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Abstract

We study the complexity of computing or approximating refinements of Nash equilibrium
for finite n-player extensive form games of perfect recall (EFGPR), n > 3. Our results apply to
a number of well-studied refinements, including sequential equilibrium, extensive-form perfect
equilibrium, and quasi-perfect equilibrium.

Informally, we show that, for all these refinements, approximating such a refined equilibrium
for an n-player EFGPR is not any harder than (i.e., can be efficiently reduced to) approxi-
mating a Nash equilibrium for a 3-player normal form game. More specifically, we show that
approximating such a refined equilibrium for a given EFGPR, within given desired precision, is
FIXP,-complete. We also study corresponding notions of “almost” equilibrium for these refine-
ments, and we show that computing one is PPAD-complete. (In all these cases our main results
show containment FIXP, and containment in PPAD. Hardness follows from earlier results for
simpler games.)

For 2-player EFGPRs, analogous complexity results follow from the algorithms of Koller,
Megiddo, and von Stengel (1996), von Stengel, van den Elzen, and Talman (2002), and Miltersen
and Sgrensen (2010). For n-player EFGPRs, an analogous result for Nash and subgame-perfect
equilibrium was given by Daskalakis, Fabrikant, and Papadimitriou (2006). No analogous results
were known for more refined notions of equilibrium for EFGPRs with 3 or more players.

1 Introduction

Ezxtensive form games are the fundamental mathematical model of games that transpire as a se-
quence of moves by players over time. A finite extensive form game is described by a finite tree,
where each internal node belongs to one of the players (or to chance), and where each leaf indicates
a payoff to every player. A “play” of the game traces a path in this tree from the root to a leaf,
with each player choosing the child to move to at nodes belonging to it (the child being chosen
randomly at chance nodes, or when players decide to randomize their moves). In general, an exten-
sive form game may be of imperfect information, meaning roughly that players may need to make
moves without having full knowledge of the current “state” (i.e., current node of the game tree).
A basic sanity condition for imperfect information games, called perfect recall, requires (roughly)
that every player in the game should remember all of its own prior moves and information sets.
This condition was already put forward by Kuhn ([21]), who showed that games with perfect recall
have nice properties and avoid certain pathologies of general extensive form games. Subsequently,
Selten [43], in his seminal work on perfect equilibria, argued that non-cooperative extensive form
games that lack perfect recall should be rejected as misspecified models. The assumption of perfect



recall has indeed become standard practice in much of the large literature on extensive form games.
Henceforth, we use the abbreviations: EFGPR for “extensive form game of perfect recall”, EFG
for “extensive form game”, and NFG for “normal form game”.

Selten’s work made clear that Nash equilibrium, and even subgame-perfect equilibrium, is not
an adequately refined solution concept for extensive form games. In particular, there are Nash
and subgame-perfect equilibria of EFGPRs that involve “non-credible threats”, rendering them
implausible. Motivated by this, Selten defined a more refined notion of perfect equilibrium, based
on “trembling hand” perfection, and showed that any EFGPR has at least one perfect equilibrium.
(Selten was awarded a Nobel prize in economics, together with Nash and Harsanyi, largely for
his work on refinement of equilibria.) Subsequent work, e.g., by Kreps and Wilson on sequential
equilibria [20], and by many others, has reaffirmed the imperative for considering refinements of
equilibrium, especially for extensive form games. By now EFGPRs, and equilibrium refinements
for them, are treated in most standard textbooks on game theory (see, e.g., [33, 30, 23, 46]).

This paper studies the complexity of computing or approximating an equilibrium for a given
EFGPR, with n > 3 players. We study various important refinements of NE, including: sequen-
tial equilibrium (SE), extensive form trembling-hand perfect equilibrium (PE), and quasi-perfect
equilibrium (QPE). All of these notions refine subgame-perfect equilibrium (SGPE). Of these, PE
and QPE are the most refined notions.! Quasi-perfect equilibrium (QPE), defined by van Damme
[45], is incompatible with PE, meaning that a PE need not be a QPE and a QPE need not be a
PE. Like PE, QPE also refines NE, SGPE, and SE. Furthermore, QPE also refines “normal-form
perfect equilibrium” (NF-PE) for EFGPRs, which differs from, and is incompatible with (extensive
form) PE for EFGPRs. For the benefit of readers confused by all the different mentioned notions of
equilibrium for EFGPRs, Figure 1 of Section 2 summarizes the refinement relationships that exist
(and don’t exist) between them, by depicting the Hasse diagram of their refinement partial order.

Informally, we show that for all these notions of equilibrium, approximating an equilibrium
for given n-player EFGPR within a given desired precision § > 0 (or computing an “d-almost
equilibrium” for given § > 0) is no harder than approximating a (J-almost) NE for a given 3-player
normal form game. NFGs are trivially encodable as EFGPRs without blowup in size. Thus our
results extend the celebrated complexity results for computing/approximating an NE for NFGs to
the much more general setting of EFGPRs, and “perfection comes at no extra cost in complexity”.
Before stating our results more precisely, we must first discuss prior related work.

For readers unfamiliar with computational complexity theory, and with notions such as complex-
ity classes, polynomial time, NP, reductions, and hardness: these are very rich subjects. Although
we attempt to be self-contained wherever possible, we can not review all the relevant background
on computational complexity in this paper. We recommend as references, firstly, good textbooks
on complexity theory such as [2, 34], as well as texts on algorithmic game theory [32, 39] which in
particular contain chapters on the complexity of equilibrium computation. Finally, we recommend
specific papers that provide background on the the total search complexity classes PPAD and FIXP,
such as [35, 7, 11] and [13].

Related work. Equilibrium computation, and its connection to fixed point computation, has been
studied for decades, both for normal form and extensive form games. Papadimitriou [35] defined
the search problem complexity class PPAD in order to capture the complexity of problems related

'However, unlike PE and QPE, an SE consists not just of a suitable behavior profile, but also a system of beliefs.
We'll see later in what sense PE (and QPE) “refines” SE ([20]). Our complexity results for SE are also for computing
its associated belief system.



to computing an equilibrium.? It follows from the correctness of the Lemke-Howson algorithm
that computing an NE for 2-player NFGs is in PPAD. It similarly follows from Scarf’s algorithm
that given an n-player NFG (for any n), and given ¢ > 0, computing a “e-NE” (which we call
“e-almost-NE” in this paper, to avoid confusion with other notions?) is in PPAD; this is a strategy
profile where no player can improve its own payoff by more than e by unilaterally deviating from
its strategy. In a celebrated series of result in 2006, Chen and Deng [7], and Daskalakis et. al.
[11], showed that both of these problems are PPAD-complete. For games with 3 (or more) players,
specified by an integer payoff table, all the NEs may have irrational numbers ([31]). Thus, we can
not compute an NE ezactly for them (at least not in the Turing model of computation). With
Yannakakis in [13], we showed that for games with 3 (or more) players, an e-NE may in fact be
nowhere near any actual NE, unless € > 0 is so small that its binary encoding size is exponential
in the size of the game; thus, finding an e-NE may tell us nothing about the location of any actual
NE. In [13] we considered the complexity of computing an actual NE to within a desired number of
bits of precision, i.e., computing a strategy profile that has £.-distance at most 6 > 0 to some NE,
for a given ¢ (given in binary). We showed that this problem is complete for a natural complexity
class which we called FIXP,.% Informally, FIXP, is the class of discrete search problems that can
be reduced to approximating, within desired /-distance 6 > 0, a (any) Brouwer fixed point of a
continuous function given by an algebraic circuit using gates {+, —, %, /, max, min}. (We will later
formally define FIXP,, as well as its real-valued progenitor FIXP, and the piecewise-linear fragment
linear-FIXP (= PPAD).) Very recently, in a paper with Hansen, Miltersen, and Sgrensen [12],
building on [13], we have shown that for NFGs with n > 3 players, approximating a “trembling-
hand perfect equilibrium” (PE) within desired precision is also FIXP,-complete. Since PEs refine
NEs, we only had to show containment in FIXP,. Interestingly, it was shown previously in [15]
that given a 3-player NFG, deciding whether a given strategy profile is a PE is NP-hard (unlike for
NEs, for which this is easily in P-time).

Research on the computation of equilibria for EFGs, with and without perfect recall, also has a
long and rich history. Of course for perfect information games computing a NE or SGPE is easily
in P-time using Kuhn’s classic “backward induction” ([21]). On the other hand, for imperfect
information games without perfect recall, it was pointed out by Koller and Megiddo [18] (and by
others, e.g., [5]) that even for 1-player games computing or approximating a (any) NE is NP-hard
(it can easily encode SAT?). By contrast, for 1-player EFGPRs an equilibrium (i.e., an optimal
strategy) can be computed easily in P-time by dynamic programming, as shown by Wilson [49].

Of course, one way to compute an equilibrium for an EFGPR (or EFG) is to first convert it
to an NFG, and then apply any algorithm applicable to NFGs. The problem with this approach
is that, even for EFGPRs, a standard conversion from extensive to normal form incurs exponential
blowup.® Thus, even a P-time algorithm for NFGs requires exponential time if applied naively in
this way to EFGPRs. In the other direction, an NFG can trivially be encoded as an “equivalent”

2Tt is well-known that already for 2-player NFGs, computing a specific NE, e.g., that optimizes total payoff or other
objectives, is NP-hard [14, 8]. So, in this paper, whenever we speak of a problem of computing (or approximating)
“an” equilibrium, possibly of a refined kind, we are not more specific than that: any equilibrium of that kind will do.

3We do so to avoid confusion when we combine “c-almost” with other notions, particularly Myerson’s e-PEs ([29]).

“We also showed in [13] that approximating an actual NE, even within f..-distance any fized constant § < 1/2
for 3-player NFGs, is “hard”: even placing this in NP would place PosSLP in NP, and thereby resolve long standing
open problems in arithmetic vs. Turing complexity.

SSAT is a prototypical NP-complete problem: deciding satisfiability of a given propositional boolean formula.

5Even notions of reduced normal form in general incur exponential blowup for EFGPRs. We will not elaborate on
reduced norm form, but roughly it means redundant strategies of the EFGPR are not considered in the normal form.



EFGPR which is not much bigger, so that any equilibrium computation problem for NFGs is P-time
reducible to an analogous problem for EFGPRs.

In a series of important works in the 1990s, Koller, Megiddo, and von Stengel [18, 47, 19]
obtained equilibrium algorithms for 2-player EFGPRs with complexity bounds that essentially
match those of 2-player NFGs. In particular, Koller and Megiddo [18] showed that for 2-player
zero-sum EFGPRs an NE (i.e., a minimax profile) in behavior strategies can be computed in P-
time using linear programming. Furthermore, by using the sequence form ([38, 47]) of EFGPRs,
Koller, Megiddo, and von Stengel ([19]) showed that one can apply variants of Lemke’s algorithm to
certain LCPs associated with 2-player EFGPRs to compute an (exact) NE in behavior strategies.
A consequence of their result (when combined with Chen and Deng’s PPAD-hardness result for
2-player NFGs [7]) is that computing an NE for 2-player EFGPRs is PPAD-complete. Later,
von Stengel, van den Elzen, and Talman [48], using the sequence form, gave a similar Lemke-like
algorithm for computing a “normal form perfect equilibrium” (NF-PE) 7 for 2-player EFGPRs.
More recently, Miltersen and Sgrensen have used the sequence form to give related Lemke-like
algorithms for computing both a SE [27] and a QPE [28] for 2-player EFGPRs. As pointed out by
Miltersen and Sgrensen in [28], van Damme’s existence proof for a QPE in any EFGPR, given in
[45], is somewhat roundabout: it uses the existence of a proper equilibrium in a NFG ([29]), and
it uses a relationship established in [45] between proper equilibrium in NFGs and QPEs of any
EFGPR that has that NFG as its standard normal form. Miltersen and Sgrensen state in [28] that
“As far as we know, no very simple and direct proof of existence [of QPE] is known.” They note
that their results furnish a different proof of existence of QPE for 2-player EFGPRs. One of the
consequences of our results is a simple and direct proof, via application of Brouwer’s fixed point
theorem (and Bolzano-Weierstrass), of the existence of a QPE in any n-player EFGPR. In a similar
way, our results furnish a direct existence proof for all the notions of equilibrium for EFGPRs that
we study.

More closely related to our complexity results for n-player EFGPRs, with n > 3, von Stengel in
[47] used the sequence form of EFGPRs to describe an interesting nonlinear program, associated
with a given n-player EFGPR, such that the optimal solutions to the nonlinear program are the
NEs of the EFGPR, where the encoding size of the nonlinear program is polynomial in the size of
the EFGPR. One can use von Stengel’s nonlinear programming formulation, together with results
on decision procedures for the theory of reals [37, 3], to show that approximating an NE for a given
n-player EFGPR, to within given {,.-distance § > 0, is in PSPACE.

Even more closely related to our results is a result by Daskalakis, Fabrikant, and Papadimitriou
in [10]. Specifically, Theorem 4 of [10] states that the problem of computing a [e-]Nash equilibrium
and a [e-almost] subgame-perfect equilibrium, for an extensive form game [of perfect recall] is
polynomial time reducible to computing a [e-|Nash equilibrium for a 2-player normal form game.
The statement of Theorem 4 in [10] does not make a distinction between computing an actual Nash
equilibrium (within desired precision € > 0), versus computing an e-NE. Indeed, [10] appeared
prior to the publication of the paper [13] where the distinction between the complexity of these
two problems was highlighted, and where the complexity class FIXP and FIXP, were defined. The
proof of Theorem 4 in [10] can be used ([9]) to establish a reduction from the problem of computing
an exact Nash or subgame perfect equilibrium (within given desired precision € > 0) for a given

"A normal-form perfect equilibrium (NF-PE), is a (behavior) profile that induces a (mixed profile) PE of the
standard NFG associated with the EFGPR. This is not equivalent to extensive-form PE (see [46], Chapter 6). In
fact, unlike extensive-form PE, a NF-PE need not be subgame-perfect. Our results apply to both PE and NF-PE.



n-player EFGPR, to the problem of computing a Nash equilibrium (within given desired precision
e > 0) for a 3-player normal form game. In [10] a brief proof sketch for Theorem 4 is provided,
which builds on the earlier PPAD-completeness results in [11, 7] and goes via reductions to graphical
games. However, the sketched proof provided in [10] contains an error ([9]): it assumes that any
behavior strategy profile (even when not fully mixed) necessarily defines a distribution on the nodes
of every information set, but this need not be the case, in particular because some information sets
may be reached with probability 0. Thus, the distributions on information sets described in the
proof sketch in [10] are in general ill-defined. The authors of [10] have communicated ([9]) a fix
for this error to the author of this paper. The fix involves defining the probability distribution on
a given information set using the most recent common single-node ancestor of all vertices in that
information set. The authors of [10] will make their fixed proof available in some future expanded
version of [10]. We will not elaborate further on their fix, since our results make no use of any of
the results in [10]. In particular, we make no use of graphical games. Instead we directly provide
algebraically-defined functions whose fixed points give e-perfect equilibria of the given EFGPR.
Our results imply essentially the same complexity results for computing Nash and subgame-perfect
equilibrium as those implied by Theorem 4 of [10], as well as for computing various other important
refinements of equilibrium.®

Our results. We consider the complexity of various equilibrium computation problems for which
an input instance consists of (G, d), where G is an n-player EFGPR (for any n: n can be part of
the input), and where the rational “error” parameter ¢ > 0 is given in binary representation. Our
main results are the following:

1. Computing a behavior (strategy) profile, b, such that there exists a PE (or NE, or SGPE)
b* of G, with ||b — b*||s < 9, is FIXP,-complete. (Theorem 10, Part 1.)

2. Computing a behavior profile, b, such that there exists a QPE (or NF-PE), b* of G, with
|b — b*||oc < 0, is FIXP4-complete. (Theorem 10, Part 2.)

3. Computing an assessment, (b, ), such that there exist an SE, (b*, u*) of G, with
|(b, pt) — (b*, u*)||co < 6, is FIXP4-complete. (Theorem 10, Part 3.)
An assessment (b, ) consists of both a behavior profile b, as well as an associated
system of beliefs, u. (We shall define all this formally later.)

4. Given, additionally, ¢ > 0 (again, in binary representation) as input, computing a
d-almost e-perfect equilibrium (d-almost-e-PE) of G is PPAD-complete. (Theorem 19, Part 1.)

A S-almost-e-PE is a relaxation of Myerson’s notion of e-PE ([29]) applied to EFGPRs.
Roughly (we provide fully formal definitions later), it is a fully mixed behavior profile, b,
such that for any player ¢, and for any action a played by player ¢ in b with probability > e,
in some information set j, it must be the case that the action a is “d-almost local best re-
sponse”, meaning that the utility for player 7 if it switches unilaterally to pure action a in the
information set j (and retains its behavior strategy in b in all other information sets), will be
at most ¢ less than the maximum utility it could obtain by unilaterally switching its “local”
distribution on actions within the information set j (while retaining its behavior strategy in
b in all other information sets).

8 Although it is worth pointing out that, by contrast, our results do not imply that computing an exact PE, SE,
or QPE, is in FIXP, only that computing a (-almost) approximation of these is in FIXP, (and PPAD respectively).



We show that a J-almost-e-PE suitably “refines” §-almost subgame-perfect equilibrium (6-
almost-SGPE). A §-almost-SGPE of G is a behavior profile, b, where no player can improve
its own payoff in any subgame of G by more than 9, by unilaterally changing its strategy in
that subgame.

Thus, as a consequence we also obtain (cf. [10]) that computing a d-almost-NE and a 4-
almost-SGPE is PPAD-complete (Theorem 19, Part 3.).

5. Likewise, we define a notion of d-almost-e-QPE, which is a relaxation of the notion of e-QPE,
defined by van Damme in [45], and we show that computing a J-almost-e-QPE of G, given G,
and given § > 0 and € > 0, is PPAD-complete. (Theorem 19, Part 2.)

In all the above results, the “hardness” result follows immediately (already for 3-player games) from
the prior known hardness results for NFGs ([13, 7, 11]). The new results are the upper bounds, all
of which are new, except for the consequence that computing a §-almost-SGPE and §-almost-NE
is contained in PPAD (this, as we explained before, follows from a prior result in [10] and its fixed
but unpublished proof [9]).

Outline of proof ideas. By contrast to the prior work on algorithms for 2-player EFGPRs,
our results make no explicit use of the sequence form for EFGPRs. Also, by contrast to [10] we
make no use of reductions to graphical games. Instead, we combine older insights, including Kuhn
and Selten’s original agent normal form for EFGPRs, and Myerson’s alternative definition of PE
using e-PEs (both for normal and extensive form), with recently developed fixed point functions
for equilibria of n-player normal form games, n > 3, developed in [13] and [12].

More specifically, a key to our results is this: in Section 3, we adapt a construction in [12] of
a fixed point function for “e-PEs” of a given NFG (which itself is an adaptation of a fixed point
function for NEs of NFGs given in [13]) to show that to any n-player EFGPR, G, we can associate a
continuous function F§(x), defined by a “small” algebraic circuit over {+, x, max} (whose encoding
size is polynomial in that of G), where € in an input parameter to the circuit, and such that, for
any fixed € > 0, the function F§(x) maps the space of behavior strategy profiles of G to itself, such
that the Brouwer fixed points of F§(x) constitute e-PEs of G. This proves that computing an e-PE,
given (G, ¢€), is in FIXP, even when € > 0 is given succinctly by an algebraic circuit.

Also, we similarly define another continuous function, H§ () using a “small” algebraic circuit,
such that, for any fixed € > 0 the function Hg(x) maps the space of behavior profiles to itself, and
such that every fixed point of H§(z) is a e-QPE.

The reason why we can construct the functions F§(x) and Hg(x) with a “small” (poly-sized)
algebraic circuit is related to properties of the agent normal form of EFGPRs, and to the fact that
the “realization probabilities” and the expected payoff functions for EFGPRs can be expressed
as “small” (multilinear) polynomials. In particular, a simple but important fact ([43],[29]; see
Proposition 4 in this paper) is that an EFGPR has exactly the same (e-)PEs as its agent normal
form. (It does not necessarily have the same NEs.) Even though we can not construct the agent
normal form explicitly (because it is exponentially large), it turns out that we do not need to: by
combining these various facts, we can nevertheless construct a “small” algebraic circuit for F§(x),
by adapting the analogous construction from [12].

With the functions F§(z) (and Hg(z)) in hand, in Section 4 we then use (similar to [12])
algebraic circuits to construct a “very very small” ¢* > 0 (but whose encoding size, when expressed
as a circuit, still remains polynomial) for which we can prove, using results from real algebraic



geometry ([37, 3]), that every fixed point of Fé (x) is d-close (in f+) to an actual PE. Likewise,
we show that every fixed point of Hg (x) is d-close to a QPE. This allows us to show containment
in FIXP, for approximating a PE, and for approximating a QPE. We furthermore show how to
extend the function F§(z) to define another “small” algebraic function G§(z, z) that serves the same
purpose for sequential equilibrium (SE), and in particular that additionally includes a corresponding
system of beliefs inside its fixed points. This shows containment in FIXP, for approximating an SE.

Finally, in Section 5, we observe some properties of the functions Fé(az) (they are “polynomially
continuous” and “polynomially computable”), which when combined with results in [13] imply that
computing a “d-almost fixed point” of F5(x), given G and given 6 > 0 and € > 0, is in PPAD. We
then show that a “d-almost fixed point” of F§(x) is a (30)-almost-(6 + €)-PE of G. We also show
that a “d-almost fixed point” of Hg(z) is a (36)-almost-(d + €)-QPE. Lastly, we show that a §'-
almost-¢/-PE, for “polynomially small” ¢’ and €, is a §-almost-SGPE of G. These results allow us
to show containment in PPAD for the “j-almost” equilibrium notions that we study.

This last part, for establishing PPAD-completeness for “d-almost” equilibria, is technically one
of the more involved parts of our proofs. Also, our proof of FIXP,-completeness for computing a
QPE involves a novel fixed point characterization. By comparison to these, our proof of FIXP,-
completeness for PE is technically easier, given the prior results in [12, 13], and given long existing
results in the literature on EFGPRs which we exploit.
Potential computational applications. We believe our results could potentially provide a
“reasonably practical” method for computing Jd-almost relaxations of equilibrium refinements for
n-player EFGPRs, including d-almost e-perfect and d-almost e-quasi-perfect equilibrium, as well as
less refined notions of §-almost equilibrium like SGPE and Nash (for which see also the result of [10]),
by applying classic discrete path following algorithms for “almost” fixed point computation, such
as variants of Scarf’s algorithm [40, 41], on the “small” algebraic fixed point functions we associate
with EFGPRs. We believe this is a promising approach for “almost equilibrium” computation for
EFGPRs that should be implemented and explored experimentally. We note that the well-known
software package GAMBIT ([24]), which provides a variety of state-of-the-art algorithms for solving
various classes of games, does not currently provide any algorithm for computing or approximating
an equilibrium (of any kind) for a general n-player EFGPR, for any n > 3. Indeed, a survey
on equilibrium computation from 1996 ([25]), by McKelvey and McLennan who helped to develop
GAMBIT, discusses the algorithms by Koller et. al. ([18, 47, 19]) for 2-player EFGPRs, but does not
discuss any general algorithms for n-player EFGPRs, beyond first converting to (reduced) normal
form, and using heuristics like iterated elimination of dominated strategies. We believe our results
can potentially be used to remedy this gap in the availability of “practical” software for (refined)
equilibrium computation for n-player EFGPRs. Of course, since we prove that computing d-almost
e-PE is PPAD-complete (= linear-FIXP-complete), it follows from [7, 11, 13] that these problems
are all ultimately reducible to computing a Nash Equilibrium in a 2-player normal form game.
Thus one could simply aim to apply available implementations of algorithms for computing an NE
for 2-player NFGs. However, this is a rather indirect approach, since it goes through reductions
that result in relatively large (albeit polynomial) blowups. We believe that instead it is better to
work directly with the fixed point equations we use to capture these refined equilibria for EFGPRs,
and apply classic discrete path following algorithms for “almost” fixed point computation, such as
variants of Scarf’s algorithm to these.



2 Definitions and Background

Dear Reader: EFGPRs, and refinements of equilibrium for them, are treated in nearly every modern
textbook on game theory (see, e.g., [23, 33, 30, 46]). Nevertheless, for us to discuss our problems
rigorously, we can not just point you to a book or paper with relevant definitions. We must
fix (a considerable amount of) notation and terminology, and we must describe various essential
background results. This is especially because we will be addressing various subtle refinements
of equilibrium, and corresponding notions (in some cases, new) of “approximate” and “almost”
equilibrium, where slight differences in definitions can have major consequences, particularly for
computational complexity. We also have to define the relevant complexity classes like FIXP, FIXP,,
and PPAD. So, we proceed to carefully fix notation and definitions, and to describe the needed
background results. Readers familiar with EFGPRs, or with other parts of the background, can
skip ahead to subsequent sections that contain the new results, and return to this section as needed,
using it as a “reference”. (Although some things are likely to become harder to follow that way.)

For a finite set X, we let A(X) denote the set of probability distributions on X, i.e., the set of
functions f : X — [0,1] such that >~ _y f(z) = 1. For f € A(X), we let support(f) = {zr € X |
f(z) > 0} denote its support set. For a positive integer k, we let [k] = {1,...,k}.

Extensive Form Games. Intuitively, a finite game tree is just a rooted, labeled, finite tree.
We will find it convenient to view such a tree as a finite, prefix-closed, set of strings over a finite
alphabet of “actions”. Formally, let ¥ be a finite set called the action alphabet. We shall use the
symbols a,d’,a,as,..., to denote letters in the alphabet ¥. For a string u € ¥*, we use |ul to
denote the length of u. A tree, T = (V, E) over action alphabet ¥, consists of a finite set V' C X*
of nodes (or vertices), where furthermore V' is prefix-closed, meaning that if w € V and w = ua,
where a € %, then v € V. Note that by definition the empty string € is in V. We refer to € as
the root of the tree. The directed edge relation E C V x V, of the tree T (which points “away
from” the root) is defined by: E = {(u,w) € V xV |Ja € ¥ : w = ua}. For two nodes u,w € V,
if (u,w) € E, we say that w is a child of u, and that w is the (unique) parent of w. For u € V,
we let Ch(u) = {w € V | (u,w) € E} denote the set of children of u. Let C denote the reflexive
transitive closure of £. Thus, u C w is just the prefix relation on the set V. We use u C w to
denote the strict prefix relation: (v C w A u # w). When u C w, we say that u is a ancestor of
w, and that w is a descendant of u. For each node u € V| we define Act(u) = {a € ¥ | ua € V}
to be the set of actions available at node u. A leaf is a node u € V with no children, i.e., where
Ch(u) = 0. Let L = {u € V | Ch(u) = 0} denote the set of leaves of the tree T. A non-leaf node
is called an internal node; let W = V' \ L denote the set of internal nodes. A path 1 in the tree T
is a non-empty sequence ) = ug, Uy, U2, - . . , Uy, of nodes, where for all 0 < i < m, (u;,u;+1) € E.
The path ¢ is called a play if ug = €, and it is called a complete play if additionally u,, is a leaf. In
other words, a (complete) play is just a path that starts at the root (and ends at a leaf). Note that
a node u € V is a string in ¥* that encodes all the information needed to reconstruct the unique
path in T" from the root to u.

A Finite Game in Extensive Form (EFG), G = (N, X, T, P,I,p,r), is a tuple consisting of:

1. Players: A set N =[n] ={1,...,n} of players.

2. Action alphabet: a finite set X, called the action alphabet. Let kg = |X| denote the size of X.

3. Game Tree: A finite tree T'= (V, E') over the action alphabet X, called the game tree.



4. Player partition: A partition P = (P, Pi, ..., P,) of the set W of internal nodes, i.e., P, C'W,
Up—o P =W, and PN P; =0, for all i # 7, ¢,j € {0,...,n}.

For ¢« = 1,...,n, the nodes in P; are the internal nodes “belonging” to player ¢: these are
the nodes where player ¢ has to choose the next move. The set Py consists of the internal
nodes belonging to chance (or nature). The next move at a node u € Py is chosen randomly,
according to a provided distribution, p,,, given in item (6.) below.

We define the player map, &2 : V — N, by: for all i € {0,...,n} and v € P;, Z(u) :=i.

5. Information set partition: A tuple I = (Iy,...,1I,), such that for each i € [n] = {1,...,n},
I = (lin, ..., 1 q,) is a partition of the set P; of vertices belonging to player i, where each
information set I; ; C P; is non-empty & U?;l Lj=D,L;iNL="0foralj#k, jkeld

It is furthermore assumed that, for every information set I; ;, and for any two nodes u,v € I; ;,
Act(u) = Act(v). In other words, the same set of actions is available to player ¢ at every node
in I; ;. Let A;; := Act(u), where u € I; ;. By assumption, A; ; is well-defined.

We define the map Z(-), which maps a node u to the index of the information set to which u
belongs. Thus, if u € I; j, then Z(u) := j. For convenience, we extend the map Z(-) to chance
nodes u € Py as follows: for all u € Py, we define Z(u) := u.

The extensive form game, G, is said to have perfect information if all information sets I; ; are
singleton sets, for all i € [n], j € [d;]. Otherwise, it is called a game of imperfect information.

6. Probability distributions for chance nodes: A tuple of probability distributions p = (py)uep,,
one for each chance node u € Py, where p, : Act(u) — (0,1] N Q is a positive, rational?,
probability distribution on actions available at uw. So, p,(a) > 0 and p,(a) € Q for all

a € Act(u), and 3~ cpcpy) Pula) = 1. Let p&min '= MiNye gy acact(u) Pula)-

7. Payoff functions: An n-tuple r = (r1,...,r,) of payoff functions. For each player i, the payoff
function r; : . = Nso, maps each leaf u € IL of the tree T' to a positive integer payoff for
player i.'0 Let Mg := max;e(n) ueL 7i(u) denote the largest possible (positive integer) payoff.

We denote the bit encoding size of an EFG, G, by |G|, where we assume binary encoding
for the integer payoff values at the leaves of G, as well as the rational probabilities of actions at
chance nodes (with numerator and denominator given in binary).!! For a rational number ¢ € Q,
we use size(q) to denote its bit encoding size. Similarly, for a rational vector v € Q™, we use
size(v) := Y /" size(v;) to denote its encoding size.

For a game G with tree T = (V, E), let h¥% := max{|u| | u € V} denote the height of T. For
u € V, we define the subtree rooted at w, Ty, = (Vi, Ey,u), by: Vi, = {w € V | v C w}, and
B, = {(u,w) € E | u,w € V,,}. We let h¥ := max{|w| — |u| | w € V,,} denote the height of T,,.

9We restrict the distributions p,, to have rational probabilities for computational purposes.

10%We restrict to positive integer payoffs, rather than real payoffs, for computational purposes. One can of course
also consider rational payoff functions r; : L — Q. However, as is well-known, restricting to positive integer payoffs
is w.l.o.g. for computational purposes: we can always “clear denominators” by multiplying by their LCM, and then
add a large enough positive value to the resulting integers to get positive payoffs. This does not increase by much
the encoding size of G, and the resulting game can be shown to be “suitably isomorphic” to the original for all our
purposes, including equilibrium approximation within desired precision, and §-almost equilibrium computation.

1\We assume natural representations for the various pieces of G, including the tree T, player partition, information
partition, payoff functions, and the probability distributions at chance nodes (with rational probabilities encoded in
binary) . The details of the natural encoding are irrelevant for our purposes, so we do not spell them out.



(Note that h% = h9.) Consider an EFG, G = (N, %, T, P,I,p,r). For a node u of the game tree T,
if the subtree T}, satisfies the property that for every node w € V,,, the information set 5y z(w) 18
a subset of V,,, then the subtree T, naturally defines a subgame, G, = (N', 2, T', P, I’ p/, '), which
is rooted at the node w instead of at €, and where the player partition, information set partition,
payoff functions, and probability function for chance nodes, are all inherited directly from G by
restricting them to the subtree T}, in the obvious way.

Note that a node u € V is a string in 3* which also encodes the unique history of actions, starting
at the root, which lead to that node in 7. For any node u € V, with |u| = k, v = ajas ... ay, and
for any m € {0,1,...,k}, let u[m] = ay ... ay,, denote the length m prefix of u. For a node u, with
|u| = k, we define the information-action history at u, denoted Y (u), to be the following sequence
of k triples:

Y (u) = ( (2 (ulm]), Zm]), ams) | m =0, k—1)

For each player i € [n], we define the visible history for player i at u, denoted Y;(u), to be the
subsequence of Y (u) obtained by retaining only those triples (i, j’,a’) in the sequence Y (u) for
which i = 4, and deleting all other triples. In other words, Y;(u) records the sequence of information
sets belonging to player i encountered along the path from the root € to u (not including ), and
the actions player i chose at each of those information sets, prior to reaching u.

An EFG, G, is said to have perfect recall if the following condition holds: for any two nodes
u,v € V, if Z(u) = Z(v) =i € [n] and Z(u) = Z(v), then Y;(u) = Y;(v). In other words, during
play, players remember their own prior sequence of actions as well as the information sets they were
in when they took those prior actions. So, it can not be the case that two nodes u and v are in
the same information set for some player ¢, and yet the visible history for player i at w is different
from the visible history for player ¢ at v. Note that perfect recall implies there do not exist nodes
u # v belonging to the same information set such that u is an ancestor of v. Otherwise, since Y;(u)
is a strict prefix of Y;(v), we would have Y;(u) # Y;(v), violating perfect recall. For a game G of
perfect recall, let us define the visible history associated with an information set I; ; as follow: Let
Yi; == Yi(u), where u € I; ;. Note that by perfect recall Y; ; is well-defined.

Assumption: Throughout this paper, extensive form games are assumed to have perfect recall.

As mentioned, this assumption is standard practice in much of the literature on extensive form
games. As mentioned, we use EFGPR to refer to an EFG with perfect recall.

Strategies. For an extensive form game, G, where the information sets for player i are indexed
by the set [d;] = {1,...,d;}, a pure strategy, s;, for player i € [n], is a function s; : [d;] — X
that assigns an available action to each information set belonging to player ¢, so for all j € [d;],
5i(j) € A;j. In other words, when using pure strategy s;, player i chooses the available action s;(7)
at every node in the information set I; ;. Let S; denote the set of pure strategies for player 7. Let
S =51 x5 x...x 8, denote the set of profiles of pure strategies.

A mized strategy for player i, o; € A(S;), is a probability distribution on pure strategies S; (note:
for a finite game G, S; is a finite set). For a pure strategy ¢ € \S;, we shall use 7§ to denote this pure
strategy as an element of A(S;); so 7f(c) = 1, and 7§ assigns probability 0 to other pure strategies.
We let M; = A(S;) denote the set of mixed strategies for player i. Let M = M; x My x ... x M,
denote the set of profiles of mixed strategies. Let M>Y denote the set of fully mized profiles of
mixed strategies, that is, M>0 := {0 = (01,...,0,) € M | 0i(c) > 0, for all i € [n]and c € S;}.

A behavior strategy, b;, for player i, is a d;-tuple b; = (b;j1,bi2,...,b;q4,) of probability dis-
tributions, such that for each j € [d;], b;; € A(A;;) is a probability distribution on the set of
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actions A; ; available in information set I; ;. In other words, for all a € A; j, 0 < b; j(a) < 1, and
(EaeAi,j b;j(a)) = 1. We shall find it convenient to sometimes write b; ;. instead of b; j(a), and to
view b; ; as a vector of probabilities, b; j = (b;ja)aca, - Let B;j = A(A;;). We call b;; € B
a local strategy at information set I; ;. For an action a € A;j, we shall use m;; to denote the
pure local strategy in B; ;, that assigns probability 1 to the action a. Let B; = B;1 X ... X B4,
denote the set of behavior strategies for player i. Let B = By X By X ... X B,, denote the set
of profiles of behavior strategies. Let B>Y denote the set of fully mized behavior profiles, that is
B>0 .= {b = (bl, ... ,bn) € B | bi,j(a) >0, forall 7 € [’I’L], j e [dl], and a € .Ai’j}.

For a behavior strategy b; = (b 1,...,biq4;) € Bj, for j € [d;] and a local strategy bé’j € B; j, we
use (b; | b;’,j) to denote the revised behavior strategy (b;1,...,b; -1, b;j, bij+1,---,bij). In other
words, (b; | bgyj) € B; consists of the same local strategies as b;, except at information set I; ; the
local strategy is switched from b; ; to b;j. Likewise, for a behavior profile b € B, and a behavior
strategy b, € B;, we let (b| b)) = (b1,...,bi—1,b},bit1,...,b,). In other words, (b|b;) € B consists
of the same behavior strategies as b, except for player ¢ the behavior strategy is switched form b;
to bj. Lastly, for a behavior profile b = (by,...,b,) € B and a local strategy b ; € B ;, we define
the shorthand notation (b | b; ;) == (b | (b; | b; ;).

We also define a more general set of strategies, generalizing both B; and M;, called mized-
behavior strategies, M B;. A mixed-behavior strategy o; € M B; is a probability distribution over
a finite subset of behavior strategies in B;. Clearly, S; C B; C M B; and S; C M; C M B;. We let
MB = MBy x ... x MB,, denote the set of profiles of mixed-behavior strategies.

Once we fix a strategy profile, 0 = (01,...,0,) € MB for the players, this determines a
realization probability function, P,(u), that assigns to every node u € V' the probability of reaching
u starting from the root, when players use their respective strategies in the profile . Then the
expected payoff, U;(o), to player i under the strategy profile o is:

Us(0) =Y Pol(2) -i(2) (1)

z€L
For any profile o, and a strategy o} for player i, we use (o | o}) to denote the revised profile
(01,...,0i-1,0,,0i41,...,0p), where everyone’s strategy remains the same, except player i’s strat-
egy switches to of. We call two strategies o, and o] for player i realization equivalent, denoted by
o; ~ o}, if for all u € V and for all strategy profiles 0 € M B, P(,|,1)(u) = P(;|o7)(u). Note that if
/

o} = o, then U;(o | o)) = U;(0 | o) for all o € M B. For games of perfect recall, we have:

Proposition 1 ([21], [43]) For every EFGPR, G, every mized-behavior strategy o; € MB; is
realization equivalent to a behavior strategy b; € B;, i.e., such that o; =~ b;.

Thus, w.l.o.g., we can confine our attention to behavior strategies in B; for all EFGPRs.

Note that also for every behavior strategy b; € B; there exists a realization equivalent mixed
strategy, 0'?" € M;. Here’s how. Define x(z,y) by: x(x,y) := 1 if z = y, and otherwise x(zx,y) := 0.
We define the mixed strategy afi as follows. For every ¢ € S;:

ol (c) == H x(c(4), a) - bij(a).

{ (G.a) | j€ldi] & acAij }

The mixed strategy crf" is realization equivalent to behavior strategy b;.'2 For a behavior profile

120f course, in general, the support size of afi can be exponential in the dimension of the vector b;, so it is not in
general efficient to work explicitly with O'?i instead of b;.
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b € B, we will use the notation o[b] := (011’1, ...,00) € M to denote the (realization equivalent)

mixed profile induced by b.

For a EFGPR, G, for any node u € V, and any behavior profile b € B, we can define the
realization probability P,(u) as a multi-variate polynomial F,(z) (in fact, a multilinear monomial)
whose “variables” x correspond to the coordinates of a behavior strategy profile in B, and such that
for all b € B, F,(b) = Py(u). Specifically, for all nodes u € V, where'® |u| = k and v = ajaz...ay,
we associate the variable x; j , with the probability b; j . = b; j(a) in a behavior profile b, and Fy,(z)
is given by!4:

Fu(z) = I1 Pufm)(@m+1) | - II T (ulrm]) I (ulm]) am 1
{me{0,....k—1} | u[m]ePy} {me{0,....k—1} | u[m]eW\ Py}

Note that, for any u € V', the total degree of F, () is at most h9, where (recall) h¥ is the height of the
game tree. More generally, for a subset V/ C V of nodes, let Top(V') :={u e V' | =Fv e V' : v C u}.
(Note: for any information set I; j, Top(I; ;) = I; j.) We define the realization probability, Py(V'),
of (some node in) V' C V, under (behavior) profile b, as follows: Py(V') = 3_, cropvy Po(u). Thus
we can also define the multilinear polynomial: Fy/(z) =) F,(x), such that for all b € B,
Fy(b) = Py(V').

Also, using equation (1), we have that the expected payoff function is given by the polynomial:

Uie) =) Fu(2) ri(2) (2)

z€LL

u€Top(V')

Thus, restating all this, we have:

Proposition 2 Given a EFGPR, G, and given any subset V' C V of nodes of the game tree,
there is a multi-variate multilinear polynomial Fy:(x) in the vector of variables x, with total degree
bounded by b9, such that for all b € B, Fy/(b) = Py(V') defines the realization probability of V'
under behavior profile b in G. Moreover, there is a multilinear polynomial U;(z), with total degree
bounded by b9, such that for allb € B, U;(b) is the expected payoff of player i under behavior profile
b in G, and moreover, the polynomials Fy/(x) and U;(x) can be expressed (as a weighted sum of
multilinear monomials) with an encoding size that is polynomial in |G|.

For a fixed b; € B;, we shall use the notation Uy(x | b;) to denote the polynomial obtained by
fixing the values of the variables x;, by assigning to them their corresponding values in b;, in the
polynomial Uy(x). Likewise, for a fixed local strategy b; ; € B; j, we shall use Uy (z | b; ;) to denote
the polynomial obtained by fixing the variables x; ; by assigning to them their corresponding values
in b; ; in the polynomial Uy(x).

Information Set Forest. We shall need the concept of the information set forest associated with
each player in a EFGPR. These forest essentially captures, for each player, the possible sequential
orders in which that player may encounter its own information sets during a play of the game.!?
Specifically, for a EFGPR, G, for each player i € [n], we define a directed, edge-labeled, graph,

13Here, recall that a node u € V is defined by the sequence a1as . ..ax of actions in the game tree that reaches it.

14Recall that Py denotes the set of internal nodes of the game tree that belong to “chance”, and that

15\We need this concept in several proofs, in particular associated with our results for QPEs, where we use dynamic
programming, working “bottom up”, by induction on the height of the information set forest, in order to compute
the optimal utility for a player under certain restricted unilateral deviations from a given behavior profile b.
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Fi = (VFi, BFi), whose nodes are V%i = [d;], i.e., the (indices of) information sets belonging
to player i, and whose Y-labeled directed edges, EX# C V7% x ¥ x V7%i, are defined as follows:
(4,a,5") € E%i if and only if the last triple in the (non-empty) sequence Y j is (i,j,a). It follows
immediately from this definition that F; is a directed (edge-labeled) forest, for all . The source
nodes (roots) of the forest F; are those information sets which are the first belonging to player
i to be encountered along some complete play of the game G. The sink nodes (leaves) of this
forest are the last information set for player ¢ encountered along some complete play. The action
a labeling the edge (j,a,j’) € E”# is the action that player i must take at information set I; j in
order to enable the possibility of reaching information set I;  (but whether or not this happens
with positive probability can depend on the strategies of other players). We henceforth refer to
F; as the information set forest associated with player i. We shall say that a node j' € V% is a
descendant of a node j in F; if there is a path in F; from j to j' (in other words, if j' is in the
subtree rooted at j).

We let h7% denote the height of the forest F;, i.e., the length of the longest path in F;. For
j € [d;], we let hfi denote the height of information set j in the forest F;, i.e., the length of the
longest path from vertex j to a leaf of the forest F;. For a node u € P; of the game tree T', we will
sometimes abuse notation and use hy instead of hgu). Note that b’ < b9 for all i € [n].

For a behavior strategy b; € B; for player ¢, for any information set j € [d;], and for any (other)
profile b} € B;, we use the notation (b; |(; ;) b;) to denote a new behavior strategy bj := (b; |(; ;)
b.) € B; which is defined as follows. For every information set j° € [d;], the local strategy b;i J
is defined as follows: if j’ is a descendant of j in the information forest .7-"2, or if j/ is equal to 7,
then b}, := b; ;. Otherwise, b/, := b; . We also use the notation (b | ;) b;) :== (b | (bi [(i5) b))
to denote a behav1or profile Wthh is 1dentlcal to b except that player ¢ s behav1or strategy b; is
replaced by (b; |; ;) b}). In other words, (b |(; ;) b;) is the profile which is identical to b for all players
other than player ¢, and where for player 4, the local strategy at information set j' agrees with b/
if the information set I; j: is reachable from I; ;, and otherwise it agrees with b;.

We shall also use F; in another way to alter behavior strategies of player ¢. For the information
set forest F; of player 4, and for integer m such that 0 < m < b’ let F{" denote the sub-forest of
F; induced by all vertices j in F; that have height hf" < m. Let V" denote the vertices of F".

For a behavior strategy b; € B; for player i, for 0 < m < h’¢, and for any other behavior
strategy, b, € B;, we use (b; | b)) to denote the behavior strategy that is given by local strategy
b ; for every j € VI", and by the original local strategy b; j, for all other j € [d;] \ V]". We also
use the notation (b |, b)) := (b ] (bi |m b})) to describe a profile that is identical to b, except that
behavior strategy b; for player i is replaced by (b; |m, ).

Recall Ug(x) is the polynomial representing the expected payoff function to player k under
a behavior profile x. For fixed b; € B;, we will use the notation Uy(z |;j) bi) to denote the
polynomial obtained from Uy(z) as follows: for any j' € [d;], if information set I; j/ is reachable
from information set I; j, then the associated variables x; j are fixed to their values in the local
strategy b; jr. Likewise, for 0 < m < h%i, Ug(z | b;) denotes the polynomial obtained from Uy(z)
as follows: for every j' € V", the variables z; ; are fixed to their values in b; ;.

Normal Form. A finite normal form game (NFG), I' = (N, (S;)™_;, (u;)}_;), consists of a finite set
N ={1,...,n} of players, a finite set .S; of pure strategies for each player i, and a payoff function
u; : S — N, for each player'® i, where S = S; x ... x S,. For every finite n-player EFG(PR),
g, there is an associated standard normal form game, N'(G) = (N, (S;)", (u;i)?_,), where the set

16 Again, we restrict w.l.o.g. to positive integer payoffs, for computational purposes.

13



of pure strategies S; for player 7 in N (G) is the set of pure strategies for player ¢ in G, and where
the payoff function, u;(-), for each player i is defined by u;(s) := U;(s) for all s € S, where U;(s)
is the expected payoff in G to player ¢ under pure profile s. For NFGs we use the same notations
(04, 0, Ui(0), etc.) for mixed strategies, mixed profiles, and their expected payoffs, etc., as we do
for EFGPRs. Note that the encoding size [N (G)| of the NFG N (G) is in general exponential in
|G|, because already when there are two actions available at each information set, the number of
strategies |S;| of player i is 2%, where d; is the number of information sets belonging to player i.

In the other direction, we can easily convert any NFG I' = (N, (S;)I, (u;)]~,) to an “equiv-
alent” EFGPR, £(T'), which is not much bigger in terms of encoding size than T'. Spec1ﬁcally, let
the action alphabet ¥ of £(I") be the disjoint union of pure strategies of I', ¥ = U ,1517 and let
the nodes V' of the game tree of £(I') be V := {s1s2...5; | kK < n and, for all j € [k] : s; € Sj}.
The player partition is given as follows: Py = () and for all i € [n]: P,:={u eV | |u| =i— 1}.
There is only one information set for each player i € [n]: namely I;; := P;. Finally, the leaves
are the nodes L := {u € V | |u| = n}, and the payoff functions r; are defined as follows, for all
i € [n]: for any leaf sysa...s, € L, 7i(s152...5n) := ui(s1,52,...,5,). Note that E(T") clearly has
perfect recall since “there is nothing to remember”: for any player i € [n| and any nodes u,v € P;,
the visible histories Yj(u) and Y;(v) are both the empty sequences, and thus equal, because there
is no ancestor of u or v belonging to P;. The encoding size of £(T") is certainly polynomial in
the encoding size of I' (and with judicious encoding of the various parts of £(T") it could be made
essentially linear). It is not hard to see that the games I" and £(T") are essentially “equivalent” in
every respect that matters to us (including for computational purposes). Note, in particular, that
there is a one-to-one correspondence, which respects payoffs, between the mixed strategies of I and
the behavior strategies of £(I").

Equilibrium. For a NFG, I' = (N, (S;)™,, (u;)",), a mixed strategy o, for player i is called a
best response to a mixed profile o = (01, ...,0,) if Uij(o | 0}) > Ui(o | o)) for all mixed strategies

. Note that o] is a best response to o if and only if, for every pure strategy ¢ € support(o}), and
for every strategy ¢ € S;, Ui(o | 7€) > Us(o | 7¢'). A mixed profile o is called a Nash equilibrium
(NE) for T if 0; is a best response to o for all i. Nash [31] showed every (finite) NFG has an NE.
It follows that the standard normal form game N (G) associated with an EFGPR, G, has a mixed
NE, ¢* € M, which by definition is also a mixed Nash equilibrium of G. We can say more. In light
of Proposition 1, a behavior strategy b, € B; for player i is called a best response to a behavior
profile b € B if for all b € B;, U;(b | b}) > U;(b | b). A profile b = (by,...,b,) € B is call a Nash
equilibrium (NE) in behavior strategies if for all players ¢, b; is a best response to b. Combining
Proposition 1 and Nash’s theorem applied to the standard normal form AN(G), it follows that a NE
in behavior strategies exists for any EFGPR, G.

A profile b € B is called a subgame-perfect equilibrium (SGPE) if b induces a Nash equilibrium
on every subgame G, of G. In other words, for every subgame G, if we confine the behavior profile
b to the subtree T, rooted at w, it induces a Nash equilibrium b* for the subgame G,. Again,
a SGPE in behavior strategies exists for any EFGPR [42], and of course subgame-perfection is a
refinement of NE: the SGPEs form a subset of the NEs.

We now discuss several notions of “approximate” and “almost” equilibrium for normal form and
extensive form games. The well known notion of a “e-NE” for a NFG is a profile where, informally,
no player can improve its own payoff by more than e by switching its strategy unilaterally. This
of course can be defined analogously for EFGs and EFGPRs. However, to avoid confusion in
terminology between this notion and the very different notion (introduced by Myerson [29]) of
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e-perfect equilibrium (e-PE), which we define shortly, we will use the different terminology “o-
almost-NE” to refer to what would usually be called a “6-NE” in the literature.

Formally, for § > 0, we call a behavior strategy b; € B; for player i a d-almost best response to
a profile b € B if for all b € B;, U;(b | b)) > U;(b | bf) — 5. We call a profile b = (by,...,b,) € B
a d-almost Nash equilibrium (6-almost-NE), if for all players ¢, b; is a d-almost best response to
b. For § > 0, we define a §-almost subgame-perfect equilibrium (§-almost-SGPE), to be a profile
b € B which induces a d-almost-NE, b, on every subgame G, of G. Note that “d-almost-SGPE” is
a refinement of “d-almost-NE”.

As mentioned, Selten [43] pointed out that SGPE has inadequacies as a refinement of NE.
For this reason, Selten defined a more refined notion of perfect equilibrium, based on “trembling
hand” perfection. Two distinct notions emerge from this: normal form perfect equilibrium (NF-PE)
and extensive form perfect equilibrium (PE). We shall find it very useful to provide Myerson’s [29]
alternative definitions for these notions, going via the notion of “e-perfect equilibrium”. Myerson
originally defined e-PE for NFGs, but his definition adapts readily to EFGPRs (see, e.g., [46, 45]).
Although Myerson’s definition of PE via e-PEs (adapted to EFGPRs) differs from the original
definition of (extensive form) PE given by Selten [43], it is equivalent; see, e.g. [29, 46, 45]. (The
key reason for the equivalence was already pointed out by Selten himself in ([43], Lemma 7 & 8),
as we shall highlight later.)

For an NFG!", T' = (N, (S;)™,, (ui)™,), and for € > 0, a mixed profile ¢ € M is called a
e-perfect equilibrium (e-PE) of T if it is both (a): fully mized meaning o € M~ and (b): for every
player ¢ and pure strategy ¢ € 5;, if o;(c) > €, then the pure strategy ={ is a best response for
player i to o, in other words, U;(o | §) > Ui(o | n§) for all ¢ € S;. Likewise, we call o a d-almost
e-perfect equilibrium (d-almost-e-PE) of T' if (a) holds and, instead of condition (b), o satisfies the
following condition (¥'): for every player i and pure strategy ¢ € S;, if o;(c) > ¢, then the pure
strategy 7§ is a d-almost best response for player i to o, in other words, U; (o | 7§) > Uy(o | 7§) — 6,
for all ¢ € S;.

We call a mixed profile o*, a (trembling hand) perfect equilibrium (PE) of I" if it is a limit point
of a sequence of e-PEs of I' (with € — 0). In other words, o* is a PE iff there is a sequence ¢, > 0,
k € N, such that limy_,, € = 0, and such that for all k& € N there is an ¢,-PE, % of I', with
limg_yoo 0% = o*. Every NFG, I, has a PE, and every PE is both a NE and a SGPE ([43]).

For a EFGPR G, a local strategy b’ € B;; is called a local best response to a profile b € B if
for all local strategies b} ; € B; j, Ui(b | b’ ;) 2 Ui(b | b;). It is not hard to show that b ; is a local
best response iff U(b | b ;) > Ui(b | mf ) for all a € .A” For 6 > 0, a local strategy b € B
is called a d-almost local best response to a profile b € B if for all b}, € B, Ui(b | b ;) > Ui(b |
b;) — 6. Again, b} ; is a d-almost local best response to b if and only if for all actlons a € Aij,

(b\b)>U(b\ i) —o.

For an EFGPR, g and for € > 0, a behavior profile b € B is called a e-perfect equilibrium
(e-PE), if it is (a): fully mized, meaning b € B>°, and (b): for all 4, j, and all a € A, j, if b; j(a) > €,
then 7', is a local best response to b. It other words, if a local strategy b; ; places probability
greater than € on action a, then unilaterally switching the local strategy b; ; to pure action a is a
local best response to b.

For § > 0, and ¢ > 0, a behavior profile b € B is called a d-almost e-perfect equilibrium (o-
almost-e-PE) of G, if it is (a.): fully mixed, b € B>, and (b.): for all i, j, and all a € A;; if

bij(a) > €, then mf; is a d-almost local best response to b.

"For example, but not necessarily, for the standard normal form A (G) of an extensive form game G.
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We call a behavior profile b* € B a extensive form perfect equilibrium (PE) of G if it is a limit
point of e-PEs of G (where € — 0). Selten [43] showed that every EFGPR, G, has a PE, and that
every PE is also a SGPE of G (so, PE refines both SGPE and NE).!®

A different refinement of equilibrium for a EFGPR, G, is a normal form perfect equilibrium
(NF-PE). This is, by definition, a behavior profile b € B such that the (realization equivalent)
mixed profile o[b] induced by b is a PE of the standard normal form game, N (G). We note that
even a pure PE of an EFGPR, G, is not necessarily a NF-PE (i.e., does not necessarily induce a
PE of N(G))), and nor is a pure NF-PE (i.e., a pure PE of N(G)) necessarily a PE of G (see [46],
Chapter 6). So, for EFGPRs, the two notions of PE and NF-PE are incompatible. In fact, a NF-PE
of G is not necessarily even a SGPE (there are examples where it is not), and note that Selten’s
purpose for defining PE was to refine subgame-perfect equilibrium. So, it is not unreasonable to
argue that PE is the more relevant notion for EFGPRs. Our results apply to approximating both
a PE and a NF-PE for EFGPRs. (By contrast, the results of [48] apply only to computing NF-PE
for 2-player EFGPRs.)

We next define quasi-perfect equilibrium (QPE), and the associated notions: e-QPE. Let us first
give a informal idea of what a QPE is, and how it differs from a PE. Intuitively, an e-QPE only
allows a player, ¢, to play an action with probability > € if that action when combined with optimal
actions chosen in all descendant information sets belonging to player i, amounts to a best response
action in that information set, and a QPE is just a limit point of a sequence of e-QPEs, as €’s
get smaller and smaller. This differs from the notion of e-PE and PE, in which we do not allow
player i to deviate optimally in descendant information sets belonging to player 7, when determining
whether a given action amount to a “local best response”. It was argued by van Damme [46] that
the QPE definition captures a natural, and in some ways better, notion of a “local” best response.
Later the superiority of QPE was further advocated by Mertens [26], who argued based on the
desirability of dominant strategy equilibria: Mertens observed that there exist EFGPRs with a
dominant strategy equilibrium (where every player simply plays a dominant strategy) which is a
QPE but not a PE, whereas all dominant strategy equilibria in EFGPRs are necessarily QPEs.
(We elaborate on the implications of Mertens’ examples later in this section.)

We now formally define e-QPE and QPE. For an EFGPR, G, and for € > 0, a behavior profile
b € B is called a e-quasi-perfect equilibrium (e-QPE), if it is (a.): fully mized, b € B>°, and (b.):
for all players 4, all j € [d;], and all actions a,a’ € A;;, if (maxycp Ui(b [ (b7 | 7)) <
(maxy e, Ui(b |5 (0| 7)) then b;j(a) <e.

(We shall delay the analogous definition of “J-almost e-quasi-perfect equilibrium” until Section
5, because it will require further definitions. )

We call a behavior profile b* € B a quasi-perfect equilibrium (QPE) of G if it is a limit point of
e-QPEs of G (where € — 0). It was shown by van Damme [45] that every EFGPR has at least one
QPE. Furthermore, as noted by van Damme in [45], QPE refines NF-PE. (We will highlight this
again in Proposition 3 below.)

Finally, we define the notion of sequential equilibrium due to Kreps and Wilson [20]. We need
the notion of a system of beliefs. For a EFGPR, G, with game tree T' = (V, E'), a system of beliefs (or
belief system) is a map p: (W\ Py) — [0, 1] such that that for all players ¢ € [n] and all j € [d;], we

!8Please note that we have overloaded the “(e-)PE” terminology to apply to both (e-)PE for NFGs and extensive
form (e-)PE for EFGPRs. The reason for this overloading will become clear when we discuss agent normal form.
We remark that it is easier to see why (extensive form) PE refines SGPE via Selten’s original definition of PE (via
perturbed games). But Myerson’s definition, via e-PEs, has particular advantages for our purposes, as we’ll see.
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have ) L, p(u) = 1. Let 9B denote the set of all belief systems (associated with the game G). An
assessment is a pair (b, u) € B x B, where b is a behavior strategy profile, and p is a belief system.
Intuitively, in assessment (b, u), for a node u € I; j, the belief p(u) represents the probability that
player ¢ assigns to the play hitting node u assuming profile b is played, if player ¢ finds out that
the play has hit information set I; ;. For any node u € I, ;, let Py(u | I; ;) = Pyp(u)/Pp(1; ;) denote
the conditional realization probability of reaching node u, under profile b, conditioned on reaching
(i.e., realizing) information set I; ;. This is well-defined whenever P,(I; ;) > 0.

We will call a belief system p suitable for behavior profile b if for all information sets I; ; such
that Py(1; ;) > 0, for all nodes u € I; j, p(u) = Py(u | I; ;). Note that if b is a fully mixed profile
then there is a unique belief system suitable for b, because Py(; ;) > 0 for all information sets
I; . Accordingly, when b is a fully mixed behavior profile, we denote the unique belief system
suitable for b by pb, and we say that u’ is the belief system generated by b. Note that given an
EFGPR, G, and given a fully mixed (rational) profile b € B>Y, we can easily compute the belief
system p® generated by b in time polynomial in |G| + size(b), because the conditional probability
pb(u) = Py(u | L;;) = Py(u)/Py(1;;) is easy to compute given G, b, and u. (By Proposition 2
the numerator and denominator are defined by multilinear polynomials, whose value can be easily
evaluated at b, given G and b, in time polynomial in |G| + size(b).)

For any node u € V, and for any leaf z € L, let P}(2) denote the probability that leaf z is reached
if the game is started at node u and the profile b is played. For any information set I; ;, define the
probability distribution Pz’i (z) on leaves by: ]P’Z’i (2) == > ue 1., M(u) -Py(z), for all z € L. Then
the expected payoff with respect to assessment (b, i), starting in information set I; j, is defined by
Uf’j(b) = .cL ]P’Z’ib(z) -13(z). A behavior strategy b for player i is called a best reply at information
set I; ; against assessment (b, p) if Ui“’j(b | b)) = maxyrcp, Ui“’j(b | b). We say that profile b is a
sequential best reply against assessment (b, ) if for all [glayers i, and all information sets I; ;, b; is a
best reply at information set I; ; against assessment (b, ). An assessment (b, 1) is called a sequential
equilibrium (SE) of G if: there exists a sequence ((b, ubk) | k € N) of assessments, such that for all
k € N, b* is fully mixed and " is the belief system generated by b%, and limy_,e0 (6%, 1) = (b, p)
(this conditioned is usually called consistency of (b, 1)), and furthermore b is a sequential best reply
against (b, u). Kreps and Wilson ([20]) showed the following facts about sequential equilibrium (the
facts relating QPE to SE and NF-PE were shown later by van Damme [45]):

Proposition 3 ([20]; [45]) For any EFGPR, G:
1. ([20]) An SE, (b, '), exists for G.
2. ([20]) For every SE, (V',1'), of G, the behavior profile b’ is a SGPE of G.

3. ([20]) For every PE, b*, of G, there is a system of beliefs u* such that (b*, u*) is a SE. In this
sense, we say “every PE is a sequential equilibrium”.19
In fact, for every PE, b*, of G, if <(bk,,ubk)>keN denotes any sequence where, for all k € N,
V¥ is a fully mized behavior profile which is a (1/k)-PE for G, and ,ubk is the belief system
generated by b*, and where limy_,o0 b¥ = b* and limy_,oo u¥ = p*, then (b*, u*) is a SE of G.

4. ([45]) For every QPE, b*, of G, there is a system of beliefs p* such that (b*, u*) is a SE. In

this sense, we again say “every QPE is a sequential equilibrium”.?°

'9The converse is false: there are EFGPRs with an SE, (b, /'), such that b’ is far from any PE. See, e.g., [20, 46].
20The converse is again false: there are EFGPRs with an SE, (b, i'), such that b’ is far from any QPE. See [45].
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Figure 1: Hasse diagram of the mentioned equilibrium refinements for EFGPRs.

In fact, for every QPE, b*, of G, if (b, ubk)>k€N denotes any sequence where, for all k € N, b¥
is a fully mized behavior profile which is a (1/k)-QPE for G, ,ubk is the belief system generated
by b*, and where limy_,o b = b* and limy_,o0 p¥ = p*, then (b*, pu*) is a SE of G.

5. ([45]) Every QPE, b*, of G is a NF-PE.
Recall: for b* is a NF-PE of G means that the mized profile o[b*] = O'bl, .., o) induced by
1 n
b* is a PE of the standard NFG, N(G).)

Figure 1 summarizes the mentioned refinement relationships between the various equilibrium
notions that we have defined for EFGPRs: it depicts the Hasse diagram of the refinement partial
order. In the diagram, a directed edge X — Y means that equilibrium notion Y refines notion
X, i.e., that every Y-equilibrium is also a X-equilibrium. Moreover, whenever there is no directed
path in this Hasse diagram from a node X to a node Y, that means there exist known examples of
EFGPRs where a Y-equilibrium is not an X-equilibrium. (So, this is a partial order not because
we lack knowledge of an underlying richer (total) order: no other refinement relationships exist for
general EFGPRs, other than those implied by this Hasse diagram.)

It is noteworthy that there can not exist some more refined equilibrium notion that refines both
PE and QPE, and exists in every EFGPR. In particular, Mertens [26] has given a simple example
of a 2-player EFGPR whose set of PEs is disjoint from its set of NF-PEs (and whose NF-PEs
consist of just one dominant strategy equilibrium). Thus, since QPE refines NF-PE, the set of
PEs of Mertens’ EFGPR is also disjoint from its set of QPEs. Mertens argues, partly based on
this example, that QPE is preferable to PE as a refinement for EFGPRs: a dominant strategy
equilibrium, when it exists, is generally prized, and it is always a QPE, but it is not necessarily a
PE as shown by Mertens’s example. Mertens’s example shows we can not hope for some (as yet
unknown) “most refined” notion of equilibrium for EFGPRs, which always exists, and which refines
all the refinements we have mentioned. It is worth mentioning however that the results of [6] and
[36] combined show that if a EFGPR is suitably “generic”!, then its set of PEs, QPEs, and SEs

2'Here “generic” means the EFGPR has some “structure” ¥ (which excludes the payoff information) and has a
vector of payoff functions r = (r1,...,r,) € R™ such that r ¢ R[¥]; where R[¥] C R™ is a certain (semi-algebraic)

18



are all the same. However, many natural games that we might encounter may not be “generic”
in this sense, as illustrated by the various simple and natural examples of games provided in, e.g.,
[46, 26, 45, 23], where PE, SE, and QPE do not coincide.

Agent Normal Form. Kuhn [21] and Selten [43] considered an alternative way to associate a
normal form game with a given EFGPR, G, which they called the agent normal form. The agent
normal form game, AN (G), is defined as follows. AN (G) has a player, called an agent, associated
with each information set I; ; of the EFGPR, G. Thus if G has n players and player i has d;
information sets, then the total number of agents in AN(G) is d = """ | d;, which is the total
number of information sets in G. We refer to each agent in AN (G) by its index: (i,7). The set of
pure strategies for agent (i, ) in AN (G) is given by the set A; ; of actions available to player i of
G in the information set I; j. Thus, note that the set of mixed strategies for agent (4, 7) in AN(G)
is in one-to-one correspondence with the set of local strategies B; ; for player ¢ at information set
I; j in the EFGPR, G. Thus also, the set of profiles of mixed strategies in AN(G) is in one-to-one
correspondence with the set B of behavior strategy profiles in G. Moreover, the set of pure strategy
profiles of the agents in AN (G) is in one-to-one correspondence with the set of pure strategy profiles
S in G. Thus, hereafter, we use S interchangeably, to denote both the sets of pure profiles for G
and for AN (G), and we also use B interchangeably, to denote both the set of behavior profiles of G
and the set of mized profiles of AN (G).

We define the payoff functions, wu; j)(s), of AN(G) as follows: given a pure profile s € S for
the d agents, the payoff to agent (i, j) is given by w(; j)(s) := Ui(s). In other words, the payoff for
every agent (i,7) in AN(G) under profile s is the expected payoff of player i in G under the same
profile s. Thus, the goal of all the agents (7,j) who are “acting on behalf of” player i, is aligned
exactly with the goal of player i. It follows that also the expected payoff, U ;)(b), to agent (i, j)
under any mixed profile b € B in AN (G) is equal to the expected payoff U;(b) of player ¢ under the
same (behavior) profile b € B of G.

A simple but important fact, that follows immediately from the definitions we have given for
(e-)PEs, is that the set of (e-)PEs of G is equal to the set of (e-)PEs of AN(G).2

Proposition 4 (cf. [43] Lemma 7, & [29]; see also [46]) For a EFGPR, G, and € > 0, a be-
havior profile b € B is a e-PE of G if and only if b is a mized e-PE of AN(G) (this is true by
definition).  Thus, a profile b € B is a PE of G iff bis a PE of AN(G).

Note, firstly, that it is not true in general that the set of Nash equilibria of G and AN(G) are
the same. There are simple (even 1-player) examples showing this. This is because even though
a profile b € B might consist entirely of “local best responses” in G, some information sets may
be reached with probability 0 under profile b, and therefore “local best responses” together do not
necessarily constitute a “global” best response in G.

Note also that, as mentioned already, no such relationship holds in general between the PEs of
G and the PEs of its standard normal form N (G), in either direction.

Proposition 4 holds by definition because we have used Myerson’s [29] alternative definition
of PEs, via e-PEs. We remark that the reason why Myerson’s definition is equivalent to Selten’s
original definition (which we will not give formally) was shown already by Selten himself. Namely,
Selten defined a PE as a limit point of NEs of a sequence of perturbed games (with positive “pertur-
bations” going to zero). In a perturbed EFGPR, there is a minimum positive probability specified

“forbidden” set of dimension strictly less than m.
22This is why we overload the “(e-)PE” terminology for the corresponding notions of both NFGs and EFGPRs.
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for each action available in each information set, and that action must be played with at least that
probability in any behavior strategy. Selten ([43], Lemma 7) showed that for perturbed EFGPRs, a
behavior strategy that consists entirely of “local best responses” is also necessarily a “global” best
response. As explained already, this does not hold in general when the game is not perturbed.

We shall need the following “almost” variant of Proposition 4, which also follows immediately
from our definitions.

Proposition 5 For all § > 0 and € > 0, for any EFGPR, G, a (behavior) strategy profile b € B is
a §-almost-e-PE of G iff b is a (mized) d-almost-e-PE of AN(G).

Note that if the agent normal form AN (G) is represented in the usual way, by providing its
table of payoffs for all possible pure strategy profiles of all the agents, then just as was the case for
standard normal form, the encoding size | AN (G)| is also exponential in |G|, because the number
|S| of pure profiles of AN(G) is exponential in |G|. Nevertheless, we shall find AN (G) very useful
for our computational purposes.

The complexity classes FIXP, FIXP,, and linear-FIXP( = PPAD)

We shall now define the search problem complexity classes FIXP, FIXP,, and PPAD, which we shall
use to characterize the complexity of computing an equilibrium (of various kinds) for a EFGPR.

A {+, —, %, /, max, min}-circuit has inputs consisting of variable z1, zs, . .., x,, as well as rational
constants, and has a finite number of (binary) computation gates taken from {+, —, %, /, max, min},
with a subset of the computation gates labeled {01, 09, ..., 0} and called output gates.?? The class
of {+, max}-circuits are the restricted class of {+, —, %, /, max, min}-circuits, where the only allowed
gates are {+, max} in addition to gates for multiplication by a rational constant.

When a circuit in this paper is a general {+, —, %, /, max, min }-circuit, we shall often just refer to
it simply as “circuit”, when it is clear from the context. We shall also refer to {4, max}-circuits as
piecewise-linear circuits. A circuit (of either kind) computes a continuous function from R” — R™
(and Q" — Q™) in the natural way. Abusing notation slightly, we shall often identify the circuit
with the function it computes.

By a (total) multi-valued function, f, with domain A and co-domain B, we mean a function
that maps each a € A to a non-empty subset f(a) C B. We use f : A — B to denote such a
function. Intuitively, when considering a multi-valued function as a computational problem, we are
interested in producing just one of the elements of f(a) on input a, so we refer to f(a) as the set
of allowed outputs.

A multi-valued function f : {0,1}* — R* is said to be in FIXP if there is a polynomial time
computable map, 7, that maps each instance I € {0,1}* of f to r(I) = <1k1, 1‘”, PL.CT ¢! al bl),
where

o k! and d! are positive integers.
e P! is a convex polytope in Rkl, given as a set of linear inequalities with rational coefficients.

e C'is a circuit, with &/ inputs and k! outputs, which maps P! to itself.

23The set of gates {+, —, *, /, max, min} is of course redundant, e.g., using rational constants the gates {—, min}
can be simulated by the other gates.
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o ¢! : [d!] — [k!] is a finite function, given by its table.
e ol b € le.

e f(I)= {(a{yqbz(i) + bf);?lil |y € PI A Cl(y) = y}. Note that f(I) # (), by Brouwer’s fixed
point theorem.

The above is one of many equivalent characterizations of FIXP [13]. In particular, it was shown
in [13] that the gates {4, *, max} together with rational constants suffice for functions computed
by the corresponding circuits to characterize FIXP, and furthermore adding other gates such as
k’th-root gates for any fixed k does not increase the power of FIXP.

A multi-valued function f : {0,1}* — R* is said to be in linear-FIXP if it satisfies the same defini-
tion as for FIXP, except that the circuit C? must be a {+, max}-circuit (recall: with multiplication
by rational constants allowed).

Informally, FIXP are those real vector multi-valued functions, with discrete inputs, that can be
cast as Brouwer fixed point computations for algebraically defined functions, and linear-FIXP is the
restriction of those to functions that are piecewise-linear. A multi-valued function f : {0,1}* — R*
is said to be FIXP-complete (respectively, linear-FIXP-complete) if:

1. f € FIXP (respectively, f € linear-FIXP), and

2. [f is FIXP-hard (respectively, f is linear-FIXP-hard)]: for all g € FIXP (respectively, g €
linear-FIXP), there is a polynomial time computable map, mapping instances I of g to
(yl,lkj,gbl,al,bI), where ! is an instance of f, where f(y!) C Rkl, ' 2 [d] — [K1] is a
function (given by its table), d/ > 1, and a! and b’ are d’-tuples with rational entries, so
that g(I) 2 {(ai[zw(i) + b{);il | z € f(y')}. In other words, for any allowed output z of f on

input y’, the vector (al-lz(z)](i) + b{)fil is an allowed output of g on input I.

In [13] it was shown that the multi-valued function which maps normal forms games, with n > 3
players, to their Nash equilibria is FIXP-complete.?*

Since the output of a FIXP function consists of real-valued vectors, and since there exist circuits
whose fixed points are all irrational, a FIXP function is not directly computable by a Turing machine,
and the class is therefore not directly comparable with standard complexity classes of discrete total
search problems (such as PPAD, PLS, or TFNP).

Even though we phrased linear-FIXP as a class of real-valued search problems, it can also be
viewed as class of discrete search problems, because the nature of the functions defined by {4, max}-
circuits (with multiplication by rational constants), over a convex polytope domain P!, implies that
they always have at least one rational-valued fixed point, with encoding size polynomial in that of
the circuit.?® In fact, it was shown in [13] that linear-FIXP = PPAD. (So, linear-FIXP can serve as
our definition of PPAD in this paper. We will not need the original definition.)

It was shown by Chen and Deng [7] that the multi-valued function that maps 2-player NFGs to
their NEs is PPAD-complete, and by Daskalakis et al. [11] that the multi-valued function that maps
NFGs (with any number of players), and a given rational € > 0, to their e-NEs is PPAD-complete.

24To view the Nash equilibrium problem as a total multi-valued function, fxash : {0,1}* - R, we can view all
strings in {0,1}" as encoding some game, by viewing “ill-formed” input strings as encoding a fixed trivial game.

25Technically, to view linear-FIXP as a discrete search problem class, comparable to PPAD, etc., we likewise close
(discrete) linear-FIXP under polynomial time (search problem) reductions.
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We now define the discrete class FIXP,, also from [13]. A multi-valued function f : {0,1}* —
{0,1}* (a.k.a. a totally defined discrete search problem) is said to be in FIXP,, if there is a function
f" € FIXP, and polynomial time computable maps ¢ : {0,1}* — Q4 and ¢ : {0,1}* — {0,1}*, such
that for all instances I,

JO2{9(Ly)lyeQ A ef/D): [ly—yle <o)}

Informally, FIXP, are those totally defined discrete search problems that reduce to approximating
exact Brouwer fixed points. A multi-valued function f : {0,1}* — {0,1}* is said to be FIXP,-
complete if:

1. f € FIXP,, and

2. [f is FIXP4-hard]: For all g € FIXP,, there are polynomial time computable maps ry, 73 :
{0,1}* = {0,1}", such that g(1) 2 {ra((1,2)) | z € f(r(I)) }.

In [13] it was shown that the multi-valued function that maps pairs (I',d), where I" is a NFG
and 0 > 0, to the set of rational d-approximations (in f-distance) of Nash equilibria of I', is
FIXP,-complete.

3 Computing a (extensive form) e-PE, and a e-QPE, is in FIXP

Given a EFGPR, G, we now construct an algebraically defined function, Fg(z), whose Brouwer
fixed points (for each fixed € > 0), constitute e-PEs of G. We likewise construct a function,
HE(x) whose Brouwer fixed points (for each fixed e > 0), constitute e-QPEs of G. The functions
F&(x) and Hg(x) are both defined using an algebraic {+, *, max}-circuit whose encoding size is
polynomial in |G|, and where € > 0 is an input of the algebraic circuit. Our construction of Fg(z)
essentially amounts to the same construction as given for e-PEs of normal form games in [12],
except when it is applied to the agent normal form, AN(G). Of course the problem is that we can
not afford to actually construct AN (G), because it is exponentially large. However, it turns out
we do not need to construct AN (G) in order to construct Fan) (z). We instead exploit the fact
(Proposition 2) that the expected payoff functions Uy, ;)(x) := U;(x) for agents (i,5) in AN(G) are
expressible as polynomials whose encoding size is polynomial in |G|. This allows us to construct
F5(x) = Fing (z) with encoding size polynomial in |G|, avoiding the explicit construction of
AN(G).

Our construction of the function Hg(z) for e-QPEs is based on some similar ideas, but is more
involved, and does not make direct use of the relationship with AN (G).

Given a n-player EFGPR, G, the space B of behavior strategy profiles for G is clearly a compact
convex polytope in euclidean space, R", where m is the dimension of the vectors b € B that denote
behavior profiles. Moreover, B can clearly be expressed efficiently using a system of less than 3m
linear inequalities (which define B to be the set of vectors b € R™ in which each local strategy b; ;
forms a probability distribution on A; ;). For € > 0, let B C B denote the polytope of behavior
profiles defined by:

B¢ ={be B|b;jla)>e forallien],jed]andac A;;}.

Theorem 6 For any EFGPR, G:
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1. There is a function, Fg(z) : B — B¢, given by a {+, x, max}-circuit computable in polynomial
time from G, with the circuit having both x and € > 0 as its inputs, such that for all fixed
0 < e < 1/m (where m is the dimension of vectors b € B), every Brouwer fized point of the
function F§(x) is a e-PE of G. In particular, the problem of computing an extensive form
e-perfect equilibrium for a given EFGPR is in FIXP.

2. There is a function, H(x) : B — B¢, given by a {+, x, max}-circuit computable in polynomial
time from G, with the circuit having both x and € > 0 as its inputs, such that for all fixed
0 < e < 1/m (where m is the dimension of vectors b € B), every Brouwer fized point of the
function HE(z) is a e-QPE of G. In particular, the problem of computing a e-QPE for a given
EFGPR is in FIXP.

As mentioned, the proof we give below of Part (1.) of Theorem 6 is very similar to the proof
of the analogous result for e-PEs of NFGs given in [12], which itself builds on a fixed point char-
acterization of Nash equilibria from [13]. By Proposition 4, to prove Theorem 6 it suffices to find
e-PEs of the agent normal form AN (G), because these are the same as e-PEs of G. We can not
“construct” AN (G), because it has size exponential in G, but we do not need to. We now give
the detailed proof for both parts. Although the proof of Part (1.) is very similar to the analogous
proof in [12], the proof of Part (2.) also involves additional constructions and does not appeal to
the relationship with AN (G). To facilitate our proof of Part (2.), we need some definitions, and an
alternative characterization of e-QPE.

Note that for any fully mixed profile b € B>, for any player 4, j € [d;], and any node u € I, j,
the conditional probability Py(u|l; ;) = %}?j) is well-defined, because P,(I;;) > 0. Furthermore,
importantly, given that Py(1; ;) > 0, Pb(u\Im’) is otherwise “independent” of b;. It only depends on
the behavior strategies b_; of players other than 7, because, by perfect recall, for all nodes u € I; ;
the visible history for player i is the same: Y; ;. For b € B>?, for i € [n], and for j € [d;], we use
Ul-j (b) to denote the conditional expected payoff to player i, conditioned on reaching information set
I; ;, under profile b. Again, this conditional expectation is well-defined, since b € B>°. Furthermore,
again, except for the fact that IPy(/; ;) > 0, the conditional expectation Uij (b) is independent of
those local strategy b; ;- in b; for information sets I; j such that the node j e V7i of the information
set forest F; is not in the subtree of F; rooted at node j € V7/i. It only depends on those local
strategies b; ;» where j” € V77 is a node in the subtree of F; rooted at j. For i € [n], j € [d;] and
a € A;j, and for b € B>Y we define

KE(6) = max U7 0 Ly (8 | 72)).
Thus K{’a(b) denotes the maximum conditional expected payoff to player ¢, conditioned on reaching
information set I; ; using b, where player i switches to action a € A; ; at I; j, and chooses the rest
of its strategy b} (below information set I; ; in J;) so as to maximize U? (b li.g) (b5 | 755)). Note
that, since b € B9, Kg’a(b) is both well defined and “independent” of b;: it only matters that
Py(1; ;) > 0. Now, observe that, for any b € B0, for any i € [n], j € [d;], and for any a,d’ € A, ;,
we have:

(K0 < KP(8) = ((maxUilb gy (5 725)) < (max Uitb gy B 725)  (3)
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This equivalence holds because the profiles (b [(; ;) (b] | 7f;))) and (b | ;) (b5 | 7[',?/]))) differ only
within player ¢’s local strategies within b; at information sets j’ in the subtree of F; rooted at
j € VZi. Thus, since Py(I; ;) > 0, the strict inequality on the left of (3) holds if and only if the
strict inequality on the right of (3) holds. Thus, an alternative definition for a profile b to be a
e-quasi-perfect equilibrium (e-QPE), is this: (a.) b € B>? and (b.) for all i € [n], j € [d;], and
a,d' € Ay, if KI(b) < KI(b), then b;;(a) < e. We will exploit this alternative definition.26

Consider a EFGPR, G, and let b € B have dimension m as vectors in Euclidean space. Suppose
we are given 0 < € < 1/m. For a vector x of variables corresponding to the coordinates of a
behavior strategy b € B, we let v(x) be a m-vector such that for all i € [n], j € [d;], and a € A; ;
v()ija = Ui(x | mf;) = Ug gy (x| 7f;). In other words, for all behavior profiles b € B, v(b);,j,q is the
expected payoff to agent (7,7) in the agent normal form game AN (G), if all agents play according
to b, except that agent (i,j) switches to pure strategy mi;. Note that by Proposition 2, V()i ja
can be expressed as a polynomial in the variables z whose encoding size is polynomial in |G|.

Likewise, let us define v/(z); , := KI"*(2). We shall show, in Lemma 7 below, that the func-
tion Kg’“(m), defined over B>? can indeed be expressed as a {+, —, *, /, max, min}-formula in the
variables x, where the encoding size of the formula is polynomial in |G]|.

Lemma 7 Given a EFGPR, G, for all players i € [n], all information sets j € [d;], and all actions
a € A, j, there is a {4+, —, *, /,max}-formula v'(x); jq (i-e., a {+,—,*, /, max, min}-circuit with no
re-use of subcircuits), such that the encoding size of v'(x); j.q is polynomial in |G|, and each v'(x); .o
can be constructed from G in P-time, and such that for all fully mived b € B>°, v/(b); j o = Kg’a(b).

Proof. The basic idea of the proof is that, given b € B>?, one can compute Kg’a(b) using dynamic
programming, by working “bottom up” on the information set forest F; for player i. Then the key
observation is that this dynamic program can actually be described by a {+, —, %, /, max }-formula
which has encoding size only polynomial in G.

We next describe the dynamic program, and the resulting formula, in detail. (We will later
need to use facts about the detailed structure of the formula.) Consider the information set forest
Fi for player i. Let Lz, denote the set of leaves of F;. Let Wz, denote the set of internal nodes
of ;. For a node j € [d;] = V7%, and for a € A; j, let us denote the set of a-children of j in F;
by: Ch%(j) = {j' € V% | (j,a,j') € EZ¢}. For an internal node u € W, and for a € Act(u), let
L% = {z € L | ua C z & Vm such that ua C z[m], z[m] & P} In other words, L*% denotes
the set of leaves z of the game tree T that are in the subtree rooted at ua, and such that there is
no node on the path from ua to z which belongs to the same player &7(u) that u belongs to.

For u,v € V, let Py(v | u) denote the probability that, using profile b, conditioned on reaching
node u, the play eventually thereafter hits node v. For ¢ € [n] and j,j" € [d;], let Py(L; ;5 | I; ;)
denote conditioned probability of reaching information set I; j/, conditioned on reaching I; ;, when
using profile b. '

We can define v/(x); ;. := KJ“(z) inductively in a “bottom up” fashion based on the forest
F;, based on the height, hfi, of the subtree rooted at node j € V% = [d;] of F;. Recall that

26Tndeed, this is one of the equivalent characterizations of ¢-QPE that was originally given by van Damme in [45].
We used a different definition for clarity, and for compatibility with the way we defined e-PE. In fact, similarly van
Damme [45] used a similar equivalent characterization of e-PE for an EFGPR, defined as follows: (a.) b € B, and
(b.), for all i € [n], j € [di], and a,a’ € Aqj, if U/ (b | 78;) < U(b | W;‘;) then b; j(a) < e. Again, it is clear that this
is equivalent to the definition we have given for e-PE.
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Py(u | ;) = PP%%),), is defined for all x € B>?, and by Proposition 2 both the numerator and
xz\14,j5
denominator are given by polynomials in x with “small” encoding size (polynomial in |G|). Note

that likewise, for a € A; ;, IP’(ngj) (v | u) is easily defined by a weighted monomial over the variables

x whose encoding size is polynomial in |G|. Furthermore if the node j' € V% is a child of the node
j € V74 in the forest F;, then

Pafre ) (Ligr | 1ij) = > Pu(ul L) Y Pajre y (v [ u).
uEIi’j ’11617;7]‘/

Thus P(ﬂﬂlﬁ?j)(-’i,j’ | 1;;) is also described by a formula over the variables x with encoding size

polynomial in |G|. We can now describe a dynamic program for computing K{’a(ac), for all i € [n],
Jj € [dl], and a € .AZ'J‘:

Doty Pelu | Lig) - 20 cpua Plajre ) (2 [ 0) - 1i(2) if j € Ly,
Ki’“(az) = ( Zj/ecn% () P(w|ngj)(li,j’ | 1 j) - (maxa/eAi’j, K,]- “(2)) )+ (4)
Duet; Pa(uw | 1ig) - 20 crua Plajra y (2 [ w) - 1i(2) . ifj € W,

It is clear that (4) defines a dynamic program for computing K{’a(b), given b € B>Y and at the
same time (4) defines a {4, —, *, /, max}-formula with variables x, which when evaluated at b € B >0
yields K?“(b). Furthermore, the encoding size of the formula given for K" (z) is polynomial in |G|.
This can be seen by noting, firstly, that all the constituent parts of the inductively defined formula
for K“(x) are given by formulas with encoding size polynomial in |G|, and furthermore since the
inductive definition works “bottom up” on the forest F;, there is no re-use of subformulas in this
inductive definition, i.e., it indeed defines a formula, not a circuit, and the size of the formula
is polynomial in |G| x |V7#| < |G|2. (Later, in Section 5, for “almost” approximation of a QPE,
we will also use the fact that the only use of division gates in this formula is in cases where the
denominator evaluates to P,(I; ;) for some information set I; ;.) [

Let h(x) = x+wv(x), and let h'(z) = z+v'(z). For each agent (4, j), and for fixed x € B, consider
the function f; ;.(t) = ZaeA” max(h; jq(z) — t,€). Likewise, for z € B>Y, consider the function
fiia(t) = ZaeAi,j max(h; ; ,(¥) —t,€). Clearly, both f; ;.(t) and f;; .(t) are continuous, piecewise
linear function of ¢. The functions are strictly decreasing as ¢ ranges from —oo, where f; j () = +o0
(respectively, l’]z(t) = +00), up to maxse4, ; hija(T) — € (respectively, max,e 4, ; h;,j,a(x) —€),
where f; j.(t) = [A; ;| - € (vespectively, f;, .(t) = |Aij| - €). Since we have |A;;|-e <m-e <1,
there is a unique value of ¢, which depends on x, call it ¢; ;(x) (call it, tg’j (z), respectively) , where
Frsltig(@) = 1 (where 11, (t () = 1).

The functions F§ : B — B and H§ : B — B are defined as follows. First we define Fg:

FG(2)ija = max(hija(r) — tij(2), €) (5)

for every i =1,...,n, and j € [d;], and a € A; ;.

To define H : B — B¢, care is needed since v'(z); j,q is only defined for z € B>%. To address
this, we use an auxiliary normalizing function. For € > 0, ®¢: B — B>Y defined as follows:
max(Z; jq,€)

Za’eAi,]— max(z; jqf, €)

DN(2)ija =
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D¢ clearly does map B to B>?. Furthermore, importantly, note that for all ¥ € B¢, D¢(b) = b'.
We only use D€ as a tool to ensure the function H, is defined for all b € B. The range, and thus
the fixed points, of H, lies within B¢, and on B¢ the function ©(x) is the trivial identity function.
We define Hf, : B — B¢ as follows:

H§(2)i ja = max(hi ; ,(9(x)) — 1; ;(D(x)), €) (6)
for every i =1,...,n, and j € [d;], and a € A; ;.

From our choice of ¢; j(z) and t; ;(D(x)), it follows that ZaeAij F&(x)ija = 1 and also that
ZaeA” HE(x)ijo =1, for all i € [n] and j € [d;]. Thus, for any behavior profile, x € B, we have
F&(z) € B¢ and Hg(x) € B°. So both Fg and H indeed map B to B¢, and since they are clearly
also continuous maps, by Brouwer’s theorem, they both have a fixed point in B¢.%7

Lemma 8 For0<e<1/m:

1. BEvery fized point of the function F§ : B — B¢ is an e-PE of AN(G), and thus also of G.

2. Every fized point of the function HG : B — B¢ is a e-QPE of G.

Proof. The proof is essentially the same in both cases:

L. If z is a fixed point of F§, then x € B¢ and z;;, = max(v;j, + v(7)ija — tij(7),€) for all
(i,j,a). Recall that v(2);ja = Ui(z | 7f;) = Uij(z | 7f;) is the expected payoff for agent
(¢,7) under profile (z | 7).

Note that the equation z; j, = max(z;jq + Ui(z | 7f!;) —t; ;(x), €) implies that U;(z | 7f;) =
tij(x) for all 4, j,a such that x; ;, > €, and that U;(x | m) < tij(x) for all 4, j, a such that
z; ja = €. Consequently, by definition, x constitutes an e-PE.

2. If z is a fixed point of H, then x € B¢, and thus ®°(z) = z. Thus, we have will z;;, =
max(z;ja + V' (2)ija — t; ;(7), €) for all (i, j,a), where v'(x); j o = K (z).

Note, again, that the equation z; j , = max(z; 4 + Kfa(:v) — t; ;(7), ) implies that K () =
t; ;(z) for all i,7,a such that z;;, > ¢, and that K (z) < t; ;(x) for all 7, j,a such that

x; j.a = €. Consequently, by definition, « constitutes an e-QPE. .

The following Lemma shows that we can implement the functions Fg(z) and Hg(x) by a circuit
which has x and € as inputs, by using sorting networks.

Lemma 9 Given G, we can construct in polynomial time a {+,*, max}-circuit that computes the
function Fg(x), where x and € > 0 are inputs to the circuit. Likewise, we can construct in P-time
a {+,*, /,max}-circuit that computes the function Hg(x), where z and € > 0 are inputs to the
circuit.

2"The reason we specify the domain of these functions as B instead of B¢ is technical. To place the approximation
problems for PE and QPE in FIXP,, we shall need make € > 0 very very small, and we do so by using a polynomial
sized algebraic circuit to define it. However, we shall also need the function domains to be definable by linear
inequalities having encoding size only polynomial in |G|. Both can be achieved by retaining the domain B.
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Proof. We define the circuits for both F5(x) and Hg(z) together, since they are defined very
similarly.

Given a vector x € B, and € > 0 as inputs, the respective circuits first compute y = h(z) =
x +v(z), and vy = D(x) + v (D(x)). It follows from the definition of v(x), D¢(x), and v'(x), and
from Lemma 7, that both y and 3 can be computed by a circuit using {+, *, /, max }-gates which
has size polynomial in |G|. For each agent (7, ), let y; ; be the corresponding subvector of y induced
by the (local) strategy of agent (i, j). Likewise, let y,’u ; be the corresponding subvector of y/. Sort
the vector y; ; (the vector y;]) in decreasing order, and let z; ; (respectively, z; ;) be the resulting
sorted vector, i.e. the components of 2; j; = (i j.ar,---» Zi’j’a|~Ai7j|) are the same as the components of

= (2. 2 )). In other words, we are assuming

g Zy]yall’ ’ Z’]’aiAi,ﬂ
for convenience that A; ; = {ai, ..., a|Ai7j|} and that z; j o, > Zija > ... > Zigaa, ) and likewise

that A; ; = {a&,...,a"A_ v‘} and that zll.ja, > zgja, > > zgja, , To obtain the sorted lists
2,7 W] s ’7|'Ai,j‘

z; j and zz’»vj, the respective circuits use a polynomial sized sorting network, for each (i, 7) (see e.g.
Knuth [17] for background on sorting networks). For each comparator gate of the sorting network
we use a max and a min gate.

Using this, for each agent (,j), we compute ¢; j(x) and t’ ;(D(x)) as the following expressions:

Yi j, but they are sorted (likewise for 2]

l

tig(@) = max{(1/D) - (Q_ ziga) + (il = 1) e = 1) [1=1, | Ai [} (7)
k=1
ti ;(D(x)) = max{(1/1) - Zzwa (Mijl =D -e=1) [1=1,- [ Ai;[} (8)

We will show below that this expression does indeed give the correct value of t; j(x). The proof
for #; ;(D(z)) is virtually identical, so we omit it.

We output F§()ija = max(yija — ti,;j(v),€), and HG(x)i jo = max(y; ;,
eachi=1,...,n,j€[d],and a € A; ;.

We now have to establish that ¢; j(x), defined above, is the correct value. (Again, we forgo the
proof for ¢; ;(D¢(z)), which is virtually identical.) Consider the function f; j.(t) = EaeAi,j max(2; ja—

—t; ;(D(z)), €), for

t,€) as t decreases from z; j,, — € where the function value is at its minimum of |A; ;| - €, down
until the function reaches the value 1. In the first interval from z; j,, — € to 2; ., — € the func-
tion is fjj2(t) = 2ija —t + (JAij| —1) - € in the second interval from 2; ., — € t0 2j 4, — €
it is fijz(t) = Zija + Zijas — 2t + (| Aij] —2) - €, and so forth. In general, in the [-th interval,
fija@®) =Sk Gian =) + (Aij| = 1) -e = X34y Ziia, — 1+ (JAij| — 1) - €. Tf the function reaches
the value 1 in the ’th interval, then clearly t; j(x) = ((2221 Zijap) + (|Aijl = 1) -e=1)/L.

In that case, furthermore for k' < I, we have S (2i .0, — ti) + ([ Aij| — k) -€ < 341 (2ijian —
tij(x))+(]Aij|—1)-€ = 1, because in that case we know (z; j o, —ti;(x)) > eforevery a € {1,...,1}.
Therefore, in this case (35, 2i i )+ Aij|—k)-e=1) /K < t; j(z). On the other hand, if 1 < |4, ;],
then for k' > [ we have t; > z;ja,, — €, i.e., 2ija,, —ti <€ and thus for all &' > I, &' < |A; 4|, we
have ST (2o — i (2)) + (|Aig| =) € < Xhy (2ia, — tag(@)) + ([Ai| =1) - = 1. Thus again

((Zl,zlzl Zijay) T (| Aij| — K) - e —1)/k <t j(x). Therefore, t; j(x) = max{(1/1) - ((22:1 Zijap) +
([Aijl =) - e=D[l =1, |Ai ]} L

Lemma 8 and Lemma 9 together immediately imply Theorem 6.
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4 Approximating an SE, PE, and QPE is FIXP,-complete

In this section we exploit the algebraically defined function F§(x) and Hg(z) for a EFGPR, G, with
input parameter ¢ > 0, devised in the previous section for e-PEs and e-QPEs, and we construct a
“small enough” €* > 0 (using an algebraic circuit, given § > 0) such that any fixed point of Fg (x)
is a €*-PE which is also d-close to an actual PE of G (in /., distance), and likewise any fixed point of
Hg () is a €*-QPE which is also d-close to an actual QPE. In this way, we show that approximating
a PE, and a QPE, to within given desired precision, § > 0, for a given EFGPR is FIXP,-complete.
Since PE constitutes a refinement of NE and of SGPE, this of course immediately implies that
approximating a NE or SGPE is also FIXP,-complete (cf. [10]). Likewise, since QPE constitutes a
refinement of NF-PE, this also implies that approximating a NF-PE is FIXP,-complete.

For SEs, we then also show that for any such €*-PE, b”, if 4" is the unique belief system
generated by b” then (b”, u?") is d-close to an actual SE of G (again in £). Furthermore, using
Fé* (z), we define an auxiliary fixed point function Geg* (z,z) with domain B x B, such that the
Brouwer fixed points of ng* are pairs (0", "), where b” is a €*-PE and p"" is the belief system that
it generates. In this way, we show that approximating a SE (including its belief system) to within
given desired precision § > 0, for a given EFGPR, is also FIXP,-complete.

Theorem 10 Given as input a EFGPR, G, and a rational § > 0:

1. The problem of computing a vector b’ € B such that there is a PE (or NE or SGPE), b*, of
G, with ||t/ — b*||co < 0, is FIXP,-complete.

2. The problem of computing a vector b’ € B such that there is a QPE (or NF-PE), b*, of G,
with || — b*||ee < 9, is FIXP4-complete.

3. The problem of computing a vector b’ € B and a belief system p' such that there is a SE,
(b*, 1*) of G, with ||(V, 1) — (b*, u*)||co < &, is FIXPy-complete.

Note that FIXP,-hardness for these problems follows from the fact that we can encode any NFG,
I, as an EFGPR, £(T"), with not much larger encoding size, and from the fact that approximating a
NE within desired precision for n-player NFGs is FIXP,-hard, as shown in [13]. The FIXP,-hardness
of approximating a SGPE, PE, QPE, NF-PE, and SE, then follows because we know that these
constitute refinements of NE. Thus, we only need to prove containment in FIXP,. Our proofs
follow closely some of the proofs in [12] used for characterizing the complexity of approximating
a PE for NFGs. Although very similar, our proof differs in some details (especially for sequential
equilibrium). So, both for clarity and in order to be self-contained, we provide detailed proofs.

Before we prove Theorem 10, we need some Lemmas. The following is a special case of a general
paradigm noted by Anderson [1].

Lemma 11 For any fired EFGPR, G, and any 6 > 0, there is an € > 0, so that any e-(Q)PE, V',
of G has lx-distance at most § from some (Q)PE of G, and furthermore, if wb' denotes the belief
system generated by b, then (b’,,ub/) has Loo-distance at most § from some SE of G.

Proof. Assume to the contrary that there is a EFGPR, G, and a § > 0 so that for all ¢ > 0,
there is an e-(Q)PE, b of G so that there is no (Q)PE in the §-neighborhood (with respect to /)
of b¢ or that there is no SE in the d-neighborhood (with respect to £o) of (b€, ub°), where p®® is the
belief system generated by b°.
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Consider the sequence of assessments (b!/™, ,ubl/n)neN. Since this is a sequence in a compact
space (namely, the direct product of the space of behavior profiles and the space of belief systems),
it has a limit point (b*,y*). But then b* is a (Q)PE of G, by definition, since each b'/™ is a 1/n-
(Q)PE. But this contradicts the statement that there is no (Q)PE in a d-neighborhood of any of
the behavior profiles b'/". Furthermore, it follows from Proposition 3 (Part 3.) that (b*,u*) is
a SE. But this contradicts the statement that there is no SE in a d-neighborhood of any of the
assessments (bl/",ubl/n). (]

A priori, we have no bound on €, but we can use results in real algebraic geometry [3, 4] to
obtain a specific bound. We first do this for PE and SE:

Lemma 12 There is a constant c, so that for all integers n,m,k, M € N and § € Q, the following

holds. Let ¢ < min(J, 1/(th+1))mcm3. For any n-player EFGPR, G, with a combined total of m
pure local strategies for all players in the game, with game tree T having height h¥, and with M a
positive integer which is at least as large as any (by assumption, necessarily positive) integer payoff
of G and such that p,(a) > 1/M, for every u € Py and every a € Act(u). Then any e-PE, b°, of G
has lso-distance at most & from some PE of G, and furthermore if u* is the belief system generated
by b¢, then (b, u*°) has loo-distance at most § from some SE of G.

Proof. The proof involves constructing formulas in the first order theory of real numbers, which
formalize the statement of Lemma 11, with § being “hardwired” as a constant and e being the only
free variable. Then, we apply quantifier elimination to these formulas. This leads to a quantifier
free statement to which we can apply standard theorems bounding the size of an instantiation of
the free variable € making the formula true. We shall apply and refer to theorems in the monograph
of Basu, Pollack and Roy [3, 4]. Note that we specifically refer to theorems and page numbers of
the online edition [4]; these are in general different from the printed edition [3].

First-order formula for an extensive form e-perfect equilibrium and for the belief sys-
tem it generates: Let EPS-PE-BS(z,z,¢) be the quantifier-free first-order formula, with free
variables z € R™, z € RW\I and e € R, defined by the conjunction of the following formulas,
which together express the fact that x is a behavior profile that is an extensive form e-PE of the
given EFGPR, G, and that z is the (unique) belief system generated by x:

Tija >0, forien],jeld],andaec A ,

> ija=1, fori€[n]andje€[d] ,
acA; ;

(Ui(l' | mi5) = Ui(z | 7rf3)) V (2ija <€), foricn],jeld], anda,a’ € A;; ,

2y - Pyp(1ij) = Py(u), for allu € V where u € I; j for i € [n] and j € [d;].

Note that by Proposition 2, P, (1; ;) and P, (u) are expressible as multilinear polynomials in the
variables x (whose encoding size is polynomial in |G|).

First-order formula for perfect equilibrium and sequential equilibrium: Let PE-SE(z, 2)
denote the following first-order formula with free variables z € R™, and z € RIW\l  expressing
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that x is a behavior profile that is a PE of G, and that z is a belief system such that (z, z) is a SE
of G:

Ve > 03z e R™ 32 € RV EPS-PE-BS(2/, 2, e) A |lz — 2|2 < e Az = 2|> < e .

First-order formula for “almost implies near” statement: Given a fizedd > 0let PE-SE-bound;(e)
denote the following first-order formula with free variable € € R, denoting that any e-perfect equi-
librium, z, of G is d-close to a PE (in ¢3-distance, and therefore also in f.-distance), and likewise

that if z is the belief system generated by z, then (z, z) is d-close to a SE:

Vo € R™Vz € RIWMl 32 ¢ R 3% ¢ RIWAL
(e > 0) A (WEPS-PE-BS(z, z,¢€) V (PE-SE(z*, 2*) A ||z — o2 < 2 Az — 2t < 52))

Suppose 62 = 2% and that M = 27 is a positive integer that satisfies the conditions in the
statement of the Lemma. Then for this formula we have

e The total degree of all involved polynomials is at most max(2,m).
e The bitsize of coefficients is at most max(k, 7 - (b9 + 1)).
e The number of free variables is 1.

e Since |[W\ Py| < m, converting to prenex normal form, the formula has 4 blocks of quantifiers,
of sizes at most 2m, 2m, 1, 2m, respectively.

We now apply quantifier elimination [4, Algorithm 14.6, page 555] to the formula PE-SE-bounds(e),
converting it into an equivalent quantifier free formula PE-SE-boundj(e) with a single free variable
€. This is simply a Boolean formula whose atoms are sign conditions on various polynomials in e.
The bounds given by [4] in association with Algorithm 14.6 imply that for this formula:

e The degree of all involved polynomials (which are univariate polynomials in €) is:
max(2, m)0m?) = mOm?),

e The bitsize of all coefficients is at most:
max(k, 7 - (h9 + 1)) max(Q,m)O(m3) — max(k,7 - (b9 + 1))m0(m3)‘

By Lemma 11, we know that there exists an ¢ > 0 so that the formula PE-SE-boundj(e) is

true. We now apply Theorem 13.14 of [4, Page 521] to the set of polynomials that are atoms of
3

PE-SE-bound)(€) and conclude that PE-SE-bound)(€*) is true for some e* > 2~ max(k-(0I+1)m7™)

By the semantics of the formula PE-SE-bounds(€), we also have that PE-SE-bounds(€’) is true for

all ¢ < €*, and the statement of the lemma follows. (]

Proof of Theorem 10, parts (1.) and (3.). We shall combine the proofs of parts (1.) and (3.)
of the Theorem together. To do so, we shall first define an auxiliary fixed point function Gg(z, z)
defined in terms of F§(x), such that the Brouwer fixed points of G are pairs (b, ub"), where b is
a e-PE and ub" is the belief system that it generates. Specifically, we define GG : B x B — B X B
as follows: For all (b,2) € B x B, Gg(b, 2) := (V',2') where b}, , := F5(b), for all i € [n], j € [d]]

Z’j?“’
and a € A; ;; and furthermore where 2], := be’%@;) for all u € W\ Py, and where u € I;, ;,. Note
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in particular that, for all u € W\ Py, we can express 2z, as a (efficiently algebraically encodable)

rational function of b because, recalling from Proposition 2 that for all V' C V, there is a efficiently

encodable polynomial Fy/(x) such that for all b € B Fy/(b) = Pp(V') represents the realization
- , . Py Fu(F§(b)

probability of V', we have 2z, := By (f) — P, (FE0D)

Thus GG : BXB — B*x B is a continuous map, and notably G is defined in the entire compact

domain B x B, because b’ := Fg(b) € B and thus the ratio ﬁ%}%% is always well defined (we

TusJu

never divide by 0, because all nodes have positive realization probability under a profile b’ € B¢, for
all € > 0). Moreover, by definition of G, for all € > 0, for any Brouwer fixed point (b”, ") € B*xB
of G5, b must be a ePE of G and 1/ must be the unique belief system u?” generated by b”.

We now prove that computing a PE to within desired precision is FIXP,-complete, and that
computing a SE to within desired precision is FIXP,-complete. Let G be the n-player EFGPR given
as input. Let m be the combined total number of pure strategies for all players. Let M’ be the
minimum positive integer such that p,(a) > 1/M’, for every u € Py and every a € Act(u). Let M €
N be a positive integer which is the maximum of M’ and any (by assumption, necessarily positive)
integer payoff of G. By the definition of FIXP,, our task is the following. Given a parameter § > 0,
we must construct a polytope P, a circuit C' : P — P, and a number ¢’, so that a ¢’-approximation
to a fixed point of C' can be efficiently transformed into §-approximation of a PE of G, and a
d’-approximation of a fixed point of C' can also be efficiently transformed into a d-approximation
of a SE of G. In fact, we shall let &' = §/2 and ensure that §’-approximations to fixed points of
C yield both a J-approximation of a PE and a d-approximation of a SE of G. The polytope P is
simply the polytope B x B, i.e., the cartesian product of the space of behavior profiles of G and the
space of belief systems; clearly we can output the inequalities defining this polytope in polynomial
time. The circuit C is the following: We construct the circuit for the function G above. Then, we

construct a circuit for the number €* = min(§/2, M‘hg)z(ms el < min(d/2, M‘hg)mmg, where ¢
is the constant of Lemma 12: The circuit simply repeatedly squares the number min(é/2, M _hg)
(which is a rational constant that can be computed in P-time given the input G) and thereby
consists of exactly [em?lgm] multiplication gates, i.e., a polynomially bounded number. We then
plug in the circuit for €* for the parameter € in the circuit for G, obtaining the circuit C, which
is obviously a circuit for G& . Now, by the above, any fixed point (b, 1) of C on P is an ¢*-PE of
G. Therefore, by Lemma 12, in any fixed point (", ") of C, we know that 0" is both a €*-PE and
a §/2-approximation (in £-distance) to a PE b* of G, and furthermore that p” is the unique belief
system generated by b”, and that p” is a §/2-approximation (in f..-distance) of a belief system
w* such that (b*, u*) is a SE of G. Finally, by the triangle inequality, any ¢’ = §/2-approximation
(0, 1) to a fixed point (b”, ") of C on P is a §/2+ §/2 = § approximation (in ¢ ) of some pair
(b*, u*), such that b* is a PE of G and (b*, u*) is a SE of G. We have thus established Theorem 10,
parts (1.) and (3.). [

Next, we want to prove something analogous to Lemma 12, but for QPEs. In order to do so, we
first need the following:

Proposition 13 For any EFGPR, G, with i € [n], j € [d;], and any a,d’ € A;;, the inequality

KI(z) < K{’a/(m) can be expressed as formula, q)gj’“’al(x) = EIy\Ifgj’“’al(y,x), in the existential

theory of reals, where \I/Zg’j’a’a/(y,x) s quantifier free, where the total degree of all polynomials
involved in ‘Ifgj’a’al(y,a:) is 2, where the encoding size of @gj’a(x) is polynomial in |G|, and such
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that for all b € B0, ®5 (b) holds true iff KI™(b) < K (b).

Proof. Note that Kfa(x) < Kfa(x) is an inequality between two {+, —, , /, max}-formulas (over
the variables z) of encoding size polynomial in |G|. We will show that any such inequality, over any
subset of Euclidean space where the formula is always well-defined (i.e., involves no division by 0),
can be expressed by an existential theory of reals formula whose encoding size is polynomial in the
original inequality (and thus polynomial in |G]).

Specifically, suppose z is an m-vector of variables. By induction on the depth of any {4, —, *, /, max}-
formula, ¢(z), which is well-defined over the domain B>? (i.e., which involves no sub formula that
performs a division by 0, when z is anywhere in that domain), we prove that there is a existential
theory of reals formula W¢(yo,y,x), of size linear in the size of ¢, with auxiliary variable yo and a
vector of auxiliary variables y, such that for all z € B>, {yo € R | Jy¥¢(yo,y,2)} = {¢(z)}. In
other words, for the values z in the domain B>, the formula Iy, (yo,y, ) “expresses” a unique
value, yo € R, which is the same value as {(z).

The base case, when ((z) is a variable from x, or a rational constant, is trivial.

Inductively, suppose ((z) := (i1(x) ® (2(z), where ©® € {+,—,*,/,max}. By the inductive
hypothesis, there is a formula 3yW¥¢, (yo,y,x) using which yo expresses (1(x), and which has size
linear in that of i, and likewise there is a formula 3y’ U, (y(, v, x) using which y;, expresses (2(z),
and which has size linear in that of (s.

We construct a new formula 3yo, Y0, ¥, ¥V zeta (Y5 Y0, Y0, ¥, ¥, ) as follows. If © € {+,*, -},
then We(yg, ¥0, 40,9, ¥ ) := (5 = y0 @ ¥y A ¥ey (40, ¥, ) A Uiy (40, ¥, )

If © =/, then V¢ (yy, 90,90, 9, ¥, @) == (Y5 * Yo = Yo A Ve, (Y0, ¥, 7) A Voo (40,95 ).

If © = max, then W¢(yg, yo, 40, ¥> ¥, ) == (Y5 > Yo Ay > yo A g < woVys < yo) AVe (Yo, y, ) A
Ve, (Yo, ¥, x)). (The case with © = min is entirely similar and symmetric to the max case. )

Note that, by induction, the new formula Jyo, ¥(, v, ¥' V¢ (v, Y0, Yo, ¥, ¥, ©) again has encoding
size linear in the encoding size of ((z), and furthermore note that the total degree of all polynomials
in We(y, yo, Yo, ¥» ¥, ) remains 2.

Finally, for « in the domain B>Y, let Kfa(az) be expressed by EIy\lJKg,a (yo,y, ), and let Kg’a/ (z)
be expressed by 3y'V, ;. (y,y',x). We can express the inequality Kia(:p) < Kf’a/ (x) using the

following existential théory of reals formula:

q)gjﬂ’a (‘T) = E]y(:h y67y7y/ ( Yo < y6 A \IlKg’a (yo:yvx) A \IlKj,a’ (y67 ylaw) )

Lemma 14 There is a polynomial q(-), such that, for any EFGPR, G, and any 6 = 2% > 0, where
k is a positive integer, for any € < W, any €-QPE of G is d-close (in o) to a QPE.

Proof. The proof is entirely analogous to that of Lemma 12. We spell out the details for
completeness.

First-order formula for e-quasi-perfect equilibrium: Let EPS-QPE(z,€) be the first-order
formula (a universal formula in the theory of reals), with free variables 2z € R™ and € € R, defined
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by the conjunction of the following formulas, which together express the fact that z € B0 is a
behavior profile that is an extensive form e-QPE of the given EFGPR, G:

Tija >0, forien],jeld],andaec A ,

> ija=1, fori€[n]andje€[d] ,
acA; ;

(ﬁcbﬁ’j’a’a, (2))V (wijq <€), fori€]n],je[di], and a,a’ € A;; .

Note that by Proposition 13, @Z’j 12,0 (x) is expressible as a existential formula in the theory of reals,
whose size is polynomial in |G|. Thus, the conjunction EPS-QPE(z, €) of all of the above formulas
is expressible as a universal formula in the theory of reals.

First-order formula for quasi-perfect equilibrium: Let QPE(z) denote the following first-
order formula with free variables z € R™, expressing that = is a behavior profile that is a QPE of

Gg:
Ve > 032’ € R™: EPS-QPE(z’,€) Aflz —2/|* <€ .

First-order formula for “almost implies near” statement: Given a fixed § > 0, let QPE-bound(e)
denote the following first-order formula with free variable € € R, denoting that any e-quasi-perfect
equilibrium, z, of G is d-close to a QPE:

Vr e R™ dz* e R™:
(e > 0) A (WEPS-QPE(z,€) V (QPE(z*) A ||lz — 2*||* < 6%))
Suppose 62 = 27%, for some positive integer k, and let ¢/(-) be some fixed polynomial such that
7 =¢'(|G]) + k is at least the maximum encoding size of any coefficient in any of the polynomials
involved in QPE-boundg(e). (We know that such an explicit polynomial ¢'(-) exists, given the

polynomial bounds as a function of G on the encoding size of the various parts of the formula
QPE-bound;(e).)

e The total degree of all involved polynomials is at most 2.
e The bitsize of coefficients is at most 7.
e The number of free variables is 1.

e Converting to prenex normal form, the formula has 5 blocks of quantifiers, of sizes at most
m, m, 1, m, and ¢”(|G|), for some fixed polynomial ¢”(-), respectively.

We now apply quantifier elimination [4, Algorithm 14.6, page 555] to the formula QPE-bound;(e),
converting it into an equivalent quantifier free formula QPE-boundj(e) with a single free variable
€. This yields Boolean formula whose atoms are sign conditions on various polynomials in €. Since
m < |G|, the bounds given by [4] in association with Algorithm 14.6 imply that, for some fixed
polynomial ¢"'(-), we have that in this formula:

e The degree of all involved polynomials (which are univariate polynomials in €) is at most
2q"(|G|+k)
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e The bitsize of all coefficients is at most: 24" (191+5),

By Lemma 11, we know that there exists an ¢ > 0 so that the formula QPE-boundj(e) is
true. We now apply Theorem 13.14 of [4, Page 521] to the set of polynomials that are atoms of

" 2
QPE-boundj(e) and conclude that QPE-boundj(e*) is true for some e* > 2727 19" By the
semantics of the formula QPE-bound(e), we also have that QPE-bound;(¢’) is true for all positive
€ < €*, and the statement of the lemma follows. (]

Proof of Theorem 10, part (2.) The proof is completely analogous to the proof of parts (1.) and
(3.). We use the algebraically defined functions HE : B — B¢, which are parametrized by an input

variable e. We “instantiate” € with €* = 2_2q///(‘g|+k)2, where k = [—1og((6/2)?)]. We know we can
define €* using an algebraic circuit having encoding size ¢"’(|G| + k)2, by repeatedly squaring the
rational number (1/2), a total of ¢ (|G|+k)? times. We thus can construct an {+, —, *, /, max, min}-
circuit C'(z), having encoding size polynomial in |G| and size(§), which defines the function H§ :
B — B¢ on the domain B, and such that every fixed point of Hé* is a €*-QPE of G, which by
Lemma 14 is also (§/2)-close (in {) to an actual QPE. Thus, applying the triangle inequality, if
we approximate a fixed point of Hé* within ¢, distance (§/2), we will have approximated a QPE
of G within ¢, distance d. This shows that §-approximating a QPE, given G and given § > 0, is in
FIXP,. [

5 Computing a é-almost-e-PE & /-almost-c-QPE is PPAD-complete.

In this section we again exploit the functions F§(z) and Hg(x), for a EFGPR, G, devised in Section
3 for e-PEs and e-QPEs. This time we do so in order to show that computing a d-almost-e-PE,
given G, and given 6 > 0 and € > 0 (both in binary), is PPAD-complete. We also show that the
notion of §-almost-e-PE suitably “refines” d-almost-SGPE (and thus also d-almost-NE), and that
as a consequence computing a J-almost-SGPE (or a d-almost-NE), given G and given 6 > 0 (in
binary), is PPAD-complete ([10]). Furthermore, we also show computing a d-almost-e-QPE, given
G, and given § > 0 and € > 0 is PPAD-complete. Roughly speaking, we will establish these results
by showing that (a): a d-almost approximate fixed point of the function F§(z) and the function
HE(x), provides a ¢§'-almost-¢-PE, and respectively a ¢’-almost-¢'-QPE, for suitable ¢’ and ¢ that
are linearly related to § and €; and that (b): computing a §-almost approximate fixed point of the
function Fg(z) and Hg(x) is in PPAD (and PPAD-complete).

We have not yet actually defined the “almost” relaxation for QPE, which we call j-almost-e-
QPE. We do so now. For this, please recall the notation K?"*(b) defined in section 3, which is the
maximum conditional expected payoff to player i conditioned on reaching information set I; ;, there
playing pure action a, and thereafter (in information sets below I; ; in F;) player ¢ playing so as to
maximize this conditional expected payoff. For § > 0, a behavior profile b € B is called a d-almost
e-quasi-perfect equilibrium (5-almost-e-QPE) of G, if it is (a): fully mized, b € B>% and (b): for all
players ¢, all j € [d;], and all actions a,a’ € A, ;, if Kz’a(b) < Kf’a,(b) — § then b; j(a) < e. Note
that when 0 = 0 this definition is equivalent to e-QPE (this is because for a fully mized profile
b, KI(b) < K?’a/(b) holds if and only if maxycp, Ui(b |5 (0; | 7f;)) < maxyrep, Ui(b |5y (07 |

a/

Lo j)).28 Thus, our definition is a reasonable “almost” relaxation of e-QPE.

2In fact, as noted earlier, van Damme [45] defines QPE using the strict inequalities K?*(b) < Kg’a’(b) instead of
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We will make crucial use of some results and definitions from [13], which we now recall. Note
that the circuit defining F§(z) associates a function F§ : B¢ — B¢ with each given pair (G,€),
where the rational value € > 0 is given in binary as part of the input.?? Thus |G| + size(e) is the
encoding size of the input from which the algebraic circuit for F5(x) is generated.

Following [13], we call the family of functions (Fg(z))(g.e)}, associated with input pairs (G, €),
polynomially continuous in their domain B¢, if there is a polynomial ¢(z) such that for all input
pairs (G, €), for every rational €; > 0, there is a rational §; > 0, such that size(d;) < ¢(|G| +
size(e) + size(€1)) and such that for all b,b’ € B€:

16— V|| <61 = [|[F5(b) — F5(V)|loo < €1

Again following [13], we call the family of functions (F§(x)) (g, associated with input instances
(G, €), polynomially computable if (a): the domain B¢ of the functions F§ : B¢ — B¢ is a convex
polytope described by a set of linear inequalities with rational coefficients that can be computed
from the input (G, €) in polynomial time (note that this is clearly always the case for B¢, because
e > 0 is part of the input), and (b): there is a polynomial ¢(z) such that there is an algorithm that
given (G, ¢), and given a rational vector b € B¢, computes F§(b) (which is of course also a rational
vector) in time ¢(|G| + size(e) + size(b)). We need the following Lemma:

Lemma 15 The family of functions (F§(z))(g.ey for EFGPRs defined in Section 4 (equation (5))
is both (a.) polynomially computable and (b.) polynomially continuous.

Proof.

(a.): First, we observe that the family of functions (F§(7))(g,y for EFGPRs is polynomially
computable. This follows easily from the definition of Fg(z) given Section 4 and in equations (5)
and (7). Specifically, given a rational vector b € B¢, to compute F§(b), we must first compute
a vector y := h(b) := b+ v(b), where v(b)jq := Ui (b | 7f;) = Ui(b | 7f;). Note that, given
a rational vector b € B¢, each value y; o = h(b)ija = bija + Us(b | ng) is clearly computable
in P-time, because U;(z | 7rf7j) is given by a polynomial in & whose encoding size, as a sum of
multilinear monomials, is polynomial in |G| + size(e). Note also that the encoding size of the
resulting rational vector y is clearly polynomial in |G|+ size(e) + size(b). Next, having computed
the vector y, we must sort each subvector y; ;, associated with agent (i, ), into a non-increasing
sequence: z;j = (Zij.ay, Zijass - - ,zm,a‘Aul). We can clearly do so in P-time. Next, for each agent
(4,7), we can clearly compute ¢; j(b) in P-time using the simple {max,+} formula over the sorted
vector of inputs z; ; given in equation (7). Finally, having computed t; ;(b) and y = h(b) in P-time,
we have from equation (5) that F§(b): . = max(hija(b) — tij(b),€). Thus we can compute F§(b)
in time polynomial in |G| + size(e) + size(b), given G, € > 0, and any rational vector b € B€.
(b.): Next, we want to show that the function family (F§());g )y for EFGPRs is polynomially
continuous. We will in fact show that in the domain B¢ the function F§(w) is Lipschitz continuous
with Lipschitz constant 22(91+s12e(€)) (with respect to the fs, norm), for some polynomial ¢(-). In
other words, for all b,t’ € B¢, we have:

IEG(b) = FG(b) oo < 20091522 b — /o (9)

’
maxy e g, Ui(b |5 (i | 7;)) < maxyrep, Uib |5 b7 | 735)).
2%In this section it will be more convenient to view the domain of the function F§ as B¢, rather than B, because
€ > 0 will be explicitly given.
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Of course, it immediate follows from (9) is that the family of functions (Fg(z)){(g e is polynomially
continuous: in the definition of polynomially continuity, take d; := m - €1, it then follows
from (9) that for all b,b" € B, [|b — V| < 61 = [|[F5(D) — F§(b)[|o < €1. Furthermore, clearly
size(d1) < ¢*(|G| + size(e) + size(e;)), for some fixed polynomial ¢*(-). So, we only need to
establish (9).

Consider any b, b’ € B€. First, let us bound ||h(b) —h(V')| . Recall that h; jq(z) = z; jo+Ui(z |
;). Moreover, we know by Proposition 2 that U;(z | 7f;) is given by an explicit polynomial (a
weighted sum of multilinear monomials) in the variables =, with degree bounded by the height h9
of the game tree T', and with encoding size polynomial in |G|.

First, consider any monomial f(z) = a - x;, ...7;.. Note that in the domain B¢ C [0, 1]¢
(for a suitable dimension d), the monomial f(z) is Lipschitz continuous with Lipschitz constant
|alk (with respect to the Eoo norm). To see this simple fact, note that for b, € B¢, we have
|£(b) — f(O)] < lallbiy ...bi, — b, ...0; |. Furthermore, by induction on k > 1, we have that for
bt €[0,1], |by...by — b’ b;\ < k||b — b'||co- The base case, k = 1, is trivial. For the inductive
case, we have:

by ... by, — b, ... b}

|b1 b — blb/ ;C + blb/ b/ ’

< fby.. b = Dy L b A [brby bk A

= |b1!'\b2---k— 2...b;c|+\b’2...k|-\b1— v

< Jby| - (K =1)||b—= Voo + [b1 — Y] - |bh ... L] (by inductive hypothesis)
< (k=DIb—boo + |b1 — )] (because |bi| € [0,1] and [b),...b}| € [0,1])
< Kb =V co-

Now suppose that the polynomial h; jq(z) = xi ;. + Usi(z | ng) is the sum of M, ;, weighted
monomials, and that the maximum absolute value of a coefficient of any of the monomials is Amax
Then by the above, for any b,b' € B¢, we have |h;ja(b) — hija(b)] < M;ja - ARS|0 — b’||oo
Let M™* = max;jq M;ja , and let A™® = max; j, A%, Then we have [|h(b) — h(b)[lc <
Mmax . Amax |h — § || . Thus, clearly h(x) is Lipschitz continuous in domain B¢, with Lipschitz
constant M™2% . A™MaX which is clearly upper bounded by 249D for some polynomial ¢(+).

Next, note that the sort function has Lipschitz constant 1, with respect to £. In other words,
if sort(y) is a function that takes a vector y € R¥ as input, and yields its (non-increasing) sort,
sort(y) € R¥, then for all y,y € R¥, ||sort(y) — sort(y')|lco < [|¥ — ¥ |lco-

For completeness, we provide a proof of this easy fact. Suppose for contradiction that [sort(y);«—
sort(y' )| = [|sort(y) — sort(y)|lec > ||y — ¥/'||oc, for some index i* € [k]. Define the permuta-
tions 7 and 7’ of [k], such that for all i € [k], sort(y)i = Yr() and sort(y'); = yu(;)- Suppose,
wlog, that y.+) = sort(y); < sort(y')y = y, vy Since Hr(1),...,7w(@)}| =i > i* =1 =
H{7'(1),...,7'(#* — 1)}|, there must exist an r € {1,...,7*} such that n(r) € {#'(:*),n'(:* +
1),...,7'(k)}. In other words, yr(») < Yr(+) = sort(y)i < sort(y')y = y;,(i*) < y;(r). Thus
[sort(y) — sort(y’)||oc = [sort(y)i- — sort(y)i=| < |y} () = Yr(r)| < 1Y — ¥lloo-

Note also that the composition fi(f2(x)) of Lipschitz continuous functions fi(y) and fa(z),
where f1(y) has Lipschitz constant 51 and fo(x) has Lipschitz constant S2 (both with respect to
the {5 norm), is Lipschitz continuous with constant S; - 52 (again with respect to £o).

Now, consider ¢; j(x) as defined by equation (7). The expression defining ¢; ;(x) is a maximum
over linear (affine) expressions (using € as a constant) with at most |A4; ;| terms over the sorted

36



vector of variables z; ;. Since the max function has Lipschitz constant 1 (it is just a component of the
sort function), it follows that for all b, b’ € B, we have ||t; ;(b) —t; ; (V) [|oo < 27 (91+s12e())||p 1|
for some polynomial ¢/(-).
Finally, since we have F§(z); j,o = max(h; jq(z)—t;;(7), €), and since max has Lipschitz constant
1, and since the sum of two Lipschitz functions with Lipschitz constant 51 and (o is a Lipschitz
function with Lipschitz constant < 31 + (2, we are done: there is a polynomial ¢(-) such that for
all b,V € B¢,
|F5(6) — F§ ()l < 2909123220 . — 1/ . .

In fact, let us remark that Lemma 15 is a special case of a more general fact, namely that
function families defined by {+, %, max, sort }-formulas whose encoding size is polynomial in the
input instance, over a bounded domain such as B¢, are necessarily polynomially computable and
polynomially continuous. The proof of the next lemma will argue this more explicitly.

Lemma 16 The family of functions (Hg(x)){(g.e)y for EFGPRs defined in Section 4 (equation (6))
is both (a.) polynomially computable and (b.) polynomially continuous.

Proof. (a.): First, we again observe that the family of functions (H§(x)) (g} for EFGPRs is
polynomially computable over the corresponding domain B€. This again follows easily from the
definition of Hg(x) given in Section 4, in equations (6) and in the dynamic program (4) defining
K“(z). Specifically, given a rational vector b € B¢, to compute Hg(b), noting that D(b) = b,
we must first compute a vector y' := h'(b) := b+ v'(b), where v/(b); jq := Kf’a(b). We know
from the dynamic program given in (4) that given G and b € B¢, we can compute v'(b);j, in
time polynomial in |G| + size(e) + size(b), for all i, j, and a. In particular, it is important
to emphasize that size(KJ“(b)) remains polynomial in |G| + size(e) + size(b), and so do the
sizes of all the intermediate rational numbers computed by subformulas of Kg’a(b). This is not
only because the formula has only polynomial size, but also because, importantly, the special
kind of {+, —, /, max, min, sort }-formula defining Kij’a(b), given in (4), has the property that the
only occurrences of division in the formula occur when the denominator of the division operation
evaluates to IP,(/; ;) for some information set I; ;. But the probability Py(/; ;), for any b € B¢ is
at least €"”. Note that size(eh”) < h9 - size(e). This ensures that the rational values arising as
the result of such division gates in the formula for Kfa(b) always have an encoding size that is
polynomial in |G|+ size(e)+size(b). It follows, by an easy induction on the size m of a subformula,
that the encoding size of the value computed by a subformula of size m has encoding size polynomial
in m-(|G|+size(e)+size(b)). Since m itself is bounded by a polynomial in |G|+ size(e)+size(b),
this means all values computed in the formula have encoding size bounded by a polynomial in |G|+
size(e)+size(b). We can thus also compute //(b); jq in time polynomial in |G| +size(e)+size(d).
Likewise, computing #; ;(b) is easily done in time polynomial in |G|+size(e)+size(b), using sorting.
Thus HG(b) can be computed in time polynomial in |G| + size(e) +size(b). Thus we can compute
HE(b) in time polynomial in |G|+ size(e) +size(b), given G, € > 0, and any rational vector b € B*.

(b.) We now argue that the family of functions (Hg(7)){(g 1 is polynomially continuous over
the domain B¢. We will again actually show that the functions H§(x) are Lipschitz continuous,
with a Lipschitz constant of the form 22(191+512¢(9)) ' for some polynomial q(+), over domain B€. Just
as in Lemma 15, this implies polynomial continuity.
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The proof is again similar to the case F;(z). We noted already, after the proof of Lemma 15, that
an adaptation of that proof shows that any such function that can be defined by a {+, %, max, sort}-
formula and has encoding size polynomial in |G| 4+ size(e) is polynomially continuous over the
domain B¢. We will establish a more direct version of this fact here. Hg(x) is defined by a
{+, %, /, max, sort }-formula, meaning it also involves division. However, in the case of Hg(z)
we furthermore have the fact that the only use of division is inside subformulas which compute
Py(u | I; ;) = IP’IEJ%%’ for some information set I; ; and some node u € I; ;. Furthermore, we also
see easily by inspeétion of Hg(x) that, for all b € B¢, and for every subformula fi(z) of the formula
for Hg(z), we have maxpepe | f1(b)] < 2¢"(91+512¢(9) for some fixed polynomial ¢”(-) which is also
independent of the subformula. We will use both of these facts.

Now, for any two subformulas fi(z) and fa(x) of Hg(w), suppose fi(z) (f2(z)) has Lipschitz
constant 31 (f2), with respect to the s norm, i.e., that for k € {1,2}, if for all b, ' € B¢ we have

|fe(0) = fu()] < Brllb — || o, then:

1. fi(x) - f2(z) has Lipschitz constant at most 29 (191+si2e() . (8, 4 85). To see this, note that
for all b, b’ € B¢ we have:

| f1(D) - fa(b) — fr (V) - fa(V)]

| f1(D) - (f2(b) — fo(b')) + f2(B)) (f1(b) — fo(D))]
|F1(0)] - [f2(0) = f2(0")] + [ f2(D)] - | f1(b) — fr (V)]
20" 161522 (81 + By) - |~ Vo

IAIA

2. fi(z) + fo(z) has Lipschitz constant at most 51 + B2. (This is obvious.)

3. max(fi(z), fo(x)) has Lipschitz constant at most max(51, 2). This follows immediately from

the more general fact (established in the proof of Lemma 15) that the sort function has
Lipschitz constant 1 (under the ¢, norm), since sort(y); = max;y;. More directly (and
repeating some the same arguments), we have:
[ max( f1(5), fa(b)) — max(fi (), fo(¥'))| < max(|f(6) — 1 (0], |fa(b) — fo(¥)]) < max(By, Ba).
|b — b'||co- To see why the first inequality holds, assume w.l.o.g. that max(f1(b), f2(b)) >
max(f1(b'), f2(V)), and that f1(b) > fo(b). Then, if fi (V') > f2(b) we have | max(f1(b), f2(b))—
max(f1(b'), f2(0'))] = |f1(b) — f1(V/)|. Otherwise, if f1(V') < fo(b'), then | max(fi(b), f2(b)) —
max(f1(b), f2(b) = [f1(b) = f2(0))| < [f1(b) = f1(¥)], since fi(b) = f2(b'). Thus, w.lo.g., in
all cases, | max(f1(b), f2(b)) — max(f1(¥), f2(b'))] < max(|f1(b) — f1(8)], [f2(b) — f2(b))))-

Py (u)

Pe (1 5)
for some fixed polynomial ¢’(-). This holds because for all 7, j ajnd u, and for all b, b’ € B¢, we have:

Next, observe that for z in the domain B¢ the functions
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Py (u) Py (u)

Py(Li;) Py(1;y)

Pb’ (Ii,j) . Pb(u) - IP)b(Ii,j) : Pb’ (’U,)
Py(Lij) - P (Li )

= Py (L) }Pb’(fi,j)’ [Py (Lig) - Po(u) = Bo(li) - Py (u)]

S tehg [Py (L 5) - Po(u) — Po(Li5) - Por(u)] (because for all b’ € B, Py (I; ;) > )
< 90"([Gl+size(e) . |p, (Ii ;) - Py(u) — Py(Ls ) - Py (u)|

—  9d"(IG|+size(e)) Py (w)(Py(L; ;) — Po (L)) + Py (i ;) (P (u) — Pp(u))|

< 20" (G1Fsi2e() (|(Py(1; ;) — Py (1; ;)] + Py (u) — Py(w))])

< 24”(\G|+size(e))+q/(lg\+size(e))+1Hb V)

Thus, by induction on the size s of any subformula of f(z) of Hg(x), which is either a

{+,*, max, sort}-formula or of the form P%fi), we have that for all b,b € BS, |f(b) — f(V')| <

2(d' (|9l +size(€)+1)s < 9a(|9l+size(d))  for some fixed polynomial ¢(-). Thus, Hg(x) is polynomially
continuous over the domain B€. |

We now define a search problem called the almost fized point approximation problem, called the
weak (fixed point) approximation problem in [13], specialized to the case of the fixed point functions
F§ : B¢ — B°. Namely, given as input (G,¢), and a rational d; > 0, compute a rational vector
V' € B¢, such that ||F§(b') — V|| < d1. We shall make crucial use of the following fact, which was
established in [13] by employing Scarf’s [40] algorithm, and Kuhn’s [22] related algorithm, for weak
(i.e., almost) fixed point approximation:

Proposition 17 ([13], Prop. 2.2 (part 2.)) If the family of fized point functions (F§(x)) (g}
associated with input instances (G, €), is polynomially continuous and polynomially computable, then
the almost (weak) fired point approzimation problem for Fg(x), given input (G,¢), is in PPAD.

The following Lemma is the key to this section:

Lemma 18 For any EFGPR, G, and ¢ > 0:
1. For any § > 0, if b € B¢ satisfies [|b— F§(b)|lo < 0, then b is a (3-0)-almost-(§ + €)-PE of G.
2. For any § >0, if b € B¢ satisfies ||b— HG(b)||oc < 0, then b is a (3-6)-almost-(0 +¢€)-PE of G.

g
3. For any § > 0, let €(G,0) := W - 0.

Ifbe B9 js q (hngl) - €(g, 5)(hg+1)—almost—(2 -€(G,0))-PE, then b is a 6-almost-SGPE.
Proof.

(1.) Suppose that for b € B, we have [|[F§5(b) — bl < 6.

Then |b; jo — max (b ja + v(b)ija — tij(b),€)| <6 for all (4,7, a).

Recall that v(b)i,m = Uz(b ‘ T#,j) = U@j(b | ng).

Now note that |b; j o, —max(b;,j,o +Ui(b | 77 ;) — (), €)| < 6 implies the following, by case splitting
based on the value of b; j .
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1, —

L If b ja > €+0, then |bj jo—(bija+Ui(b | 7 ;) =t (b)) < 6, and thus [U;(b | 7f;) —t ;(b))| < 0.
Thus, in this case t;;(b) +6 > Ui(b | 7f;) > t;,5(b) — 0.

2. If e S bi,j,a S €—|—5, then bi,j,a+Ui(b | ng)—tz"j(b) S 6+2'5, and thus Ul(b ‘ ng)—ti7j(b) S 2-5,
and so U;(b | 7f;) <t;;(b) +2-6.

Thus, for all (i, j,a), we have U;(b | 7f;) <t;;(b) +2- 6, and for all (i, j, a) where b; j, > €+ d, we
have U;(b | mf;) > t;(b) — 4. Thus, if b; j v > €+ 6, then (max, U;(b | 7f;)) — Ui(b | ﬂf'j) <34. In
other words, b is a (3 - §)-almost-(e + 0)-PE. This completes the proof of Part (1.). of Lemma 18.

(2.): the proof of part (2.) is actually identical to the proof of part (1.), except that instead of
v(b)ija = Ui(b | 7f;), we have to use v'(b)i . = K*(b), and instead of t; ;(b) we have t; ;(b). If
we systematically replace occurrences of U;(b | 7f';) by KI“(b) in the proof, and likewise replace

Ui(b | wf;) by Kg’a/(b), and replace t; ;(b) by t] ;(b), then the proof remains unchanged. Note, in
particular, that for b € B¢, we have b = D¢(b), and thus we can ignore the applications of D¢(z)
in the definition of H§, because here we are explicitly given € > 0 and we can view the function as
Hg : B — B-.

(3.):
Recall that (w.l.o.g.) the payoff functions r; : L. - N5 are positive integer-valued for every
player in G, and that Mg denotes the maximum such value. Also recall that h9 denotes the height
of the game tree T' = (V, E) of G, and that for any node u € V, h¥ denotes the height of the subtree
rooted at u.

Note that for any profile b € B¢ for any ¢ > 0, for any player i, any information set j € [d;],
and for any node u € I; ;, the conditional probability Py(u | I; ;) of the play reaching node u con-
ditioned on the event of reaching information set I; ;, under profile b, is well defined. Furthermore,
importantly, again note that the conditional probability Py(u | I; ;) is independent of b;. It only
depends on the behavior strategies of players other than ¢, because, by perfect recall, for all nodes
u € I; ; the visible history for player ¢ at node u is the same: it is Y ;.

For i € [n], and for j € [dy], we use Uij (b) to denote the conditional expected payoff to player
1, conditioned on the event of reaching information set I; ;.

We are now ready to prove (3.). By assumption, b € B€99) and bis a

G (hg+1) g
1 pO,min 5 1 t p(),min 5 PE
®@9D) | TEIHD G -almost-(gao a1y - )-PE-

We will show that any such b is also a d-almost-SGPE of G. Consider b from the point of view of
a single player i. We need to show that behavior strategy b; is a J-almost best response to b, i.e.,
that U;(b) > U;(b | ©f) — 0, for any pure strategy ¢ € S;. Recall that a pure strategy c: [d;] — X
for player ¢ maps information sets j € [d;] to available actions ¢(j) € A, ;.

Claim 1 For every player i, every j € [d;], and every action a € A; ; such that
g
P, min

bija > (—6.(hg_f1’).Mg.‘g| -0), we have for any o’ € A; ;:

. - / 1
Ip|me )y >UI(b | %) ————
UZ( |7T1,_])—Uz( ’ﬂ-l,]) 3.(hg+1)
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g (n9+1) g
Proof. Since b € B9 is a F0,min 5> —almost-(ﬁ.w 9)-PE, for

1
m9+1) <12~(hg+1)~Mg-|g| )

(09 +1)-Mg-1G] -
any a € A; j such that b; j, > (W -9), and any WZ;-, we know that:
G (h9+1)
Ui(b | 7% > Ui(b | 7") — — P0,min 5 (10)
b mig) 2 Uilb | i (h9 +1) \ 12-(h9 +1)- Mg - |G|

Note that, for any &' € B999) we have

g B
pOmin

]:P)/ IZ ) > hg — K .

v(Lij) = €(,9) <6-(hg+1)'Mg'|g‘ 6)

This follows because €(G,d) < pg i and thus under profile ¥’ € B(9:9) every “edge” of the game

tree will have probability at least €(G,0). Thus already for every node u € I; j, Py (u) > €(G, 5)hg,
and so Py (I ;) > Py (u) > €(G, 6)2.

Now note that, for any profile b’ € B<(9:9)  the expected payoff U;(b') can be expressed as
a sum U; (V') = Ul (V)Py(Li;) + U, (V)Py(—1;;), where U;”(b') denotes the expected payoff to
player i conditioned on not reaching information set I; j, and Py (—1; ;) = (1 —Py(; j)) denotes the
probability of not reaching information set I; ;.

Note that, if in any such profile b" we change only the local strategy b; ; to a new strategy by ;
then this does not effect the probabilities Py (I; ;) and Py (—1; ;), nor does it effect the conditional
expectation U;j (b'). In other words, for any behavior profile ¥’ € B€9:9) and any local strategy
bi; € Bij, we have:

U | b ;) = Ul | b7 ) - Py (Lij) + U7 (V) - Py (15 5) (11)
Now suppose, for contradiction, that for some 77?7;-, we have:
, . , 1
Vb |72 < U | 7% -~ .5
(2 ( ‘ Tr’l/,]) < 1 ( ’ ﬂ.Z,]) 3(hg + 1)

But then, by applying equation (11) with &' := (b | W;‘;) and b} ; := 7, we have:

—
Uib | miy) = Ui 7ly) Poppary (L) + U7 (0] 785) - Py (213 5)
_
3(hY + 1)

1
3o 1) 0 Py i)

< (WG] - 8) P yprar (Tig) + U (0| 7E5) Py (i)

IN

Ui(b | i) —

1 P ;
, 0,min

< . o : : ’

< Ui(b| ﬂ—z,]) 3(h9 +1) 0 (6 (b9 +1) - Mg - |G| 5)

. g h9+1
Thus®®, Us(b | mi) <Ui(b | nf;) — (hglJrl) <12_(hgpi’1“)lfr]‘v[g.g| . 5) . But this contradicts inequality

(10). Thus, we must have Uij(b | 7)) > Ug(b ] ﬂflj) - - 0. ]

1
3(m9+1)

§<?

39Noting that 3

PO, min .
12:(h9+1)-Mg- |G|
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g (h9+1) g
4 g,(; 1 pO,min . _ _ pO,min . _

Again, let b € B9 be a CEESY) <12.(hg+1).Mg.g| 5) almost (—6.(hg+1).Mg.|g| 9)-PE.
Claim 2 For every player i, for every integer m where 0 < m < h’#, for every information set I; ;
such that hfi =m, and for every pure strategy 5 € B; for player i:

J J c m+1
Ui (b) = U (b ’m”i)—m'5
Proof. The proof is by induction on m, using Claim 1, starting with base case m = 0.
Base case: For m = 0 consider an information set I; ; such that hjf © > 0. This means that j is a
leaf node in the directed information set forest F;. So, for any pure strategy =, suppose the local
pure strategy (i.e., local action) chosen at I; ; within the pure strategy «{ is a’ € A; ;. Note that we

then have Uz-j(b lm ) = Uij(b \ Wf;) Thus, we have to show that Uij(b) > Uij(b | 772“;) - ﬁ - 0.

For the local strategy b; j, and for n > 0, let b = D {a€ A lbiy.a>n} Divja- Likewise, let b?;] =
Z{GEAi,ﬂbi,j,agn} bija- For 57 € {>,<}, for € > 0, for a behavior profile b € B¢, and for n > 0,
let Uz-j "V (b) denote the conditional expected payoff to player i, under profile b, conditioned on the
event that the play both reaches information set I; ;, and thereupon plays some action in the set
{a € Aij | bija 71} Note that, for the profile b € B<99) the conditional expected payoff Uij(b)
can be written as:

Iy — 779.>€(G,0) >e(G,6) J,<€(G,6) <e(G,9)
Uj(b) = U; (b) - 0757 +U; (b) - b ; (12)
But then, for any o’ € A; ;, we have
j _  7r9>e(G.9) >e(G,9) J,<€(G,9) <e(G,0)
Ujb) = U; (b) - b7 ;7 + U; () - b;;
3,>€(G,96) >¢(G,0)
> U (b) - by
; / 1
J a >e(G,0) :
> (U] m;) — 3 @1y 5) - b7 (by Claim 1)
; / 1
> (U/(b|7d) — ———-0)- (1 —|A; 4] - )
= ( ’L( |7T27j) 3(hg+1) ) ( ’A,J’ 6(97 ))
g
j / 1 Do min
(Uz (b | WZ,]) 3. (hg + 1) 6) ( |~Al,]| 12. (hg 4 1) . Mg i ’g’ 5)
g
> U?(b|w@'»)—;«é—w(bm@')-(yAi |- Po,min )
- B3 (9 +1) : I T 12 (09 + 1) - Mg - |G|
; ' 1 1
> U/ ay 5= .
=2 Ul s v "5 worn °
(because Uij(b | Wf/j) < Mg and |A; ;| < |G| and pg’min <1)
; / 1
> Ul (| i) - 5 ) (because h*i < hY, for all i, and 2 < 1.)
Thus Uij(b) > Uij (b | ﬁf;) - (thJrl) -8, which completes the proof of the base case.3!

31Let us remark that we could have opted for a proof that renders the base case trivial, and “swallows” it into the
inductive case, but we felt this would have come at the expense of clarity.
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Inductive case: Assume the claim is true for m — 1 such that 0 < m — 1 < h”i. We want to show
it holds for m. Again, consider any pure strategy ¢ for player i, and suppose that 7§(j) = a’. In
other words, in information set I; ;, the action chosen by 7¢ is a’.

Let Ji(j,a") = {j’ € [di] | (j,d',j") € E7¢} denote the set of children j’ of j in the forest J;,
such that the edge from j to j is labeled by a’. (In other words, J%(j,a’) denotes the information
sets belonging to player ¢ that could possibly be the next information set for that player which is

reached, after reaching information set j.) For j' € J'(j,d’), let Pébw’)(j/ | 7) denote the condi-
i

tional probability of reaching information set I; j/, conditioned on event of reaching information set

I; ; and thereupon taking action a’ € A; j, under profile b. Furthermore, let Pébh‘r“/ )(m] “(5,a") | 5)
g

denote the conditional probability of not reaching any information set in J ‘ ( j, "), conditioned on
the event of reaching ; ; and thereupon taking action a’. Finally, let U/ ad (b | T ) denote the
conditional expected payoff (under profile b), conditioned on reaching I; ; and thereupon playing
a’, but thereafter not reaching any information set in J*(j,a’). Note that for all b € B9:9) and
every a’ € A; j, we have:

i TN
Z Pb| J | J) )+P(b|7r;.lfj)(_|'] (J,a’) [ J) =
j'eJi(G,a")

Note furthermore that:

j a’ j,=J (4,0’ a’ i i
Vbl ai) = D VI O1mh) Pl (013) | + U700 7)) (2TGd') 1).(13)
j'eJi(j,a) ’

We now use equation (13), the inductive hypothesis, and equation (12), in order to establish that

for any pure strategy 7 for player i, we have Uz-j(b) > Uij(b lm 7§) — (h’;:fl) - 0.

Suppose that the pure strategy 7¢ has 7£(j) = a’. Observe that in this case:

(bl 75) = (0] 75) I 1) = (b lm—r ) | 7f5) (14)

Also observe that: it it
U0 b | 1) = U (0] 78 e ) (15)

because this conditional expectation does not change when we change the strategy b; in local
strategies (at J'(j,a’) and below) which we have conditioned on not reaching. We thus have:
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Ul(b) = U,f’>6(g§)(b) b>€(g§)+UJ’<6(g5)(b) b9 (by(12))

2y

; 1
> (U? ady_ 2 sy pe9) '
: / 1
> J aly o 5 (1— A
> U017 ~ g 0 (1= Myl €(0.5)
g
j ! 1 Do, min
_ J ay _ ) (1= 1Al - : .
> UI(b | 7)) — o 8 = U (b | 7) - (1Auy] i )
= I Ty we ) O T I 1w 1) Mg - [G)
; / 1 1
> J ay _ - .
=2 Ul -~ sy "3 worn 0
(because Uj(b | 78 ) < Mg and |A4; ;| < |G| and pO min < 1)
; 1
> J ay_ . Fi < w9 ;
> U/(b| 7rw) w510 0 (because h” < h¥, for all i)
_ 3’ a’ i
J'eJi(j,a’)
4 UG 4 ey P (i a) | ) — —e— 5 (by equality (13))
i i,j (Bl ’ (b7 + 1)
> (Y, (U (0] 75 It 7E) = +6)  Plyyrer (0" 19)
. . (h i+ 1) (0l 1,3)
j'eJi(j,a")
jv“‘]i(j7a/) ('1/. cy m . 7 - 1 / S 1 .
U0 @] 785) s ) = ey 0 Pl (0 G0) 1) = Gy -8
(by inductive hypothesis, and by (15))
_ J cy _ m LS — 1 .
= U/(b|m ) T J BF D) J (by (14) and (13))
_ gy oy m+1
= U/(b|m ) % 1) o
Thus Uij(b) > Uij (b | 7§) — (h@:rll) - 0. This completes the proof of Claim 2. ]

Part (2.) of Lemma 18 now follows readily from Claim 2. To see this, let J7¢ denote the set of
root vertices in the information set forest F;. Let Pg(—'J 7i) denote the probability, under profile b,
of not reaching any information set in J%¢. Finally, let UfJFi (b) denote the conditional expected
payoff to player 7, under profile b, conditioned on the event of not reaching any of the information
sets in J7#, and if this event has probability zero, then by definition we let U;J 7 (b) :=0.

Then, for any pure strategy « for player ¢, we have:
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Uib) = (> U0 -ByLiy) + UTTTHb) - Pi(-TT)

j'GJ]:i
> (3 W1 = 0) Byliy) + (U777 (0] 75) = 6)- Pi(=IT)
j'eJri
(by applying Claim 2, and since U7 (b) = U777 (b | 7))
= U;i(b| 7)) —o.
Thus U;(b) > U (b | 7§) — §, which completes the proof of Part (2.) of Lemma 18. ]

Applying Lemma 18, Proposition 17, and Lemma 15, we obtain the main results of this section:

Theorem 19

1. The problem of computing, given a EFGPR, G, and given rationals 6 > 0 and ¢ > 0 (in
binary), a 6-almost-e-PE of G, is PPAD-complete.

Likewise, the problem of computing, given a EFGPR, G, and given rationals 6 > 0 and € > 0
(in binary), a d-almost-e-QPE of G, is PPAD-complete.

2. (cf. [10]) The problem of computing, given a EFGPR, G, and given a rational 6 > 0 (in
binary), a 6-almost-SGPE of G is PPAD-complete.

Proof. First, we establish containment in PPAD for all the problems:

1. The fact that computing a §-almost-e-PE, and computing a d-almost-e-QPE for a given
EFGPR, G, and given § > 0 and € > 0, is in PPAD follows immediately from Lemma 18,
Parts (1.) and (2.), Proposition 17, and Lemma 15.

Specifically, by Lemma 18, Parts (1.), for 0 < § < 1 and 0 < € < 1, a profile b € B2,
such that ||b — Fé/z(b)Hoo < %, is also a d-almost-e-PE. Likewise, profile b € B¢/2, such that
b — Hé/Q(b)Hoo < %, is a d-almost-e-QPE.

But by Proposition 17 and Lemma 15, since the functions Fg(b) and Hg(b) are polynomially
computable and polynomially continuous (with respect to the input (G, e€)), the problem of
computing such a profile b is in PPAD.

2. For 6> 0, let ¢(G,0) = o bomin 5 Lot §f = ;1 ¢(G,8)"+D

. Foro >0, le 6( ) ) " 12:(S+1)-Mg-g] ©- € 3 mI+1) 6( ) ) :

Since ¢’ < €(G, ), we have (' +€(G,0)) < (2-€(G,9)). It thus follows from Lemma 18, Part
1., that if b € B<99) satisfies ||b — Fé(g’é)(b)ﬂoo < ¢, then

bis a m - €(G,6)® ) almost-(2 - €(G, §))-PE. But then Lemma 18, Part 2., implies that
b is also a d-almost subgame perfect equilibrium of G.

Thus, the problem computing a d-almost-SGPE of G is P-time reducible to the problem of
computing a b € B999 such that ||b — Fé(g76)(b)||oo < ¢’. But since both €(G,0) > 0 and
8’ > 0 are rational numbers both of whose encoding size (in binary) is polynomial in the
encoding size of the input (G, ), by Proposition 17, computing a §-almost-SGPE is in PPAD.
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Finally, to see that both problems are PPAD-hard, recall that Daskalakis, Goldberg, and Pa-
padimitriou [11] established that computing a d-almost NE (a.k.a., a 6-NE, in the terminology they
used), given a n-player normal form game, I', and given § > 0, is PPAD-hard. Now recall that a
n-player NFG, T', is trivially encodable as a n-player EFGPR, £(T"), and note that a d-almost-SGPE
of £(T') is also a d-almost-NE of T'. [

A simple corollary of Theorem 19 is that computing an §-almost-e-PE for a NFG is also PPAD-
complete.

Corollary 20 The problem of computing, given a NFG, I', and given rationals § > 0 and € > 0
(in binary), a §-almost-e-PE of T, is PPAD-complete.

Proof. This follows by applying Theorem 19 ( Part 1.) to the “equivalent” EFGPR, £(T'), which
we can easily construct from I', and from the fact that £(I') has exactly the same d-almost-e-PEs (in
behavior strategies) as I" does (in mixed strategies). This follows easily from the payoff-preserving
one-to-one correspondence between the mixed profiles of I' and the behavior profiles of £(T). [

We have suggested that the notion of a §-almost-e-PE, is a reasonable “almost” relaxation of
(e-)PE, allowing for its computation in PPAD (i.e., using path following algorithms), in the same
way that 6-NE (= d-almost-NE) serves as a relaxation of NE.

We have thusfar not defined a “almost” relaxation for sequential equilibrium (SE). Since PE
“refines” SE (see Proposition 3), a possible definition is this: “an assessment (¢, u"), where the
behavior profile ¢’ is a d-almost-e-PE, and where ub/ is the belief system generated by b’ ”. This is
well-defined, because for € > 0, any d-almost-e-PE, ¥/, is fully mixed, and thus the belief system ub/
that it generates is uniquely defined; and we can compute ub, efficiently, given b’ and G. So, we can
take this as our definition of a “almost” relaxation of SE. Theorem 19 then implies that computing
such an “almost” SE, given G, and given § > 0 and € > 0, is PPAD-complete.

6 Conclusions

We have characterized the complexity of approximating various refinements of equilibrium, and
“almost equilibrium”, for extensive form games of perfect recall with n > 3 players.

Specifically, we have shown that the complexity of approximate (or almost) equilibrium com-
putation for extensive form games of perfect recall, with n > 3 players, including for fundamental
refinements such as sequential and (quasi-)perfect equilibrium, is the same as that of approximate
(or almost) Nash equilibrium computation for normal form games with 3 players. Namely, these
problems are, respectively, FIXP,-complete and PPAD-complete.

Although our results establish that approximating a PE for a n-player EFGPR, is in FIXP,, our
results do not imply that computing an actual (real-valued) PE for an n-player EFGPR is in FIXP.
We leave this as an open question, although the more relevant question, from the point of view of
the standard (Turing) model of computation, is containment in FIXP, (in PPAD) for approximation
(respectively, “almost” computation), which we have established.

Some natural open questions suggest themselves:
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1. The complexity of approximating a proper equilibrium for n-player NFGs. Proper equilibrium,
defined by Myerson in [29], is an important refinement of PE for NFGs?? | which Myerson
showed always exists for any NFG.

It is defined as follows: for an NFG, I', and for € > 0, a mixed strategy profile 0 = (01,...,0,)
is called a e-proper equilibrium if it is (a.): fully mixed, and (b.): for every two pure strategies
¢, ¢ of any player 4, if Ui(o | 7) < Ui(o | ©§') then o;(c) < € - 0y(¢). A proper equilibrium is
defined to be a limit point of a sequence of ex-proper equilibria, where €, > 0 for all £ € N,
and where limy_,, € = 0.

There are connections between proper equilibrium for NFGs and QPEs of EFGPRs. In
particular, van Damme [45] showed that a proper equilibrium for an NFG, T, induces a
QPE in every EFGPR whose (standard) normal form is I'.  However, the other direction
does not hold: there are EFGPRs with a QPE (or PE) which is not induced by a proper
equilibrium in a corresponding normal form game. Sgrensen [44] has given a Lemke-like
algorithm for computing a proper equilibrium for 2-player NFGs.?? Can we approximate a
proper equilibrium for n-player NFGs in FIXP,?

2. One can adapt Myerson’s definition of (e-)proper equilibrium in a natural way, to define a
notion of extensive form (e-)proper equilibrium (PropE) as well as (e-) quasi-proper equilibrium
(QPropE) for EFGPRs. PropE refines PE, and likewise QPropE refines QPE, for EFGPRs.
Such refinements for EFGPRs were already alluded to briefly by van Damme in [45]34, but we
are unaware of any subsequent study of them. Myerson’s existence proof of proper equilibrium
for NFGs can be suitably adapted to show existence of both a PropE and a QPropE for any
EFGPR. Can we approximate a PropE, and a QPropE, for n-player EFGPRs in FIXP,?

We believe the answer to both of the above questions is “Yes”.

Even if the answers are “yes”, it is not entirely clear what the suitable “d-almost” relaxations of
(qausi-)proper equilibrium should be. We need such relaxations to place the problems in PPAD; i.e.,
to enable discrete path following algorithms that compute a suitably refined “almost equilibrium?”.
One natural attempt is to define such a relaxation as follows: a d-almost-e-proper equilbrium for
NFGs is a mixed strategy profile o which is (a.): fully mixed, and (b.): for every two pure strategies
¢, c for any player i, if Uj(o | nf) < Ui(o | @) —  then oy(c) < € - 0;(c/). Tt remains to be seen
whether this definition is the “right” one, and in particular whether computing such a d-almost
relaxation can be placed in PPAD.

(Note added during late revision: In a very recent paper, Hansen and Lund [16] have
answered question (1.) above, affirmatively, proving that approximating a proper equilbrium for an
n-player NFG is in FIXP,. In fact, their proof makes crucial use of the notion of d-almost e-proper
equilibrium which we have suggested above, and does so in a novel and interesting way. )

32Peter Bro Miltersen, in conversation with the author, has referred to proper equilibrium as “the mother of all”
refinements of equilibrium for NFGs.

33For NFGs with n > 3 players, Yamamoto [50] outlined a procedure for approximating a proper equilibrium
based on a continuous homotopy path following approach, but as indicated by Sgrensen in [44], even for 2-player
NFGs it is unclear under what conditions Yamamoto’s procedure is guaranteed to converge to an approximate proper
equilibrium.

34As van Damme remarks in [45], his main result actually shows that every proper equilibrium of an NFG, T,
induces a QPropE in every EFGPR which has I" as its (standard) normal form.
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We want to again highlight that we believe our results can potentially provide a “practical”
computation method for computing a “almost” (e-perfect, and e-quasi-perfect) equilibrium for EFG-
PRs, with n > 3 players, by applying Scarf-like discrete path following algorithms on the “small”
algebraic fixed point functions that we have developed for n-player EFGPRs. We believe this is a
promising computational approach that should be implemented and explored experimentally.
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