximate to theirs under the assumed ordering. I choose the simpler model of

exact projection, as it equally applies to environments with both ordered and unordered

type sets (an example of the latter will be the projection of social preferences), and as

it avoids measures of the degree of similarity between types.

The type projection equilibrium is defined as the BNE in response to σ̃−i. That is, as in

every equilibrium concept, players anticipate their opponents’ strategies σ−i, but due

to their projection bias, they use σ̃−i when computing expected payoffs.

Definition 2. For any ρ ∈ [0,1), a strategy profile σ = (σ1, . . . ,σn) is a ρ-type projec-

tion equilibrium (ρ-TPE) if for all players i ∈ N and all types ti ∈ Ti,

σi(·|ti) ∈ arg max
σ′

i∈∆Ai

∑
ai∈Ai

σ′
i(ai) πi

(

ai|ti, σ̃−i

)

.

Existence can be established as any ρ-TPE of Γ is a Bayesian Nash equilibrium of an

augmented game Γ̃ where the projected events are possible draws by Nature. This re-

lates to the argument establishing existence of cursed equilibrium in Eyster and Rabin

(2005).

Proposition 1. If Γ is a finite and type-symmetric Bayesian game and ρ ∈ [0,1), a

ρ-type projection equilibrium of Γ exists.
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Proof. See appendix.

2.2 Relation to the theoretical literature

Type projection incorporates a projection bias similar to the one defined by Loewen-

stein et al. (2003). They consider a decision maker predicting his own utility in future

states of the world. Given consumption c and current state s′, the decision maker

predicts the utility will be (1−α)u(c,s)+αu(c,s′), α ∈ [0,1] in alternative state s.

In many games of interest, types and utilities are related and then a type-projecting

player predicting utilities of her opponents would predict very similarly to the utility-

projecting players defined by Loewenstein et al. (2003). Frequently, the relationship

between types and utilities is even linear, and in such cases a type-projecting player

would predict the same utilities as a utility-projecting one. The difference materi-

alizes in Bayesian games. Since players understand that they respond to a mixture

of types, each of which plays a distinct strategy, a type-projecting player anticipates

mixed strategies of each opponent’s type—with probability 1− ρ the Bayesian type

plays and with probability ρ the projected type plays. In turn, utility projection as

in Loewenstein et al. (2003) implies that players believe their opponents’ types have

“average” utilities and play pure strategies each.3

Type projection also relates to information projection (Madarász, 2012, 2013). An in-

formation projecting player believes that his opponents know all he knows, in addition

to their existing knowledge. In an auction, for example, information projection implies

that the opponents know my values, in addition to knowing their own values. Type

projection assumes instead that the opponents share i’s type. Arguably, information

projection appears to be less appealing in the context of say auctions, while it appears

appealing in cases of one-sided incomplete information, and it provides an intriguing

explanation of the hindsight bias.

Another concept related to type projection is cursed equilibrium (Eyster and Rabin,

2005). Similarly to TPE, cursed equilibrium is a solution concept for Bayesian games

introducing a subjective type distribution differing from the objective one. The differ-

ence is that a type projecting player projects his own type onto his opponents, while

3Also note the difference to pure strategy projection: A type projecting player projects what he would

play in his opponents’ shoes, assuming all are of his type but they keep their individual incentives. In

contrast, both utility projection and strategy projection implicitly assume the opponents neglect their

original incentives and adopt my utilities or use my strategies.
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a cursed player projects a random type. Both models distort the correlation between

opponents’ actual types and their strategies, which distorts the information that can be

inferred from their actions. Thus, both concepts predict distorted inference in common

value auctions, implying a Winner’s Curse. Type projection affects behavior beyond

information inference, however, e.g. by inducing loser regret in first-price auctions.

Aside from behavioral implications, type projection seems to more closely implement

the projection bias as observed in the psychological literature, that people project their

own traits or opinions. Such evidence usually draws from interactions with ex-ante

symmetric type sets. In turn, cursed equilibrium appears more appropriate to cap-

ture beliefs if type sets are asymmetric, as result of which projection of the own type

appears less intuitive. Market interactions with one-sided incomplete information as

analyzed in Eyster and Rabin (2005) appear to be a prototypical example of a Bayesian

game that is more intuitively captured by cursed equilibrium than by type projection

equilibrium.

A concept inverting the idea of cursed equilibrium is the level-k model as applied

to auctions by Crawford and Iriberri (2007). Contrary to cursed equilibrium, where

strategies are correct but projected types are random, level-k assumes types are correct

but strategies are random. The predictions are rather similar. Players at level 1 assume

their opponents randomize uniformly, which again weakens the amount of information

contained in the opponents’ bids and thus induces cursed bidding in standard common

value auctions. Since level 1 is contained as a special case in many models of asym-

metric beliefs about strategies, e.g. in cognitive hierarchy (Camerer et al., 2004), noisy

introspection (Goeree and Holt, 2004), and asymmetric logit equilibrium (Weizsäcker,

2003), the results of Crawford and Iriberri suggest that belief asymmetry as such may

well affect behavior in Bayesian games. The purpose of this paper is to investigate

the comparative relevance of these concepts with respect to explaining behavior in

Bayesian games with ex-ante symmetric type sets. In these games, I hypothesize type

projection to be of relevance.

Question 1. To which degree is behavior in type-symmetric Bayesian games explained

by type projection, cursedness, belief asymmetry, and risk aversion?

A distinctive feature of level-k models is their assumption of discrete subject types.

Thus, as a test for the level-k model, and to be able to adequately model subject het-

erogeneity, I will also address the following, more specific question.

Question 2. In auctions, is subject heterogeneity discrete?
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2.3 Empirical evidence on false consensus and projection

False consensus and projection bias are used largely synonymously to describe the

tendency to assume that the own opinions, preferences and values are shared by oth-

ers. Ross et al. (1977) present evidence on projection with respect to both, choices in

everyday decision making and individual characteristics (such as personal problems,

expectations, and preferences). They show that subjects’ beliefs about others’ choices

correlate with their own choices, and their beliefs about the others’ characteristics cor-

relate with their own. An early meta-analysis illustrating the robustness of projection

is provided by Mullen et al. (1985), showing that its magnitude is largely invariant with

respect to the generality of the reference population. However, projection is strongest

in relation to people similar to oneself (Clement and Krueger, 2002). Projection ap-

pears to have evolved, as it is helpful in predicting characteristics of other subjects.

Hoch (1987) shows that the majority of subjects would actually improve their pre-

dictive accuracy if they weighted their own positions even stronger, as they seem to

face difficulties in using available information about the targets. Krueger and Clement

(1994) show that the projection bias persists even if subjects are provided with factually

contradicting information, which is called the truly false consensus effect. Engelmann

and Strobel (2000, 2012) qualify this result, showing that the extent of truly false con-

sensus depends on the kind and clarity of information provided to the subjects.

There is ample evidence of projection both within individuals and between individ-

uals. On the one hand, individuals tend to project their current preferences on their

future selves. For example, Gilbert et al. (1998) show that subjects overestimate the

duration of affective reactions to negative events, Read and Van Leeuwen (1998) show

that individuals project their current state of appetite when ordering meals in advance,

and analyzing catalog orders, Conlin et al. (2007) show that individuals underestimate

how tastes change over time.4 In their seminal theoretical study of utility projection,

Loewenstein et al. (2003) show that it also explains phenomena such as overspending

early in life and misguided purchases of durable goods.

On the other hand, projection is similarly strong between individuals, even in anony-

mous interactions such as games played in laboratory experiments. In such environ-

ments, subjects appear to project their own choices and preferences. That is, subjects

tend to consider their preferences and choices to be more common than they actually

4Further, Simonsohn (2010) shows that preference projection affects college enrollment decisions,

via the cloud cover observed on visiting day, Grable et al. (2004), Grable et al. (2006), and Kliger and

Levy (2008) show that projection in reaction to stock market price changes explain investment decisions.
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are.5 Relatedly, Blanco et al. (2011) analyzed the within-subject stability of inequity

aversion (Fehr and Schmidt, 1999, FS) using experimental data with six observations

per subject from different games. They estimate individual FS preferences based on

two of the six decisions per subject and use these estimates to predict the subject’s

remaining four decisions (assuming rational expectations about preferences or choices

of other subjects). These predictions did not significantly correlate with the actual

choices. In one of the games, however, Blanco et al. observed that projection poten-

tially affects behavior. Namely, in a sequential Prisoner’s Dilemma, subjects’ choices

as first mover can be predicted based on their own choices as second mover. In order to

verify its robustness, Blanco et al. (2014) test the predictiveness of own second-mover

choices for own first-mover choices in a larger variety of sequential social dilemmas.

Their new results indicate evidence of both, strategy projection and preference pro-

jection. In order to verify the relevance of projection with respect to their first paper

(Blanco et al., 2011), I re-analyzed their data allowing for either strategy projection

or preference projection. The results, provided as supplementary material, indicate

that both forms of projection indeed allow to successfully predict individual behavior

across games, confirming projection also in these cases.

Preference projection as observed in the literature can be directly captured by type pro-

jection equilibrium in Bayesian games. Laboratory games are played under anonymity

and preferences are private information. In a Bayesian game, one’s type may charac-

terize one’s preferences, and preference projection is therefore a particular instance of

type projection in games where (social) preferences are behaviorally relevant. Regard-

ing type projection in the case of auctions, the underlying assumption is that subjects

project their object valuation, exaggerating the probability that other subjects value

the object similarly. There also exists explicit evidence of precisely this form of pro-

jection. Frederick (2012) and Kurt and Inman (2013) show that estimates of others’

willingness to pay are highly correlated with the respondents’ own willingness.6 This

evidence implies the hypothesis that projection also affects bidding in auctions. To my

knowledge, there is but one paper linking projection and bidding, namely Engelmann

and Strobel (2012), who mention the idea in their discussion. In addition, Güth and

Ivanova-Stenzel (2003) experimentally analyze auctions and observe that behavior is

5For example, Messé and Sivacek (1979) observe strategy projection in the one-shot Prisoner’s

Dilemma and Offerman et al. (1996) observe it in public goods games. Iedema and Poppe (1995) and

e.g. Aksoy and Weesie (2012) show that subjects project their social value orientation, and Bellemare

et al. (2011) find preference projection with respect to guilt aversion.
6In addition, they show that the estimates are biased upward, which however is less commonly

reported. Similarly, Bottom and Paese (1999) and Galinsky and Mussweiler (2001) show that subjects

tend to use their own reservation price when they estimate others’ reservation prices in negotiations.

10



largely invariant with respect to the subjects’ knowledge of the distributions of val-

ues. In their experiment, subjects do not seem to use information on the distribution of

values effectively, which also indicates the existence of a projection bias.

3 Type projection in auctions

3.1 Projection bias and incentives in bidding

Initially, I focus on auctions with either affiliated private values (APV) or common

values (CV). The case of independent private values (IPV) is qualitatively similar to

APV in many ways, but the notation of mixed strategies needs to be modified, obfus-

cating a joint discussion. The notation is standard. A player gets a signal denoted by

x. The expectation of the object value conditional on the signal x is denoted by v(x),

its expectation conditional on both the own signal x and the highest opponent signal

y is denoted by v(x,y). Note that the notation does not yet entail a restriction of the

information condition toward either APV or CV. The density of the highest opponent

signal y conditional on my signal x is fY (y|x). A pure strategy b⋆ is a continuous,

monotonic function mapping signals x to bids b ∈ R. The expected payoff of bidding

b ∈R, conditional on my signal x and in response to opponents bidding function b⋆, is

Π(b|b⋆,x) = E
[

(Vi −b) Ib⋆(Y )<b)|Xi = x
]

=
∫ b−1

⋆ (b)

x

(

v(x,y)−b
)

fY (y|x)dy.

The symmetric BNE solves b = b⋆(x). In contrast, assume the player in question

projects his type x onto his opponents, as defined above, with degree ρ. Now, the

expected payoff of b conditional on signal x depends on the relation of b and b⋆(x).

Define one’s share of the prize as s = 0 if b < b⋆(x), s = 1/n if b = b⋆(x), and s = 1 if

b > b⋆(x). The expected payoff is a weighted sum of objective and projected payoff,

Πρ(b|b⋆,x) = (1−ρ)
∫ b−1

⋆ (b)

x

(

v(x,y)−b
)

fY (y|x)dy+s ·ρ
∫ x

x

(

v(x,y)−b
)

fY (y|x)dy,

where the second summand captures the case of projection. Note that in the case

of projection, the payoff does not depend on the opponents’ signal or their strategies

beyond their implications with respect to s. The implications of projection can be

dissected into two components, loser regret and cursed value perception, as follows.
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Loser regret Let w(b|x,b⋆) denote the probability of winning without projection,

and wρ(b|x,b⋆) denote the respective probability with ρ-projection. Again using the

“projection share” s = 0 if b < b⋆(x), s = 1/n if b = b⋆(x), and s = 1 if b > b⋆(x),

w(b|x,b⋆) =
∫ b−1

⋆ (b)

x
fY (y|x)dy,

wρ(b|x,b⋆) = (1−ρ)
∫ b−1

⋆ (b)

x
fY (y|x)dy+ s ·ρ

∫ x

x
fY (y|x)dy.

If the projecting player bids less than opponents with the same signal, b < b⋆(x), he

underestimates the probability of winning, as wρ(b) = (1−ρ)w(b)+ρ ·0 is then less

than the objective probability w(b). In turn, if he outbids opponents with the same

signal, he overestimates the probability of winning, as wρ(b) > w(b) results then. In

the latter case, the projecting player ensures that he wins against opponents with the

same signal, the probability of which he exaggerates. This induces an incentive to

outbid opponents with the same signal, under all information conditions. These in-

centives resemble loser regret (Filiz-Ozbay and Ozbay, 2007), i.e. to feel regret if a

higher bid would have won the auction profitably. Projecting players act as if they felt

“conditional loser regret”, i.e. regret if a higher bid would have won the auction against

opponents with the same valuation. The technical differences appear minor, as loser

regret materializes only if the opponents’ values are similar to mine. Thus, I will say

that projection induces loser regret as observed by Filiz-Ozbay and Ozbay (2007).7

Cursed value perception Let ṽ(x|b,b⋆) denote the object value conditional on win-

ning without projection, and let ṽρ(x|b,b⋆) denote the respective value with ρ-projection.

ṽ(x|b,b⋆) =

∫ b−1
⋆ (b)

x v(x,y) fY (y|x)dy

∫ b−1
⋆ (b)

x fY (y|x)dy

ṽρ(x|b,b⋆) =
(1−ρ)

∫ b−1
⋆ (b)

x v(x,y) fY (y|x)dy+ s ·ρ
∫ x

x v(x,y) fY (y|x)dy

(1−ρ)
∫ b−1

⋆ (b)
x fY (y|x)dy+ s ·ρ

∫ x
x fY (y|x)dy

If one outbids opponents with the same signal, i.e. if b > b⋆(x), the expected object

value under projection is a weighted average of conditional and unconditional value. In

7Note that the projected probability of winning is discontinuous in b if the opponents play a pure

strategy. It jumps at b = b⋆(x) where one “overtakes” opponents with the same signal. The discontinuity

will disappear once we allow for mixed strategies, but the incentive to slightly outbid opponents with

similar values is robust to allowing for mixed strategies.
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this case, the projected expectation is equal to the expectation under cursedness (Eyster

and Rabin, 2005). Alternatively, if b < b⋆(x), the projected expectation equates with

the actual expectation. That is, the projected expectation is biased only if one outbids

opponents with the same value. In standard common value auctions, the bias is an

upward bias, i.e. the object value is overestimated. Thus, the projected expectation

exhibits an upward jump at b = b⋆(x), but once we allow for mixed strategies, the

transition will be smooth again. Besides inducing cursed object valuations, this incre-

ment of the expectation adds to the loser regret discussed above. Thus, the incentives

of projecting players to outbid opponents with the same signal are particularly strong

in common value auctions. On a qualitative basis, type projection therefore predicts

that if we hold the degree of projection constant, overbidding occurs in both informa-

tion conditions, but the normalized degree of overbidding (suitably defined) is larger

in common value auctions than in private value auctions.

Question 3. Is the degree of overbidding larger in common value auctions than in

private value auctions?

Such a comparative prediction is not implied by existing concepts such as cursedness,

level-k, or risk aversion. In the canonical models of common value auctions and private

value auctions, cursedness and level-k predict overbidding only for common values,

while risk aversion predicts overbidding only for private values. Thus, type projection

is unique in that it makes comparative predictions across information conditions, but

the testability critically depends on whether we find a suitable measure of the degree

of overbidding. A few such measures are proposed and tested below.

3.2 Mixed bidding strategies

Consider an auction with private values, a player with signal x, and assume his op-

ponents bid according to the pure strategy b⋆. Outbidding the opponents by some

b = b⋆(x)+ ε increases the probability of winning but decreases the expected payoff

conditional on winning. Without projection, there exists an Bayesian Nash equilibrium

bid b⋆(x) where these effects are balanced.

With projection, outbidding the opponents by b = b⋆(x)+ε yields a marginal decrease

of the conditional payoffs but a discrete upwards jump of the winning probability—

reflecting the insurance of winning against opponents with the same signal. Thus,

whenever the conditional payoff after bid increment is positive, ṽρ(x|b,b⋆)− b > 0,

13



the projecting player prefers outbidding the opponents to matching their bids. In turn,

a symmetric, pure strategy profile can be an equilibrium only if it induces zero ex-

pected payoffs. Then, however, even projecting players can realize positive profits by

deviating to bids b < b⋆(x). They would lose against players with similar valuations

(probability ρ< 1), but they win profitably against some players with lower valuations.

Thus, they make positive profits with positive probability (if ρ < 1), and in turn, pure

symmetric equilibria do not exist. As a result, type projection equilibria of auctions

with near-continuous bids must be mixed. This raises the following question.

Question 4. Do individual bidding strategies exhibit strategic randomization?

This question is addressed below. Next, let us examine mixed bidding strategies and

mixed equilibria. To this end, let us focus on two-player auctions. This simplifies no-

tation substantially, as there is a curse of dimensionality in analyses of mixed strategy

equilibria.8 I further restrict the environment as follows.

Assumption 1. Consider a two player auction with the signals x and y of the players.

The distribution of d = x− y is independent of x, has density fD and support [d,d].

The key assumption here is independence of x, which is invoked by many empirical

analyses. In canonical auctions with affiliated or common values, such as those imple-

mented by Kagel and Levin (1986) and Kagel et al. (1987), independence is satisfied

almost exactly unless one’s signal x is rather near the bounds of the signal space. The

assumption of independence is thus valid in the interior of the signal space and allows

us to focus on the properties of strategic bidding abstract of distortions induced by the

signal space bounds. Note that independence is not satisfied in the case of independent

private values, which prevents a joint analysis assuming independence.

The assumption of independence between d = y− x and x allows us to express the

strategic problem of the bidders independently of the signal x. Given signal x, the

own bid is normalized toward r = b− x and the opponent’s bid is normalized toward

r⋆ = b⋆(y)−y. Normalized bids express the “degree of bid shading”, i.e. the amount by

which the players undercut their signals x and y, respectively. Theoretically, these nor-

malizations are valid in standard auctions, as the normalized BNE bids are independent

8In contrast to pure strategies, where it is sufficient to focus on the opponent with the highest signal,

with mixed strategies, even players with lower signals may place the winning bid. Derivations of equi-

libria for more than two players must account for this, which appears technically straightforward but

tedious, without offering any obvious additional insights in relation to the case of two players.
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of the signals.9 Empirically, their validity has not yet been analyzed.

Question 5. Are normalized bids r = b−x in APV and CV auctions independent of x?

Given independence, define the normalized expected object value as ṽ(d) := v(x,x+

d)− x, with d = y− x as above. The normalized expected payoff without projection is

Π̃(r |r⋆) =
∫ r−r⋆

d

(

ṽ(d)− r
)

fD(d)dd.

Thus, with Assumption 1, a two-player auction is fully characterized by the duple

〈ṽ, fD〉. In equilibrium, the normalized bid r is negative and the expected normalized

payoffs are positive. More generally, by normalization of all terms in relation to x,

we reduce the dimensionality of the strategy space, which helps both analytically and

econometrically. In particular, we can express mixed strategies conveniently. Let R ⊂

R denote the set of normalized strategies r. A mixed strategy σ ∈ ∆R is the density of

a distribution on R. The expected (normalized) payoff of bidding r in response to the

mixed strategy σ is therefore

Π̃(r |σ) =
∫

R
σ(r⋆)Π̃(r|r⋆)dr⋆ =

∫
R

σ(r⋆)
∫ r−r⋆

d

(

ṽ(d)− r
)

fD(d)dd dr⋆.

3.3 Type projection equilibria in auctions

Under full projection, players assume that their opponent’s signal equates with theirs

and that they do not learn anything new when winning the auction. Hence, the ob-

ject value conditional on winning equates with the unconditional object value, Ṽ =∫ d
d ṽ(d) fD(d)dd, and the probability of winning in response to σ equates with σ’s cu-

mulative density Fσ(r) =
∫

r⋆<r σ(r⋆)dr⋆. Again it is independent of the opponent’s

actual signal. Under ρ-projection, with 0 < ρ < 1, both conditional value and proba-

bility of winning are weighted averages of full-projection and zero-projection. Under

ρ-projection, the expected payoff is

Π̃ρ(r|σ) =
∫

R
σ(r⋆)Π̃ρ(r|r⋆)dr⋆ = (1−ρ)Π̃(r|σ)+ρ(Ṽ − r)Fσ(r)

To characterize the respective (mixed) equilibria, let us first consider their support. The

support of a strategy σ is denoted by Sσ = {r ∈ R|σ(r) > 0} with bounds r = infSσ

9Details follow, but for example, in the CV auction of Kagel and Levin (1986), the BNE bids are

b = x−w, where w is exogenous (w is the “bandwidth” of the distribution). Hence the normalized BNE

bids r =−w are indeed independent of x.
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Figure 1: Projection predicts skewed overbidding in both APV and CV auctions. Risk

aversion and cursedness predict symmetric overbidding in APV and CV, respectively

(a) APV: Projection ρ
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(b) APV: Risk aversion α
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(c) CV: Projection ρ
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(d) CV: Curse χ
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and r = supSσ. Taking the derivative of the payoff with respect r (in response to σ),

we obtain (in the interior of the support)

Π̃′
ρ(r|σ)

∣

∣

r∈(r,r)
= ρ(Ṽ − r)σ(r)−ρFσ(r)+(1−ρ)Π̃′(r|σ).

Now, along the support of the mixed equilibrium, Π̃′
ρ(r|σ) = 0 is satisfied. At the lower

bound r = r, this implies Π̃′(r|σ) = 0 and σ(r) = 0. For interior r ∈ (r,r), we obtain

σ(r) =
Fσ(r)

Ṽ − r
−

1−ρ

ρ
·

Π̃′(r|σ)

Ṽ − r
,

which implies that σ(r) is increasing in r, since Fσ(r) is increasing and Π̃′(r|σ) is

decreasing. The upper bound of the support follows from Π̃′
ρ(r|σ)

∣

∣

dr<0
= 0, which

yields σ(r) = −1/(v− r)+ 1−ρ
ρ Π̃′(r|σ)/(v− r). At the upper bound, the density σ

drops to zero, and overall the equilibrium strategy is thus left-skewed (i.e. the mean is

left to the median). The following proposition establishes skewness and characterizes

the bounds for a variety of conditions including standard APV and CV auctions.

Definition 3. An auction 〈ṽ, fD〉 exhibits strategic complementarity if dΠ̃(r|r⋆)/dr is

increasing in r⋆.

Proposition 2. Consider a first-price auction 〈ṽ, fD〉 that exhibits strategic comple-

mentarity and non-decreasing ṽ. For any ρ ∈ (0,1), any symmetric ρ-TPE is mixed, its

support satisfies rBNE < r < r < Ṽ , and its density is monotonically increasing.

The upper bound r of the support equates with rBNE in case ρ = 0 and it converges

to Ṽ in case ρ = 1. Figure 1 plots the predictions of type projection in APV and CV

auctions, alongside those of risk aversion in APV auctions and cursedness in CV auc-
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tions.10 The predictions are plotted for logit equilibria as analyzed in the econometric

analysis below, which illustrates that the predicted bounds and shape of the equilibrium

strategies are robust to (small) logit errors. Both risk aversion and cursedness predict

symmetric distributions, while type projection predicts left-skewed strategies.

Question 6. Are strategies left-skewed?

The bounds of the support may alternatively accommodate for risk aversion. For exam-

ple, consider constant relative risk aversion, u(π) = πα/α, α 6= 0, and let rα denote the

respective BNE. Risk aversion shifts the lower bound of the support of the correspond-

ing ρ-TPE from rBNE to rα, i.e. under risk aversion the ρ-TPE has support [rα,rmax]

where rmax < Ṽ can be characterized similarly to above.

Finally, let us briefly look at second-price auctions. Due to the second-price payment

rule, the loser-regret component of projection vanishes, but the cursed value perception

continues to affect behavior. The projected expectation exhibits a jump discontinuity

at b = b⋆(x), where one overtakes the opponent, if the object has a common value.

In such cases, players again perceive to benefit from overtaking opponents, i.e. their

conditional value is not uniquely defined but depends on b R b⋆(x). This rules out

optimality of bidding one’s value and the existence of pure equilibria. Otherwise, e.g.

in private value auctions, projection equilibria are pure and players bid their values.11

4 The data

I re-analyze a total of eight experiments to cover a variety of auction formats and

information conditions. Type projection yields distinct behavioral predictions, and

thus is testable, across these conditions, while we might expect the projection bias to

be of varying relevance if we look at a sufficiently large set of auction formats. Thus,

the following analysis constitutes a rather challenging but informative test of projection

in auctions. The data sets used in the analysis are chosen with two further objectives

in mind. On the one hand, all main information conditions should be included, i.e.

independent private values, affiliated private values, and common values. I intend to

cover these conditions in standard auction formats (e.g. continuous bids and signals)

and in non-standard auction formats (e.g. a non-standard common value, as explained

10Risk aversion does not affect equilibrium predictions in common value auctions and cursedness

does not affect predictions in private value auctions. Hence, the corresponding plots are skipped.
11A more comprehensive analysis can be found in the supplementary material.
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Table 1: Data sources

Inexperienced Experienced

Format Source Values Signals #Subj #Obs #Subj #Obs

Standard auctions

First price, Kagel and Levin (2002) v = X0 Xi|X0 ∼U [s± ε] 51 255

common value Kagel and Levin (1986) v = X0 Xi|X0 ∼U [s± ε] 49 237

Second price, Garvin and Kagel (1994) v = X0 Xi|X0 ∼U [s± ε] 28 140

common value

First price,

affiliated private

Kagel et al. (1987) v = Xi Xi|X0 ∼U [x0 ± ε] 42 210 42 210

First price, Dyer et al. (1989) v = Xi Xi ∼U [0,30] 18 180 18 180

Independ. private Kagel and Levin (1993) v = Xi Xi ∼U [0,28.3] 10 50 10 100

Non-standard auctions

First price,

Independ. private

Goeree et al. (2002b) v = Xi Xi discrete 80 400 80 400

Second price,

Common value

Avery and Kagel (1997) v = X1 +X2 Xi ∼U [1,4] 23 115 23 115

Note: The discrete signals in Goeree et al. (2002b) are uniform draws from either {0,2,4,6,8,11} or

{0,3,5,7,9,12}. The data for inexperienced subjects are mostly from Crawford and Iriberri (2007). In

most rounds of Dyer et al. (1989) and Kagel and Levin (1993), the subjects played two auction markets

simultaneously. Focusing on the first and last five rounds they played, we mostly have ten observations

per subject. Due to bankruptcies in CV auctions, there are not always five observations per subject.

shortly, and discrete bids and signals), of which the latter will be used for strict out-

of-sample analysis. On the other hand, I intend to cover exactly those data sets that

had been used in previous analyses to test the adequacy of behavioral theories. Indeed,

the eight data sets considered here form the union of the data sets used by Goeree

et al. (2002b), Bajari and Hortacsu (2005), Eyster and Rabin (2005), and Crawford and

Iriberri (2007), to test quantal response equilibrium, risk aversion, cursed equilibrium,

and level-k, respectively. Thus, if data selection has any influence on the results, then

it would be in favor of existing theories, and my estimates will indicate a lower bound

of the relevance of type projection. In addition, the repetitive use of these data sets in

the literature indicates the existence of a consensus on the adequacy of the underlying

experimental designs and on their feasibility to test behavioral theories.

An overview of the data sets used in the analysis is provided in Table 1. The four

auction experiments implementing conditions that I call “standard” are the top entries

in this table. The data on first price, common value auctions are from the experiment

of Kagel and Levin (1986) and Kagel and Levin (2002, Chapter 4). The common

value is v = X0 where individual signals are distributed as Xi|X0 ∼ U [x0 ±w]. The

BNE strategy is b(xi) ≈ xi −w.12 The data on second price, common value auctions

12The exact BNE strategy is b(xi) = xi−w+Y with Y = 2w
N+1

×exp
{

−N(xi−x−w)/2w
}

, but Y ≈ 0
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are from Kagel and Levin (1986) and Garvin and Kagel (1994). Signals and value are

distributed as in the first-price case, but now the BNE strategy is b(xi) = xi −w+ 2w
N

.

The data on first price auctions with affiliated private values are from Kagel et al.

(1987). The private value v = Xi is distributed as Xi|X0 ∼U [x0±w] with BNE strategy

b(xi) ≈ xi −
2w
N

. Finally, the first price auctions with independent private values are

from Dyer et al. (1989) and Kagel and Levin (1993), where the private value v = Xi

is distributed as Xi ∼ U [0,30] and Xi ∼ U [0,28.3], respectively. The BNE strategy is

b(xi) = xi (n−1)/n using n to denote the number of players.

The two auction experiments implementing conditions that I call “non-standard” are

the bottom two entries in Table 1. Goeree et al. (2002b, GHP02) implement a first price

auction with independent private values where bids and signals are small integers. As

discussed above, type projection predicts overbidding in IPV auctions primarily due

to the low costs of outbidding opponents. In the experiment of GHP02, the smallest

bid increment is 1 and thus comparably large. Avery and Kagel (1997) implement a

second-price auction with non-standard common value. There are two players who

draw independent signals Xi ∼ U [1,4] and the common value is v = X1 +X2 (in their

“symmetric case”, on which I focus).13 This auction is non-standard for its violation

of Assumption 1, i.e. the distribution of the difference between the signals is not in-

dependent of the own signal, and for the experimental observation that subjects do not

uniformly overbid. Rather, subjects with high values underbid. For these reasons, I

consider these two experiments to be suitable out-of-sample tests of projection.

As indicated in Table 1, I distinguish behavior of experienced subjects and inexpe-

rienced subjects. This follows a tendency in the existing literature, and in particular

Crawford and Iriberri (2007), who suggest that non-equilibrium concepts such as level-

k are most suitable to capture the “initial” behavior of inexperienced subjects, while

equilibrium concepts with say risk aversion or cursedness are most suitable to cap-

ture the “converged” behavior of experienced subjects. The comparative analysis of

both experienced subjects and inexperienced subjects will allow me to detect paradigm

shifts in behavior as a function of experience. I closely follow Crawford and Iriberri

(2007) by calling a subject “inexperienced” during the first five auctions the subject

played, and by inversion, I call a subject “experienced” during the last five auctions

the subject played (usually out of approximately 20 auctions in a session). The lat-

ter accounts for the fact that in common value auctions, in particular, behavior has not

if the signal xi is not very close to the bounds of the signal space.
13Turocy (2008) discusses the auction in detail. Such common values arise if one might find himself

in a position to sell the object later (thus, the opponent’s value matters) or e.g. due to prestige effects.
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converged after five auctions, which precludes me from using all observations from the

sixth auction on in the analysis of experienced subjects. In turn, I show in the supple-

mentary material that behavior is independent of time during the first five auctions and

during the last five auctions, respectively, indicating that these partitions of the data set

meet the necessary conditions of the ensuing analysis.

Are normalized bids independent of x?

Concluding the data description, let me address Question 5, as it affects the analysis of

bids. In Bayesian Nash equilibrium, normalized bids are approximately independent of

the signal x if one’s signal is not close to the bounds of the signal space. This condition

applies to most observations.14 If independence is empirically valid, Assumption 1 can

be invoked and mixed strategies in APV and CV auctions simplify to the normalized

strategies defined above. In order to facilitate comparisons of treatments, let me further

normalize bids with respect to the signal width w in APV and CV auctions. That is,

unless stated otherwise, I refer to r = (b− x)/w as the normalized bid.15

I test the independence by regressing bids b on signals x, with subject-level random

effects and bootstrapping p-values to account for the panel structure of the data (and the

possible non-normality of errors, namely skewed errors). The results are provided in

Table 2 in the column “Estimate B(X)”.16 The normalized bid r = b− x is statistically

independent of x if the regression coefficient of x does not differ from 1. It does not

differ significantly in eleven of the twelve treatments distinguished for APV and CV

auctions (at α = .05). In this multiple testing problem, this is well within the limits of

chance assuming a family-wise error rate of .05.

Result 1. In APV and CV auctions, normalized bids b(x)− x are independent of x.

Table 2 additionally presents the results of corresponding tests for IPV auctions. The

BNE prediction is b = a + r · x where a is not statistically different from zero and

r = (n− 1)/n under risk neutrality. This prediction is tested in an analyses similar to

the previous one and confirmed in the sense that a is statistically insignificant in all

14Alternatively, independence obtains if subjects simply disregard the bounds entirely.
15This second normalization with respect to w does not obstruct the validity of the independence test,

as I test independence treatment-wise, and w is constant in each treatment (or nearly constant, reflecting

the treatment distinctions of Kagel and Levin, 1986). For example, with r = −0.4, subjects bid 0.4 ·w
less than their signal, r = 0 indicates bidding one’s signal, r = −2/N is the BNE strategy in APV

auctions, and r =−1 is the BNE strategy in CV auctions.
16The technical details on the bootstrapping procedure are provided in the note to the Table 2.
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Table 2: Summary statistics of bidding in the first-price auctions

Inexperienced subjects Experienced subjects

Degree of Standard Deviation Degree of Standard Deviation

Condition Bidding function Overbidding within Ss between Ss Skewness Bidding function Overbidding within Ss between Ss Skewness

Independent private values, First price (DKL89, KL93)

N = 3 b =−0.031
(0.234)

+0.803⋆⋆
(0.018)

· x 0.104⋆⋆
(0.017)

0.161
(0.031)

0.025 −3.17⋆⋆ b = 0.028
(0.149)

+0.822⋆⋆
(0.01)

· x 0.143⋆⋆
(0.014)

0.126
(0.018)

0.054 −3.26⋆⋆

N = 6 b =−0.039
(0.196)

+0.849⋆⋆
(0.013)

· x −0.021
(0.02)

0.162
(0.034)

0.053 −3.35⋆⋆ b = 0.037
(0.182)

+0.875⋆⋆
(0.009)

· x 0.034⋆⋆
(0.012)

0.108
(0.018)

0.044 −4.49⋆⋆

N = 5 b = 0.195
(0.241)

+0.886⋆⋆
(0.01)

· x 0.08⋆⋆
(0.021)

0.145
(0.053)

0.028 −4.34⋆⋆ b =−0.873
(0.496)

+0.896⋆⋆
(0.017)

· x −0.021
(0.042)

0.264
(0.036)

0.129 −1.65⋆

Affiliated private values, First price (KHL87)

N = 6,w = 6 b = 0.986⋆
(0.006)

· x−0.284⋆⋆

(0.079)
·w −0.127⋆⋆

(0.038)
0.366
(0.085)

0.148 −3.83⋆⋆

N = 6,w = 12 b = 0.992
(0.006)

· x−0.172⋆⋆

(0.048)
·w 0.104⋆⋆

(0.026)
0.052
(0.006)

0.15 0.1 b = 1
(0.005)

· x−0.247⋆⋆

(0.037)
·w 0.088⋆⋆

(0.021)
0.168
(0.044)

0.129 −1.52⋆

N = 6,w = 24 b = 1
(0.006)

· x−0.168⋆⋆

(0.02)
·w 0.164⋆⋆

(0.022)
0.09
(0.015)

0.135 −0.24

Common value auctions, First price (KL86)

N ≤ 4,w = 6 b = 0.996
(0.003)

· x−0.22
(0.139)

·w 0.657⋆⋆
(0.066)

0.341
(0.033)

0.28 0.57⋆⋆

N ≤ 4,w ≤ 18 b = 1.014
(0.013)

· x−0.676⋆⋆

(0.172)
·w 0.551⋆⋆

(0.099)
0.43
(0.163)

0.095 0.54⋆ b = 1.002
(0.016)

· x−0.905⋆⋆

(0.576)
·w 0.106⋆

(0.038)
0.276
(0.087)

0.011 −1.77

N ≤ 4,w ≥ 24 b = 1
(0.021)

· x−0.63⋆⋆

(0.091)
·w 0.373⋆⋆

(0.05)
0.31
(0.058)

0.178 0.7⋆

N = 7,w = 6 b = 0.999
(0.002)

· x−0.322⋆⋆

(0.088)
·w 0.629⋆⋆

(0.067)
0.333
(0.036)

0.313 0.54⋆

N ≥ 5,w = 12 b = 0.99
(0.007)

· x−0.575⋆⋆

(0.084)
·w 0.338⋆⋆

(0.051)
0.151
(0.025)

0.225 1.02⋆

N ≥ 5,w = 18 b = 1
(0.008)

· x−0.654⋆⋆

(0.082)
·w 0.348⋆⋆

(0.045)
0.296
(0.025)

0.206 1.09⋆⋆

N ≥ 5,w ≥ 24 b = 0.999
(0.012)

· x−0.714⋆⋆

(0.085)
·w 0.279⋆⋆

(0.046)
0.231
(0.025)

0.201 1.33⋆

Notation: b is the bid, x is the signal, w is the interval width in APV and CV auctions, N is the number of players

Normalized bids: The normalized bids are r = (b− x)/w in APV and CV auction and r = b/x in IPV auctions

Degree of overbidding is the difference between the mean normalized bid and the normalized equilibrium bid, it is estimated controlling for subject-level random effects (“between-subject

standard deviation”). The within- and between-subject standard deviations refer to the distribution of normalized bids

Skewness: Skewness of the normalized bids after controlling for subject-level random effects (i.e. skewness of the errors in the regressions of normalized bids on intercept, controlling for

random effects).

Experience: Subjects are “inexperienced” in their first five auctions and “experienced” in their last five auctions.

Asterisks indicate the bootstrapped p-values of the null hypotheses that the respective parameters are either 1 (in case of the coefficients of x in APV and CV auctions, which are predicted to

be 1) or 0 (in all other cases). “⋆⋆” indicates p-values less than .005, and “⋆” indicates p-values between .005 and .05. The lower threshold .005 roughly implements the Bonferroni correction

for multiple testing across treatments (note that there are more than 10 treatments, so the correction is implemented in a rather conservative way).

Bootstrapped p-value All p-values are bootstrapped, resampling the data set 10.000 times at the subject level (reflecting the panel structure of the data). To define the p-value of the null

hypothesis that some statistic s is zero, let sb denote its value in sample b and let s0 denote its original value. The p-value of the two-sided test is 1
2R

#
{

b : |sb−s|> |s0|
}

+ 1
2R

#
{

b : |sb−s| ≥ |s0|
}

,

where s is the mean of (sb) and R the number of samples. Other p-values are defined similarly.



cases. This rules out the alternative hypothesis that subjects’ behavior is captured by

the simple heuristic b = x− a or by a blend of these approaches as in b = r · x− a.

Thus, it is feasible to normalize bids also in IPV auctions, namely towards r = b/x,

and to define corresponding mixed strategies as mixtures over normalized bids r = b/x.

Again, this normalization reduces the strategic dimensionality and enables econometric

analyses of equilibria in mixed strategies (including QRE and ρ-TPE).

Result 2. In IPV auctions, normalized bids b(x)/x are independent of x.

These results show that bids in standard auctions can be normalized such that they are

statistically independent of x, namely toward r = (b− x)/w in APV and CV auctions

and toward r = b/x in IPV auctions. Figure 2 provides histograms of the distributions

of these normalized bids across treatments. Due to the independence of x, histograms

of normalized bids contain all the information that is also available in scatter plots

of bids on signals (as frequently found in the literature), but by reducing the dimen-

sionality of the distribution, the information is provided in a more condensed way.

Essentially, these histograms are left to be explained by behavioral theories. The nor-

malization also allows us to look at the data from novel perspectives, e.g. skewness

and within-subject variances are meaningful moments of the data after normalization

of bids. Thus, we can make and test novel statements about facets of behavior that had

to be disregarded so far, as discussed next.

5 Evaluating the testable predictions of projection

Now, I address the remaining questions raised in the theoretical analysis. Those ques-

tions relate particular moments of the data to predictions of type projection. Later,

I will address the question to which degree the various behavioral theories allow to

capture the actual distributions of bids.

Is subject heterogeneity of discrete nature? The shape of subject heterogeneity

is interesting for two reasons. The possible existence of discrete components in the

population is predicted by two of the asymmetric-belief models, level-k and CHM.

Accordingly, the population consists of subjects spread across various discrete levels

of reasoning, and different levels of reasoning induce different (normalized) strategies.

Thus, if subjects’ strategies can be organized into different clusters, it would be indica-

tive of strategic reasoning according to level-k or CHM. Further, the potential necessity
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Figure 2: First-price auctions, affiliated private values (KHL87). Inexperienced sub-

jects (a–b) vs. experienced subjects (c–d). Plots are histograms of r = (Bid−Signal)/w
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(b) Inexp: N = 6,w = 12
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(c) Exp: N = 6,w = 12
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(d) Exp: N = 6,w = 24
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Figure 3: First-price auctions with common values (KL86), inexperienced subjects

(a–d) vs. experienced subjects(e–h). Plots are histograms of r = (Bid−Signal)/w
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(b) N = 7,w = 6
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(c) N = 4,w = 12
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(d) N = 7,w = 12
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(e) N = 3−4,w = 12,18
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(f) N = 5−7,w = 12,18
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(g) N = 3−4,w = 24,30
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(h) N = 5−7,w = 24,30
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Figure 4: First-price auctions with independent private values (DKL89). Inexperienced

subjects (a–c) and experienced subjects (d–f). Histograms of Bid/Signal
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(b) Inexp: DKL89, N = 6
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(c) Exp: DKL89, N = 3
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(d) Exp: DKL89, N = 6
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to differentiate discrete components on top of the random effects affects the modeling

strategy below. Continuity of subject heterogeneity simplifies the analysis, as random

effects, or random coefficients, would then suffice to capture subject heterogeneity.

The histograms of normalized strategies in Figures 2, 3, and 4, and the respective ker-

nel density estimates, suggest that the distributions are uni-modal and therefore consist

of single (continuous) components in all cases. In order to verify this impression, I

estimate finite mixture models with up to three components. Each component is a

characterized by a mean normalized strategy, by a between-subject variance regarding

the subjects making up the component, and a within-subject variance to capture indi-

vidual randomization.17 The details are relegated to the supplementary material, but

the impression given by the histograms is confirmed and summarized as follows.

Result 3. Across information conditions and experience levels, secondary components

are either insignificant (16 of 18 treatments) or contain less than 10 percent of the

subjects (2 of 18 treatments, both with experienced subjects in the APV auction).

I conclude that random effects suffice to capture subject heterogeneity.

Are strategies left-skewed? Type projection equilibrium predicts distributions of

normalized bids to be left-skewed (the mean left of the median). Thus, the estimated

skewness should be negative in the data sets. Figures 2, 3, and 4 present histograms

of the normalized bids in APV, IPV, and CV auctions, respectively. First, looking at

the overall distribution, the results appear rather clear-cut.18 The distributions of bids

are significantly left-skewed in private value auctions, i.e. in both IPV and APV auc-

tions, while skewness tends to be inverted in CV auctions. In all five cases where exact

treatment-wise comparisons between inexperienced and experienced subjects are pos-

sible, the estimated skewness further shifts toward left-skewed distributions as subjects

gain experienced. Second, due to subject heterogeneity, the overall skewness may not

equate with the average individual skewness. The individual skewness is the skew-

ness of the errors when regressing the normalized bids on the intercept controlling for

17In order to focus on whether discrete levels of reasoning need to be distinguished, the within-

subject variances are held fixed constant across components. The structural model below will allow for

heterogeneity in within-subject variances. Further, the models are estimated using the EM algorithm

using 25 different starting values in each case, and the number of model components is estimated by

maximizing the integrated classification likelihood (ICL), following Biernacki et al. (2000). Maximizing

the ICL estimates the correct number of components of finite mixtures more consistently than say Bayes

Information Criterion (BIC). See McLachlan and Peel (2000) for further information.
18All of the histograms additionally present information on the skewness of the distributions of nor-

malized bids. An asterisk is printed next to the skewness estimate if it deviates significantly from zero.

As above, I evaluate the significance of the skewness by bootstrapping, resampling at the subject level.
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subject-level random effects. These estimates, reported in Table 2, are very similar to

the overall skewness estimates. Therefore, I arrive at the following conclusion.

Result 4. Distributions of bids are left-skewed in private value auctions and right-

skewed in common-value auctions.

Risk aversion and cursed equilibrium predict neither left-skewed nor right-skewed dis-

tributions. Thus, the observed left-skewness in private value auctions is compatible

with type projection, while the observed right-skewness in common value auctions is

not compatible with any theory but “closer” to existing theories. This observation will

be reconsidered below.

Does individual variance decline with experience? In first-price auctions, type pro-

jection equilibria are generally mixed. In contrast, risk aversion and cursedness predict

pure equilibria. Assuming that subjects gaining experience converge to pure equilibria,

the within-subject variance is predicted to be less for experienced subjects than it is for

inexperienced ones. Estimates of the within-subject standard deviations are obtained in

regression analyses corresponding with those for individual skewness, and presented in

Table 3 in the columns entitled “Standard Deviation within Ss”. Their interaction with

experience is estimated in regression models with different within-subject variances

for the two levels of experience. Table 4 presents the results in the columns on the

“Within-Subject Variance”. I test the hypothesis in multiple ways, either holding the

conditions such as number of players N or signal bandwidth w constant, or pooling the

data and then controlling for N or w.19 Summarizing, the overall results strongly indi-

cate that the within-subject variance does not decline as subjects gain experience. This

holds both in treatment-wise comparisons when they are possible, noting that treatment

parameters in some experiments are changed as subjects gain experience (see Table 2),

and after pooling treatments. Between the 13 tests in Table 3, there is one significant

result for either direction, but none of them is significant at the .005 level, as would be

required by the Bonferroni correction. These observations are summarized as follows.

Result 5. The within-subject variance does not differ between experienced and inex-

perienced subjects. There is no indication that subjects converge to a pure strategy as

they gain experience, and even experienced subjects seem to randomize consistently.

This confirms the prediction of type projection equilibrium.

19The supplementary material contains related evidence on the treatment effects with respect to the

degree of overbidding and the within-subject variance (holding experience constant). Here, I focus on

the tests of the hypotheses developed above.
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Table 3: Statistical tests of the degree of overbidding and within-subject variance (with

respect to the degree of overbidding) as a function of experience

Degree of Overbidding Within-Subject Variance Between-Subj

Data Inexperienced Experienced Inexperienced Experienced Variance

Independent private values auctions (DKL89, KL93)

N = 3 0.104 ≈ 0.148 0.16 ≈ 0.123 0.033

N = 5 0.08 > −0.144 0.142 < 0.36 0.077

N = 6 −0.021 < 0.036 0.164 ≈ 0.11 0.039

all N 0.05 ≈ 0.04 0.156 ≈ 0.178 0.119

all, contr. for N 0.05 ≈ 0.041 0.155 ≈ 0.179 0.103

Affiliated private values auctions (KHL87)

w = 12 0.104 ≈ 0.062 0.051 ≈ 0.172 0.17

All data −0.058 ≪ 0.142 0.331 > 0.15 0.134

All, contr. for w 0.058 ≈ 0.04 0.192 ≈ 0.209 0.117

Common value auctions (KL86)

N ≤ 4, w ∈ {12,18} 0.538 > 0.228 0.415 ≈ 0.343 0.208

N ≤ 4, all w 0.63 ≫ 0.316 0.37 ≈ 0.363 0.233

N ≥ 5, all w 0.613 ≫ 0.389 0.344 ≈ 0.309 0.254

all N, w ∈ {12,18} 0.517 ≈ 0.404 0.397 ≈ 0.332 0.263

all N, all w 0.621 ≫ 0.359 0.357 ≈ 0.332 0.242

all N, all w, contr. for w 0.573 ≈ 0.411 0.349 ≈ 0.337 0.247

Description: The table reports the results of one set of statistical tests per row. Given the subset of data specified in

column 1, two null hypotheses are simultaneously tested: (i) H0 : the degree of overbidding does not differ between

inexperienced and experienced subjects, and (ii) H0 : the residual (i.e. within-subject) variances do not differ between

them. These nulls are tested in regression models with the degree of overbidding as independent variable and the level of

experience as independent variable (without intercept). ≫,≪ indicate rejection of H0 at the .005 level and >,< indicate

rejection at .05, where the p-values are bootstrapped as described above. Considering the Bonferroni correction for the

multiple testing problem inherent in this analysis, results should be significant roughly at the .005 level. Terms such as

the degree of overbidding are used as defined above (e.g. Table 2).

Table 4: Statistical tests of differences in the degree of overbidding and within-subject

variance between auctions with affiliated private values and common values

Degree of Overbidding Within-Subject Variance Between-Subj

Data APV CV APV CV Variance

Inexperienced, w = 6 −0.128 ≪ 0.641 0.359 ≈ 0.341 0.246

Inexperienced, w = 12 0.104 ≪ 0.523 0.052 ≪ 0.4 0.147

Inexperienced, all w −0.058 ≪ 0.621 0.326 ≈ 0.361 0.21

Experienced, w ≤ 18 0.062 ≪ 0.403 0.159 < 0.336 0.248

Experienced, w ≥ 24 0.179 < 0.329 0.113 ≪ 0.32 0.13

Experienced, all w 0.142 ≪ 0.357 0.15 ≪ 0.343 0.162

Description: The sole difference to Table 3 is that the comparison is between APV and CV auctions, instead of

inexperienced and experienced subjects.
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Is the degree of overbidding larger in CV than in PV auctions? In auctions with

common values, projection induces both loser regret and cursed value perception, and

in this sense, projecting players have stronger incentives to overbid (in relation to BNE)

in common value auctions than in private value auctions. This hypothesis can be tested

by comparing bidding in KL86’s CV auctions and with bidding in KHL87’s APV auc-

tions. These experiments implement common values and (affiliated) private values in

otherwise equivalent conditions: signal bandwidths w are similar, numbers of players

N are similar, and even experimental instructions and logistics are similar. This hy-

pothesis is evaluated using an econometric approach similar to the one used to compare

experienced and inexperienced bidders, i.e. by regressing the degree of overbidding on

the information condition (APV or CV), controlling for subject-level random effects

and bootstrapping p-values. The degree of overbidding is the difference between nor-

malized bid and BNE bid. Table 4 presents the results: Across all treatment conditions

and experience levels, the degree of overbidding is highly significantly higher in CV

auctions than in APV auctions.20

Result 6. The degree of overbidding is higher in CV auctions than in APV auctions.

6 Quantifying the empirical content of projection

In this section, I investigate to which degree projection explains the distribution of

bids. First, the descriptive adequacy measures the adequacy after fitting the degree of

projection (ρ) to the data. I look at both, the fit with respect to behavior in particular

information conditions, and the fit with respect to the data pooled across conditions.

We may expect that projection fits well in any given condition, due to the qualitative

properties discussed above, but the fit of projection with respect to the pooled data is

less obvious. Projection fits to pooled data only if a specific degree of projection ap-

plies to all information conditions. This cannot be guaranteed or denied on a qualitative

case-by-case basis.

Second, the predictive adequacy measures the adequacy after fitting the degree of pro-

20The supplementary material contains further robustness checks by testing a variety of alternative

measures of the degree of overbidding derived from differences of realized and hypothetical payoffs.

Without overbidding, those differences would be zero, while they are non-zero if subjects overbid.

These tests have substantially less power, as both realized and hypothetical payoffs are zero for most

subjects in any given auction. Their results still indicate highly significant more overbidding in CV

auctions if subjects are inexperienced, though differences are not quite significant for experienced ones

(presumably due to the lack of power, as all differences point into the predicted direction).
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jection to one information condition and using the estimate to predict the remaining

data. This allows me to determine the robustness of the fit.21 Clearly, a high de-

scriptive adequacy does not guarantee predictive adequacy if the model overfits. In

particular, even if a specific degree of projection allows us to explain behavior after

pooling across information conditions, we cannot rule out that an entirely different

degree of projection would have provided a better fit in a particular condition while

ruining predictions in alternative conditions. Ideally, projection is both, descriptively

and predictively adequate, but this requires robustness of the degree of projection.

Third, inferential adequacy measures the adequacy of projection (out of sample, again)

to infer the bidders’ valuations from their bids. Besides measuring the goodness of fit

in an inverted way, this measure may be of explicit interest for practitioners.22

In addition, it may be interesting to know to which degree projection works across

conditions. To this end, the empirical content of projection is quantified by the Cox-

Snell pseudo-R2 (Nagelkerke, 1991) in addition the above measures, and I relate the

goodness-of-fit of projection to that of existing explanations of auction behavior (risk

aversion, cursedness, and belief asymmetry). I find that projection describes behavior

more adequately than existing concepts in all dimensions, and even combined they do

not fit better than projection. Projection seems to explain all we currently can explain.

The econometric methodology is standard. I consider a structural model of bidding that

allows for individual errors, belief asymmetry, and individual heterogeneity. The errors

follow from logistic utility perturbations. The basic model underlying the analysis is

the quantal response equilibrium (McKelvey and Palfrey, 1995). In the context of type

projection in Bayesian games, it can be defined as follows.

Definition 4. For any λ ≥ 0 and ρ ∈ [0,1), a strategy profile σ = (σ1, . . . ,σn) is a

(λ,ρ)-type projection logit equilibrium ((λ,ρ)-TPLE) if for all players i ∈ N, all types

ti ∈ Ti, and all actions ai ∈ Ai,

σi(ai|ti) =
exp{λ πi

(

ai|ti, σ̃−i

)

}

∑a′i∈Ai
exp{λ πi

(

a′i|ti, σ̃−i

)

}

21The tendency to distinguish descriptive and predictive adequacy is a rather recent development

in analyses of decision-theoretic models (Wilcox, 2008; Hey et al., 2010), learning models (Erev and

Roth, 1998; Camerer and Ho, 1999; Tang, 2003; Ho et al., 2008), and simple games (Blanco et al., 2011;

Shapiro et al., 2014). I am not aware of existing analyses in Bayesian games in general or auctions in

particular. The approach adopted here is known as cross-validation (Browne, 2000) with nonrandom

holdout samples (Keane and Wolpin, 2007).
22This approach towards model validation follows Bajari and Hortacsu (2005), who also discuss

further applications.
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Figure 5: Logit equilibria with varying precisions λ predict almost invariant modes and

provide no systematic explanation of overbidding

(a) Independent private values
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with σ̃−i(a−i|t−i) = ρ∏ j 6=i σ j(a j|ti)+(1−ρ)∏ j 6=i σ j(a j|t j).

For simplicity, I abbreviate (λ,ρ)-TPLE as QRE. First, it constitutes the standard

model in behavioral game theory,23 and as such, its choice does not exploit a degree of

freedom. Secondly, QRE captures errors and by being structural, it allows me to esti-

mate parameters such as the degree of projection. Thirdly, QRE is a fairly neutral base

model in auctions. Changes in the precision λ do not affect the degree of overbidding,

as Figure 5 shows. Finally, by pooling various data sets and by restricting QRE to a

single degree of freedom (λ), I avoid the potential critique that QRE with sufficient

freedom in the correlation structure allows me to fit any single data set.24

Non-equilibrium models may be plausible bases in alternative classes of games, but

they are not invariant with respect to the degree of overbidding. Non-equilibrium mod-

els partially explain overbidding and thus constitute alternative explanations rather than

base models in their own rights. Amongst all alternatives, the main candidate that

stands out shall be dubbed asymmetric quantal response equilibrium (AQRE). AQRE

allows that players believe their opponents play a QRE with precision λ ≥ 0 and in

response to this belief, they play a strategy with precision κ ≥ 0.25 AQRE contains

the most important models discussed in the literature as special cases. Besides QRE,

23QRE with logistic errors explains behavior in games as diverse as the centipede game (Fey et al.,

1996), the traveler’s dilemma (Capra et al., 1999), public goods games (Goeree et al., 2002a), monotone

contribution games (Choi et al., 2008), and beauty contests (Breitmoser, 2012).
24Haile et al. (2006) show that QRE with fully flexible correlation of perturbations allows to fit any

single set of choice probabilities. By using multiple choices per subject, pooling multiple treatments,

and assuming independence of irrelevant alternatives, this flexibility is ruled out here.
25AQRE differs from the asymmetric logit equilibrium defined by Weizsäcker (2003) insofar as op-

ponents do not know that I use some κ 6= λ. They simply play the QRE with precision λ.
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which is contained for λ = κ, it contains level-1 behavior for λ = 0 and logit responses

to BNE for λ → ∞. The level-1 case has been discussed by Crawford and Iriberri

(2007) and noisy responses to BNE are the standard assumption in structural analyses

of auctions, see e.g. Bajari and Hortacsu (2005). Thus, by using AQRE as control,

these standard models are implicitly contained as special cases and thus also included

in the analysis.26 The detailed results are in the supplement. I find that these models

of belief asymmetry do not explain auction behavior robustly better than QRE.

6.1 Descriptive adequacy in standard auctions

Throughout the analysis, I allow for heterogeneity of subjects. Consistent with the

lack of time trends found above, each subject behaves according to a constant set of

parameters, but the parameters are randomly distributed across subjects. The precision

parameters λ and κ are bounded at zero and have independent gamma distributions,

whereas the degrees of risk aversion, projection and cursedness are bounded at both

0 and 1 and have independent beta distributions. Thus, each subject is described by a

parameter vector p ∈ P with joint density f (). Using os = (os,t) to describe the obser-

vations of subject s ∈ S at time t ∈ T , and σ(os,t | f ) as the probability of observation

os,t under density f , the individual likelihood given the observations os of subject s is

ls( f |os) =
∫

P
∏
t∈T

σ(os,t |p) · f (p)dp.

The predictions σ(os,t | f ) implicitly depend also on the underlying belief model, e.g.

QRE or AQRE. The integral is evaluated by simulation, using quasi random numbers,

see Train (2003) and e.g. the supplement to Bellemare et al. (2008). Aggregating across

subjects, the log-likelihood of the respective belief model with parameter density f is

ll( f ) = ∑
s∈S

log ls( f |os).

Parameters are estimated by maximizing the log-likelihood,27 and the estimates are

tested by extensive cross-analysis to ensure that global maxima are found. All param-

eter estimates and likelihood-ratio tests are provided as supplementary material.

26To be conservative, I additionally estimate level-k (Stahl and Wilson, 1995; Nagel, 1995), cognitive

hierarchy (Camerer et al., 2004)1 and noisy introspection models (Goeree and Holt, 2004).
27I sequentially applying two maximization algorithms. Initially, I use the robust, gradient-free

NEWUOA algorithm (Powell, 2006) and I verify convergence using a Newton-Raphson algorithm.
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Table 5: The models’ adequacy to capture behavior in “standard auctions” – As for all measures: Less is better

Plain models (assuming homogeneous parameters) Mixture models (assuming heterogeneous parameters)

RiskAv P&RA C&RA Proj Curse Mix Log Mix RA Mix C&RA Mix P&RA Mix Proj Mix Curse

Descriptive Adequacy (Bayes Information Criterion)

Inexperienced subjects

CV1 1349 ≫ 1322 ≈ 1318 ≈ 1320 ≈ 1316 1347 ≪ 1351 ≫ 1312 < 1322 ≈ 1321 > 1308

CV2 746 ≈ 735 ≈ 737 ≈ 734 ≈ 736 744 ≪ 747 > 726 ≈ 731 ≈ 729 ≈ 726

APV 883 ≈ 883 ≈ 886 ≈ 881 ≈ 885 964 ≫ 864 ≈ 864 ≈ 863 ≈ 871 ≈ 878

IPV 918 ≫ 871 ≪ 919 ≫ 870 ≪ 1089 1076 ≫ 911 ≈ 912 ≫ 859 ≈ 853 ≪ 1072

Pooled 3998 ≫ 3898 ≪ 3956 ≫ 3893 ≪ 4152 4149 ≫ 3924 ≫ 3796 ≈ 3780 ≈ 3771 ≪ 3962

Experienced subjects

CV1 1478 > 1447 ≈ 1442 ≈ 1464 ≈ 1440 1468 ≈ 1465 ≫ 1405 ≪ 1428 > 1422 ≫ 1403

APV 965 ≈ 965 ≈ 967 < 991 ≪ 1101 1293 ≫ 957 < 961 ≈ 960 ≈ 961 ≪ 1111

IPV 1136 ≫ 1047 ≪ 1139 ≫ 1042 ≪ 1349 1327 ≫ 1106 ≈ 1106 ≫ 1027 ≈ 1034 ≪ 1327

Pooled 3718 ≫ 3496 ≪ 3611 ≈ 3570 ≪ 4029 4086 ≫ 3603 ≫ 3418 > 3377 ≈ 3406 ≪ 3833

Predictive Adequacy (Absolute Value of Log-Likelihood)

Inexp Ss 4499 ≫ 4088 ≪ 4560 ≫ 4075 ≪ 5943 4288 ≪ 4604 ≫ 4123 ≪ 4299 ≫ 4123 ≈ 4082

Exp Ss 4043 ≫ 3870 ≪ 3978 ≈ 4029 ≪ 4268 4116 ≫ 3873 ≫ 3686 ≈ 3633 ≈ 3599 ≪ 4399

Inferential Adequacy (Mean Absolute Deviation)

Inexp Ss 2481 ≫ 2109 ≪ 2224 ≫ 2108 ≪ 2334 2414 ≈ 2442 ≫ 2358 > 2319 ≫ 2121 ≈ 2065

Exp Ss 4248 ≫ 3042 ≪ 3414 ≪ 4611 ≈ 4453 4655 ≫ 3962 ≫ 3259 ≈ 3184 ≈ 3508 < 3728

Note: The relation signs describe the results of Vuong tests of the likelihood ratios (nested or non-nested as appropriate, with bootstrapped p-values, using individual subjects as

independent observations). In all cases, the less the score the better. ≪ indicates that the left model outperforms the right one at p < .005, < indicates .005 < p < .05, ≫ and >
indicate corresponding inference in favor of the right model, and ≈ indicates insignificance of the difference.

Notation: “RA” stands for constant relative risk aversion, “P” for projection, and “C” for cursed equilibrium. “&” indicates models merging these approaches.

Table 6: Pseudo-R2 of the various models (Higher is better)

Inexperienced Subjects Experienced Subjects

Curse RA Proj Mix Logit Mix RA Mix Proj Mix Curse Curse RA Proj Mix Logit Mix RA Mix Proj Mix Curse

Descriptive Adequacy (In-Sample BIC)

Standard Pooled 0.33 ≪ 0.48 ≈ 0.48 > 0.48 ≪ 0.61 ≪ 0.69 ≫ 0.61 0.46 ≈ 0.46 ≪ 0.74 ≫ 0.36 ≪ 0.79 ≪ 0.84 ≫ 0.61

Non-Stand CV 0.22 > 0.1 ≪ 0.32 ≫ 0.1 ≈ 0.1 ≪ 0.35 ≈ 0.27 0.24 ≫ 0.1 < 0.23 ≈ 0.19 ≈ 0.22 ≈ 0.32 ≈ 0.32

Discrete IPV 0.16 ≪ 0.62 ≈ 0.65 ≫ 0.17 ≪ 0.73 ≈ 0.72 ≫ 0.15 0.14 ≪ 0.58 ≈ 0.64 ≫ 0.17 ≪ 0.72 ≈ 0.73 ≫ 0.18

Predictive Adequacy (Out-Of-Sample |LL|)
Standard Pooled 0.12 ≪ 0.54 ≪ 0.77 ≫ 0.66 ≫ 0.36 ≪ 0.75 < 0.79 0.57 ≈ 0.53 ≪ 0.76 ≫ 0.54 ≪ 0.77 ≪ 0.86 ≫ 0.41

Non-Stand CV 0.45 ≫ 0.21 ≪ 0.4 > 0.32 ≪ 0.35 < 0.42 ≪ 0.53 0.45 ≫ 0.21 ≪ 0.4 > 0.32 ≪ 0.35 < 0.42 ≪ 0.53

Discrete IPV 0.37 ≈ 0.4 ≪ 0.59 ≫ 0.38 ≪ 0.59 ≪ 0.71 ≫ 0.44 0.37 ≈ 0.4 ≪ 0.59 ≫ 0.38 ≪ 0.59 ≪ 0.71 ≫ 0.44

Note: The testing procedure is equivalent (i.e. p-values are bootstrap using subjects’ scores as independent observations), the difference being that pseudo-R2 are used.



The main results of the analysis are summarized in Tables 5 and 6 and in Figures

6–8. I focus on the fit using QRE with heterogeneity of subjects, but as shown in the

supplementary material, the results are very similar for all non-equilibrium models and

with homogeneous parameters. For convenience, Tables 5 and 6 also provide the main

results on the adequacy measures for homogenous parameters.

As for inexperienced subjects, Table 5 provides the results for first- and second-price

common value auctions, and for two kinds of private values auctions (affiliated and

independent ones), as described in the overview of the data. Regarding these informa-

tion conditions in isolation, the main hypotheses are confirmed. In CV auctions, where

both cursedness and projection predict overbidding, these concepts fit about similarly

well. In PV auctions, both risk aversion and projection predict overbidding, and these

concepts fit about similarly well. In common value auctions, the left-skewness pre-

dicted by projection is not observed, and cursedness fits slightly better than projection.

In turn, left-skewness predicted by projection is observed in private value auctions, and

there, projections fits slightly better than risk aversion. In aggregate, projection is the

only concept that is compatible with overbidding across information conditions, and it

fits the pooled set of observations highly significantly better than the other concepts in

isolation. The picture is very similar for experienced subjects.

Intuitively, a model combining both cursedness and risk aversion attains a better fit

overall than these concepts in isolation, and indeed, this combined model has a descrip-

tive adequacy that is statistically not different from that of projection. In turn, projec-

tion explains everything that these concepts explain in combination. Also, enriching

projection by risk aversion does not significantly improve its descriptive adequacy, but

the resulting adequacy is significantly higher than that of the model combining cursed-

ness and risk aversion (if subjects are experienced). In order to quantify the amount of

variance explained by the models, Table 6 provides the respective pseudo-R2 for the

pooled samples.28

Result 7 (Descriptive adequacy). The descriptive adequacy of projection is about as

high as the best of risk aversion and cursedness in each information condition. Overall,

projection fits significantly better than these concepts in isolation, it fits about as well

as the approaches combined, and it explains around 65% of the observed variance.

28The pseudo-R2 measures how much a given model explains in relation to a baseline model. Let l1,s
denote the likelihood of the model in question with respect to subject s, and let l0,s denote the baseline

likelihood with respect to the subject in question (= the minimum of all likelihoods that the range of

models estimated here yield). The Cox-Snell pseudo-R2 of subject s is r2
s = 1− (l0,s/l1,s)

2/Ns where Ns

is the number of observations. The mean of the individual pseudo-R2 over the entire sample is used in

comparisons. Testing the differences between two pseudo-R2 follows the procedure for Vuong tests.
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Figures 6–8 plot the predicted densities of the models over the histograms. As dis-

cussed above, risk aversion predicts the wrong mode in the common value auctions

(for all α, it predicts that BNE bids, r = −1 in these cases, have the highest probabil-

ity), and cursedness predicts the wrong mode in private value auctions (in particular

in IPV auctions). Projection has no such weakness and fits better than these concepts

overall. The data on CV auctions are particularly interesting, as it shows that subjects

are rather unlikely to bid below the BNE bid of r = −1. That is, subjects hardly bid

less than an interval width w below their signal. As a result, the observations look

like they are censored at r =−1, in particular for inexperienced subjects. Bidding less

than r = −1 implies that all signals were certainly higher than the own bid, and for

subjects, bid shading to such an extent seems to be difficult—although they should do

so, based on expected payoffs. Bidding below r =−1 is associated with non-negative

expected payoffs for all beliefs, whereas outbidding the own signal (i.e. bidding r > 0)

is associated with non-positive payoffs for all beliefs (assuming symmetric strategies).

As a result of this apparent self-censoring, observed bids do not exhibit the predicted

tail to the left in the data on CV auctions, but as all concepts fail to predict such self-

censoring, the resulting descriptive adequacies do not differ substantially.

6.2 Predictive adequacy in standard auctions

Having estimated the model parameters for all data sets, I look at their adequacy to

actually predict behavior. The observed adequacy of projection to ex-post explain

behavior does not imply that it is predictive. Predictive adequacy requires the degree

of projection to be robust across data sets not just in the ex-post sense, but also in an

ex-ante sense: a chosen degree of projection needs to explain behavior before fitting

ρ to the data. I test the even stronger assertion that ρ needs to explain behavior after

fitting it to the wrong data. Thus, measures of descriptive and predictive adequacy may

be seen as necessary and sufficient measures of the general model adequacy.

All parameters are estimated on “training data” and used to evaluate the model’s log-

likelihood on the entire data set (for the respective level of experience). For each

model, this yields a total of seven basic measures, derived from each of the four train-

ing data sets for inexperienced subjects and each of the three training data sets for

experienced ones. These basic measures still contain the goodness-of-fit with respect

to the training data, alongside the remaining data, and thus they are partially in-sample.

In order to evaluate the predictive adequacy fully out-of-sample, I next remove the in-
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Figure 6: The predictions of mixed QRE with risk aversion in relation to histograms of the data
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Figure 7: The predictions of mixed QRE with projection in relation to histograms of the data
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Figure 8: The predictions of mixed QRE with cursedness in relation to histograms of the data

(a) CV, Inexperienced

Bid

D
e

n
s
it
y

−1.5 −1.0 −0.5 0.0 0.5 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(b) APV, Inexperienced

Bid

D
e

n
s
it
y

−1.5 −1.0 −0.5 0.0

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

(c) IPV, Inexperienced

Bid

D
e

n
s
it
y

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0
1

2
3

4
5

(d) CV, Experienced

Bid

D
e

n
s
it
y

−1.5 −1.0 −0.5 0.0 0.5 1.0

0
.0

0
.5

1
.0

1
.5

(e) APV, Experienced

Bid
D

e
n

s
it
y

−1.5 −1.0 −0.5 0.0

0
1

2
3

4

(f) IPV, Experienced

Bid

D
e

n
s
it
y

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0
1

2
3

4
5

6

Note: In all cases, the histogram is the distribution of normalized bids in the respective information condition, and the line plotted above it is the density of the

prediction of the respective concept aggregated across treatments in the respective information condition.
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sample segments of the data sets, aggregate the remaining out-of-sample LLs over all

training data sets given the respective level of experience, and divide by the number of

times that each data set was used in the out-of-sample evaluation stage.29 This mea-

sure is called “pooled out-of-sample LL”, and I report the absolute values. It is purely

out-of-sample and its magnitude is comparable to that of the in-sample BIC.

By the qualitative properties, I hypothesize that projection yields higher predictive ad-

equacy than the other concepts in isolation, as projection predicts overbidding across

information conditions. Further, if subjects are inexperienced, risk aversion is pre-

dicted to predict worse than for cursedness (then, cursedness has descriptive adequacy

in three out of four conditions, see above),30 but if subjects are experienced, the cir-

cumstances seem to favor risk aversion (which fits in two out of the three conditions

then). The respective section of Table 5 shows that these relations are significant in

the data. That is, risk aversion predicts well for experienced subjects but less so for

inexperienced ones, and cursedness predicts well for inexperienced subjects but not

for experienced ones. Surprisingly, in the cases where these concepts do not predict

well, they actually predict poorly in an absolute sense—their predictive adequacies fall

below that of mixed logit equilibrium, and thus their structural explanations actually

have negative validity for the respective levels of experience. In turn, the predictive

adequacy of projection is significantly higher than each of these if subjects are experi-

enced, it is about as high as that of cursedness if subjects are inexperienced, it improves

on mixed logit in all cases, it is as high as that of the model combining cursedness and

risk aversion if subjects are inexperienced, and projection predicts best if subjects are

experienced.

Result 8 (Predictive adequacy). For both inexperienced and experienced subjects, pro-

jection equilibrium belongs to the most predictive models in all cases, it predicts better

than each model in at least one case, and it always improves on mixed logit. Extending

projection by risk aversion does not improve its predictive adequacy.

29Each of the four data sets for inexperienced subjects is used thrice in the out-of-sample evaluation,

and each of the three data sets for experienced subjects is used twice. This measure is leaned on cross-

validation (Browne, 2000) with nonrandom holdout samples (Keane and Wolpin, 2007).
30In addition to the common value auctions, cursedness fits as well as projection in the affiliated

private value auctions of inexperienced subjects, where behavior is rather noisy and exhibits little over-

bidding.
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6.3 Inferential adequacy in standard auctions

The inferential adequacy is similar to the predictive adequacy in that it is purely out-of-

sample, but instead of determining log-likelihoods, we infer subject values in a proce-

dure following Bajari and Hortacsu (2005). Given an observation and a set of parame-

ters (estimated using training data), the theoretical bidding function for the respective

out-of-sample treatment is determined and the expectation of the signal conditional on

the observed bid is computed. This conditional expectation is called inferred signal.

The inferential adequacy is the mean absolute deviation (MAD) to the actual signal.

The supplementary material additionally also lists the results for the mean squared de-

viation (MSD), which are very similar. The inferential adequacy is complementary to

the predictive adequacy due to its focus on the expectation of the underlying signal.

That is, the first moment of its distribution needs to be predicted, rather than the full

distribution. In turn, the likelihood allows one to substitute getting the moment right

for getting the distribution right. Testing a concept’s adequacy in predicting both first

moment and full distribution therefore is challenging, but by its qualitative properties,

I hypothesize projection to be adequate also in this dimension.

The results are presented in the third panel of Table 5. They are qualitatively similar

to those for the predictive adequacy, which shows that projection adequately predicts

both the first moment and the distribution, as predicted. The main differences to the

previous observations can be observed for risk aversion and cursedness. Risk aversion

fits rather poorly when focusing on the first moment, while cursedness fits rather well.

In particular, risk aversion fits worse than projection now for both levels of experience,

and also worse than cursedness, which in turn significantly improves on mixed logit

for both levels (though not on projection).

Result 9 (Inferential adequacy). For both levels of experience, projection is one of the

models exhibiting the highest inferential adequacy, and it improves on all alternative

models for at least one of the levels of experience.

6.4 Adequacy in non-standard auctions

I finally test the fit to behavior in the “non-standard” auctions with private values (Go-

eree et al., 2002b, GHP02) and common values (Avery and Kagel, 1997, AK97).31 The

31The first-price IPV auctions of Goeree et al. (2002b) have two players. The values are drawn from

{0,2,4,6,8,11} or {0,3,5,7,9,12}. The former case is called “Low Signals” treatment, the latter is
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Table 7: The models’ adequacy to capture behavior in “non-standard auctions” (less is

better)

Mix Log Mix RA Mix C&RA Mix P&RA Mix Proj Mix Curse

Descriptive Adequacy (Bayes Information Criterion)

Inexperienced subjects

AK97 553 ≪ 556 > 546 > 537 ≫ 534 < 542

GHP02 694 ≫ 423 ≪ 431 ≫ 425 < 439 ≪ 700

Experienced subjects

AK97 524 ≈ 525 ≈ 519 ≈ 519 ≫ 515 ≈ 517

GHP02 631 ≫ 359 ≪ 362 > 358 > 349 ≪ 627

Predictive Adequacy (Non-standard → Standard; absolute value of log-likelihood)

Inexperienced subjects

AK97 4269 > 4256 ≫ 4126 > 4027 ≪ 4040 ≈ 4080

GHP02 4252 ≫ 3981 ≫ 3834 ≪ 3973 ≫ 3842 ≪ 4157

Experienced subjects

AK97 4214 ≫ 3836 ≫ 3602 ≈ 3574 ≪ 3647 ≪ 3888

GHP02 4261 ≫ 3750 ≫ 3595 ≫ 3502 ≈ 3474 ≪ 3984

analysis of the discrete GHP02 auction is interesting, as projection partially predicts

overbidding because of the assumption that outbidding opponents with similar values

is possible at low costs in standard auctions. In the simple model of projection consid-

ered here, any increment of ε > 0 suffices if bids are continuous. If bids are discrete,

opponents bidding 2 monetary units, such as those with signals 4 or 5 in GHP02, need

to be outbid by 50% to break the tie. If the signal is just 4, breaking the tie reduces

the expected profits from 2 units (bidding 2 with signal 4) to 1 unit (bidding 3). Since

this is just a two-player auction, the player is indifferent in this case. In equilibrium,

projecting players still overbid with positive probability, even with ρ-projection and

ρ < 1. In general, though, overbidding is predicted to be more limited than in stan-

dard auctions, and more pronounced for players with high values. Qualitatively, this

matches the observations of GHP02.

The common value auction of AK97 is non-standard in the sense that the common

value is simply the sum of (two) independent signals. The BNE prediction is to bid

twice the own signal, which is the expectation of the common value in case one is just

able to win the auction (i.e. if both signals are equal). A fully projecting player always

assumes the opponent’s signal is equal to the own signal. The expected object value

in this case is equal to the own signal (xi) plus the average opponent’s actual signal

(2.5), yielding the conditional expectation xi + 2.5. This equates with the conditional

expectation of a fully cursed player. More generally, a χ-cursed player has expecta-

tion χ(xi + 2.5) + (1− χ)(2xi), which he also bids in AK97’s second price auction

called “High Signals” treatment. The unique BNE equilibrium bids are {0,1,2,3,4,5} in either case.

Avery and Kagel (1997) implemented second-price common-value auctions of two players. The players

draw independent signals Xi ∼ U [1,4] and the common value common value is v = X1 +X2 (in their

“symmetric case”, on which I focus). The BNE strategy is b(xi) = 2xi.
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(Crawford and Iriberri, 2007, provide further details). A ρ-projecting player has the

corresponding expectation x∗ = ρ(xi + 2.5)+ (1−ρ)(2xi) conditional on winning all

ties, but bidding this value is winning only with probability of ρ/2 in the projection

case (if the opponent bids x∗, too). Conditional on this, the projected expectation is

(ρ/2)(xi + 2.5) + (1− ρ/2)(2xi), i.e. higher than x∗ if xi > 2.5. This generates an

incentive to outbid the opponent—but outbidding x∗ throws him back to winning all

ties and thus to the conditional expectation x∗. In equilibrium, the projecting player

uses a mixed strategy with support between the cursed equilibrium (xi + 2.5) and the

BNE (2xi). Thus, a projecting player underbids the BNE if xi > 2.5, and similarly, he

outbids the BNE if xi < 2.5. Overall, this pattern matches AK97’s observations.

Table 7 presents the quantitative adequacies to explain these observations. I focus on

descriptive and predictive adequacy, of which the latter concerns the adequacy of the

estimates taken from these non-standard auctions in predicting the pooled standard

auctions. This appears to be the main direction of interest and the predictive adequacy

in the other direction (from standard toward non-standard) is largely insignificant due

to the smaller sizes of the non-standard data sets. Information about the fit in this

second direction and the inferential adequacy is provided as supplementary material.

Result 10 (Non-standard auctions). Projection fits about as well as risk aversion in

the non-standard private value auction, about as well as cursed equilibrium in the

non-standard common-value auction, and in all cases, about as well as these concepts

combined. It predicts better than each of these models in at least one of the cases.

7 Conclusion

The purpose of the paper is to model and test projection of types in Bayesian games.

It is well-established in psychological research that people project their preferences

and beliefs onto others in cases of incomplete information, and thus, we may plausibly

expect that projection affects behavior also in games. First, I define type projection

equilibrium, leaving the choice of the degree of projection to the analyst, and show that

a projection equilibrium exists for all degrees ρ ∈ [0,1). Second, its predictions were

tested mainly on a class of Bayesian games, auctions, where projection was perhaps

least expected to affect behavior—despite the large amounts of studies dedicated to

either, auctions in economics and projection in psychology. To my knowledge, the

only paper mentioning a potential link between bidding and projection is Engelmann
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and Strobel (2012).

I studied the properties of projection equilibrium in auctions, tested the testable impli-

cations, and analyzed the overall fit to the data. Projection equilibria tend to be mixed

and left-skewed, and in each information condition, projection fits about as well as

the best existing explanation—risk aversion and cursed equilibrium, for private and

common values, respectively. These existing explanations of overbidding are orthogo-

nal, however, i.e. depending on information condition a different explanation is being

called upon. Projection, in turn, offers a unified explanation based on a psychologically

well-founded concept, and as an advantage, it offers an explanation that is overall more

descriptive and robust. Thus, we may conclude that projection of values affects behav-

ior in auctions and that analyses of bidding seem to benefit from considering projection

as a potential explanation. This corroborates independent findings that negotiating sub-

jects project their willingness-to-pay and their reservation prices onto their opponents,

and was further validated by showing that projection of preferences helps explain the

within-subject variance of behavior in simple distribution games.

This suggests that type projection is relevant in all games with incomplete informa-

tion—assuming the player types are symmetric ex ante. This symmetry assumption

was made partially for simplicity, but it also reflects the range of interactions where

psychologists studied projection and false consensus effects. In interactions of dis-

tinctively asymmetric players, e.g. buyers and sellers, or informed and uninformed

players, the alternative concepts of cursed equilibrium (Eyster and Rabin, 2005) and

information projection (Madarász, 2012) appear to be more intuitive starting points.

From a more general perspective, three points may be worth noting. First, projection

affects behavior in games, but subjects tend not to fully project their types. While this

may not be surprising to psychologists, who studied projection in decision-theoretic

frameworks, the comprehensive analysis of projection in an important class of games is

novel, and the empirical content of projection is surprisingly high. Further, experimen-

tal work in economics tends to attribute most of the deviations from Nash equilibrium

to either preferences, such as risk aversion or inequity aversion, or belief asymmetry,

such as level-k. Needless to say, each of these intuitions impacts behavior in general,

but projection should not be neglected as a confound simply because the literature

focused on other issues so far. Second, practitioners of auction theory may consider

projection at least alongside risk aversion as an explanation of overbidding. This has

both a downside and an upside. On the downside, projection equilibria are mixed and

their computation may require information that analysts do not immediately have, e.g.
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the upper bound of values in private value auctions. Less information is required if one

is willing to assume Bayesian Nash equilibrium and thus to neglect projection (for a

review, see Bajari and Hortacsu, 2005). This assumption is highly debatable, though,

as Crawford and Iriberri (2007) challenge the equilibrium assumption and my results

challenge the neglect of projection. Further on the upside, projection equilibria fit

more robustly than BNE with risk aversion across information conditions, which sug-

gests that they are less prone to misspecification of the information conditions and the

value parameters. It is unclear which of these effects dominates in which conditions,

but it is probably not always the first one.

Finally, Engelmann and Strobel (2012) have shown that subjects are less likely to

project if they are provided with the objective information in the best possible way.

This suggests that the fallacy to projection may be subject to policy intervention, even

if the best way of providing information is not obvious in all cases. Further, to the

degree that overbidding is due to risk aversion, information does not help efficiency.

To the degree that overbidding is due to projection, educating subjects increases the ef-

ficiency in at least two ways: Subjects stop randomizing in equilibrium, which ensures

that the bidder with the highest value wins, and in cases where not just the winners

pay their bids (e.g. contests), a reduction of overbidding increases efficiency. Thus, the

above findings also have novel policy implications.

A Relegated proofs

Proof of Proposition 1

Consider the Bayesian game Γ̃=
〈

N,(Ai)i∈N ,T0,(Ti)i∈N , p,ρ,(ui)i∈N

〉

with the follow-

ing move order: (1) With probability 1−ρ, Nature sends all players individual signals

(with joint distribution p), and with probability ρ, Nature sends all of the players the

same signal (drawn from any of the marginal distributions pi, which are equal by type-

symmetry). (2) The players observe their signals and simultaneously choose actions

(ai). The expected payoff of i ∈ N in Γ̃, given action ai, type ti, and opponents’ strate-
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gies σ−i, is

π̃i

(

ai|ti,σ−i

)

= (1−ρ) ∑
t−i∈T−i

∑
a−i∈A−i

p(t−i|ti) ui

[

(ai,a−i),(ti, t−i)
]

∏
j 6=i

σ j(a j|t j)

+ρ ∑
a−i∈A−i

ui

[

(ai,a−i),(ti, t−i)
]

∏
j 6=i

σ j(a j|ti).

As ti has the same distribution in either case and ∑t−i
p(t−i|ti) = 1, we obtain

π̃i

(

ai|ti,σ−i

)

= (1−ρ) ∑
t−i∈T−i

∑
a−i∈A−i

p(t−i|ti) ui

[

(ai,a−i),(ti, t−i)
]

∏
j 6=i

σ j(a j|t j)

+ρ ∑
t−i∈T−i

∑
a−i∈A−i

p(t−i|ti) ui

[

(ai,a−i),(ti, t−i)
]

∏
j 6=i

σ j(a j|ti)

and thus

π̃i

(

ai|ti,σ−i

)

= ∑
t−i∈T−i

∑
a−i∈A−i

p(t−i|ti) ui

[

(ai,a−i),(ti, t−i)
]

σ̃−i(a−i|t−i, ti)

using σ̃−i as defined in Eq. (1). Hence, the expected utility of i ∈ N in Γ̃ equals i’s

expected utility under ρ-projection in Γ, and any Bayesian Nash equilibrium of Γ̃ is a

ρ-TPE of Γ. The finiteness of Γ implies finiteness of Γ̃ and thus existence of a Bayesian

Nash equilibrium of Γ̃, which in turn implies existence of a ρ-TPE of Γ.

A.1 Proof of Proposition 2

Fix any symmetric ρ-TPE. It has already been established that σ must be mixed and

have increasing density on its support. It remains to characterize its bounds. First,

consider the lower bound r of the support. The directional derivative with respect to

dr < 0

Π̃′
ρ(r|σ)

∣

∣

r=r,dr<0
= (1−ρ)Π̃′(r|σ)

must be non-negative. Otherwise, one benefits through deviating by putting probability

mass on bids r < r. Thus, Π̃′(r|σ)≥ 0. Second,

Π̃′
ρ(r|σ)

∣

∣

r=r,dr>0
= ρ(Ṽ − r)σ(r)+(1−ρ)Π̃′(r|σ)
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must be zero, since σ is mixed. Further, Ṽ − r > 0; otherwise the assumption that

ṽ is increasing would imply Π̃ρ(r|σ) < 0, contradicting the assumption that σ is an

equilibrium. Hence, Π̃′(r|σ) = 0 and σ(r) = 0.

Second, I show that this implies r ≥ rBNE . Let BR : ∆R → P (R) denote the best-

response correspondence (allowing for mixed strategies as arguments) of the auction

without projection. For simplicity, let BR(r′) also denote the best response to the pure

strategy r′. Define r := BR(r). Strategic complementarity implies dΠ̃(r|r′)/dr > 0

for all r′ > r. Hence, dΠ̃(r|σ)/dr > 0 and infBR(σ) > BR(r). Since we know r =

infBR(σ), we obtain r > BR(r), and by strategic complementarity r > rBNE .

Third, I characterize the upper bound r. To begin with, r ≥ rBNE implies r ≥ rBNE ,

and the fact that it is a best response to σ implies that it yields non-negative expected

payoffs. That is

Π̃ρ(r|σ) = (1−ρ)Π̃(r|σ)+ρ(Ṽ − r)Fσ(r)≥ 0.

Since ṽ is non-decreasing, Ṽ − r < 0 implies Π̃(r|σ) < 0. Thus, Π̃ρ(r|σ) ≥ 0 implies

Ṽ − r ≥ 0 for all ρ ≥ 0.
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