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Abstract

Economic predictions often hinge on two intuitive premises: agents rule out the possibility

of others choosing unreasonable strategies (‘strategic reasoning’), and prefer strategies that

hedge against unexpected behavior (‘cautiousness’). These two premises conflict and this un-

dermines the compatibility of usual economic predictions with reasoning-based foundations.

This paper proposes a new take on this classical tension by interpreting cautiousness as ro-

bustness to ambiguity. We formalize this via a model of incomplete preferences, where (i) each

player’s strategic uncertainty is represented by a possibly non-singleton set of beliefs and (ii)

a rational player chooses a strategy that is a best-reply to every belief in this set. We show

that the interplay between these two features precludes the conflict between strategic reason-

ing and cautiousness and therefore solves the inclusion-exclusion problem raised by Samuelson

(1992). Notably, our approach provides a simple foundation for the iterated elimination of

weakly dominated strategies.

Keywords: Game theory, decision theory, ambiguity, Knightian uncertainty, incomplete pref-

erences, Bayesian rationality, cautiousness, iterated admissibility.

JEL Classification: C72, D82.

1 Introduction

Economists commonly use iterated strategy elimination procedures as solution concepts in

games. Therefore, such procedures constitute one of the cornerstones for modeling agents’

behavior in economic theory. The predictive power of iterated elimination procedures is in

general lower than that of equilibrium-related notions; still, since the latter requires players

to correctly forecast their opponents’ behavior (see Aumann and Brandenburger, 1995),

the former seems more appropriate in situations of multiple equilibria wherein either the
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players or the economic analyst lack accurate data about past play or such data appears

uninformative about future behavior.1 For instance, this is the case in many application

of auction theory, e.g., wireless spectrum, carbon emission rights or online advertising.2

Consequently, thorough understanding of the forces behind iterated elimination is both

relevant from a purely theoretical perspective and, from a more applied point of view, key

to effective mechanism design and correct identification in empirical analyses.3

The conceptual appeal of iterated elimination procedures is that they carry the intuitive

game-theoretic appeal of strategic reasoning : if a player is certain that some of her oppo-

nent’s strategies are not going to be played, then she might deem some of her own strategies

to be unreasonable.4 However, as discussed in Samuelson’s (1992) classic analysis, strate-

gic reasoning is in conflict with the criterion of cautiousness, which dictates that players

favor strategies that, ceteris paribus, hedge against unexpected behavior. If players are

modeled as expected utility maximizers, the clash seems inescapable: strategic reasoning

requires each player i’s beliefs to assign zero probability to some of i’s opponents’ strate-

gies, while cautiousness asks for player i’s decision to be sensitive to these strategies that

receive zero probability (and are therefore of negligible importance for the maximization

problem). Given that economic modeling often invokes the avoidance of weakly dominated

strategies—a specific kind of cautiousness—as a criterion for equilibrium selection,5 the

seemingly mutually exclusive nature of strategic reasoning and cautiousness requires clar-

ification. In particular, in scenarios where behavior is likely to be reasoning-based and

cautiousness plays some role, this understanding is desirable.

This paper proposes a new take on this longstanding problem by suggesting a novel

1In Dekel and Fudenberg’s (1990) words (p. 243): “Nash equilibrium and its refinements describe situa-
tions with little or no ‘strategic uncertainty,’ in the sense that each player knows and is correct about the
beliefs of the other players regarding how the game will be played. While this will sometimes be the case,
it is also interesting to understand what restrictions on predicted play can be obtained when the players’
strategic beliefs may be inconsistent, that is, using only the assumption that it is common knowledge that
the players are rational.”

2See Milgrom (1998), Cramton and Kerr (2002) and Varian (2007), respectively.
3See Bergemann and Morris (2009, 2011); Bergemann, Morris and Tercieux (2011) and Aradillas-Lopez

and Tamer (2008), respectively.
4This is clearly exemplified by the informal argument for comptetive prices in Bertrand duopoly models.

Consider a market consisting of profitable, identical firms A and B: if A slightly lowers her mark-up she
should absorb all the demand and increases her profit; now, this is easy to forecast by B, who might in turn
decide to lower her mark-up more than slightly and this way, absorb herself all the demand and increase
her profit with respect to the losses obtained under A’s, hypothetical, initial slight cut. Obviously, this logic
leads to the standard zero mark-up conclusion. Sketches of this elementary intuition in modern economic
theory can be traced back to Keynes (1936): “It is not a case of choosing those [faces] that, to the best of
one’s judgment, are really the prettiest, nor even those that average opinion genuinely thinks the prettiest.
We have reached the third degree where we devote our intelligences to anticipating what average opinion
expects the average opinion to be. And there are some, I believe, who practice the fourth, fifth and higher
degrees.”

5E.g., Kohlberg and Mertens (1986), Palfrey and Srivastava (1991), Feddersen and Pesendorfer (1997),
or Sobel (2017, forthcoming).
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theoretical foundation for the interplay between strategic reasoning and cautiousness. The

analysis of Samuelson (1992) makes transparent that two ingredients are necessary to over-

come this tension. First, multiple beliefs are needed to account for epistemic conditions

that would be mutually excluding if required to be satisfied by a single belief. Second, the

best-reply needs to be sensitive to all of these beliefs. We achieve this within our framework

by augmenting the underlying standard decision-theoretic foundation for each player by

allowing for incomplete preferences à la Bewley (2002) where: (i) each player’s strategic

uncertainty is represented by a possibly non-singleton set of beliefs and thus allowing for

ambiguity, and (ii) a rational player chooses a strategy that is a best-reply to every belief in

her set, so that the resulting choice is robust to the possible ambiguity faced by the player.6

Under this set-up and inspired by Brandenburger, Friedenberg and Keisler (2008), we say

that a player assumes certain behavior by her opponents’ if at least one of the beliefs in her

set has full-support on the collection of states representing such behavior. Consequently,

the introduction of ambiguity and the requirement of robustness give great flexibility: it is

possible for a player to assume certain behavior and, simultaneously, assume certain more

restrictive behavior. If the player is also rational, her choice needs to be a best-reply to

both of these beliefs. Hence, in particular, the tension between strategic reasoning and

cautiousness is solved: a player can be strategically sophisticated by having one belief that

assigns zero probability to her opponents playing dominated strategies, and at the same

time cautious by having another belief that assigns positive probility to every strategy of

her opponenents. Thus, our model overcomes the problem as identified by Samuelson (1992)

since it exactly allows for the two necessary ingredients.

Based on the above, we build a framework that provides reasoning-based foundations for

iterated admissibility—the iterated elimination of weakly dominated strategies. In Theorem

1 we show that iterated admissibility characterizes the behavioral implications of rationality,

cautiousness, and common assumption thereof. From our characterization, it is easy to see

that the foundations of iterated admissibility necessarily require the presence of ambiguity

whenever strategic reasoning has any bite. In case the elimination procedure consists of

multiple rounds, the set of ambiguous beliefs needs to contain a specific belief with full-

support on the set of opponents’ strategies that survive each of the rounds. Although the

main approach in the paper is conceptual and focused on the link between cautiousness in

reasoning-based processes and robustness to ambiguity, the results provide a methodological

contribution for the use of incomplete preferences in game theory, which is a subject of

interest itself besides its interpretation as a reflection of ambiguity.7

6Due to incompleteness, for given set of beliefs such a strategy might not exist. In this case, we will also
say that the player is not rational.

7 As argued by Aumann (1962): “Of all the axioms of utility theory, the completeness axiom is perhaps the
most questionable. [. . . ] [W]e find it hard to accept even from the normative viewpoint. Does ‘rationality’
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The literature studying the conflict between strategic reasoning and cautiousness is epit-

omized by the seminal work by Brandenburger, Friedenberg and Keisler (2008), who shed

light into the question by building upon the lexicographic probability system approach by

Blume, Brandenburger and Dekel (1991a,b).8 Lexicographic probability systems represent

the uncertainty faced by a decision maker whose preferences depart from standard Bayesian

preferences by allowing violations of the continuity axiom. In this setting, Brandenburger,

Friedenberg and Keisler (2008) provide reasoning-based foundations for finitely many itera-

tions of weakly dominated strategy elimination based on rationality and finite-order assump-

tion of rationality, but also present a celebrated impossibility result: under some standard

technical conditions and generically in all games, common assumption of rationality cannot

be satisfied. This negative result has spurred a line of research concerned with obtaining

sound epistemic foundations for iterated admissibility. Keisler and Lee (2015) and Yang

(2015) propose answers by tweaking topological properties of the modeling of higher-order

beliefs and the notion of assumption, respectively, while Lee (2016) obtains foundations by

proposing a modification in the definition of coherence.9 Catonini and De Vito (2018a)

also provide foundations by introducing a weaker notion of the likeliness-ordering of events

that characterizes the lexicographic probability system, and via an alternative definition of

cautiousness that restricts attention to the payoff-relevant component of the states. In a

slightly different direction, Heifetz, Meier and Schipper (2018) propose a new solution con-

cept, comprenhensive rationalizability, that coincides with iterated admissibility in many

settings and admits epistemic foundations. Within a standard Bayesian decision-theoretic

model, Barelli and Galanis (2013) provide a characterization for iterated admissibility by

introducing an exogenous ‘tie breaking’ criterion. Robustness to ambiguity is studied by

Stauber (2011, 2014) with a different interpretation than ours.

Our paper can be regarded as complementary to the lexicographic probability system

approach as standard Bayesian preferences are also abandoned by dropping completeness

instead of continutiy. Both of these relaxations allow for multiple beliefs, but while the for-

mer requires a specfic order, our model drops the order altogether and allows for multiplicty

directly. However, apart from the transparent link between cautiousness and robustness to

ambiguity our framework allows for, the nice structure of the sets of ambiguous beliefs rep-

resenting incomplete preferences has some additional advantages. First, it is easy to show

that rationality and common assumption of rationality is a non-empty event and thus, that

iterated admissibility is properly founded for all games. Second, the definitions and formal-

demand that an individual make definite preference comparisons [. . . ]” Previous applications of Bewley’s
(2002) model to game theory include, among others, Lopomo, Rigotti and Shannon (2011, 2014), who study
mechanism design and optimal contracting, respectively.

8Early contributions along the same lines include, for example, Brandenburger (1992) and Stahl (1995).
9Similar to Epstein and Wang (1996), coherency is imposed on the preferences directly, not only on the

beliefs that represent the preferences.
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ism involved do not require departures from the canonical definition of the objects involved:

(i) the modeling of higher-order beliefs (i.e., the type structures employed), including the

definition of coherence, and the version of assumption we rely on are natural extensions

of their counterparts in the realm of standard Bayesian preferences, and (ii) our notion of

cautiousness we in invoke in our theorems does not necessarily restrict itself to environments

where the sets of states have a specific structure (e.g., games).10 Finally, the presence of

ambiguity via incomplete preferences has been shown to be empirically testable by recent

work by Cettolin and Riedl (2016, 2018).

The rest of the paper is structured as follows. First, Section 2 provides an informal,

non-technical overview of the effect of robustness to ambiguity on predictions in games,

and specifically, on iterated admissibility as a solution concept. Section 3 reviews both

the game-theoretic and the decision-theoretic preliminaries and Section 4 introduces the

epistemic framework and the interpretation of strategic cautiousness as a manifestation

of robustness of ambiguity. Next, we present in Section 5 the epistemic characterization

results. Section 6 concludes. All proofs and purely technical digressions are relegated to

the appendices.

2 Non-technical overview

2.1 Examples

To illustrate the intuition behind the usual tension between rationality and cautious behav-

ior and to show how our approach avoids this issue, we present two examples.

Example 1. Consider a two player game with the following payof matrix:11

0
2

1
0

1
1

0
1

Bob
L R

Ann
T

D

Clearly, no action is strictly dominated for either player and therefore (standard) rational-

izability predicts {T,D} × {L,R}. However, R is weakly dominated by L. Deleting R for

this reason will make D strictly dominated in the reduced game. Thus, iterated admissibility

has a unique prediction in this game: (T, L).

10Though they are sensitive to topological specifications.
11This is the leading example of Brandenburger, Friedenberg and Keisler (2008) and was introduced by

Samuelson (1992).



6

Now, suppose we want to study how players themselves reason about this game. If Bob

is rational and cautious he should play L. Similarly, suppose Ann is cautious as well.

Therefore her belief has to put positive probability on Bob playing L and on Bob playing

R. However, if Ann believes that Bob is rational and cautious, then she should rule out

that Bob is playing R. This is the ’inclusion-exclusion’ problem as identified by Samuelson

(1992). On the one hand, Ann should include R in her belief because she is cautious. On

the other hand, she should exclude R because she believes that Bob is rational and cautious.

In our framework, we have more flexibility because players are not Bayesian, but are

allowed to have a (potentially non-singleton) set of beliefs. To see how this relaxation

avoids the tension just described, we provide a slightly more elaborate example, which also

explores the reasoning of the players more explicitly.

Example 2. Again, there are two players, Ann and Bob, which play the following game:

0
2

0
2

1
2

3
2

1
4

1
0

1
2

1
0

1
0

1
4

1
2

1
0

Bob
A B C D

Ann

H

M

L

Now, suppose that each player faces ambiguity (as described by Bewley (2002)) about

the strategy choice of their opponent. That is, each player does not have a unique belief

about the opponent’s strategy choice, but rather has a set of beliefs. In particular, suppose

that Ann has a convex closed set of beliefs described by two extreme points. Her first belief

is uniform across all of Bob’s strategies, µ1
A(sB) = 1/4 for sB = A,B,C,D, and her second

(extreme) belief is uniform across A, B, and C only, µAA(sB) = 1/3 for sB = A,B,C.

Similarly, Bob faces uncertainty about Ann’s choice. Consider the following set of beliefs

for Bob, which has two extreme beliefs too. The first is uniform across all of Ann’s strategies,

µ1
B(sA) = 1/3 for sA = H,M,L, and the second belief assigns equal probability to H and

M , µ2
B(H) = µ2

B(M) = 1/2.

First, let us check whether the players are cautious and what strategies are rational for

each player given their beliefs. Recall that a rational choice needs to be a best-reply to all

beliefs, i.e. the choice needs to be robust to the ambiguity faced by the player. Thus, Ann

will rationally not choose L since it is not a best-reply that is robust to the ambiguity she

faces. H and M , on the other hand, are best-replies to all beliefs and are therefore rational

choices for Ann. For Bob, only D is not rational because it is not a best-reply to any of his

beliefs. The three other strategies A, B, and C are rational as they are best-replies to all

of his beliefs. Thus, with these sets of beliefs the prediction of the model would correspond
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to iterated admissibility. Furthermore, note that Bob is also cautious because of µ1
B, which

assigns positive probability to all of Ann’s strategies. Similarly, Ann is cautious because of

µ1
A.

Second, we can also describe the strategic reasoning of each player. Note that, for

example, µ2
A does not only assign probability one to the rational choices of (cautious) Bob,

but also assigns positive probability to every of the rational choices of (cautious) Bob. As

mentioned above, we say that a player assumes an event if at least one of the beliefs has

support equal to the event. Thus, we will say that Ann assumes that Bob is rational and

cautious. Similarly, Bob assumes the same about Ann. Furthermore, Ann assumes that

Bob assumes that Ann is rational and cautious, and so on. This is not a coincidence and

foreshadows our characterization results of iterated admissibility, which will be explained in

more detail next.

2.2 Heuristic treatment of strategic reasoning

In the previous examples we saw that a set of beliefs allows to incorporate strategic reasoning

and cautiousness. To study games in general, we need to allow for players to reason about

the reasoning process of other players as well. For this we need to formalize infinite sequences

of the the following form:

a1: Ann is rational and cautions b1: Bob is rational and cautions
a2: a1 holds and Ann assumes b1 b2: b1 holds and Bob assumes a1

a3: a1 holds and Ann assumes b1 & b2 b2: b1 holds and Bob assumes a1 & a2

. . . . . .

If this infinite sequence holds, we say there is rationality, cautiousness, and common

assumption thereof (RCCARC).

To study these infinite sequences and to see which strategies are played if this sequences

hold we need to introduce (epistemic) types for each player. For this consider TA and TB

as type spaces for Ann and Bob, respectively. Usually, each of Ann’s type tA ∈ TA is

associated with a belief about Bob’s strategy and type, i.e. a probability distribution over

SB×TB. However, as we want to model players who face ambiguity, we associate with each

type a (closed, and convex) set of beliefs about SB × TB. Then, for a strategy-type pair of

Ann (sA, tA) we can say sA is rational if sA is a best-reply to all of the beliefs associated

with tA. If a player is cautious depends only on her beliefs, because it requires that she

thinks everything is possible. That is, one of her beliefs has full support on the full space

of uncertainty. Thus, we say a Ann’s type tA is cautious if there exists a belief in the

associated set of belief which has full support on SB × TB.

For example, consider a type of Ann tA which has only a singleton set of beliefs {µA} with
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SB

TB µA

Figure 1: Cautiousness

support as depicted in Figure 1. For such a cautious type, we can ask which strategies are

rational. For this, consider the marginal of µA on Bob’s strategy space SB. This marginal

has full support on SB and if Ann is rational, her rational choice has to be a best-reply to

this marginal. It then follows from Pearce (1984) that she must choose a strategy which is

not weakly dominated.

SB

TB

µ1
A µ2

A
µ3
A

µ4
A

µ5
A

µ6
A...

Figure 2: Rationality, cautiousness, and common belief thereof.

Now, we can study the infinite sequences described above. In this case we get a pic-

ture that looks like Figure 2. Here the small area with solid boundary corresponds to all

strategy-type combinations of Bob satisfying RCCARC. Now, fix a strategy-type combina-

tion (sA, tA) for Ann. Does this type correspond to RCCARC for Ann, that is does the type

satisfy the sequence a1, a2, . . .? We know already if a1 holds there needs to be a belief in

the associated set of beliefs which has support as µ1
A. Next, we want to consider that Ann

assumes b1. This rules out some of Bob’s strategy-type pairs, but also requires that tA has

a belief which has full support on the remaining pairs. Thus, in the associated set of beliefs

there needs to a belief µ2
A. In the next step, we consider Ann to assume b1 and b2. A similar

reason applies and there needs to be a belief like µ3
A in the set of beliefs corresponding to
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tA. This procedure can now be iterated (as indicated in the picture) to verify if the type tA

corresponds to RCCARC for Ann. As we are only considering finite games, at some stage

n this iteration would not rule out any strategies for Bob anymore. However, it might be

the case that at every step there are still some types of Bob that need to be ruled out.

In the worst case there needs to be a different belief for each iteration as the support of

each belief is changing along the sequence. However, this does not cause a problem. For

each type the set of beliefs could be potentially very large.12 Since such large sets of beliefs

are within the framework under consideration, the event RCCARC is not empty. Thus we

do not get a negative result, as Brandenburger, Friedenberg and Keisler (2008) found in a

different framework.

3 Preliminaries

This section presents the main standard concepts and formalism related to game and deci-

sion theory. The object of study is the inclusion-exclusion problem inherent to the iterated

elimination of weakly dominated strategies raised by Samuelson (1992). Thus, in Section

3.1 we recall the formalization of strategic-form games and iterated admissibility (Luce and

Raiffa, 1957; Moulin, 1979). However, our analysis models players as individual decision

makers whose beliefs may display ambiguity via incomplete preferences. Section 3.2 recalls

the necessary decision-theoretical toolbox and Bewley’s (2002) model of incomplete prefer-

ences as formalized by Gilboa, Maccheroni, Marinacci and Schmeidler (2010), and highlights

its key features. Section 3.3 describes how games are envisioned as decision problems, as is

standard in the literature since Tan and da Costa Werlang (1988).13

3.1 Games and iterated strategy elimination

A game consists of a tuple G := 〈I, (Si)i∈I , (ui)i∈I〉 where I is a finite set of players, and for

each player i we have a finite set of (pure) strategies Si and a utility function ui : S → R,

where S :=
∏
i∈I Si denotes the set of strategy profiles. For each player i we refer to a

randomization of own strategies σi ∈ ∆(Si) as a mixed strategy,14 and to a probability

measure µi ∈ ∆ (S−i), where S−i :=
∏
j 6=i Sj , as a conjecture. When necessary, with some

abuse of notation, we use si to refer to the degenerate mixed strategy that puts probability

one on si. Each conjecture µi and possibly mixed strategy σi naturally induce expected

utility Ui(µi;σi) and based on this, each player i’s best-reply correspondence is defined by

assigning to each conjecture µi the subset of pure strategies BRi(µi) that maximize its

12That is, not finitely generated sets.
13See Di Tillio (2008) for a more detailed formulation.
14Throughout the paper, for any topological space X, as usual, ∆ (X) denotes the set of probability

measures on the Borel σ-algebra of X.
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corresponding expected utility.15

Due to the duality results of Pearce (1984), we use the best-reply correspondence directly

to define iterated admissibility whose foundations we later study in Section 5. Strategy si is

iteratively admissible if it survives the iterated elimination of weakly dominated strategies;

i.e., if it is not weakly dominated given strategy profiles S−i×Si, it is not weakly dominated

given strategy profiles W 1
−i×W 1

i consisting only of strategies surviving the first elimination

round, etc. Thus, formally, strategy si is iteratively admissible if si ∈ W∞i :=
⋂
n≥0W

n
i ,

where W 0
i := Si and for any n ∈ N,

Wn
i :=

si ∈W
n−1
i

∣∣∣∣∣∣∣∣∣
There exists some µi ∈ ∆(S−i) such that:

(i) supp µi =
∏
j 6=iW

n−1
j ,

(ii) si ∈ BRi(µi)

 .

3.2 Decision problems and incomplete preferences

We follow the reformulation of Anscombe and Aumann’s (1963) framework due to Fishburn

(1970). The decision maker faces decision environment (Z,Θ) where: (i) Z is a set of out-

comes, which can be informally understood as the elements that will ultimately yield direct

utility to the decision maker, and (ii) Θ is a set of states (of the world) the decision maker

might face uncertainty about, and which may affect how her choices relate to outcomes.

We refer to randomizations of outcomes, ` ∈ ∆(Z), as lotteries. A preference is a binary

relation % over the set of acts, F , which is the collection of all maps f : Θ → ∆(Z) that

assign a lottery to each state.16 Given the above, a decision problem consists of a triplet

(Z,Θ, F ) where F is a subset of acts we call feasible and that represents the acts that are

materially available to the decision maker.17 Throughout the paper we focus on preferences

% satisfying the following axioms:

A1. Preorder. % is reflexive and transitive.

A2. Monotonicity. For any pair of acts f, g,

f(θ) % g(θ) for any θ ∈ Θ =⇒ f % g.
15That is, given conjecture µi we have expected utility Ui(µi;σi) :=

∑
(s−i;si)∈S µi[s−i] · σi[si] · ui(s−i; si)

for each possibly mixed strategy σi, and set of best-replies BRi(µi) := arg maxsi∈Si
Ui(µi; si).

16To be more precise mathematically, Θ compact and metrizable and the elements of F , simple and
measurable in the Borel σ-algebra of Θ.

17That is, the decision maker may have preference on elements of not only F , but F , representing that
she might have preferences on options that are not materially available in the problem under study.
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A3. Continuity. For any three acts f, g, h the following two are closed in [0, 1]:

{λ ∈ [0, 1] |λf + (1− λ)g % h} and {λ ∈ [0, 1] |h % λf + (1− λ)g} .

A4. Nontriviality. There exist two acts f, g such that f % g and not g % f .

A5. Certainty-Completeness. For any two constant acts f, g either f % g or g % f .

A6. Independence. For any acts f, g, h and any α ∈ (0, 1) we have,

f % g ⇐⇒ αf + (1− α)h % αg + (1− α)h.

We refer to preferences satisfying these six axioms as Bewley preferences.18 Notice the

main point of departure from the preferences of a standard Bayesian decision maker (i.e.,

one whose preferences satisfy Anscombe and Aumann’s (1963)): completeness is neither

required, nor does it follow from the other axioms. Theorem 1 by Gilboa, Maccheroni,

Marinacci and Schmeidler (2010) provides the following convenient representation for these

kind of preferences: % is a Bewley preference if and only if there exist a non-constant

utility-function u : Z → R and a set of ambiguous beliefs M ⊆ ∆(Θ) such that for every

pair of acts f, g,19

f % g ⇐⇒
∫

Θ
Ef(θ)[u(z)]dµ ≥

∫
Θ
Eg(θ)[u(z)]dµ for every µ ∈M.

The main conceptual departure of this model from Anscombe and Aumann’s one (1963)

concerns the possibility of incomplete preferences. The purely formal counterpart of this is

reflected in Bewley’s (2002) model. Each decision maker’s epistemic attitude with respect to

whatever she is uncertain about may not be represented by a single belief, as in the standard

case, but instead, by a possibly non-singleton set of beliefs that reflects the decision maker’s

possible ambiguity towards her source of uncertainty. As argued in Section 1 this is key

to resolve the inclusion-exclusion problem. With such preferences the decison maker is

allowed to have beliefs with different supports, but also needs to respond robustly to her

ambiguity by best-replying to all of her beliefs: for act f to be regarded at least as good as

some other act g, it must be the case that the expected utility for f is at least as high as

the expected utility for g for every belief in the set of ambiguous beliefs. Notably, recent

18 These six axioms actually define the version by Gilboa, Maccheroni, Marinacci and Schmeidler (2010)
of Bewley’s (2002) original preferences. The latter require the decision-maker to have a designated default
act always chosen unless ranked strictly lower than some alternative. This is commonly known in literature
as inertia (see, Bewley, 2002, or Lopomo, Rigotti and Shannon, 2011).

19More precisely, M is non-empty closed and convex. Moreover, M is unique and u is unique up to positive
affine transformations.
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work by Cettolin and Riedl (2016, 2018) presents experimental tools that allow for testing

whether the preferences display this form of ambiguity via incompleteness.

3.3 Games as decision problems

Players are envisioned as individual decision makers facing a decision problem where their

opponents’ strategies are part of the description of the states of the world and strategies are

the feasible acts. For obvious reasons, for each player i, game G is a very specific decision

problem (Zi,Θi, Fi) consisting of:

• Outcomes. In contexts of complete (payoff-relevant) information, player i’s utility

only depends on the strategy profiles chosen in the game; hence, we identify outcomes

with the latter: Zi := S.

• States. Player i’s primary source of uncertainty (and the only payoff-relevant one) is

strategic: it refers to her opponents’ behavior (S−i). However, player i’s beliefs about

her opponents’ strategies could be affected by some additional non payoff-relevant

unobserved parameter she might face uncertainty about, say T−i.
20 We identify the

set of states of the world with this joint sources of uncertainty: Θi := S−i × T−i.

• Acts and feasible acts. Player i’s set of acts is Fi := ∆(S)S−i×T−i . Notice that within

the context of a game this set of acts is not feasible. First, player i cannot make

her choice contingent on parameter t−i she does not observe. Second, in situations

of simultaneous choice, player i cannot make her choice contingent on her opponents’

choices. Still, player i might (and typically will) have preferences on modeled but

unavailable options. The set of player i’s feasible acts is then identified with her

mixed strategies:

Fi :=


f ∈ Fi

∣∣∣∣∣∣∣∣∣∣∣∣∣

There exists some σi ∈ ∆(Si) such that:

f(s−i, t−i)[(s
′
−i; s

′
i)] =

 σi[s
′
i] if s′−i = s−i,

0 otherwise,

for any (s−i, t−i) ∈ S−i × T−i and any (s′−i; s
′
i) ∈ S


.

In addition, remember that game G already incorporates utility functions; thus, each

player i’s set of Bewley preferences under consideration needs to be restricted to those

preferences whose risk attitude is represented by utility function ui. Now, Theorem 1 by

Gilboa, Maccheroni, Marinacci and Schmeidler (2010) implies that for any set of parameters

20 To ensure appropriate construction, T−i will be assumed to be compact and metrizable.
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T−i, each Bewley preference for decision environment (S, S−i × T−i) whose risk attitude is

represented by ui is biunivocally associated with some ambiguous beliefs Mi ⊆ ∆(S−i ×
T−i).

21 Thus, there is no loss of generality in switching the focus from Bewley preferences

to ambiguous beliefs, the collection of which we denote by Mi(S−i × T−i).22

4 Reasoning in games

For the remainder of the paper we consider game G to be fixed and therefore drop most

explicit mentions to it. In this section we present the epistemic framework we later employ

for establishing foundations for iterated admissibility in Section 5. Formally, for each player

we specify a choice and a representation of her beliefs over her opponents’ strategies, her

beliefs over her opponents’ beliefs over their opponents’ strategies, etc. These elements

suffice to asses whether under such specification, the player is being rational, has preferences

that exhibit ambiguity (i.e. multiple beliefs) or has certain higher-order beliefs over her

opponents’ rationality and presence of ambiguity in their preferences. The question then is:

which precise constraints on rationality and higher-order beliefs on opponents’ rationality

induce the behavior captured by iterated admissibility? Section 5 provides an answer based

on the formalism developed in this section.

Some previous methodological work is required though. As seen above, when ambiguity

via incomplete preferences is allowed for, the representation of uncertainty may require non-

singleton sets of beliefs. It follows that standard type structures as introduced by Harsanyi

(1967–1968) and standard belief-hierarchies à la Mertens and Zamir (1985) are not suitable

for the analysis of strategic reasoning: they fail to capture the possibility of ambiguity. In-

stead, we rely on a modified version of type structure that accounts for ambiguous beliefs.23

Thus, first, in Section 4.1 we introduce these ambiguous type structures. We build on the

latter to define next, in Section 4.2, the restrictions on behavior and beliefs necessary for

the results in Section 5.

4.1 Ambiguous type structures

The study of strategic reasoning requires some instrument that formalizes players’ beliefs

about their opponents’ choices, players’ beliefs about their opponents’ beliefs about their

opponents’ choices and so on. When players have complete preferences this hierarchical

uncertainty can be easily represented through type structures. Thus, it turns out convenient

21Remember that Mi is non-empty, closed, and convex. Of course, Mi is a subset of ∆(S−i) in cases in
which we omit set of parameters T−i.

22Space Mi(S−i × T−i) is endowed with the topology induced by the Hausdorff metric and is therefore
compact and metrizable.

23These type structures can be regarded to Ahn’s (2007) ambiguous hierarchies what Harsanyi’s (1967–
1968) type structures are to Mertens and Zamir’s (1985) belief hierarchies.
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to extend the definition of the latter so that can deal with the possibility of ambiguity.

Formally, an ambiguous type structure consists of a list T := 〈Ti,Mi〉i∈I where for each

player i we have:24

(i) A set of (ambiguous) types Ti.

(ii) An ambiguous belief map Mi : Ti → Mi(S−i × T−i), where T−i :=
∏
j 6=i Tj , that

associates each type with some ambiguous beliefs over opponents’ strategy-type pairs.

It is easy to see why ambiguous type structures capture the idea of hierarchical reasoning

mentioned at the beginning of the paragraph. For any player i’s type ti it is possible to

compute, by recursive marginalization:25

(1) First-order ambiguous beliefs that represent type ti’s uncertainty over her oppo-

nents’ strategies, Mi,1(ti) ∈ Mi,1 := Mi(S−i), which is easily obtained by taking

the marginals on S−i of the beliefs in Mi(ti).

(2) Second-order ambiguous beliefs that represent type ti’s uncertainty over her oppo-

nents’ strategy-first-order ambiguous beliefs pairs, Mi,2(ti) ∈Mi,2 := Mi(
∏
j 6=i(Sj ×

Mj,1)).

· · ·

(n) nth-order ambiguous beliefs that represent type ti’s uncertainty over her opponents’

strategy-(n − 1)th-order ambiguous beliefs pairs, Mi,n(ti) ∈ Mi,n := Mi(
∏
j 6=i(Sj ×

Mj,n−1)).

· · ·

Ambiguous type structure T is said to be complete if every map Mi is onto, that is, if

for every possible ambiguous beliefs the ambiguous type structure may admit, there exists

some type that is mapped to such ambiguous beliefs.26

24We will assume each Ti to be compact and metrizable and each Mi, continuous. See Footnote 19.
25The conceptual simplicity that follows is in contrast with the notational complexity it requires; techni-

cally, for each n ∈ N we have:

Mi,n+1(ti) =

µi ∈ ∆

∏
j 6=i

(Sj ×Mj,n)


∣∣∣∣∣∣∣∣∣

There exists some µ′i ∈Mi(ti) such that:

µi[E] = µ′i

[(∏
j 6=i(idSj ×Mj,n)

)−1

(E)

]
for every measurable E ⊆

∏
j 6=i Sj ×Mj,n

 .

26As shown by Ahn (2007), the answers to the following modified questions in (Dekel and Siniscalchi, 2015,
p. 629): “Is there a[n] [ambiguous] type structure that generates all [ambiguous] hierarchies of beliefs? Is
there a[n] [ambiguous] type structure into which every other [ambiguous] type structure can be embedded?”
are yes, and yes. Within a Bayesian framework, Friedenberg (2010) studies such a richness requirement more
generally.
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4.2 Behavioral and epistemic conditions

The analysis of each player i’s reasoning is focused on strategy-type pairs (si, ti), which

specify both player i’s choice, and as described above, her ambiguous beliefs over her op-

ponents’ choices, her ambiguous beliefs over her opponents’ first-order ambiguous beliefs,

etc. Thus, each strategy-type pair (si, ti) allows for addressing questions such as: Is player

i rational given her beliefs? Do her preferences embody some kind of ambiguity? Which

are her higher-order beliefs about her opponents’ rationality and ambiguity? Next, we first

formalize the notion of rationality we employ (Section 4.2.1). Second, we introduce our for-

malization of cautiousness as a manifestations ambiguity (Section 4.2.2). Finally, we define

the appropriate tool to impose restrictions on higher-order beliefs (Section 4.2.3), which is

a generalization to Bewley preferences of the usual notion of full-support belief for standard

Bayesian preferences.

4.2.1 Rationality

We say that strategy si is rational for type ti if si is a best-reply to every first-order

ambiguous belief induced by ti; thus, the set of strategy-type pairs in which player i is

rational is formalized as follows:

Ri :=

(si, ti) ∈ Si × Ti

∣∣∣∣∣∣si ∈
⋂

µi∈Mi(ti)

BRi(margS−iµi)

 .

Note that the definition implicitly requires that each type ti, in order to be eligible for

rational behavior, satisfies that the intersection of the best-replies to the ambiguous first-

order beliefs induced by it is non empty.27 This is a consistency requirement in the vein of

Bayesian updating for conditional probability systems in the literature of dynamic games:

when a conditional probability system fails to satisfy Bayesian updating it may not admit

sequential best-replies.28

4.2.2 Cautiousness and ambiguity

We argue next that cautiousness, intuitively thought of the decision maker considering every

state of the world when deciding which choice is best, can be interpreted as a product of

ambiguity in the sense that types that exhibit cautiousness tend to represent preferences

27We discuss this requirement in detail in Appendix A, where we first disentangle the condition that
ensures non-emptiness of the intersection of best replies (decisiveness) from rationality per se, and provide
its behavioral characterization.

28We thank Pierpaolo Battigalli for this observation. This issue, which refers to the distinction between a
choice being optimal or undominated, is discussed in further detail in in Section A in the appendix, which
also provides a behavioral foundation for a non-empty intersection.
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that also display ambiguity. First, we formalize this notion of cautiousness that take part

in the characterizations result in Section 5 and then discuss its relation with ambiguity.

Definition 1 (Cautiousness). Let G be a game and T , an ambiguous type structure. Then,

for any player i and any type ti we say that type ti is cautious if at least one belief in Mi(ti)

has full-support on S−i × T−i. We denote the set of player i’s strategy-type pairs in which

the type is cautious by Ci.

If at an intuitive level we think of cautiousness as the idea that a decision maker takes

every possible contingency into account, then this is present in this definition. Cautiousness

requires, loosely speaking, that every state is taken into account by the decision maker.29

The relation with ambiguity is easy to see. In principle, it is possible that a type displays

cautiousness but not ambiguity. This is the case of every type whose set of ambiguous

beliefs consists of a single belief with full-support on S−i × T−i as in Figure 1. However, if

in addition to cautiousness the type also exhibits some form of strategic sophistication in

the sense of having a (different) belief that rules out some proper subset of S−i×T−i, then,

necessarily, the type displays ambiguity: the corresponding ambiguous beliefs a fortiori

contain at least two different beliefs. Hence, not only does the introduction of ambiguity

allow for making strategic reasoning and cautiousness compatible, but indeed, it is necessary

when strategic reasoning has any bite.

4.2.3 Assumption

Henceforth, we refer to measurable subsets E ⊆ S × T as events. A standard Bayesian

decision maker is said to assume event E when the unique subjective belief induced by her

preference has full-support on E.30 Some changes are in order if we want to extend this idea

to Bewley preferences: the set of ambiguous beliefs may contain beliefs that have different

supports. We say that a Bewleyian decision maker assumes event E when at least one

belief in her set of ambiguous beliefs has full-support on E. Given the inclusion-exclusion

problem, it is natural to consider such a weak version of assumption. As discussed in Section

1 it is necessary to have multiple beliefs which have potentially different support to resolve

the tension between strategic reasoning and cautiousness.

Definition 2 (Assumption). Let G be a game and T , an ambiguous type structure. For

any player i, any type ti and any event E−i ⊆ S−i × T−i we say that type ti assumes E−i

29Cautiousness is also present in the analysis of Brandenburger, Friedenberg and Keisler (2008). However,
there it is incorporated into the definition of rationality. We find it more transparent to explicitly define the
event when a player is cautious.

30Technically, we are considering the collapse of the notion of assumption (see Brandenburger, Friedenberg
and Keisler, 2008 and Dekel, Friedenberg and Siniscalchi, 2016) under the lexicographic probability system
when the preferences satisfy continuity and thus, the corresponding lexicographic probability system collapses
to a single belief.
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if at least one belief in Mi(ti) has full-support on the topological closure of E−i. We denote

the set of player i’s strategy-type pairs in which the type assumes E−i by Ai(E−i).

Remark 1. Cautiousness as defined in Definition 1 can be restated in terms of assumption:

a type ti is cautious if it assumes S−i × T−i.

5 Iterated admissibility and ambiguous types

In this section we present the main results of the paper. Based on the observation made

in the previous section that the presence of ambiguity can reconcile strategic reasoning

with cautiousness, we provide foundations for iterated admissibility in terms of rationality,

cautiousness, and certain higher-order assumption constraints. We provide such foundation

in Section 5.1. Next, in Section 5.2, we discuss the relation between iterated assumption and

ambiguity to resolve the inclusion-exclusion problem. Finally, in Section 5.3 we review the

seminal impossibility result due to Brandenburger, Friedenberg and Keisler (2008) within

the approach in terms of lexicographic probability systems, recall some of the responses in

the related literature, and explore the connection with our result.

5.1 Epistemic foundation

As mentioned above, the epistemic foundation of iterated admissibility is going to be formu-

lated in terms of rationality, cautiousness, and higher-order assumption restrictions. The set

of strategy-type pairs in which player i exhibits common assumption in rationality and cau-

tiousness is given by CARCi :=
⋂
n≥0CARCi,n, where each CARCi,n is defined recursively

by setting:

CARCi,0 := Si × Ti,

CARCi,n := CARCi,n−1 ∩Ai(
∏
j 6=i

Rj ∩ Cj ∩ CARCj,n−1),

for every n ∈ N. That is, CARCi collects all those strategy-type pairs (si, ti) where player

i’s type ti assumes that every player j 6= i is rational, cautious, and assumes that every

player j 6= i assumes that every player k 6= j is rational, cautious, and so on. Then:31

Theorem 1 (Foundation of iterated admissibility). Let G be a game and T a complete

ambiguous type structure. For any player i it holds that:

31The theorem is stated and holds only for a complete type structure. The reasons is that the assumption
operator is not monotone. This is similar to, for example, assumption of Brandenburger, Friedenberg and
Keisler (2008) or strong belief of Battigalli and Siniscalchi (2002). An example showing why completeness
is needed is available upon request.
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(i) For any strategy-type pair (si, ti), if type ti is consistent with cautiousness and common

assumption of rationality and cautiousness and si is rational for ti, then si is iteratively

admissible; i.e.,

ProjSi(Ri ∩ Ci ∩ CARCi) ⊆W
∞
i .

(ii) For any strategy si, if strategy si is iteratively admissible then there exists some type ti

consistent with cautiousness and common assumption of rationality and cautiousness

for which si is rational; i.e.,

W∞i ⊆ ProjSi(Ri ∩ Ci ∩ CARCi).

Thus, Theorem 1 provides a complete characterization of iterated admissibility. Part

(i) shows that whenever a player chooses in a robust way that maximizes with respect to

higher-order assumptions that represent common assumption in rationality and cautious-

ness, then the resulting strategy is necessarily iteratively admissible. Part (ii) shows the

partial converse: it is not true that every time an iteratively admissible strategy is chosen

this is due to the player being rational, cautious, and best-replying to the higher-order

assumption restrictions that represent common assumption in rationality and cautiousness,

but still, it holds that every iteratively admissible strategy is a rational choice for some type

that is consistent with common assumption in rationality and cautiousness. Furthermore,

the theorem reveals that whenever the elimination procedure involves more than one round,

satisfying the epistemic conditions above requires players’ preferences to display ambiguity.

Next, we discuss some implications of this theorem in detail.

5.2 Iterated assumption and ambiguity

The main distinctive feature of assumption with respect to the usual belief for Bayesian

agents, and like the assumption operator of Brandenburger, Friedenberg and Keisler (2008),

is the failure of monotonicity.32 Whenever a Bayesian agent believes some event E, she also

believes every event F such that E ⊆ F : the (Bayesian) belief µi that assigns probability one

to E assigns probability one to F . This is not the case with our notion of assumption. Type

ti might assume event E via some belief µi ∈Mi(ti) that has full-support on E, but she may

fail to assume some F such that E ⊆ F ;33 even if ti assumed such F , certainly, it could not

be via µi. Thus, when considering a sequence of nested events such as the finite iterations

in the common assumption events defined above, one single belief can assign probability

one to all the events in the sequence simultaneously, but different beliefs are required in

32This is also reminiscent of strong belief as defined and studied by Battigalli and Siniscalchi (1999, 2002).
33We are implicitly assuming that the topological closure of F contains that of E.
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order to assume each of them at the same time. This is exactly why the inclusion-exclusion

problem can be resolved within our framework, but raises a the problem in the first place

within a Bayesian framework.

In principle there is no reason to consider that the assumption of some event is an

expression of cautiousness; for every type there always exists some event that is assumed

and this simply relates to which are the specific states that play some role in the way the

preference ranks acts. However, the assumption of different nested events is a non-trivial

feature that reveals cautious attitude: whenever a type assumes two nested events E and

F , the represented preference is crucially sensitive to comparisons at every state in E but

in addition, also to comparisons at every state in larger event F , in particular to those

outside E. Of course, as mentioned before, the simultaneous assumption of different events

necessarily requires belief multiplicity.

5.3 (Non-)Emptiness of common assumption of rationality and cautiousness

The canonical epistemic foundation of iterated admissibility in the literature is due to Bran-

denburger, Friedenberg and Keisler (2008). Their seminal result shows that m rounds of

elimination of non-admissible strategies characterize the behavioral implications of rational-

ity and mth-order mutual assumption of rationality for finite m in a model where players’

uncertainty is formalized by type structures where types are mapped to lexicographic prob-

ability systems. As shown by Blume, Brandenburger and Dekel (1991a), lexicographic

probability systems arise under a variation of Anscombe and Aumann’s (1963) preferences

in which the axiom of continuity is relaxed (instead of the completeness one, as in Bewley’s

(2002) variant). However, Brandenburger, Friedenberg and Keisler (2008) also reveal a vex-

atious feature of the common assumption case: their celebrated impossibility result shows

that for every generic game, if the type structure is complete and maps types continuously,

then common assumption in rationality is empty. In the end of the second we discuss

the work by Keisler and Lee (2015), Yang (2015), Lee (2016) and Catonini and De Vito

(2018a), who propose changes in the formalism that allow for sound epistemic foundations,

and compare their results to ours.

Notice first that within our set-up, and for every game G, common assumption in

rationality and cautiousness is never empty in complete ambiguous type structures. The

intuition behind the claim is easy to see: for each iteration in player i’s reasoning process

fix a belief µni ∈ ∆(S−i × T−i) that has full-support in the topological closure of
∏
j 6=iRj ∩

CARCj,n (this collections of strategy-type pairs are clearly never empty; thus, such belief

µni always exists). Then, define Mi as the topological closure of the convex hull of {µni }n∈N,

and by virtue of the ambiguous type structure being complete, pick type ti with ambiguous
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beliefs Mi.
34 By construction, ti is a type representing common assumption of rationality

and cautiousness and hence, CARCi is non-empty.

Furthermore, as briefly mentioned in Section 1, the non-emptiness of rationality and

common assumption thereof does not follow from specific alterations in the formalism (be-

yond the different decision-theoretic model underlying the approach). This is easier to visu-

alize by direct comparison with other works that also provide sound foundations for iterated

admissibility. Keisler and Lee (2015) obtain their result by dropping the requirement that

types are mapped continuously, Yang (2015) considers a weaker version of assumption than

that in Brandenburger, Friedenberg and Keisler (2008) and Lee (2016) explictly imposes

coherence on the preferences, which is usually only checked for the beliefs that represent

the preferences. For lexiographic probability systems, which he builds on, this makes a

difference. As said, we do not require any of these modifications: our type structures map

types continuously, our notion of assumption is a direct adaption of assumption in Bran-

denburger, Friedenberg and Keisler (2008) and Dekel, Friedenberg and Siniscalchi (2016),35

and the coherence requirement implicit in our type strucutres resembles the standard one

in literature due to Brandenburger and Dekel (1993).36 Finally, Catonini and De Vito

(2018a) consider a weaker version of the likeliness-ordering of events that characterizes the

lexicographic probability system and an alternative version of cautiousness where only the

payoff-relevant aspect of the states of the world play some role. Again, we obtain our non-

emptiness result with a standard, purely decision-theoretic notion of cautiousness that does

not require any specific structure on the set of states.

To end the section, let us present some comparison between lexicographic probability

systems and ambiguous beliefs that provides some understanding on the differences between

both approaches with respect to the presence of ambiguity. Remember that a lexicographic

probability system consists of a finite sequence beliefs {µk}nk=1 ⊆ ∆(Θ),37 where the order

in the sequence represents the epistemic priority attached to each element: µ1 is the decision

maker’s ‘primary’ hypothesis, µ2 is the ‘secondary’ hypothesis, and so on. This is reflected

by the lexicographic consideration, i.e. if act f is better than g for belief µ1, then the

comparison between both acts for the rest of the beliefs in the sequence is immaterial and

the decision maker prefers f over g. The main distinction between lexicographic probability

systems and ambiguous beliefs is then clear: despite both being composed of multiple beliefs,

the former incorporates a hierarchy in terms of epistemic priority and hence removes any

34As shown by Ahn (2007), this assignment can take place in an ambiguous type structure that maps
types to ambiguous beliefs continuously.

35See also Footnote 29.
36The requirement is explicit in the construction of Ahn (2007).
37Brandenburger, Friedenberg and Keisler (2008) use lexicographic conditional probability systems, but

their result extends to more general lexicographic probability systems as shown byDekel, Friedenberg and
Siniscalchi (2016).
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trace of ambiguity. However, as we show above, this hierarchy is not important to overcome

the inclusion-exclusion problem; what is important is the multiplicity of beliefs.

6 Conclusions

Cautiousness in games is intuitively understood as the idea that even when a player deems

some of her opponents’ strategies to be totally unlikely (typically on the basis of strategic

reasoning), she still prefers to choose strategies that are immune to deviations towards such

unexpected strategies. This is at odds with the strategically sophisticated expected utility

maximization process representing a standard Bayesian rational decision maker who believes

her opponent to be rational too: every suboptimal strategy of the latter is assigned zero

probability by the subjective belief of the former, and cannot therefore affect the decision

process.

This paper proposes a new theoretic understanding of cautiousness in interactive settings

that reconciles it with strategic sophistication. We interpret cautiousness under strategic

sophistication as a manifestation of robustness to ambiguity, which renders more choices as

non-optimal. Then we show that the resulting behavioral implications can be obtained as

a consequence of rationality and related higher-order assumption constraints. Specifically:

(i) We introduce the possibility of ambiguity in beliefs by allowing players’ preferences

to be incomplete. This is done by replacing the standard Anscombe and Aumann

(1963) decision-theoretic framework behind each player with a model of (possibly)

incomplete preferences à la Bewley (2002) so that each player’s uncertainty about

her opponents’ behavior is represented by a possibly non-singleton set of beliefs that

reflects the decision maker’s possibly ambiguous uncertainty. Our main result implies

that for choices that are iteratively admissible the justifying set of beliefs has to be

non-singleton for non-trivial games.

(ii) We apply the framework described above to study the epistemic (i.e. reasoning-based)

foundations of iterated admissibility and find that it is characterized by rationality,

cautiousness, and common assumption thereof (Theorem 1).

Thus, the main insight is immediate: the inclusion-exclusion problem of Samuelson

(1992) can be resolved not only by relaxing continuity of preferences (i.e. through lexico-

graphic probability systems), but also by relaxing completeness (while maintaining con-

tinuity). Notably, this allows us to provide a sound epistemic foundation of iterated

admissibility—a challenging task within the framework of lexicographic probability systems.

Using our approach, it is easy to see that the event of rationality, cautiousness, and common

assumption thereof is non-empty across all games—unlike, for instance, the foundations for
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iterated admissibility under lexicographic probability systems, as found by Brandenburger,

Friedenberg and Keisler (2008), and the instruments involved in our characterization (type

structures and assumption operators) are straightforward generalizations of those in the

realm of standard Bayesian preferences. In addition, the suggested link between ambiguity

via incomplete preferences and the presence of cautiousness is potentially testable by ap-

plying techniques in the identification of incompleteness of preferences recently developed

in the literature on experimental economics (see Cettolin and Riedl, 2016, 2018).

Finally, the formalism shows that even with incomplete preferences, an iterative solution

concept is valid and well-founded. To elaborate, note that the inclusion-extension problem

extends, well-beyond iterated admissibility, to every (non trivial) iterated deletion procedure

that incorporates cautiousness. This is easily visible in Dekel and Fudenberg’s (1990) pro-

cedure (the DF-procedure; persistency in Brandenburger, 2003, and Catonini and De Vito,

2018b), which consists of one round of elimination of weakly dominated strategies followed

by the iterated elimination of strictly dominated strategies. Here, the notion of cautiousness

behind the first elimination round requires player i’s beliefs to assign positive probability

to every strategy by her opponents (i.e. to include all strategies of the opponents) whereas

the iterated elimination that follows requires player i’s beliefs to assign zero probability to

opponents’ strategies that did not survive the first round (i.e. to exclude some strategies).

Hence, the presence of inclusion-exclusion issues makes understanding of the DF-procedure

problematic from the standard Bayesian perspective. Unsurprisingly, the tension can again

be solved via multiplicity of beliefs resulting from ambiguity. Say that player i believes

event E if at least one belief in her set of ambiguous beliefs assigns probability one to E.

It is easy to show then that the DF-procedure characterizes the behavioral implications

of rationality, cautiousness (as defined in Section 4.2.2) and common belief thereof.38 In

addition, it is immediate to replicate, within this framework, the well-known result that

rationalizability (the iterated elimination of strictly dominated strategies) characterizes ra-

tionality and common belief thereof. The comparison between these two observations and

Theorem 1 illustrates the theoretical connection between cautiousness and strategic rea-

soning on the one hand, and ambiguity on the other: while in the absence of cautiousness

(i.e., rationalizability) behavior can be explained without the appeal to ambiguous beliefs,

the latter becomes sine qua non as soon as the solution concept relies on any notion of

cautiousness (i.e, iterated admissibility and the DF-procedure).

38In Ziegler and Zuazo-Garin (2019) we systematically study iterated deletion procedures under cautious-
ness, distinguishing different notions of cautiousness: weak cautiousness (identifiable with the notion of
cautiousness here), and strong cautiousness, which helps understand the iterated elimination of never strict
best-replies.
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A Decisiveness and incomplete preferences

A.1 Decisiveness

We refer to the types that admit rational choices as decisive. The foundation of decisiveness

in terms of preferences is provided by Proposition 1 below. Decisive types are those induced

by preferences that are possibly incomplete but display completeness at the top: the decision

maker is indifferent between two acts that are not least preferred than some other act.39

Proposition 1 (Behavioral foundation of decisiveness). Let G be a game and T , an am-

biguous type structure. Then, any player i’s type ti is decisive if and only if there exists

some subset of feasible acts F ∗i ⊆ Fi, such that %i, the Bewley preference represented by

(ui,Mi(ti)), satisfies

f ∼i g �i h,

for every f, g ∈ F ∗i and every h ∈ Fi \ F ∗i .

Proof. Fix player i, type ti and event E−i ⊆ S−i × T−i and let %i denote the Bewley

preference represented by (ui,Mi(ti)). The ‘if’ part is immediate, so we focus on the ‘only

if’ one. To see it simply take S∗i :=
⋂
µi∈Mi(ti)

BRi(margS−iµi) and set:

F ∗i :=


fi ∈ Fi

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

There exists some σi ∈ ∆(Si) such that:

(i) fi(s−i, t−i)[(s
′
−i; s

′
i)] =

 σi[s
′
i] if s′−i = s−i,

0 otherwise,

for any (s−i, t−i) ∈ S−i × T−i and any (s′−i; s
′
i) ∈ S,

(ii) σi[S
∗
i ] = 1


.

Clearly, F ∗ ⊆ F and f ∼i g �i h for every f, g ∈ F ∗i and every h ∈ Fi \ F ∗i . �

A.2 Discussion

Notice that in the presence of incomplete preferences ‘undomination’ (an act not being

strictly worse than some other act) and ‘optimality’ (an act being at least as good as every

other act) are, unlike under completeness, two different concepts: an optimal act is always

undominated but an undominated act might not be optimal; furthermore, while every

Bewley preference admits undominated acts, optimal ones might not exist. Decisiveness

ensures the existence of the latter, which in turn, restores the equivalence of undomination

39Despite the following characterization relying on an axiom evoking existence, G being a finite game
implies that the verification of the condition requires only finitely many bets.
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and optimality. In consequence, imposing decisiveness to incomplete preferences is similar

in spirit to the requirement of Bayesian updating for conditional probability systems in the

literature of extensive-form games.40 As decisiveness, Bayesian updating guarantees the

existence of optimal strategies by forcing them to be equivalent to undominated ones.

B Characterization result

Theorem 1 (Foundation of iterated admissibility). Let G be a game and T a complete

ambiguous type structure. For any player i it holds that:

(i) For any strategy-type pair (si, ti), if type ti is consistent with cautiousness and common

assumption of rationality and cautiousness and si is rational for ti, then si is iteratively

admissible; i.e.,

ProjSi(Ri ∩ Ci ∩ CARCi) ⊆W
∞
i .

(ii) For any strategy si, if strategy si is iteratively admissible then there exists some type ti

consistent with cautiousness and common assumption of rationality and cautiousness

for which si is rational; i.e.,

W∞i ⊆ ProjSi(Ri ∩ Ci ∩ CARCi).

Proof. Let’s check first the finitely many iteration case, that is, that for each player i it

holds that for any n ≥ 0,

ProjSi (Ri ∩ Ci ∩ CARCi,n) = Wn+1
i ,

assuming T is complete. For convenience, for each player i and we denote Xi,0 := Si × Ti
and for any n ∈ N, Xi,n := Ri ∩ Ci ∩ CARCi,n−1. Now, we proceed by induction on n:

Initial Step (n = 0). For the right-hand inclusion, fix strategy-type pair (s̄i, t̄i) ∈ Ri∩Ci
and denote M̄i = Mi(t̄i). Then, since t̄i is cautious we know that there exists some belief

µ1
i ∈ M̄i whose support is S−i × T−i, and since (s̄i, t̄i) ∈ Ri, we know that s̄i is a best-reply

for margS−iµ
1
i . Thus, µ̄1

i := margS−iµ
1
i is a conjecture in with full-support on S−i for which

s̄i is a best-reply. Hence, s̄i ∈W 1
i .

For the left-hand inclusion, fix strategy s̄i ∈W 1
i and conjecture µ̄i with full-support on

S−i for which s̄i is a best-reply. Then, take arbitrary full-support belief ηi ∈ ∆(T−i) and

set µ1
i := µ̄i × ηi and M̄i := {µ1

i }. Since T is complete, we know that there exists some

40The definition of conditional probability systems (originally due to Renyi, 1955) requires the decision
maker to update her beliefs according to the chain rule whenever possible; this requirement is usually referred
to as Bayesian updating.
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type t̄i ∈ Ti such that Mi(t̄i) = M̄i. Since µ1
i has full-support in S−i × T−i we know that

t̄i is cautious, and hence, that (s̄i, t̄i) ∈ Ci, and as s̄i is a best-reply to the marginal on S−i

induced by the unique belief in Mi(t̄i) we have that (s̄i, t̄i) ∈ Ri. Thus, we conclude that

(s̄i, t̄i) is a strategy-type pair in Ri ∩ Ci that induces s̄i.

Inductive Step. Suppose that n ≥ 0 is such that the claim holds. We verify next

that so does it for n + 1. For the right-hand inclusion, fix strategy-type pair (s̄i, t̄i) ∈
Ri ∩Ci ∩CARCi,n+1 and denote M̄i := Mi(t̄i). Then, since (s̄i, t̄i) ∈ Ri ∩Ci ∩CARCi,n we

know from the induction hypothesis that s̄i ∈ Wn+1
i , and since (s̄i, t̄i) ∈ Ri ∩ CARCi,n+1

we know that there exists some belief µn+1
i ∈ M̄i whose support is the closure of X−i,n+1 :=∏

j 6=iXj,n+1 and whose marginal on S−i admits s̄i as a best-reply. It follows from the

induction hypothesis and completeness that the support of µ̄n+1
i := margS−iµ

n+1
i is Wn+1

−i

and hence, we conclude that s̄i ∈Wn+2
i .

For the left-hand inclusion, fix strategy s̄i ∈ Wn+2
i and family of conjectures {µ̄ki }

n+2
k=1

such that for each k = 1, . . . , n+ 2: (i) µ̄ki has full-support on W k−1
−i , and (ii) s̄i is a best-

reply to µ̄ki . Now, fix arbitrary k = 0, . . . , n + 1 and for any player j 6= i and any strategy

sj ∈W k
j define:

Yj,k(sj) := ProjTj ({sj} × Tj ∩Xj,k) ,

which is known from the induction hypothesis to be non-empty. We also know from the

induction hypothesis that {Yj,k(sj)|sj ∈W k
j } is a finite cover of ProjTj (Xj,k). Now, for each

s−i ∈ W k
−i pick arbitrary belief ηki (s−i) ∈ ∆(

∏
j 6=i Yj,k(sj)) whose support is the closure of∏

j 6=i Yj,k(sj), and define belief µki in ∆(S−i × T−i) as follows:

µki [E] :=
∑

s−i∈Wk−1
−i

µ̄k+1
i [s−i] · ηki (s−i)

E ∩∏
j 6=i
{sj} × Yj,k(sj)

 .
Obviously, µki is well-defined and its support is exactly the closure of X−i,k :=

∏
j 6=iXj,k.

41

Notice in addition that that since the marginal of µki on S−i is precisely µ̄k+1
i , we know that

s̄i is a best-reply to µki . Then, let M̄i be the convex hull of {µki }
n+1
k=0 and pick type t̄i ∈ Ti

such that Mi(t̄i) = M̄i. Clearly, the following two hold:

• (s̄i, t̄i) ∈ Ci ∩ CARCi,k for any k = 0, . . . , n + 1. To see it, simply note that for any

k = 0, . . . , n + 1, we have that µki ∈ Mi(t̄i) = M̄i. Then, since—as seen above—the

support of µki is exactly the closure of X−i,k, the claim is proven.

• (s̄i, t̄i) ∈ Ri. This follows immediately from—as seen above—s̄i being a best-reply

41For the latter, simply notice that for any (s−i, t−i), µ
k
i [N ] > 0 for any neighborhood N of (s−i, t−i) if

and only if ηki (s−i)[N ] > 0 for any neighborhood N of (s−i, t−i).
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to the conjecture induced by each belief in {µki }
n+1
k=0 and thus, also to each belief in

Mi(t̄i).

Thus, we conclude that (s̄i, t̄i) is strategy-type pair in Ri∩Ci∩CARCi,n+1 that induces s̄i.

We prove next that, indeed:

ProjSi (Ri ∩ Ci ∩ CARCi) = W∞i .

For the right-hand inclusion fix strategy-type pair (s̄i, t̄i) ∈ Ri ∩ Ci ∩ CARCi and simply

notice that since (s̄i, t̄i) ∈ Ri ∩ Ci ∩ CARCi,n for any n ≥ 0, we know from the above that

s̄i ∈Wn
i for any n ≥ 1. Thus, s̄i ∈W∞i .

For the left-hand inclusion, fix strategy s̄i ∈ W∞i . Since, in particular, s̄i ∈ Wn+1
i for

any n ≥ 0, we know from the above that for any n ≥ 0 there exists some type tni ∈ Ti such

that (s̄i, t
n
i ) ∈ Ri ∩ Ci ∩ CARCi,n. Now, let M̄i denote the closure of the convex-hull of⋃

n≥0Mi(t
n
i ) and pick type t̄i ∈ Ti such that Mi(ti) = M̄i. Obviously, s̄i is a best-reply is to

every conjecture induced by the beliefs in Mi(t̄i) and t̄i is cautious and is consistent with

common assumption in rationality and cautiousness. Thus, (s̄i, t̄i) ∈ Ri ∩Ci ∩CARCi and

hence, s̄i ∈ ProjSi(Ri ∩ Ci ∩ CARCi). �

References

Ahn, David S. (2007). “Hierarchies of ambiguous beliefs”. Journal of Economic Theory,

136, 286–301.

Anscombe, Frank J. and Robert J. Aumann (1963). “A definition of subjective probability”.

The Annals of Mathematical Statistics, 34, 199–205.

Aradillas-Lopez, Andres and Elie Tamer (2008). “The identification power of equilibrium

in simple games”. Journal of Business & Economic Statistics, 26, 261–310.

Aumann, Robert J. (1962). “Utility theory without the completeness axiom”. Econometrica,

30, 445–462.

Aumann, Robert J. and Adam Brandenburger (1995). Epistemic conditions for Nash equi-

librium. Econometrica, 63, 1161–1180.

Barelli, Paulo and Spyros Galanis (2013). “Admissibility and event rationality”. Games

and Economic Behaviour, 77, 21–40.

Battigalli, Pierpaolo and Marciano Siniscalchi (1999). “Hierarchies of conditional beliefs and

interactive epistemology in dynamic games”. Journal of Economic Theory,, 88, 188–230.

http://www.sciencedirect.com/science/article/pii/S0022053106001475
http://econ.ucsb.edu/~tedb/Courses/GraduateTheoryUCSB/anscombeaumann.pdf
http://amstat.tandfonline.com/doi/abs/10.1198/073500108000000105
http://amstat.tandfonline.com/doi/abs/10.1198/073500108000000105
http://www.ma.huji.ac.il/raumann/pdf/Utility%20Theory%20without%20the%20Completeness%20Axiom.pdf
https://www.dropbox.com/s/8l6o2rfxwi0x7v5/aumann-brandenburguer-95.pdf
https://www.dropbox.com/s/8l6o2rfxwi0x7v5/aumann-brandenburguer-95.pdf
http://www.sciencedirect.com/science/article/pii/S0899825612001327
https://www.dropbox.com/s/85zgmcc30mlmeno/battigalli-siniscalchi-99.pdf
https://www.dropbox.com/s/85zgmcc30mlmeno/battigalli-siniscalchi-99.pdf


28

Battigalli, Pierpaolo and Marciano Siniscalchi (2002). “Strong belief and forward induction

reasoning”. Journal of Economic Theory, 106, 356–391.

Bergemann, Dirk and Stephen Morris (2009). “Robust Implementation in Direct Mecha-

nisms”. The Review of Economic Studies, 76(4), 1175–1204.

Bergemann, Dirk and Stephen Morris (2011). “Robust implementation in general mecha-

nisms”. Games and Economic Behavior, 71(2), 261–281.

Bergemann, Dirk, Stephen Morris and Olivier Tercieux (2011). “Rationalizable implemen-

tation”. Journal of Economic Theory, 146, 1253–1274.

Bewley, Truman F. (2002). “Knightian Decision Theory. Part I”. Decisions in Economics

and Finance, 25, 79–110.

Blume, Lawrence, Adam Brandenburger and Eddie Dekel (1991a). “Lexicographic proba-

bilities and choice under uncertainty”. Econometrica, 59, 61–79.

Blume, Lawrence, Adam Brandenburger and Eddie Dekel (1991b). “Lexicographic proba-

bilities and equilibrium refinements”. Econometrica, 59, 81–98.

Brandenburger, Adam (1992). Economic Analysis of Markets and Games, chap. “Lexi-

cographic Probabilities and Iterated Admissibility”, pp. 282–290. MIT Press. Editors:

Partha Dasgupta, Douglas Gale, Oliver Hart, and Eric Maskin.

Brandenburger, Adam (2003). Cognitive processes and economic behaviour, chap. “On the

existence of a ‘complete’ possibility structure”, pp. 30–34. Routledge. Editors: Nikola

Dimitri and Marcello Basili and Itzhak Gilboa.

Brandenburger, Adam and Eddie Dekel (1993). “Hierarchies of beliefs and common knowl-

edge”. Journal of Economic Theory, 59, 189–198.

Brandenburger, Adam, Amanda Friedenberg and H. Jerome Keisler (2008). “Admissibiltiy

in games”. Econometrica, 76, 307–352.

Catonini, Emiliano and Nicodemo De Vito (2018a). “Cautious Belief and Iterated Admis-

sibility”. Mimeo.

Catonini, Emiliano and Nicodemo De Vito (2018b). “Weak belief and permissibility”.

Mimeo.

Cettolin, Elena and Arno Riedl (2016). “Revealed Incomplete Preferences under Uncer-

tainty: Evidence for Bewley preferences”. Mimeo.

https://www.dropbox.com/s/5efnmlndl9x8drn/battigalli-siniscalchi-02.pdf
https://www.dropbox.com/s/5efnmlndl9x8drn/battigalli-siniscalchi-02.pdf
https://www.jstor.org/stable/40247639
https://www.jstor.org/stable/40247639
http://www.sciencedirect.com/science/article/pii/S0899825610000734
http://www.sciencedirect.com/science/article/pii/S0899825610000734
http://www.pse.ens.fr/IMG/pdf/rationalizable_implementation.pdf
http://www.pse.ens.fr/IMG/pdf/rationalizable_implementation.pdf
http://dx.doi.org/10.1007/s102030200006
http://faculty.wcas.northwestern.edu/~{}dekel/papers/Lexicographic%20Probabilities%20and%20Choice%20Under%20Uncertainty.pdf
http://faculty.wcas.northwestern.edu/~{}dekel/papers/Lexicographic%20Probabilities%20and%20Choice%20Under%20Uncertainty.pdf
http://faculty.wcas.northwestern.edu/~{}dekel/papers/Lexicographic%20Probabilities%20and%20Equilibrium%20Refinements.pdf
http://faculty.wcas.northwestern.edu/~{}dekel/papers/Lexicographic%20Probabilities%20and%20Equilibrium%20Refinements.pdf
http://adambrandenburger.com/wp/wp-content/uploads/2014/01/lpia-19921.pdf
http://adambrandenburger.com/wp/wp-content/uploads/2014/01/lpia-19921.pdf
https://www.amazon.com/cognitive-processes-behaviour-routledge-political/dp/0415320054
https://www.dropbox.com/s/utawopb352qc49w/brandenburger-dekel-93.pdf
https://www.dropbox.com/s/utawopb352qc49w/brandenburger-dekel-93.pdf
http://onlinelibrary.wiley.com/doi/10.1111/j.1468-0262.2008.00835.x/abstract
http://onlinelibrary.wiley.com/doi/10.1111/j.1468-0262.2008.00835.x/abstract
https://www.hse.ru/mirror/pubs/share/217794168
https://www.hse.ru/mirror/pubs/share/217794168
https://www.hse.ru/mirror/pubs/share/218099470
http://www.arnoriedl.com/pdffiles/CettolinRiedl(IncompletePreferencesUncertainty)Jun2016.pdf
http://www.arnoriedl.com/pdffiles/CettolinRiedl(IncompletePreferencesUncertainty)Jun2016.pdf


29

Cettolin, Elena and Arno Riedl (2018). “Revealed Preferences Under Uncertainty: Evidence

for Convex and Incomplete Preferences”. Mimeo.

Cramton, Peter and Suzi Kerr (2002). “Tradeable carbon permit auctions: How and why

to auction not grandfather”. Energy and Policy, 30, 333–345.

Dekel, Eddie, Amanda Friedenberg and Marciano Siniscalchi (2016). “Lexicographic beliefs

and assumption”. Journal of Economic Theory, 163, 955–985.

Dekel, Eddie and Drew Fudenberg (1990). “Rational behavior with payoff uncertainty”.

Journal of Economic Theory, 52, 243–267.

Dekel, Eddie and Marciano Siniscalchi (2015). “Chapter 12 - Epistemic Game Theory”. In

H. Peyton Young and Shmuel Zamir (editors), Handbook of Game Theory with Economic

Applications, vol. 4, pp. 619–702. Elsevier.

Di Tillio, Alfredo (2008). “Subjective expected utility in games”. Theoretical Economics,

3, 387–323.

Epstein, Larry G. and Tan Wang (1996). ““Beliefs about beliefs” without probabilities”.

Econometrica, 64, 1343–1373.

Feddersen, Timothy and Wolfgang Pesendorfer (1997). “Voting behavior and information

aggregation in elections with private information”. Econometrica, 65, 1029–1058.

Fishburn, Peter C. (1970). Utility theory for decision making. John Wiley & Sons.

Friedenberg, Amanda (2010). “When do type structures contain all hierarchies of beliefs?”.

Games and Economic Behavior, 68(1), 108–129.

Gilboa, Itzhak, Fabio Maccheroni, Massimo Marinacci and David Schmeidler (2010). “Ob-

jective and subjective rationality in a multiple prior model”. Econometrica, 78, 755–770.

Harsanyi, John C. (1967–1968). “Games with incomplete information played by ‘Bayesian’

players, I–III”. Management Science, 14, 159–182, 320–334, 486–502.

Heifetz, Aviad, Martin Meier and Burkhard C. Schipper (2018). “Comprenhensive Ratio-

nalizability”. Mimeo.

Keisler, H. Jerome and Byong Soo Lee (2015). “Common assumption of rationality”. Mimeo.

Keynes, John M. (1936). The general theory of employment, interest and money. Harcourt

Brace and Co.

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2816025
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2816025
http://www.sciencedirect.com/science/article/pii/S0301421501001008
http://www.sciencedirect.com/science/article/pii/S0301421501001008
http://www.sciencedirect.com/science/article/pii/S0022053116000375
http://www.sciencedirect.com/science/article/pii/S0022053116000375
https://sites.google.com/site/eddiedekelsite/RationalBehaviorPayoffUncertainty.pdf?attredirects=0&d=1
http://www.sciencedirect.com/science/article/pii/B9780444537669000124
https://econtheory.org/ojs/index.php/te/article/viewFile/20080287/1965/94
http://people.bu.edu/lepstein/files-research/BeliefAboutBelief1996.pdf
http://faculty.arts.ubc.ca/lhao/teaching/econ515a/feddersen-pesendorfer97.pdf
http://faculty.arts.ubc.ca/lhao/teaching/econ515a/feddersen-pesendorfer97.pdf
https://www.amazon.com/Utility-theory-decision-making-Fishburn/dp/0882757369
http://www.sciencedirect.com/science/article/pii/S0899825609001018
http://www.tau.ac.il/~igilboa/pdf/GMMS_Objective_and_Subjective_Rationality.pdf
http://www.tau.ac.il/~igilboa/pdf/GMMS_Objective_and_Subjective_Rationality.pdf
http://www.dklevine.com/archive/refs41175.pdf
http://www.dklevine.com/archive/refs41175.pdf
http://faculty.econ.ucdavis.edu/faculty/schipper/comprat.pdf
http://faculty.econ.ucdavis.edu/faculty/schipper/comprat.pdf
https://www.math.wisc.edu/~keisler/car-2015-web.pdf
https://www.amazon.com/General-Theory-Employment-Interest-Money/dp/B006XQUGL8


30

Kohlberg, Eilon and Jean-François Mertens (1986). “On the strategic stability of equilibria”.

Econometrica, 54, 1003–1037.

Lee, Byung Soo (2016). “Admissibility and assumption”. Journal of Economic Theory,

163, 42–72.

Lopomo, Giuseppe, Luca Rigotti and Chris Shannon (2011). “Knightian uncertainty and

moral hazard”. Journal of Economic Theory, 146, 1148–1172.

Lopomo, Giuseppe, Luca Rigotti and Chris Shannon (2014). “Uncertainty in mechanism

design”. Mimeo.

Luce, R. Duncan and Howard Raiffa (1957). Games and decisions: Introduction and critical

survey. Dover Books on Mathematics.

Mertens, Jean-François and Shmuel Zamir (1985). “Formulation of Bayesian analysis for

games with incomplete information”. International Journal of Game Theory, 14, 1–29.

Milgrom, Paul (1998). “Game theory and the spectrum auctions”. European Economic

Review, 42, 771–778.

Moulin, Herve (1979). “Dominance solvable voting schemes”. Econometrica, 47, 1337–1351.

Palfrey, Thomas R. and Sanjay Srivastava (1991). “Nash implementation using undomi-

nated strategies”. Econometrica, 59, 479–501.

Pearce, David G. (1984). “Rationalizable strategic behavior and the problem of perfection”.

Econometrica, 52, 1029–1050.

Renyi, Alfred (1955). “On a new axiomatic theory of probability”. Acta Mathematica

Hungarica, 6, 285–335.

Samuelson, Larry (1992). “Dominated strategies and common knowledge”. Games and

Economic Behavior, 4, 284–313.

Sobel, Joel (2017). “A note on pre-play communication”. Games and Economic Behavior,

102, 477–486.

Sobel, Joel (forthcoming). “Iterated weak dominance and interval-dominance supermodular

games”. Theoretical Economics.

Stahl, Dale O. (1995). “Lexicographic rationalizability and iterated admissibility”. Eco-

nomics Letters, 47(2), 155–159.

https://www.jstor.org/stable/1912320
http://www.sciencedirect.com/science/article/pii/S0022053116000077
https://www.sciencedirect.com/science/article/pii/S0022053111000500
https://www.sciencedirect.com/science/article/pii/S0022053111000500
http://www.pitt.edu/~luca/Papers/mechanismdesign.pdf
http://www.pitt.edu/~luca/Papers/mechanismdesign.pdf
https://www.amazon.com/Games-Decisions-Introduction-Critical-Mathematics/dp/0486659437
https://www.amazon.com/Games-Decisions-Introduction-Critical-Mathematics/dp/0486659437
http://www.ma.huji.ac.il/~zamir/papers/22_IJGT85.pdf
http://www.ma.huji.ac.il/~zamir/papers/22_IJGT85.pdf
http://www.sciencedirect.com/science/article/pii/S0014292197001463
http://www.jstor.org/stable/1914004
http://www.jstor.org/stable/2938266
http://www.jstor.org/stable/2938266
https://www.dropbox.com/s/tzfhnlr9ix33xz1/pearce-84.pdf
https://www.dropbox.com/s/q698kg27kxzcwfn/renyi-55.pdf
https://drive.google.com/file/d/0ByKYk1_tFV_vVkJCaTNTd1I5T2M/view
https://www.sciencedirect.com/science/article/pii/S0899825617300349
https://econtheory.org/ojs/index.php/te/article/viewForthcomingFile/2904/21727/1
https://econtheory.org/ojs/index.php/te/article/viewForthcomingFile/2904/21727/1
https://www.sciencedirect.com/science/article/pii/016517659400530F


31

Stauber, Ronald (2011). “Knightian games and robustness to ambiguity”. Journal of

Economic Theory, 146, 248–274.

Stauber, Ronald (2014). “A framework for robustness to ambiguity of higher-order beliefs”.

International Journal of Game Theory, 43, 525–550.

Tan, Tommy Chin-Chiu and Sérgio Ribeiro da Costa Werlang (1988). “The Bayesian

foundations of solution concepts of games”. Journal of Economic Theory, 45, 370–391.

Varian, Hal R. (2007). “Position auctions”. International Journal of Industrial Organizat-

tion, 25, 1163–1178.

Yang, Chih-Chun (2015). “Weak assumption and iterated admissibilty”. Journal of Eco-

nomic Theory, 158, 87–101.

Ziegler, Gabriel and Peio Zuazo-Garin (2019). “Iterated Elimination Procedures and Ro-

bustness to Ambiguity”. Mimeo.

https://www.sciencedirect.com/science/article/pii/S0022053110001201
https://rd.springer.com/article/10.1007/s00182-013-0394-6
https://dl-web.dropbox.com/get/Bibliograf%C3%ADa/Papers/tan-werlang-88.pdf?
https://dl-web.dropbox.com/get/Bibliograf%C3%ADa/Papers/tan-werlang-88.pdf?
http://people.ischool.berkeley.edu/~hal/Papers/2006/position.pdf
https://www.sciencedirect.com/science/article/pii/S0022053115000526

	Introduction
	Non-technical overview
	Examples
	Heuristic treatment of strategic reasoning

	Preliminaries
	Games and iterated strategy elimination
	Decision problems and incomplete preferences
	Games as decision problems

	Reasoning in games
	Ambiguous type structures
	Behavioral and epistemic conditions
	Rationality
	Cautiousness and ambiguity
	Assumption


	Iterated admissibility and ambiguous types
	Epistemic foundation
	Iterated assumption and ambiguity
	(Non-)Emptiness of common assumption of rationality and cautiousness

	Conclusions
	Acknowledgements
	Appendix A: Decisiveness
	Decisiveness
	Discussion

	Appendix B: Characterization result

