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Abstract

We study the optimal use of information in Markov games with incomplete
information on one side and two states. We provide a finite-stage algorithm for
calculating the limit value as the gap between stages goes to 0, and an optimal
strategy for the informed player in the limiting game in continuous time. This
limiting strategy induces an ǫ-optimal strategy for the informed player, provided
the gap between stages is small. Our results demonstrate when the informed
player should use his information and how.
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1 Introduction

In most strategic interactions, the players are not fully informed of the game’s pa-
rameters, like their opponents’ action sets and payoff functions, and sometimes even
their own payoff function and the identity of the opponents. This observation moti-
vates the study of games with incomplete information, which was incepted in the fifties.
Harsanyi [14] introduced the model of Bayesian games, which are one-stage games with
incomplete information. Aumann and Maschler [2, 3] studied repeated games with in-
complete information on one side, provided an elegant characterization to the value,
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and described optimal strategies for the players. The value function of the repeated
game with incomplete information on one side turns out to be the concavification of
the value function of the one shot game, which is parameterized by the prior belief
of the uninformed player over the state. In particular, one optimal strategy of the
informed player involves a single stage of revelation of information, and thereafter the
informed player does not use his information. This characterization has been extended
to continuous-time games by Cardaliaguet [5] (see also Cardaliaguet and Rainer [8, 7],
Grün [12], and Oliu-Barton [19]), and to repeated games with incomplete information
on both sides (see, e.g., Aumann, Maschler, and Stearns [4] and Mertens and Zamir
[17]). For recent surveys on the topic, see [1, 16].

In repeated games with incomplete information, the parameters of the game remain
fixed throughout the interaction. Sometimes these parameters change along the play,
in a way that is independent of the players’ actions. For example, changes in global
markets affect local consumers and producers, who in turn have negligible effect on the
global market. A model that captures this feature is that of Markov games.

Two-player zero-sum Markov games with incomplete information on one side have
been first studied by Renault [20], who proved the existence of the uniform value; see
also Neyman [18] and Hörner, Rosenberg, Solan, and Vieille [15]. Since the state changes
over time, the optimal strategy typically involves a repeated revelation of information.
Recently Cardaliaguet, Rainer, Rosenberg, and Vieille [9] studied discounted two-player
zero-sum Markov games with incomplete information on one side, where the time dura-
tion between stages goes to 0, and characterized the limit value function and the limit
optimal strategy of the informed player; see also Gensbittel [10, 11]. In Cardaliaguet [6]
and Grün [13], numerical schemes are developed for differential (resp. stochastic differ-
ential) games with asymmetric information, by extending time discretization methods
for partial differential equations.

This paper is part of a project whose goal is to study the optimal use of information
in dynamic situations of incomplete information, and to provide an easy to use algorithm
for calculating the value and optimal strategies. We study a simple class of games,
namely, Markov games with incomplete information on one side and two states, denoted
s1 and s2. When the current state is s1 (resp. s2), the probability that the state changes
is π1 (resp. π2). Player 1 knows when the state changes, while Player 2 does not know
it. Yet players observe each other’s actions and have perfect recall, and thus Player 2
may use past actions of Player 1 to deduce the identity of the current state.

We study the limit value as the gap between stages goes to 0. Consequently, the
discount factor as well as the transition probabilities from one state to the other depend
on the gap between stages. We will provide an algorithm for calculating the limit value
of this game, when the gap between stages shrinks to 0, and the probabilities π1 and π2
shrink to 0 as well. The algorithm allows us to propose an ǫ-optimal strategy for the
informed player, as long as the gap between stages is sufficiently small. The optimal
strategy of the informed player alternates between two types of behavior: phases in
which no information is revealed and phases in which information is revealed, and the
algorithm allows us to pinpoint when this change of behavior occurs.
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To get some intuition to the problem we contrast it with the case of repeated games
with incomplete information on one side, in which the state does not change along the
play, as studied by Aumann and Maschler [3]. Denote by pn the belief of the uninformed
player on the state at stage n. The process (pn)n∈N is a martingale that is controlled
by the informed player. By the Martingale Convergence Theorem the process (pn)n∈N
converges to a limit p∞, which implies that as the game evolves information stops being
revealed. In particular under the optimal strategies of the players the stage payoff will
converge to u(p∞), the value of the one-shot game in which the state is chosen according
to the probability distribution p∞ and no player is informed of the chosen state. It can
then be proven that the value of the game is the concavification of the function u, that
is, the smallest concave function that is larger than or equal to u. This, in turn, implies
that the informed player has an optimal strategy in which information is revealed only
at the first stage of the play.

In the model that we study there are two states, hence the belief of the player can
be summarized by the probability that he assigns to state s1. Since the state changes
along the play, the process (pn)n∈N is no longer a martingale; indeed, in addition to
its dependence on the informed player’s actions, the belief has a drift towards the
stationary distribution of the associated Markov chain, denoted1 p∗. We study the
discounted game, and are interested in the optimal way of information revelation. As
in the case of repeated games with incomplete information on one side, there are two
ways in which the informed player can use his information at stage n:

A.1 The informed player may elect not to reveal any information at that stage. The
optimal payoff is then u(pn), and the belief changes because of the drift towards
p∗.

A.2 The informed player may elect to split the belief between two other beliefs: for
some p′, p′′ ∈ [0, 1] and some q ∈ [0, 1], the informed player plays in such a way
that pn+1 = p′ with probability q and pn+1 = p′′ with probability 1− q.

Since we study the limit value as the gap between stages goes to 0, it will be more
convenient to consider the process in continuous time. One can expect that in contin-
uous time, the interval [0, 1] of beliefs will be divided into subintervals, as depicted in
Figure 1. When the belief is in some subintervals, the informed player will reveal no
information, and due to the transition, the belief of the uninformed player will slide
towards the invariant distribution p∗. When the belief is in the other subintervals,
the informed player will reveal information. In the latter case, the stage payoff if no
information is revealed is low, hence the informed player will avoid such beliefs.

This gives rise to two types of information revelations on the side of the informed
player: if the current belief is within a subinterval I = [p′, p′′] which the informed
player wants to avoid, he will split the belief of the uninformed player between the two
endpoints of the interval, namely, p′ and p′′; if the current belief is the upper end of this

1In fact, the complete representation of the distribution is (p∗, 1−p∗), meaning p∗ is the probability
of state s1.
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subinterval and p∗ < p′, since the belief drifts towards the invariant distribution p∗, the
informed player will be able to reveal information in such a way that pn+1 ∈ {p′, p′′}.
This implies that the belief will remain p′′ until it jumps to p′ at a random time; while
if the current belief is the lower end of this subinterval and p∗ < p′, then p′ is the upper
end of a subinterval I ′ in which the informed player reveals no information, and since
the belief drifts towards the invariant distribution p∗ it will not get into the subinterval
[p′, p′′]. If the interval lies below the invariant distribution p∗, the behavior of the
informed player is mirrored.

0 1p∗ p′ p′′p

nonrevealing revealing nonrevealing

Figure 1: Possible information revelation.

The above description of the general structure of the optimal information revelation
strategy is conjectural. To prove that this description is correct, and to provide an algo-
rithm that calculates the value function, we will write down the equations that a value
function that is derived from this description must satisfy, and use the characterization
of the value function as given by Gensbittel [11] to show that this intuition is correct.

We illustrate the optimal revelation strategies by three examples from the seminal
work of Aumann and Maschler [3], adapted to our model. For expositional ease, in
these examples state s2 is absorbing: once the play reaches it, it remains there forever.
In particular, the invariant distribution is p∗ = 0.

Example 1 (Nonrevealing optimal strategy). Consider the Markov game with the pay-
off matrices that appear in Figure 2. For every p ∈ [0, 1] the value of the one-shot
game is u(p) = p(1−p) (see [3], Section I.2 and the dotted line in Figure 3). The value
function is concave, and the informed Player 1 has no incentive to reveal information
to Player 2. Consequently, the limit optimal strategy consists of playing the myopic op-
timal strategy. The belief, which starts at the initial belief, slides towards the invariant
distribution p∗ = 0, and the limit value function is given by the discounted integral of
the function u (see the dark line in Figure 3).

State s1 L R
T 1 0
B 0 0

State s2 L R
T 0 0
B 0 1

Figure 2: The payoff matrices in Example 1.

p

v(p)

u(p)

10
0
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Figure 3: The value function in Example 1.

Example 2. Revealing optimal strategy
Consider the game with the payoff matrices that appear in Figure 4. For every

p ∈ [0, 1] the value of the one-shot game is u(p) = −p(1−p) (see [3], Section I.3, and the
dotted line in Figure 5). The value function is convex, and the informed Player 1 has
incentive to reveal his information to Player 2. Consequently, in the optimal strategy
Player 1 reveals his information at every stage, and the limit value function is identically
0 (see the dark line in Figure 5).

State s1 L R
T -1 0
B 0 0

State s2 L R
T 0 0
B 0 -1

Figure 4: The payoff matrices in Example 2.

v(p)
p

u(p
10

0

Figure 5: The value function in Example 2.

We now exhibit a nontrivial and challenging case, where the function u is neither
convex nor concave.

Example 3. Partial revelation of information
Consider the Markov game with the payoff matrices that appear in Figure 6. For

every p ∈ [0, 1] the value of the one-shot game is given by (see [3], Section I.4 and the
dotted line in Figure 7)

u(p) =





9p2−9p+2
6p−3

, if 0 ≤ p ≤ 1
3
,

0 if 1
3
< p ≤ 2

3
,

9p2−9p+2
6p−3

if 2
3
< p ≤ 1.

(1)

For p ≤ 1
3
the function u is convex, hence it is optimal for Player 1 to reveal some of

his information. He should therefore pick some p0 ≥ 1
3
and split the belief of Player 2

between p = 0 and p = p0. Do we have p0 =
1
3
or p0 >

1
3
?

Consider next the case that the initial belief is p = 1. If Player 1 reveals no infor-
mation, at every stage k in which the belief is pk he obtains the payoff u(pk), and the
belief drifts towards 0. Consequently, his payoff slides down the graph of u. Since in the
interval 1

3
≤ p ≤ 1 the graph of u lies below the line segment that connects the points
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(1
3
, u(1

3
)) and (1, u(1)), it is not optimal for Player 1 to hide his information through-

out: when the belief reaches some point p1 ∈ [1
3
, 1] he should start revealing information.

What is this point p1? How much information does Player 1 reveal? We will answer
these questions and provide an algorithm that describes the limit strategy in the general
case.

State s1 L R
T 1 0
B 0 2

State s2 L R
T -2 0
B 0 -1

Figure 6: The payoff matrices in Example 3.

p

u(p)

v(p)

1
0

− 2

3

1

3

Figure 7: The value function in Example 3.

The paper is organized as follows. The model as well as known results appear in
Section 2. Section 3 details the algorithm, Section 4 demonstrates the algorithm on few
examples, and Section 5 proves the correctness of the algorithm.

2 The model

In this paper we study two-player zero-sum Markov games, which were first studied in
Renault [20]. A two-player zero-sum Markov game G is a vector (S,A,B, g, δ, π1, π2, p)
where

• S = {s1, s2} is the set of states.

• A and B are finite action sets for the two players.

• g : S × A× B → R is a payoff function.

• δ is the discount rate.

• π1 and π2 are the rates of transition.

• p is the prior probability that the initial state is s1.
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The game is played as follows. The initial state s1 is chosen according to the
probability distribution [p(s1), (1−p)(s2)]; that is, the initial state is s1 with probability
p, and s2 with probability 1−p. At every stage k ∈ N the players choose independently
and simultaneously actions ak and bk in their action sets. If sk = s1, then the new state
sk+1 is equal to s1 with probability 1 − π1 and to s2 with probability π1. Similarly, if
sk = s2, then the new state sk+1 is equal to s2 with probability 1 − π2 and to s1 with
probability π2. Player 1 is the maximizer and Player 2 is the minimizer.

For every finite set Y , ∆(Y ) denotes the set of probability distributions over Y . We
assume that information is asymmetric: Player 1 knows the current state while Player 2
does not. In addition, we assume perfect recall. Consequently, a strategy of Player 1
is a sequence σ = (σk)k≥1, where σk : (S × A × B)k−1 → ∆(A) for every k ≥ 1. A
strategy for Player 2 is a sequence τ = (τk)k≥1, where τk : (A × B)k−1 → ∆(B) for
every k ≥ 1. The sets of strategies of Player 1 and Player 2 are denoted by S and T ,
respectively. Every pair of strategies (σ, τ) ∈ S × T , together with the prior belief p,
induces a probability distribution on the space (S×A×B)N of plays, and the payoff is
given by

g(p, σ, τ) := Ep,σ,τ

[
∑

k≥1

δ(1− δ)k−1g(sk, ak, bk)

]
.

The value of the game G is given by

v := max
σ∈S

min
τ∈T

g(p, σ, τ) = min
τ∈T

max
σ∈S

g(p, σ, τ). (2)

The value exists because the payoff is discounted and the strategy spaces of the players
are compact in the product topology. A strategy σ (resp. τ) of Player 1 (resp. Player 2)
that achieves the maximum (resp. minimum) in the second (resp. third) term in Eq. (2)
is called optimal.

We will be interested in the value of the game and in the optimal strategy of Player 1
when the duration between stages is small. Consequently, we will parameterize the
game with a parameter n > 0, that will capture the duration between stages. Thus,
given three positive real numbers r, λ1, and λ2, we denote by G

(n)(p) the Markov game
(S,A,B, g, 1− er/n, 1− eλ1/n, 1− eλ2/n, p). We denote by v(n)(p) = v(n)(p, r, λ1, λ2) the
value of the game G(n)(p). It follows that the rates of switching states are roughly λ1/n
and λ2/n, and therefore the limit invariant distribution as n goes to infinity is

p∗ :=
λ2

λ1 + λ2
.

Denote also
µ :=

r

λ1 + λ2
.

By Cardaliaguet, Rainer, Rosenberg, and Vieille [9] the limit v := limn→∞ v(n) exists
and the limit as n goes to infinity of the optimal strategy of Player 1 can be characterized
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as the solution of a certain optimization problem. We now describe this result. Extend
the domain of the payoff function g to S ×∆(A)×∆(B) in a bilinear fashion:

g(s, x, y) =
∑

a∈A

∑

b∈B
g(s, a, b)x(a)y(b), ∀(x, y) ∈ ∆(A)×∆(B), s ∈ S.

For p ∈ [0, 1], the value of the one-shot game given that the two states s1 and s2 are
observed by none of the players and s1 is the current state with probability p (and s2
with probability 1− p) is

u(p) := max
x∈∆(A)

min
y∈∆(B)

(
pg(s1, x, y) + (1− p)g(s2, x, y)

)
.

Let p ∈ [0, 1] be given and let (Ω,F , P ) be a sufficiently large probability space. Let
S(p) be the set of all càdlàg, [0, 1]-valued processes (pt)t≥0 defined over (Ω,F , P ) that
satisfy E[p0] = p and E[pt|F

p·
s ] = pse

−λ1(t−s)+(1−ps)(1−e
−λ2(t−s)) for every 0 ≤ s ≤ t,

where Fp·
t is the σ-algebra generated by (ps)s≤t.

Theorem 2.1 ([9], Theorem 1). The sequence of functions p 7→ v(n)(p) converges
uniformly to a function v : [0, 1] → R that satisfies

v(p) = max
(pt)t≥0∈S(p)

E

[∫ ∞

0

re−rtu(pt)dt

]
, ∀p ∈ [0, 1]. (3)

The processes (pt)t≥0 ∈ S(t) in Eq. (3) represent the possible revelation mechanisms
induced by the actions of the informed player. In particular, the process that realizes
the maximum in Eq. (3) represents the optimal revelation process for the continuous-
time game. The characterization of v provided by Cardaliaguet, Rainer, Rosenberg,
and Vieille [9] is via a differential equation, as summarized by the next result.

Theorem 2.2 ([9] Theorem 1. P2 ). The limit value function v is the unique viscosity
solution of the equation

min{rv(p)− 〈tRp,Dv(p)〉 − ru(p);−λmaxv(p,D
2v(p))} = 0, ∀p ∈ ∆(2),

where R =

(
−λ1 λ1
λ2 −λ2

)
is the generator of the Markov chain and λmaxv(p,D

2v(p)) is

the maximal eigenvalue of the restriction of D2v(p) to the tangent space at p to ∆(2).

Since in the sequel we will not need any notion of viscosity, we do not provide
their definition, and refer to [9] for the definition used in the above theorem. In [9]
it is also shown how the optimal solution (pt)t≥0 in Eq. (3) can be used to identify
ǫ-optimal strategies for the informed player in the discrete-time game G(n)(p), provided
n is sufficiently large.

In [11], Gensbittel reformulates Theorem 2.2 in terms of directional derivatives.
Using the fact that in the two-state case the resulting equations are one-dimensional,
we can prove that the limit value function v is differentiable on [0, 1] \ {p∗}. This leads
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to the following simple characterisation of v that involves only an ordinary differential
equation.

Recall that the hypograph of a function f : [0, 1] → R is the set of all points that are
on or below the graph of the function. When f is concave, its hypograph is a convex
set, and its set of extreme points coincides with the set of points on the graph of f
where f is not affine, plus the corner points (0, v(0)) and (1, v(1)).

Theorem 2.3. The function v is the unique continuous, concave function v : [0, 1] → R

which is differentiable on [0, 1] except, possibly, at p∗, and that satisfies the following
conditions:

G.1 v(p∗) ≥ u(p∗), with an equality if (p, v(p)) is an extreme point of the hypograph of
v.

G.2 For every p ∈ [0, 1] \ {p∗} we have v′(p)(p− p∗) + µ (v(p)− u(p)) ≥ 0.

G.3 For every extreme point (p, v(p)) of the hypograph of v such that p 6= p∗ we have

v′(p)(p− p∗) + µ (v(p)− u(p)) = 0, (4)

where for p = 0 (resp. p = 1), v′(p) stands for the right (resp. left) derivative of v at p.

Proof. By Theorem 2.12 in Gensbittel [11], the limit value function is the unique con-
cave, Lipschitz function that satisfies

r(v(p)− u(p))−
−→
DV (π,tRπ) ≥ 0, ∀p ∈ [0, 1], π = (p, 1− p),

and, if π = (p, v(p)) is an extreme point of the hypograph of v,

r(v(p)− u(p))−
−→
DV (π,tRπ) ≤ 0, (5)

where
−→
DV (π, ·) is the directional derivative of V : ∆(2) ∋ (p, 1 − p) 7→ V (p, 1 − p) :=

v(p), and R =

(
−λ1 λ1
λ2 −λ2

)
. It follows that

−→
DV (π,tRπ) =





−v′+(p)
r
µ
(p− p∗) if p < p∗,

−v′−(p)
r
µ
(p− p∗) if p > p∗,

−→
DV (π, 0) = 0 for π = (p∗, (1− p∗)).

(6)

The theorem will follow once we show that v′−(p) = v′+(p) for every p ∈ (0, 1) \ {p∗}.
Suppose first that p > p∗. This implies that for every q > p it holds that q > p∗, hence
r
µ
(q − p∗) > 0. Since v is concave, it also implies that v′−(q) ≤ v′+(p) ≤ v′−(p). From

Eqs. (5) and (6) it follows that

0 ≤ µ(v(q)− u(q)) + v′−(q)(q − p∗) ≤ µ(v(q)− u(q)) + v′+(p)(q − p∗).

9



From the continuity of u and v we deduce that

0 ≤ µ(v(p)− u(p)) + (p− p∗)v′+(p) ≤ µ(v(p)− u(p)) + (p− p∗)v′−(p).

If π = (p, v(p)) is an extreme point of the hypograph of v, then

µ(v(p)− u(p)) + (p− p∗)v′−(p) = 0,

and it follows that v′−(p) = v′+(p). If p is not an extreme point of the hypograph of
v, then there exist p1, p2 ∈ [0, 1] and α ∈ (0, 1) such that p = αp1 + (1 − α)p2 and
v(p) = αv(p1) + (1 − α)v(p2). Since v is concave, it follows that v is affine on the
interval [p1, p2], and therefore differentiable on its interior. In particular, v′−(p) = v′+(p)
in this case as well.

Suppose now that p < p∗. In this case for q < p we have r
µ
(q − p∗) < 0 and

v′+(p) ≤ v′−(p) ≤ v′+(q) for every q < p, and an analogous argument to the one provided
above leads to the same result: v′−(p) = v′+(p).

Remark 2.4. The arguments of the proof cannot be used for p = p∗, because tRp∗ = 0.
In fact, the function v may not be differentiable at p∗, see variation b of Example 3
below.

3 An algorithm to calculate the value function and

the optimal revelation process

In this section we present a finite stage recursive algorithm for calculating the limit
value function and the limit optimal strategy for the informed player. We start by
explaining the intuition behind the algorithm.

3.1 Intuition

We shall see that the limit value at the invariant distribution p∗ can be explicitly
calculated. The algorithm will assume that the limit value was already calculated in a
certain closed interval that contains p∗, and will calculate it for a larger interval. The
calculation for beliefs smaller than p∗ will be analogous to the calculation for beliefs
larger than p∗, hence we will concentrate on the latter.

In this section we provide the equations that the limit value function must satisfy
under the three types of information revelation that were discussed in the introduction.

3.1.1 No revelation of information

We first provide the equation that the limit value function satisfies in an interval in
which no information is revealed by the informed player. Fixing the time step 1/n and
the initial distribution p ∈ [0, 1], let v(n)(p) be the value of the corresponding game.

10



Let p∗ < p′ < p′′ ≤ 1 or 0 ≤ p′ < p′′ < p∗, and suppose that, given any belief p ∈ [p′, p′′]
of the uninformed player, the optimal strategy of the informed player is not to reveal
his information. The continuation payoff is given by v(n)(pe−λ1/n +(1− p)(1− e−λ2/n)).
Therefore the value function satisfies the relation

v(n)(p) = (1− e−r/n)u(p) + e−r/nv(n)(pe−λ1/n + (1− p)(1− e−λ2/n)). (7)

Simple algebraic manipulations yield that

v(n)(p)− v(n)
(
pe−λ1/n + (1− p)(1− e−λ2/n)

)

p− (pe−λ1/n + (1− p)(1− e−λ2/n))

=
(1− e−r/n)u(p)− (1− e−r/n)v(n)

(
pe−λ1/n + (1− p)(1− e−λ2/n)

)

p− (pe−λ1/n + (1− p)(1− e−λ2/n))
.

Taking the limit as n goes to ∞ (recall that µ = r
λ1+λ2

and p∗ = λ2

λ1+λ2
) we obtain that

v = limn v
(n) is the solution of the following differential equation:

v′(p) =
µ(u(p)− v(p))

p− p∗
. (8)

3.1.2 Jumping from p′ to p′′

Suppose now the informed player wants to avoid beliefs in some open interval (p′, p′′),
with p∗ < p′, and that moreover in some interval (p′′, p′′′) the informed player revealed
no information. As explained in the introduction, when the belief is p′′, the informed
player will reveal the amount of information that ensures that the belief at the next
stage is either p′ or p′′. We will also assume that if p ∈ (p′, p′′), then when the belief
is p the informed player splits the belief between p′ and p′′. It follows that for every
n ∈ N the value function v(n) is affine on the interval [p′, p′′], and therefore so is the
limit value function v, that is,

v′−(p
′′) =

v(p′′)− v(p′)

p′′ − p′
. (9)

Moreover, since p′′ is an endpoint of an interval in which no information is revealed, by
Eq. (8)

v′+(p
′′) =

µ(u(p′′)− v(p′′))

p′′ − p∗
. (10)

Since v is smooth at p′′, we have v′+(p
′′) = v′−(p

′′), and therefore by Eqs. (9) and (10)
we have

v(p′′)

(
1

p′′ − p′
+

µ

p′′ − p∗

)
=

v(p′)

p′′ − p′
+
µu(p′′)

p′′ − p∗
,

or, equivalently,

v(p′′) =
v(p′)(p′′ − p∗) + µ(p′′ − p′)u(p′′)

p′′ − p∗ + µ(p′′ − p′)
. (11)

11



Substituting v(p′′) from Eq. (11) in Eq. (10) we obtain that

v′(p′′) =
µ(u(p′′)− v(p′))

p′′ − p∗ + µ(p′′ − p′)
. (12)

From the affinity of v we deduce that for every p ∈ [p′, p′′] we have

v(p) = v(p′) + (p− p′)
µ(u(p′′)− v(p′))

p′′ − p∗ + µ(p′′ − p′)
. (13)

3.1.3 Splitting the belief

A third possible strategy for the informed player is to split the belief from p to p′ and
p′′, where p′ < p < p′′. In this case, whenever the belief is in the open interval (p′, p′′)
it will be optimal for the informed player to reveal information in such a way that the
belief is either p′ or p′′. In continuous time this implies that the belief will never be in
the open interval (p′, p′′).

If both p′ and p′′ are smaller than p∗, or both are larger than p∗, then, this kind of
information revelation will possibly occur only once, at the first stage of the game.

If p′ < p∗ < p′′ then this case reduces to the one described in Section 3.1.2: when
the belief is p′′ (resp. p′), it remains at p′′(resp. p′) until it jumps at a random time
to p′ (resp. p′′). Applying Eq. (11) to the jumps from p′ to p′′ and from p′′ to p′, we
obtain two affine equations in v(p′) and v(p′′). If for every p ∈ (p′, p′′) the informed
player splits the belief to p′ and p′′, we obtain a strategy for the informed player that
guarantees a payoff of

v(p) = u(p′)
(µ+ 1)p′′ − p∗

(p′′ − p′)(µ+ 1)
+u(p′′)

p∗ − p′(µ+ 1)

(p′′ − p′)(µ+ 1)
+pµ·

u(p′′)− u(p′)

(p′′ − p′)(µ+ 1)
, p ∈ [p′, p′′].

(14)

Remark 3.1. Substituting p = p∗ in Eq. (14) we obtain:

v(p∗) =
p′′ − p∗

p′′ − p∗
u(p′) +

p∗ − p′

p′′ − p′
u(p′′). (15)

3.1.4 Conclusion

The intuition we presented describes the conjectured behavior of the belief of Player 2
under the optimal strategy of Player 1: in the first stage the belief may split, and
thereafter the behavior alternates between sliding continuously towards the invariant
distribution p∗ and jumping at a random time to a belief closer to p∗.

To find the points where the behavior of the belief changes, we will begin from
“the end”, that is, from p = p∗, and work our way towards p = 1 (and then towards
p = 0). Supposing that the limit value function was already calculated for every belief
p in some interval [p∗, p0], we compare the incremental value of the two strategies
described in Sections 3.1.1 and 3.1.2, find the maximal interval [p0, p1] for which the
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better strategy yields a higher increment, and accordingly extend the definition of the
limit value function to the interval [p∗, p1]. We then conduct the analogous procedure
for p’s smaller than p∗.

3.2 The algorithm to compute the limit value function

In this section we present the algorithm that calculates the limit value function. We
will start with some notations. Given a continuous real valued function f defined on
some interval I ⊂ [0, 1), we define the function a(·, f) : I → R ∪ {+∞} by

a(p, f) := sup
p′∈(p,1]

µ(u(p′)− f(p))

p′ − p∗ + µ(p′ − p)
. (16)

Analogously, if f is defined on some interval I ⊂ (0, 1], we define the function
ã(·, f) : I → R ∪ {−∞} by

ã(p, f) := inf
p′∈[0,p)

µ(u(p′)− f(p))

p′ − p∗ + µ(p′ − p)
.

Note that for p 6= p∗ we have

a(p, f) = max
p′∈[p,1]

µ(u(p′)− f(p))

p′ − p∗ + µ(p′ − p)
and ã(p, f) := min

p′∈[0,p]

µ(u(p′)− f(p))

p′ − p∗ + µ(p′ − p)
.

The function a(·, f) (resp. ã(·, f)) is continuous on I \ {p∗} , and if f(p∗) = u(p∗) and
I = [p∗, p̂] (resp. I = [p̂, p∗]) for some p̂, then f is continuous on I.

Define also




ρ(p, f) := sup
{
p′ ∈ (p, 1] : a(p, f) = µ(u(p′)−f(p))

p′−p∗+µ(p′−p)

}
if p > p∗,

ρ̃(p, f) := inf
{
p′ ∈ [0, p) : ã(p, f) = µ(u(p′)−f(p))

p′−p∗+µ(p′−p)

}
if p < p∗,

(17)

with inf ∅ = 1 and sup ∅ = 0.
To see the motivation for these definitions, recall the discussion in Section 3.1.2.

When Player 1 wants to make the belief of Player 2 jump from some p′ > p to p, the
value function on the interval [p, p′] is affine and given by Eq. (11). In particular, the

slope of the value to the left of p′ is given by µ(u(p′)−v(p))
p′−p∗+µ(p′−p)

, see Eq. (12). To maximize
the payoff in a small neighborhood to the right of p, Player 1 will jump to p from some
p′ that attains the maximum in Eq. (16). The quantity a(p, v) is defined to be the slope
at such optimal belief, and ρ(p, v) is the largest optimal belief. The quantities ã(p, v)
and ρ̃(p, v) have analogous interpretations when p < p∗.

We now present the algorithm, which defines in steps a function w : [0, 1] → R

that is later shown to be the limit value function. The initial step of the algorithm
identifies a closed interval [p̃0, p0] that includes the stationary distribution p∗, on which
the calculation of the limit value function is simple.

13



The algorithm then defines iteratively an increasing sequence (pk)k≥0 of points in
the interval [p0, 1]; at the k’th iteration of the algorithm we define the point pk and
extend the definition of w to include (pk, pk+1]. This part of the algorithm terminates
when pk = 1. Finally, the algorithm defines iteratively a decreasing sequence (p̃k)k≥0 of
points in the interval [0, p̃0] and extends the definition of w to include [p̃k+1, p̃k). This
part of the algorithm terminates when p̃k = 0.

Initialization:
Let p0 = inf{p > p∗, (cav u)(p) = u(p)} and p̃0 = sup{p < p∗, (cav u)(p) = u(p)}.

Define a function w : [p̃0, p0] → R as follows:

• If p̃0 = p∗ = p0, then set w(p∗) = u(p∗).

• If p̃0 < p0, then w is defined as follows. For every p ∈ [p̃0, p0],

w(p) := u(p̃0)
p0(µ+ 1)− p∗

(p0 − p̃0)(µ+ 1)
+ u(p0)

p∗ − p̃0(µ+ 1)

(p0 − p̃0)(µ+ 1)
+ pµ ·

u(p0)− u(p̃0)

(p0 − p̃0)(µ+ 1)
(18)

(compare this expression with Eq. (14)).

Increasing part of the algorithm:

I.1. Let k ≥ 0 and suppose that the function w is already defined on the interval
[p0, pk].

I.2. If pk = 1, the first part of the algorithm terminates; go to Step D.1.

I.3. If pk < 1, let ϕk : [pk, 1] → R be the solution of the following differential equation:

{
ϕk(pk) = w(pk),

ϕ′
k(p) =

µ(u(p)−ϕk(p))
p−p∗

, p ∈ (pk, 1],
(19)

and set
ψk(p) := w(pk) + (p− pk)a(pk, w), ∀p ∈ (pk, 1]. (20)

I.4. If ρ(pk, w) > pk, define
pk+1 := ρ(pk, w). (21)

Extend the domain of w to include (pk, pk+1] by

w(p) := ψk(p), ∀p ∈ (pk, pk+1]. (22)

I.5. Otherwise, ρ(pk, w) = pk. Define

pk+1 := inf{p > pk : ρ(p, ϕk) > p}, (23)

with inf ∅ = 1. Extend the domain of w to include (pk, pk+1] by

w(p) := ϕk(p), ∀p ∈ (pk, pk+1].

14



I.6. Increase k by 1 and go to Step I.2.

Decreasing part of the algorithm:

D.1. Let k ≥ 0 and suppose that the function w is already defined on the interval
[p̃k, p̃0].

D.2. If p̃k = 0, the algorithm terminates.

D.3. If p̃k > 0, let ϕk : [0, p̃k] → R be the solution of the following differential equation:
{
ϕk(p̃k) = w(p̃k),

ϕ′
k(p) =

µ(u(p)−ϕk(p))
p−p∗

, p ∈ [0, p̃k).
(24)

Define
ψ̃k(p) := w(p̃k) + (p− p̃k)ã(p̃k, w), ∀p ∈ [0, p̃k]. (25)

D.4. If ρ(p̃k, w) < p̃k, define

p̃k+1 := ρ(p̃k, w).

Extend the domain of w to include [p̃k+1, p̃k) by

w(p) := ψ̃(p), ∀p ∈ [p̃k+1, p̃k).

D.5. Otherwise, ρ(p̃k, w) = p̃k. Define p̃k+1 := sup{p < p̃k : ρ(p, ϕ) < p}, with
inf ∅ = 0. Extend the domain of w to include [p̃k+1, p̃k) by

w(p) := ϕk(p), ∀p ∈ [p̃k+1, p̃k).

D.6. Increase k by 1 and go to Step D.2.

The idea is that after the initialization, the algorithm decides for each point pk
whether, for beliefs slightly above pk, it is optimal for Player 1 to reveal information
or to reveal nothing until the belief reaches pk. The decision is based on comparison of
derivatives: the derivative of ϕ, the nonrevealing payoff, is compared to a(pk, w), the
highest possible derivative when splitting. The strategy that gives the highest derivative
is the one that is played, for as long as it’s derivative is indeed the higher one. The
changes from a revealing strategy to nonrevealing strategy and vice versa occur at the
points (pk)k≥0 and (p̃k)k≥0, where the former lower derivative becomes the higher one.
Since the derivative from the right is equal to the derivative from the left in points
where the behavior of the informed player changes, the corresponding payoff function,
and consequently the limit value function, turn out to be differentiable.

On intervals (pk, pk+1] (resp. [p̃k+1, p̃k)) where the function w is defined by Step I.4
(resp. D.4), w is linear, while on intervals (pk, pk+1] (resp. [p̃k+1, p̃k)) where the function
w is defined by Step I.5 (resp. D.5), w is nonlinear. We therefore call intervals on which
w is defined by Steps I.4 and D.4 (resp. I.5 and D.5) linear intervals (resp. nonlinear
intervals).

15



Remarks 3.2. 1. In the initialization step, under the optimal strategy of Player 1,
the belief jumps at random times from p̃0 to p0 and back. When p∗ is an ex-
treme point of this interval, say p∗ = p̃0, substituting p = p∗ in Eq. (18) yields
w(p∗) = u(p∗). Consequently, in this case at the belief p∗ there is no revelation of
information.

2. We can already affirm that on the interval [p̃0, p0] the function w coincides with
the value function v. Indeed, by Lemma 2 in [9], for every p ∈ [p̃0, p0], we have

v(p) =

∫ ∞

0

e−rt(cav u)(p∗ + (p− p∗)e−(λ1+λ2)t)dt,

with (cav u)(p) = u(p̃0) +
u(p0)−ũ(p0)

p0−p̃0
(p − p̃0). This integral can be calculated ex-

plicitly and it coincides with the expression of w in Eq. (18).

3. In general Eq. (19) does not have an explicit solution. In the special case that
p∗ = 0 and µ = 1, this equation has an explicit solution, given by

ϕk(p) =
pk
p
ϕ(pk) +

1

p

∫ p

pk

u(t)dt.

4. Calculating the limit of the term on the right-hand side of Eq. (16) as p′ converges

to p, we deduce that for every function f we have a(p, f) ≥ µ · u(p)−f(p)
p−p∗

, provided

p 6= p∗. In particular, substituting f = ϕk, the solution of Eq. (19), this gives

a(p, ϕk) ≥ ϕ′
k(p).

On a nonlinear interval (pk, pk+1] we can be even more precise: for every p such
that ρ(p, ϕk) = p, it follows from the definition of a(p, ϕk) that

a(p, ϕk) = µ ·
u(p)− ϕk(p)

p− p∗
= ϕ′

k(p). (26)

In particular, given that pk+1 = inf{p > pk : ρ(p, ϕk) > p}, Eq. (26) holds for
every p ∈ (pk, pk+1) as well as for the right (resp. left) derivative of ϕk for p = pk
(resp. p = pk+1).

We now state the main theorem of the paper.

Theorem 3.3. 1. For every k ≥ 0 such that pk < 1 we have pk < pk+1.

2. For every k ≥ 0 such that p̃k > 0 we have p̃k+1 < p̃k.

3. The algorithm terminates after a finite number of iterations; that is, there is k ≥ 0
such that pk = 1 and there is k ≥ 0 such that p̃k = 0.

4. The function w generated by the algorithm is the limit value function of the game,
i.e., w = v.

The proof of Theorem 3.3 is relegated to Section 5, after the algorithm is demonstrated
on some examples.
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4 Examples

In this section we illustrate the algorithm on the three examples provided in the Intro-
duction. We will also analyze two variants of the third example; the first will illustrate
the algorithm when there is more than one iteration, and the second will show that the
limit value function may be nondifferentiable at p∗. Recall that in these examples, the
state s2 is absorbing, so that p∗ = 0 and µ = r = 1.

Example 1, continued. In this example the function u is given by u(p) = p(1−p) for
every p ∈ [0, 1]. The function u is concave, and so p̃0 = p0 = 0, and w(0) = 0. We next
have to compute the solution of Eq. (19) with initial condition ϕ(0) = 0. For p ∈ [0, 1],
it is (see Remark 3.2.3)

ϕ(p) =
0

p
+

1

p

∫ p

0

t(1− t)dt =
p

2
−
p2

3
.

It follows that

a(p, ϕ) = sup
p′∈(p,1]

p′(1− p′)− p
2
+ p2

3

2p′ − p
.

For every p ∈ [0, 1] the supremum is obtained only at p′ = p, that is ρ(p, ϕ) = p for
every p ∈ [0, 1]. This implies that the condition of Step I.5 holds, p1 = 1, and the first
part of the algorithm terminates. Since p̃0 = 0, the second part of the algorithm is
vacuous. In conclusion, the limit value function is given by

v(p) =
p

2
−
p2

3
, ∀p ∈ [0, 1],

and the optimal strategy of Player 1 is never to reveal his information.

Example 2, continued. Recall that in this example the function u is given by u(p) =
−p(1− p) for every p ∈ [0, 1]. Since (cav u)(p∗) = 0 = αu(0)+ (1−α)u(1), ∀α ∈ [0, 1],
we have p̃0 = 0 and p0 = 1. From Eq. (18) we obtain that v(p) = 0 for every p ∈ [0, 1].
Consequently, the optimal strategy of Player 1 is to always reveal his information.

Example 3, continued. In this example the function u(p) is given by Eq. (1) and
is represented by the dotted line in Figure 7. For this example the algorithm runs as
follows. Since p∗ = 0 we have p̃0 = 0. Simple calculations show that p0 =

1
3
, and from

Eq. (18) we have w(p) = −2
3
+ p for every p ∈ [0, 1

3
]. On [1

3
, 2
3
] the solution of Eq. (19)

is ϕ0(p) =
1
3p
v(1

3
) + 1

p

∫ p
1
3
0 dx = − 1

9p
. It follows that, for p ∈ [1

3
, 2
3
],

a(p, ϕ0) = supp′∈(p,1]
u(p′)−ϕ0(p)

2p′−p

= max

{
supp′∈(p, 2

3
)
−ϕ0(p)
2p′−p

; supp′∈[ 2
3
,1]

9p′2−9p′+2
3(2p′−1)

+ 1
9p

2p′−p

}

= max
{

1
9p2
, 6p+1
9p(2−p)

}
,

17



where the suprema are respectively attained at p and 1. Solving 1
9p2

= 6p+1
9p(2−p)

, we obtain

a(p, ϕ0) =

{
1

9p2
with ρ(p, ϕ0) = p, for p < p̄ := −1+

√
13

6
,

6p+1
9p(2−p)

with ρ(p, ϕ0) = 1, for p ≥ p̄.

Therefore (using Step I.5) p1 = inf{p > p0, ρ(p, ϕ0) > p} = p̄ and w(p) = ϕ0(p) = − 1
9p2

for p ∈ [1
3
, p̄]. Finally (Step I.4) p2 = ρ(p̄, w) = 1 and w(p) = − 1

9p
+ 1

9p2
(p− p̄) on [p̄, 1],

and the algorithm terminates. In conclusion, the limit value function is given by

v(p) =






p− 2
3
, if 0 ≤ p < 1

3
,

− 1
9p
, if 1

3
≤ p < p̄, with p̄ =

√
13−1
6

(≃ 0, 434),

− 1
9p̄

+ 1
9p̄2

(p− p̄), if p̄ ≤ p ≤ 1.

(27)

In particular

v(1) =
1

9p̄2
(2p̄− 1).

We will now solve two variants of Example 3, in which state s2 is not absorbing and
µ is not 1.
Example 3, variation a.

We here analyze the algorithm when λ1 = 3 and λ2 = r = 1, so that µ = 1
4
and

p∗ = 1
4
.

1. Initialization: Simple calculations yield that p̃0 = 1
3
and p0 = 1. By Eq. (18) we

obtain w(p) = 2
15
(3p− 2) for p ∈ [0, 1

3
]. In particular w(1

3
) = − 2

15
.

2. Now we have to compute the solution of Eq. (19) with the initial condition ϕ(1
3
) =

− 2
15
. For p ∈ [1

3
, 2
3
], the solution is

ϕ(p) = −
2

15
3−

1
4 (4p− 1)−

1
4 ,

and we obtain

a(p, ϕ) = max

{
u(p)− ϕ(p)

4p− 1
,
u(1)− ϕ(p)

4− p

}
= max

{
−

ϕ(p)

4p− 1
,
2
3
− ϕ(p)

4− p

}
.

Following Step I.5 of the algorithm, p1 is the last p ∈ (1
3
, 1] that satisfies the

relation

a(p, ϕ) =
u(p)− ϕ(p)

4p− 1
.

On [1
3
, 2
3
], this relation is equivalent to

(4p− 1)−
5
4 (1− p) = 3

1
4 ,

which yields p1 ≃ 0.3858.
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3. The next step is to determine p2 and the function w on the interval (p1, p2]. As
already noted, we have

a(p1, w) = sup
p∈[p1,1]

u(p′)− w(p1)

4p− p1 − 1
=

2
3
− w(p1)

4− p1
,

and the supremum is attained at p′ = 1. Let Ψ(p) = w(p1) + (p− p1)a(p1, w), for
every p ∈ [p1, 1]. It can be shown that, for every p ∈ (p1, 1) we have a(p1, w) >
u(p)−Ψ(p)

4p−1
. Therefore p2 = 1, and, for every p ∈ [p1, 1], w(p) = Ψ(p). The first part

of the algorithm ends.

4. Since p̃0 = 0, the second part of the algorithm is vacuous.

In conclusion, the limit value function is given by

v(p) =





2
15
(3p− 2), if 0 ≤ p < 1

3
,

− 2
15
3−

1
4 (4p− 1)−

1
4 , if 1

3
≤ p < p1,

ap+ b if p ∈ (p1, 1],

(28)

where a =
2
3
−w(p1)

4−p1
≃ 0.21709 and b = 2

3
− 4a ≃ −0.20177.

Example 3, variation b.

We here analyze the algorithm when λ1 =
4
3
, λ2 =

2
3
, and r = 1, so that p∗ = 1

3
and

µ = 1
2
.

1. Initialization: Simple calculations show that (cav u)(1
3
) = u(1

3
) = 0 and p̃0 =

p0 =
1
3
.

2. We turn to the first part of the algorithm. The reader can verify that

a(1
3
, w) = sup

p′∈( 1
3
,1]

µ(u(p′)− w(1
3
))

p′ − 1
3
+ µ(p′ − 1

3
)
= max

p′∈[ 2
3
,1]

9p′2−9p′+2
6p′−3

− 0

2(p′ − 1
3
) + (p′ − 1

3
)
= max

p′∈[ 2
3
,1]

3p′ − 2

6p′ − 3
.

This maximum is obtained at p′ = 1. Therefore, ρ(p0, w) = 1, and the condition
of Step I.4 holds. We obtain a(1

3
, w) = 1

3
, and the first part of the algorithm ends

with p1 = 1.

3. For the second part of the algorithm we compute

ã(p̃0, w) = ã(1
3
, w) = inf

p′∈[0, 1
3
)

µ(u(p)− w(1
3
))

p′ − 1
3
+ µ(p′ − 1

3
)
= inf

p′∈[0, 1
3
)

9p′2−9p′+2
6p′−3

3p′ − 1
= inf

p′∈[0, 1
3
)

3p′ − 2

6p′ − 3
.

This infimum is obtained at p′ = 0. Therefore, ρ(p̃0, w) = 0, and the condition of
Step D.4 holds. We obtain ã(1

3
, w) = 2

3
, and the algorithm ends with p̃1 = 0.
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In conclusion, the limit value function is given by:

v(p) =

{
1
3
p− 1

9
, if 0 ≤ p < 1

3
,

2
3
p− 2

9
, if 1

3
≤ p < 1̄,

(29)

and it is not differentiable at p∗ = 1
3
.

4.1 The optimal strategy of the informed player

The algorithm provided above allows one to describe the process (pt)t≥0 that attains
the maximum in Eq. (3). As shown in [9], this process allows one to approximate an
ǫ-optimal strategy for the informed player in the game G(n)(p), provided n is sufficiently
large. The ǫ-optimal strategy depends on a parameter q, that changes along the play.
The initial value of q is p, the initial belief of Player 2. In stage n, if q is an interior point
of a linear interval [pk, pk+1], then Player 1 reveals some information by performing a
randomization which depends on his excess information. This randomization changes
Player 2’s belief to either pk or pk+1, with appropriate probabilities. Using the termi-
nology of [9], over these intervals, the strategy of Player 1 is revealing. If, on the other
hand, q is an interior point of a nonlinear interval [pk, pk+1], then Player 1 reveals no
information (and plays the optimal strategy in the one-shot game among those that
reveal no information).

5 Proof of Theorem 3.3

This section is devoted to the proof of Theorem 3.3. In Section 5.1 we study the sequence
(pk) and show that the algorithm provided in Section 3.2 terminates. In Section 5.2 we
show that the function w is concave and differentiable everywhere, except, possibly, at
p∗. In Section 5.3 we show that w = v.

5.1 On the sequence (pk)

In this section we study the sequence (pk). We will show that it is strictly increasing
(Lemma 5.2) and that if pk is defined by Eq. (21) then pk+1 is defined by Eq. (23), and
vice versa (Lemma 5.3). We will then show that there is k ∈ N such that pk = 1. We
start with a technical lemma that will determine the value of u and ϕ on the elements
of the sequence (pk).

Lemma 5.1. Let q ∈ (p∗, 1). Suppose that w is defined at q and set ρ := ρ(q, w).
Suppose that u is twice differentiable on some open interval I that contains ρ.

1. If q < ρ, then

i) u′(ρ) = 1+µ
µ
a(q, w),

ii) u′′(ρ) ≤ 0.
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2. Let ϕ : [q, 1] → R be a function satisfying ϕ(q) = w(q) and ϕ′(p)(p − p∗) =
µ
(
u(p)− ϕ(p)

)
on [q, 1]. If q = ρ, then ϕ′′(q) ≤ 0.

Proof. We start with the first claim. Set ∆(p) := p−p∗+µ(p−q) and F (p) := µ· u(p)−w(q)
∆(p)

for every p ∈ I. Since u is differentiable on I, the function F is also differentiable on I,
and its derivative is

F ′(p) = µ ·
u′(p)∆(p)− (1 + µ)(u(p)− w(q))

∆2(p)
. (30)

If q < ρ, then ρ is a local extremum in I of F , and we have F ′(ρ) = 0. From Eq. (30)
we obtain

u′(ρ) = (1 + µ)
u(ρ)− w(q)

∆(ρ)
= (1 + µ)

u(ρ)− w(q)

ρ− p∗ + µ(ρ− q)
. (31)

Item (i) follows by the definition of a(q, w).
The second derivative of F at ρ is

F ′′(ρ) = µ ·
u′′(ρ)∆2(ρ)− 2(1 + µ) (u′(ρ)∆(ρ)− (1 + µ)(u(ρ)− w(q)))

∆3(ρ)
. (32)

From Eq. (31) the second term in the numerator in Eq. (32) vanishes, hence

u′′(ρ) = 1
µ
F ′′(ρ)∆(q).

Since ρ is a local maximum of F , we have F ′′(ρ) ≤ 0. Since ∆(ρ) > 0, item (ii) follows.
We turn to the second claim. If ρ = q, the maximum of F on [q, 1] is attained at q.

Therefore F ′(q) ≤ 0. It follows from Eq. (30) that

u′(q) ≤ (1 + µ)
u(q)− ϕ(q)

q − p∗
=

1 + µ

µ
ϕ′(q). (33)

Further, from the relation ϕ′(q)(q − p∗) = µ(u(q)− ϕ(q)), we get

ϕ′′(q)(q − p∗) = µu′(q)− (1 + µ)ϕ′(q). (34)

Eqs. (33) and (34) imply that ϕ′′(q) ≤ 0.

Lemma 5.2. For all k ≥ 0 such that p∗ ≤ pk < 1, we have pk < pk+1.

Proof. Since the function u is semi-algebraic, there exists ǫ > 0 such that u is smooth
on the interval (pk, pk + ǫ).

If ρ(pk, w) > pk, then (pk, pk+1] is a linear interval and pk+1 = ρ(pk, w) > pk: the
claim is trivially satisfied. If ρ(pk, w) = pk, then (pk, pk+1] is a nonlinear interval and

pk+1 = inf{p > pk, ρ(p, ϕ) > p}, (35)

where ϕ is the solution of Eq. (19). In this case the result is not trivial. We shall prove
it by contradiction.
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Suppose to the contrary that pk+1 = pk. Then Eq. (35) implies the existence of a
sequence (qn)n∈N ⊂ (pk, pk + ǫ) such that qn ց pk and ρ(qn, ϕ) > qn for every n ∈ N.
In what follows, we set ρn := ρ(qn, ϕ).

Let ρ̄ be an accumulation point of the sequence (ρn)n∈N and denote still by (qn)n∈N
a subsequence of (qn)n∈N that converges to ρ̄. Since p 7→ a(p, ϕ) is continuous,2 and
since

a(qn, ϕ) = µ ·
u(ρn)− ϕ(qn)

ρn − p∗ + µ(ρn − qn)
, (36)

letting n tend to ∞ in Eq. (36) we get

a(pk, ϕ) = µ ·
u(ρ̄)− ϕ(pk)

ρ̄− p∗ + µ(ρ̄− pk)
.

By assumption, the value a(pk, ϕ) is attained only at pk = ρ(pk, ϕ). Thus ρ̄ = pk. By
taking a subsequence of (qn)n∈N, still denoted (qn)n∈N, we can assume that ρn+1 < qn <
ρn for every n ∈ N.

By Lemma 5.1(1) we have u′′(ρn) ≤ 0 for every n ∈ N. The function u is semi-
algebraic, hence u′′(p) ≤ 0 on an interval (pk, q

n0) for some n0 large enough. This
implies that u′ is nonincreasing and u is concave on (pk, q

n0). We can strengthen this
conclusion : we can choose n0 such that u′ is strictly decreasing and u is strictly concave
on (pk, q

n0). Indeed, suppose that this does not hold. In this case u is linear in a small
one-sided neighborhood of pk: there exist ǫ̃ ≤ ǫ and α, β ∈ R such that u(p) = αp + β
for all p ∈ [pk, pk + ǫ̃]. By Lemma 5.1(1), it follows that µ

1+µ
α = a(qn, ϕ) = a(pk, ϕ) for

n sufficiently large. By Eq. (36) we therefore have

a(pk, ϕ) = µ ·

1+µ
µ
a(pk, ϕ)ρ

n + β − ϕ(qn)

ρn − p∗ + µ(ρn − qn)

or, equivalently, β + a(pk ,ϕ)
µ

(p∗ + µqn) = ϕ(qn). In addition, for every p > ρn we have
by the definition of ρn

a(pk, ϕ) = a(qn, ϕ) > µ ·
u(p)− ϕ(qn)

p− p∗ + µ(p− qn)
= µ ·

1+µ
µ
a(pk, ϕ)p+ β − ϕ(qn)

p− p∗ + µ(p− qn)
,

or, equivalently, β + a(pk ,ϕ)
µ

(p∗ + µqn) < ϕ(qn), a contradiction. It follows that u′ is
strictly decreasing in a small one-sided neighborhood of pk.

Fix n > n0. Since u′ is strictly decreasing on (pk, q
n0), we have u′(ρn) < u′(ρn+1).

By Lemma 5.1(1) applied to qn and qn+1, we deduce that a(qn, ϕ) < a(qn+1, ϕ). Since
the function p 7→ a(p, ϕ) is continuous, there exists q′ ∈ (qn+1, qn) such that ρ′ :=
a(q′, ϕ) ∈ (ρn+1, ρn) and

a(qn, ϕ) < a(q′, ϕ). (37)

2Since we consider a nonlinear interval, w = ϕ on (pk, pk+1], hence a(p, ϕ) = a(p, w) on that interval.
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Consider now the function Ψ on [q′, 1] defined by Ψ(p) := ϕ(q′) + a(q′, ϕ)(p− q′). The
reader can verify that the function Ψ is a solution of

Ψ(q′) = ϕ(q′),
Ψ′(p)(p− p∗) = µ(ū(p)−Ψ(p)), p ∈ [q′, 1],

with ū(p) = ϕ(q′) + a(q′,ϕ)
µ

(
p − p∗ + µ(p − q′)

)
for every p ∈ [q′, 1]. It follows that the

function γ : [q′, 1] → R defined by γ(p) := Ψ(p)− ϕ(p) is a solution of

γ(q′) = 0,
γ′(p)(p− p∗) = µ(ũ(p)− γ(p)), p ∈ (q′, 1),

(38)

with ũ(p) = ū(p)− u(p). Eq. (38) can be solved quasi-explicitly:

γ(p) = c(p)(p− p∗)−µ, p ∈ [q′, 1],

with c(q′) = 0 and c′(p) = µũ(p)(p− p∗)µ−1.
By the definition of a(q′, ϕ) and ū, the function ũ is nonnegative on [q′, 1]. It follows

that, for every p ∈ [q′, 1] we have c(p) ≥ 0 and consequently γ(p) ≥ 0, which is
equivalent to Ψ(p) ≥ ϕ(p). Substituting p = qn, we obtain in particular that Ψ(qn) ≥
ϕ(qn), or, equivalently,

ϕ(qn)− ϕ(q′) ≤ a(q′, ϕ)(qn − q′). (39)

To derive a contradiction, recall that, by the definition of a(q′, ϕ) and a(qn, ϕ),

u(ρ′) = ϕ(q′) +
a(q′, ϕ)

µ
(ρ′ − p∗ + µ(ρ′ − q′))

and

u(ρ′) ≤ ϕ(qn) +
a(qn, ϕ)

µ
(ρ′ − p∗ + µ(ρ′ − qn)).

Combining these two equations with Eq. (39) we obtain

a(q′, ϕ)(ρ′ − p∗ + µ(ρ′ − qn)) ≤ a(qn, ϕ)(ρ′ − p∗ + µ(ρ′ − qn)).

Since ρ′ > p∗ and ρ′ > qn this implies that a(q′, ϕ) ≤ a(qn, ϕ), contradicting Eq. (37).
It follows that pk+1 that is defined by Eq. (35) satisfies pk+1 > pk.

The following lemma says that linear intervals are followed by nonlinear intervals
and vice versa.

Lemma 5.3. 1. If p∗ < p0 < 1, then ρ(p0, w) = p0 and (p0, p1] is a nonlinear
interval. (If p0 = p∗, then (p0, p1] may be a linear or a nonlinear interval.)

2. For every k ≥ 1 such that pk > 1, if (pk−1, pk] is a linear interval (resp. a nonlinear
interval), then (pk, pk+1] is a nonlinear interval (resp. a linear interval).
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Proof. By the definition of p̃0 and p0, we have

u(p)− u(p0)

p− p0
<
u(p0)− u(p̃0)

p0 − p̃0
, ∀p ∈ (p0, 1].

Simple (though tedious) algebraic manipulations combining this inequality with Eq. (18)
for p = p0 yield

u(p)− w(p0)

p− p∗ + µ(p− p0)
<
u(p0)− w(p0)

p0 − p∗
, ∀p ∈ (p0, 1].

Claim 1 follows.
We turn to prove Claim 2. Suppose that (pk−1, pk] is a linear interval. By construc-

tion we have

a(pk−1, w) = µ ·
u(pk)− w(pk−1)

pk − p∗ + µ(pk − pk−1)
. (40)

Since on the interval (pk−1, pk] the function w is defined by Eqs. (22) and (20), we have
w(pk−1) = w(pk)− a(pk−1, w)(pk − pk−1), and Eq. (40) becomes

a(pk−1, w) = µ ·
u(pk)− w(pk)

pk − p∗
. (41)

To show that (pk, pk+1] is a nonlinear interval we will show that ρk := ρ(pk, w) = pk.
By Eq. (41) and Remark 3.2.4 we have

a(pk−1, w) = µ ·
u(pk)− w(pk)

pk − p∗
≤ a(pk, w) = µ ·

u(ρk)− w(pk)

ρk − p∗ + µ(ρk − pk)
.

Using again the relation w(pk) = w(pk−1) + a(pk−1, w)(pk − pk−1), this last inequality
becomes

a(pk−1, w) ≤ µ ·
u(ρk)− w(pk−1)

ρk − p∗ + µ(ρk − pk−1)
.

Since ρ(pk−1, w) is the maximal p′ that satisfies a(pk−1, w) = µ · u(p′)−w(pk−1)

p′−p∗+µ(p′−pk−1)
, this

implies that ρ(pk, w) = ρ(pk−1, w) = pk, which is what we wanted to prove. For later
use we note that in this case we have a(pk−1, w) = a(pk, w).

Finally assume that (pk−1, pk] is a nonlinear interval, so that pk = inf{p > pk−1, ρ(p, w) >
p}. To prove that (pk, pk+1] is a linear interval we will show that ρ(pk, w) > pk. Suppose
to the contrary that ρ(pk, w) = pk. Then, the algorithm dictates that pk+1 = inf{p >
pk, ρ(p, ϕk) > p} and w = ϕk on (pk, pk+1]. By the definition of pk, this implies that
pk+1 = pk, contradicting Lemma 5.2. We conclude that (pk, pk+1] is a linear interval.

Lemma 5.4. The algorithm ends after a finite number of iterations: there exists k ≥ 0
such that pk = 1 and there exists k̃ ≥ 1 such that p̃k̃ = 0.
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Proof. We will prove the first claim. The second claim is proven analogously. Assume
by contradiction that pk < 1 for every k ∈ N, and set p∞ = limn→∞ pn. By Lemma 5.2,
(pk, pk+1) 6= ∅ for every k ∈ N. Since u is semi-algebraic, there is n0 sufficiently large
such that u is twice differentiable on [pn0, p∞). Let k ≥ n0 be such that the interval
(pk, pk+1] is linear. By Eq. (26) and the definition of a(pk, w) (Eq. (16)),

• a(pk, w) = µ · u(pk)−w(pk)
pk−p∗

= µ · u(pk+1)−w(pk)

pk+1−p∗+µ(pk+1−pk)
,

• a(pk, w) ≥ µ · u(p)−w(pk)
p−p∗+µ(p−pk)

, for every p ∈ (pk, pk+1).

Equivalently, if we set

f(p) = µ(u(p)− w(pk))− a(pk, w)− a(pk, w)(p− p∗ + µ(p− pk)), (42)

it holds that f(pk) = f(pk+1) = 0 and f(p) ≤ 0 for every p ∈ (pk, pk+1).
By Lemma 5.3 there are infinitely many linear intervals. We argue now that,

provided k is sufficiently large, if the interval (pk, pk+1] is linear then there exists
p ∈ (pk, pk+1) with f(p) < 0. Indeed, if this is not true, then for every such k suf-
ficiently large, f(p) = 0 for every p ∈ (pk, pk+1). By Eq. (42) this implies that u is
affine on (pk, pk+1). Since u is semi-algebraic, it is affine on the whole interval [pn1 , p∞),
for some large enough n1. But in this case, for every k ≥ n1, if ρ(pk, w) > pk then
ρ(pk, w) = p∞, contradicting the fact that pk < p∞ for every k.

We conclude that for every k sufficiently large such that the interval (pk, pk+1] is
linear there is p ∈ (pk, pk+1) satisfying f(p) < 0. In that case we can also find p′ ∈
(pk, pk+1) such that f ′′(p′) > 0. Since f ′′ = µu′′, this implies that u′′(pk) > 0. Since u is
semi-algebraic, this implies that u′′(p) > 0 for every p sufficiently close to p∞. However,
by Lemma 5.1 (1.ii), u′′(q) ≤ 0 for some q ∈ (pk, pk+1), a contradiction.

5.2 The function w is differentiable and concave

Lemma 5.5. The function w is differentiable on [0, p∗) ∪ (p∗, 1]. If p̃0 < p∗ < p0, then
w is differentiable everywhere.

Proof. By its definition, the function w is linear on [p̃0, p0]. Hence w is differentiable
on (p∗, p0), and if p̃ < p∗ < p0 then w is differentiable at p∗.

We next note that w is differentiable on each interval (pk−1, pk). Indeed, on each of
these intervals, w is affine or the solution of a standard first order differential equation.

We now show that w is differentiable at each of the points (pk)k≥1, and, if p
∗ < p0,

it is also differentiable at p0. Denote by w′
−(p) (resp. w′

+(p)) the left (resp. right)
derivative of w at p.

If p∗ < p0, then w is affine on [p∗, p0] and by Eq. (18) we have w′
−(p0) =

µ(u(p0)−u(p̃0))
(p0−p̃0)(µ+1)

.

By definition, w′
+(p0) = ϕ′

+(p0) = µ · u(p0)−w(p0)
p0−p∗

. Substituting w(p0) by its expression

in Eq. (18), we deduce that w′
+(p0) = w′

−(p0).
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For k ≥ 1, either ρ(pk, w) > pk or ρ(pk, w) = pk. In the first case, (pk, pk+1] is a

linear interval, and then w′
−(pk) = µ · u(pk)−w(pk)

pk−p∗
and w′

+(pk) = µ · u(pk+1)−w(pk)

pk+1−p∗+µ(pk+1−pk)
. pk

is defined to be inf {p > pk−1 : ρ(p, ϕk−1) > p}. Thus, for all p ∈ (pk−1, pk) we have

u(pk+1)− w(p)

pk+1 − p∗ + µ(pk+1 − p)
≤
u(p)− w(p)

p− p∗
.

Since pk is the infimum of a decreasing sequence where the last inequality is reversed,
and by the continuity of w and u, we get the equality of the derivatives.

In the second case the interval (pk−1, pk] is linear. For such k we have w′
−(pk) =

a(pk−1, w) and w
′
+(pk) = µ · u(pk)−w(pk)

pk−p∗
, and the equality of the derivatives follows from

Eq. (41).
Analogous arguments hold for the interval [0, p∗).

Lemma 5.6. The function w is concave.

Proof. On the interval [p̃0, p0] and on linear intervals the function w is affine. We turn
to prove that w is concave on the nonlinear intervals. We will only discuss nonlinear
intervals defined by Step I.5.

On nonlinear intervals the function w coincides with the solution ϕ of Eq. (19).
Moreover, ρ(q, ϕ) = q for every q in such an interval. The function u is semi-algebraic,
hence twice differentiable on [0,1], except possibly at finitely many points. If q is in a
nonlinear interval and u is twice differentiable at q, then u is twice differentiable in an
open neighborhood of q, and hence, by Lemma 5.1(2), we have w′′(q) = ϕ′′(q) ≤ 0.

It follows that the interval [0, 1] can be partitioned into finitely many subintervals
such that w′ is weakly decreasing on the interior of each of the subintervals. If w is
differentiable on [0, 1], we can conclude from this that w′ is decreasing everywhere,
i.e., w is convex on the whole interval [0, 1]. By Lemma 5.5, this is the case when
p̃0 < p∗ < p0. If p∗ = 0 (resp. p∗ = 1) then w is concave on (0, 1] (resp. [0, 1)), and
hence also on [0, 1].

Suppose then that p∗ ∈ (0, 1), and p∗ = p0 or p∗ = p̃0. In this case we have to
examine the behavior of w at p∗, where it may not be differentiable. We will handle
the case p∗ = p0. The case p∗ = p̃0 is solved analogously.

Since w is differentiable on [0, p∗) ∪ (p∗, 1], both the left and the right derivatives
at p∗ exist, and it is sufficient to show that w′

+(p
∗) ≤ w′

−(p
∗). We will show that

w′
+(p

∗) = a(p∗, w). Indeed, when p∗ = p0 we have w(p∗) = u(p∗), and therefore

a(p∗, w) =
µ

1 + µ
sup

p∈(p∗,1]

u(p)− u(p∗)

p− p∗
.

We distinguish between two cases.

• If ρ(p∗, w) > p∗, then the interval [p∗, p1] is linear, that is, w = ψ0, and we have

w′
+(p

∗) = ψ′
0+(p

∗) = a(p∗, w).
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• If ρ(p∗, w) = p∗, then the interval [p∗, p1] is nonlinear. In this case, we have

w′
+(p

∗) = ϕ′
0+(p

∗) = limpցp∗ ϕ
′
0(p) = limpցp∗ µ · u(p)−ϕ0(p)

p−p∗

= µ limpցp∗
u(p)−u(p∗)

p−p∗
− µ limpցp∗

ϕ0(p)−ϕ0(p∗)
p−p∗

= µu′+(p
∗)− µϕ′

0+(p
∗) = µu′+(p

∗)− µw′
+(p

∗).

It follows from Eq. (43) that

w′
+(p

∗) =
µ

1 + µ
u′+(p

∗) =
µ

1 + µ
sup

p∈(p∗,1]

u(p)− u(p∗)

p− p∗
= a(p∗, w).

We now calculate w′
−(p

∗). If p̃0 = p0 = p∗, a similar argument shows that w′
−(p

∗) =

ã(p∗, w) = µ
1+µ

infp∈[0,p∗)
u(p)−u(p∗)

p−p∗
. However, in this case, at p0 the function u is equal

to its convex hull, and therefore

w′
+(p

∗) =
µ

1 + µ
sup

p∈(p∗,1]

u(p)− u(p∗)

p− p∗
≤

µ

1 + µ
inf

p′∈[0,p∗)

u(p′)− u(p∗)

p′ − p∗
= w′

−(p
∗),

as desired. If p̃0 < p0 = p∗, Eq. (18) yields

w′
−(p

∗) =
µ

1 + µ

u(p0)− u(p̃0)

p0 − p̃0
.

From the definition of p̃0 and p0 we deduce that

u(p0)− u(p̃0)

p0 − p̃0
≥ sup

p∈(p0,1]

u(p)− u(p0)

p− p0
, (43)

and once again it follows that w′
+(p

∗) ≤ w′
−(p

∗).

5.3 The functions w and v coincide.

Proposition 5.7. For every p ∈ [0, 1] we have w(p) = v(p).

Proof. To prove the claim we show that the function w satisfies the conditions of The-
orem 2.3. Condition G.1 holds by the definition of w on the interval [p̃0, p0]. By
Lemmas 5.5 and 5.6, w is concave and differentiable on [0, 1] \ {p∗}.

Since w is affine on the interval [p̃0, p0] and on linear intervals [pk, pk+1], and since
by Lemma 5.3 the two end-points of these intervals lie in nonlinear intervals, it follows
that all the extreme points of the hypograph of w lie in nonlinear intervals [pk, pk+1].
On these intervals, from Eq. (26), the relation w′(p)(p − p∗) + µ (w(p)− u(p)) = 0
holds, and therefore Condition G.3 holds. Moreover, Condition G.2 holds on nonlinear
intervals [pk, pk+1].

It remains to show that Condition G.2 holds: w′(p)(p − p∗) + µ (w(p)− u(p)) ≥ 0
on the interval [p̃0, p0] and on linear intervals. On a linear interval (pk, pk+1] we have
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w(p) = w(pk) + (p− pk)a(pk, w) and w
′(p) = a(pk, w). It then follows by the definition

of a(pk, w) that on these intervals

(p− p∗)w′(p) + µ(w(p)− u(p)) = (p− p∗)a(pk, w) + µ
(
w(pk) + (p− pk)a(pk, w)− u(p)

)

=
(
p− p∗ + µ(p− pk)

)
a(pk, w) + µ

(
w(pk)− u(p)

)

≥ 0,

as desired.
On the interval [p̃0, p0] the function w is affine, thus w′ is constant and therefore

the function w(p) + w′(p)(p−p∗)
µ

is affine as well. The points (p̃0, u(p̃0)) and (p0, u(p0))
are on the graph of this last function. These points and the interval connecting them
are on the graph of the function cav u. It follows that for every p ∈ (p̃0, p0) we have

u(p) ≤ w(p) + w′(p)(p−p∗)
µ

, which implies that w′(p)(p− p∗) + µ (w(p)− u(p)) ≥ 0.
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