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Abstract

We provide a characterization of quasi-perfect equilibria in n-player games, showing that any quasi-
perfect equilibrium can be obtained as limit point of a sequence of Nash equilibria of a certain
class of perturbed games in sequence form, and any limit point of a sequence of Nash equilibria
of these perturbed games is a quasi-perfect equilibrium. We prove that, in games with three or
more players, we need trembles defined as rational functions of the perturbation magnitude ε,
whereas, in two-player games with nature, trembles expressed in terms of polynomial functions of
ε suffice. Exploiting the relationship between sequence form and extensive form, we also provide
a similar characterization in terms of perturbed games in extensive form, though not compliant
with Selten’s definition of perturbed game.
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1. Introduction

Perturbed games and trembles are ubiquitous in the theory of equilibrium refinements since
the seminal work by Selten (1975). Motivated by the consideration that a player may be more
concerned with trembles of others than with her own, van Damme (1984) introduces the concept
of quasi perfection. In a quasi-perfect equilibrium, each player follows a strategy which specifies an
optimal choice against trembles of the other players at each information set, without taking into
account her own trembles, except to the extent that they may make one of her information sets
reached that otherwise would not be. Quasi-perfect equilibria have some attractive properties.
In particular, van Damme (1984) proves that a proper equilibrium of a game in normal form
is a quasi-perfect equilibrium in any game in extensive form having that game as normal form.
Furthermore, in a quasi-perfect equilibrium, each player plays optimal admissible continuations
from every information set of her (Blume et al., 1991). Because of these properties, it has been
argued by Mertens (1995) that quasi perfection is conceptually superior to normal-form perfection
and extensive-form perfection (Selten, 1975). This view is shared by Govindan and Wilson (2006,
2012), who put quasi perfection at the center of their axiomatic equilibrium selection theory.

Unfortunately, while normal-form perfect equilibria and extensive-form perfect equilibria have
been characterized as limit points of sequences of Nash equilibria of perturbed games in normal
form and in extensive form, respectively, no similar characterization of quasi-perfect equilibria is
known. The only known result is Lemma 1 by Miltersen and Sørensen (2010), showing that, in
two-player games, limit points of sequences of Nash equilibria of a particular class of perturbed



games in sequence form are quasi-perfect equilibria of the original game in extensive form. How-
ever, as the authors point out, their result only applies to a subset of the quasi-perfect equilibria
in two-player games with nature. The lack of a characterization of quasi-perfect equilibria pre-
vents the design of algorithms dealing with them. In particular, there are no viable, algorithmic
techniques that perform tasks such as, e.g., verifying whether a given strategy profile is a quasi-
perfect equilibrium or not, enumerating all the extremal quasi-perfect equilibria, or computing a
social-welfare-maximizing equilibrium.

In this paper, we provide a complete characterization of quasi-perfect equilibria in n-player
games. We define a specific class of perturbed games in sequence form, showing that any quasi-
perfect equilibrium is a limit point of a sequence of Nash equilibria of perturbed games in our
class and, conversely, any limit point of a sequence of Nash equilibria of our perturbed games
is a quasi-perfect equilibrium. Our perturbed games satisfy two crucial properties. Firstly, the
trembles are expressed as rational functions of the perturbation magnitude ε. Secondly, for every
pair of sequences such that one directly extends the other, the tremble applied to the former
approaches zero faster than that applied to the latter (as ε goes to zero). In the specific case of
two-player games with nature, we prove that trembles defined as polynomial functions of ε suffice,
while, with three or more players, they do not allow to capture the entire set of quasi-perfect
equilibria and, thus, trembles defined as rational functions are necessary. Finally, exploiting the
relationship between sequence form and extensive form, we also provide a similar characterization
of quasi-perfect equilibria in terms of perturbed games in extensive form, though not compliant
with Selten’s original definition of perturbed game.

Our characterization provides new insights into the computational problem of verifying whether
a given strategy profile is a quasi-perfect equilibrium. Specifically, for two-player games with
nature, Gatti et al. (2016) provide a polynomial-time algorithm to verify whether a given strategy
profile is a limit point of a sequence of Nash equilibria of perturbed games with trembles defined as
polynomial functions of ε. Our results show that polynomial trembles are sufficient in two-player
games with nature, and, thus, in such setting the algorithm by Gatti et al. (2016) can solve the
quasi-perfect equilibrium verification problem in polynomial time. Our results also show that this
algorithm cannot be directly extended to games with three or more players, since trembles defined
as rational functions are necessary. 1

The paper is structured as follows. Section 2 recalls the notions of game in extensive and
in sequence form, and revises the concept of quasi-perfect equilibrium. Section 3 introduces our
class of perturbed games in sequence form and studies the properties of Nash equilibria in these
perturbed games, providing the conceptual tools required by Sections 4 and 5, which are the
core of the paper. Section 4 proves that any limit point of a sequence of Nash equilibria of our
perturbed games is a quasi-perfect equilibrium of the original game, while Section 5 proves that
any quasi-perfect equilibrium can be obtained as limit point of a sequence of Nash equilibria of
perturbed games, completing the characterization. Moreover, the last part of Section 5 also shows
that polynomial trembles are sufficient for our characterization in two-player games with nature.
Section 6 concludes our work with two remarks. First, it shows that polynomial trembles are
not sufficient with three or more players, and, then, it provides a characterization of quasi-perfect
equilibria using perturbed games in extensive form. All the omitted proofs are in the Appendix.

1In the case of games with three or more players, Hansen et al. (2010) show that the verification problem of
quasi-perfect equilibrium is hard.
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Symbol Meaning
T game tree
o root of the game tree
Z terminal nodes of the game tree
X decision nodes of the game tree

K = X ∪ Z nodes of the game tree
N = {1, . . . , n} players

0 chance player

ι : X → N ∪ {0} function that specifies the player
who plays at each decision node

u ∈ Ui information set of player i
Cu set of choices at information set u ∈ U
Di set of all choices of player i

βi ∈ Bi player i’s behavior strategy
β ∈ B behavior strategy profile

hi : Z → R player i’s payoff function
Z(u) ⊆ Z set of leaves reachable from u ∈ U

Hi(β|u)
player i’s expected payoff associated to β ∈ B

and conditioned on u ∈ Ui being reached
p (x) choices on the path to a node x ∈ K
u � v u ∈ Ui precedes v ∈ Ui
u ≺ v u ∈ Ui precedes v ∈ Ui and u 6= v

Table 1: Notation for games in extensive form.

2. Preliminaries

In this section, we review notation and definitions required for our results.

2.1. Game Forms

Our notation and conventions for games in extensive form follow Selten (1975) and von Stengel
(1996), and they are summarized in Table 1. A finite game in extensive form is a tuple Γ =
(T,N, ι, U,D, β0, h), where: T is the finite game tree; N = {1, ..., n} is the set of players; ι :
X → N ∪ {0} is the player function (with 0 denoting the chance player); U =

⋃
i∈N∪{0} Ui is

the information partition; D =
⋃
i∈N∪{0}Di is the set of possible players’ choices; β0 defines the

fixed positive probability distributions for the chance moves; and h = (hi)i∈N is the payoff vector
function. In what follows, we assume that the game has perfect recall, and, thus, we can restrict
the attention to behavior strategies. Formally, a behavior strategy βi ∈ Bi of player i defines a
probability distribution over the player’s choices c ∈ Cu at each player i’s information set u ∈ Ui.

von Stengel (1996) defines the sequence form for any game in extensive form with perfect recall.
The sequence form is a strategic description which represents strategies as sequences of a player’s
choices rather than as complete plans of moves, as it is the case for pure strategies in the normal
form. For every player i ∈ N ∪ {0}, any node x ∈ K of the game tree identifies a sequence of
player i, which is defined as the ordered list of player i’s choices encountered on the path from the
root of the game tree o to the node x.

A sequence si can be regarded as a string of player i’s choices in Di found on the path to
some node x. However, for easy reference to its elements, we can define sequence si as the set
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of its choices. This is possible assuming, without loss of generality, that choices at different
information sets are distinct. Notice that, for each player, there are at most as many sequences
as the number of nodes of the game tree; so their number is linear in the size of the game tree.
In contrast, the number of pure strategies of the normal form may be exponential in the size of
the tree. The set of all sequences of player i is denoted by Si, while a sequence profile is a tuple
s = (s0, s1, . . . , sn) ∈ S0 × S1 × . . .× Sn = S.

By definition of perfect recall, every node in an information set u ∈ Ui defines the same sequence
of choices for player i, hence the following definitions are well posed. Following von Stengel (1996),
we denote with σu the sequence of choices of the player acting at information set u ∈ U that lead
to u. For any u ∈ U and c ∈ Cu, the sequence σu can be extended by adding the choice c at the
end, i.e., we can write σuc = σu ∪ c. Thus, the set Si of player i’s sequences can be represented as
Si = {∅}∪{σuc | u ∈ Ui, c ∈ Cu} . Notice that σo = ∅, hence the empty sequence ∅ belongs to Si,
for any i ∈ N ∪ {0}. In order to simplify notation, given a sequence si ∈ Si and a choice c ∈ Di,
we denote as si c the extended sequence obtained by appending c to si (if the resulting sequence
is well-defined for player i). For every pair of sequences si, s

′
i ∈ Si, we write s′i v si whenever the

set of choices defining sequence s′i is a subset of that defining sequence si. We remark that the
sequences of the chance player 0 are also considered, since it is treated as the other players.

In order to define the payoffs associated to sequence profiles, note that, for any node x ∈ K,
there exists a unique sequence profile s = (s0, s1, ..., sn) ∈ S leading to x. Hence, we can define the
function ξ : K → S specifying the sequence profile reaching x ∈ K. Then, according to von Stengel
(1996), in a game in sequence form, the player i’s payoff function is gi : S → R, where:

gi (s) =

{
hi(z) if ∃z ∈ Z s.t. s = (s0, s1, ..., sn) = ξ (z)

0 otherwise
.

The payoff function gi is commonly represented as a sparse (n+ 1)-dimensional matrix, where the
number of nonzero entries is at most the number of leaves of the game tree.

In addition to the payoffs, it is also necessary to specify how sequences are selected by a player.
Behavior strategy probabilities will be replaced by the realization probabilities of sequences. In
games in sequence form, a player cannot just decide on a single sequence. For any player i, the
realization plan of a behavior strategy βi ∈ Bi is the function ri : Si → R+ defined as follows:
for any sequence si ∈ Si, it holds ri (si) =

∏
c∈si βi (c) . Then, for any information set u ∈ Ui and

choice c′ ∈ Cu, we have ri (σuc
′) =

∏
c∈σu βi (c) βi (c

′) . By construction, a realization plan of a
behavior strategy is characterized by the following linear restrictions:

ri (∅) = 1, (1)

because the empty product is 1; for any information set u ∈ Ui

− ri (σu) +
∑
c∈Cu

ri (σuc) = 0, (2)

because
∑

c∈Cu βi (c) = 1; and for every sequence si ∈ Si

ri (si) ≥ 0, (3)

because it is a probability. This leads to the following definition: a function ri : Si → R+ fulfilling
restrictions (1), (2), and (3) is a realization plan for player i ∈ N . Moreover, notice that the
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Symbols Meaning
si ∈ Si sequence of player i
s ∈ S sequence profile
σu sequence of the player acting at u ∈ U that leads to u
σuc sequence leading to u ∈ U extended by c ∈ Cu

ξ : K → S function defining the sequence profile reaching x ∈ K
gi : S → R player i’s payoff function in the sequence form
ri : Si → R+ player i’s realization plan

r
/
r′i

realization plan profile obtained from r ∈ R
by replacing ri with r′i ∈ Ri

Gi (r) =
∑
s∈S

gi (s)
∏

j∈N∪{0}
rj (sj) player i’s expected payoff associated to r ∈ R

si c extended sequence obtained by appending c to si
s′i v si sequence s′i is a subset of sequence si

Table 2: Notation for games in sequence form.

chance player has a fixed realization plan r0 obtained from the behavior strategy β0. The set of
all realization plans for player i ∈ N is denoted by Ri, while, for notational convenience, we let
R0 = {r0}. Then, r = (r0, r1, . . . , rn) ∈ R0×R1× . . .×Rn = R is a tuple representing a realization
plan profile. We also use r

/
r′i to denote the realization plan profile obtained from r ∈ R by

replacing ri with r′i ∈ Ri for some player i ∈ N .
Let us recall that von Stengel (1996) shows that any realization plan ri : Si → R+ satisfying

linear restrictions (1), (2), and (3) defines a suitable behavior strategy such that βi (c) = ri(σuc)
ri(σu)

for

all u ∈ Ui and c ∈ Cu if ri (σu) > 0, while βi(c) can be any otherwise.
The game in sequence form associated to a finite game in extensive form with perfect recall

Γ is the tuple ΓS = (S,N,R, r0, g), where: S = S0 × S1 × ... × Sn is the set of sequence profiles;
N = {1, ..., n} is the set of players; R = R0 × R1 × . . .× Rn is the set of realization plan profiles;
r0 is the realization plan of β0; and g = (gi)i∈N is the payoff vector function of the sequence form.
As for games in extensive form, for any player i ∈ N , we define the player i’s expected payoff
associated to a realization plan profile r ∈ R as:

Gi (r) =
∑
s∈S

gi (s)
∏

j∈N∪{0}

rj (sj) .

Table 2 sums up the notation used for games in sequence form.

2.2. Quasi-Perfect Equilibria

Given two player i’s behavior strategies βi, β
′
i ∈ Bi and an information set u ∈ Ui, we write

βi =
u
β′i whenever βi and β′i prescribe the same probability distribution over the choices available at

information set u, i.e., βi (c) = β′i (c) for every c ∈ Cu. Furthermore, given βi, β
′
i ∈ Bi and u ∈ Ui,

we write βi
/
u
β′i to denote a behavior strategy which is equal to β′i at all information sets v ∈ Ui

such that u � v, while it is equal to βi at the other information sets (see Table 1 for the definition
of the relation �). In addition, overloading notation, given β ∈ B, β′i ∈ Bi, and u ∈ Ui, β

/
u
β′i

denotes a strategy profile obtained from β by replacing player i’s strategy βi with βi
/
u
β′i.
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Definition 1. A family of parameterized behavior strategy profiles, denoted by P, is a family of
functions β ∈ P such that β : (0, 1)→ B maps any number ε ∈ (0, 1) to a behavior strategy profile
β(ε) ∈ B. Moreover:

• β ∈ P is completely mixed if β(ε) is always completely mixed;

• β ∈ P is rational (respectively polynomial) if each probability βi (ε, c) can be expressed as a
rational (respectively polynomial) function of ε.

Definition 2. Given a game in extensive form Γ, a completely mixed behavior strategy profile
β ∈ B, a player i ∈ N , and an information set u ∈ Ui, a behavior strategy βi ∈ Bi is a u-best
response to β ∈ B, written βi ∈ BRu(β), if the following holds:

max
β′
i∈Bi:β′

i=u
βi
Hi

(
β
/
u
β′i|u

)
= max

β′
i∈Bi

Hi

(
β
/
u
β′i|u

)
.

Intuitively, βi is a u-best response to β whenever playing as prescribed by βi at information
set u is part of some player i’s optimal strategy in the game following u, given that u has been
reached and the other players behave as prescribed by β. In other words, βi is a best response to
β whenever player i ends up playing at information set u. 2

A formal definition of quasi-perfect equilibrium is provided by van Damme (1984), as follows. 3

Definition 3. Given a game in extensive form Γ, β ∈ B is a quasi-perfect equilibrium of Γ if
there exists a completely mixed β ∈ P such that:

1. β is a limit point (as ε goes to zero) of β(ε);

2. for every player i ∈ N and information set u ∈ Ui, βi ∈ BRu(β(ε)) holds eventually (i.e.,
for sufficiently small ε).

In words, provided that ε ∈ (0, 1) is sufficiently small, for every player i and information set
u ∈ Ui, βi prescribes player i to play an optimal strategy against β(ε), given that u has been
reached and she will play optimally in the rest of the game (assuming opponents follow strategies
in β(ε)). This condition encodes the fact that a player only considers the possibility of opponents’
future trembles, while she does not care about hers.

Notice that, in order to span the entire set of quasi-perfect equilibria, it is necessary to use non-
polynomial β ∈ P . In particular, rational restrictions are required any time in an equilibrium we
have to combine sequential rationality and completely mixed behavior strategies. This is formally
shown by Theorem 4.1 of Hammond (1994), where he proves that equilibrium refinements have
four equivalent characterizations: (i) complete conditional probability systems; 4 (ii) lexicographic
hierarchies of probabilities; 5 (iii) extended logarithmic likelihood ratios; and (iv) certain “canon-
ical rational probability functions” representing “trembles” directly as infinitesimal probabilities.
In particular, Kohlberg and Reny (1997) prove that sequential equilibria can be characterized in
terms of relative probabilities that compare the likelihoods of any pair of events, even those with
probability zero. 6 More generally, Blume and Zame (1994) prove that the equilibrium correspon-
dences of extensive-form perfect and sequential equilibria are semi-algebraic sets and, therefore,

2In the terminology of van Damme (1984), u-best responses are quasi-best replies.
3See also van Damme (1984) Lemma 2 and Govindan and Wilson (2012) Definition 4.1.
4See Myerson (1986) and McLennan (1989).
5See Blume et al. (1991) and Govindan and Klumpp (2003).
6Note that quasi-perfect equilibria are a refinement of sequential equilibria.
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they can be defined by finite systems of polynomial inequalities. Finally, Hillas et al. (2017) and
Pimienta and Shen (2014) extended Blume and Zame (1994) proving that also the equilibrium
correspondences of quasi-perfect equilibria are semi-algebraic. For the sake of this paper, we can
sum up these considerations with the following remark.

Remark 1. Given a game in extensive form Γ, let β ∈ B be a quasi-perfect equilibrium of Γ.
Then, there exists a completely mixed β ∈ P such that β is rational and conditions (1) and (2) in
Definition 3 hold.

3. Nash Equilibria of Perturbed Games

In this section, we introduce our class of n-player perturbed games in sequence form and prove
some properties of their Nash equilibria, which turn out to be crucial in proving our core results
in the following Sections 4 and 5.

3.1. A General Approach to Perturbation in Sequence Form

The following definition formally introduces our perturbations.

Definition 4. Given a game in sequence form ΓS and a player i ∈ N , let `i : (0, 1)× Si 7→ R>0
7

be a function that maps any number ε ∈ (0, 1) and sequence si ∈ Si to a lower bound `i(ε, si) such
that:

1. lim
ε→0+

`i(ε, si) = 0, for every si ∈ Si \ {∅}, while `i(ε,∅) = 1;

2. lim
ε→0+

`i(ε,si c)
`i(ε,si)

= 0, for every si ∈ Si and c ∈ Di such that si c ∈ Si.

Then, we define an `i-quasi-perfect perturbation for Ri as a function ε 7→ Ri(ε) defined over
ε ∈ (0, 1) in which Ri(ε) is the set of all the realization plans ri ∈ Ri such that ri(si) ≥ `i(ε, si)
for every si ∈ Si.

In words, an `i-quasi-perfect perturbation constrains player i to play every sequence si ∈ Si
with probability larger than or equal to the lower bound (or tremble) `i(ε, si). Furthermore, the
lower bounds enjoy particular properties:

1. they approach zero as ε goes to zero;
2. for every sequence si ∈ Si and choice c ∈ Di such that sic ∈ Si, `i(ε, si c) approaches zero

faster than `i(ε, si).

Definition 5. Given a game in extensive form Γ, we call perturbed sequence form of Γ the
sequence form ΓS associated with Γ together with an `i-quasi-perfect perturbation for Ri, for every
player i ∈ N .

In the following, the tuple (ΓS, {`i}i∈N) denotes a perturbed sequence form of Γ, defined for
some `i-quasi-perfect perturbations. Moreover, we let ΓS(ε) be a particular perturbed game in
sequence form, which is obtained from ΓS by restricting each set of realization plans Ri to be
Ri(ε).

8 In the following, we use r(ε) to denote a valid realization plan profile for a perturbed
game in sequence form ΓS(ε), i.e., ri(ε) ∈ Ri(ε) for all i ∈ N .

7We denote with R>0 the set of strictly positive real numbers.
8Let us remark that ΓS(ε) may not be well-defined for all values of ε ∈ (0, 1), since restrictions (2) and (3) may

not be satisfied. Nevertheless, conditions (1) and (2) in Definition 4 ensure that there exists ε̄ ∈ (0, 1) such that
ΓS(ε) is well-defined for all ε ∈ (0, ε̄). Thus, whenever we refer to a perturbed game in sequence form ΓS(ε), we
can safely assume that it is well-defined, provided that ε is sufficiently small.
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3.2. Properties of the Nash Equilibria of Perturbed Games

The main result of this section (Theorem 1) provides a characterization of the Nash equilibria
of our perturbed games in sequence form, which is a fundamental step for our characterization of
quasi-perfect equilibria. We report its complete proof in the Appendix. Intuitively, it leverages
the interplay between the properties of the mathematical programming problem for finding a Nash
equilibrium in games in sequence form and those of our perturbed games.

For the ease of presentation, given a player i ∈ N and an information set u ∈ Ui, we let

Gi(u, r) =
∑
c∈Cu

∑
s∈S:σucv si

gi(s)
∏

j∈N∪{0}

rj(sj)

be player i’s expected utility contribution due to terminal nodes reachable from u, given that the
realization plan profile r ∈ R is played.

Theorem 1. Given a perturbed sequence form (ΓS, {`i}i∈N), a realization plan profile r(ε) is a
Nash equilibrium of ΓS(ε) if and only if, for every player i ∈ N , information set u ∈ Ui, and
choice c ∈ Cu, it holds that:

ri(ε, σuc) > `i(ε, σuc) =⇒ max
r′i∈Ri:

r′i(σuc)=1

Gi(u, r(ε)
/
r′i) = max

r′i∈Ri:
r′i(σu)=1

Gi(u, r(ε)
/
r′i).

In words, in a Nash equilibrium of ΓS(ε), player i plays sequence σuc with probability strictly
greater than its lower bound `i(ε, σuc) only if playing c is part of some optimal strategy in the
game following u. Conversely, whenever c ∈ Cu is not part of any optimal strategy in the game
following u, it must be the case that sequence σuc is played with probability equal to its lower
bound. Theorem 1 formally expresses the idea that, in a perturbed game in sequence form ΓS(ε),
when a player decides how to play in a given information set, she does not take into account her
future trembles, but only opponents’ ones.

4. Nash Equilibria of Perturbed Games in Sequence Form are Quasi-Perfect Equilibria

In this section, we prove the first part of our main result (Theorem 2), i.e., all the limit points
of sequences of Nash equilibria of our perturbed games ΓS(ε) are quasi-perfect equilibria of the
game in extensive form Γ (as ε goes to zero).

Definition 6. A family of parameterized realization plan profiles, denoted by R, is a family of
functions r ∈ R such that r : (0, 1) 7→ R maps any number ε ∈ (0, 1) to a realization plan profile
r(ε) ∈ R. Moreover:

• r ∈ R is completely mixed if r(ε) is always completely mixed;

• r ∈ R is rational (respectively polynomial) if each term ri (ε, si) can be expressed as a
rational (respectively polynomial) function of ε.

The following lemma (whose proof is in the Appendix) provides a characterization of u-best
responses in terms of the sequence form.
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Lemma 1. Given a game in extensive form Γ, a completely mixed behavior strategy profile β ∈ B,
a player i ∈ N , and an information set u ∈ Ui, a behavior strategy βi ∈ Bi is a u-best response to
β ∈ B, i.e., βi ∈ BRu(β), if and only if the following holds for every choice c ∈ Cu:

βi (c) > 0 =⇒ max
r′i∈Ri:

r′i(σuc)=1

Gi(u, r
/
r′i) = max

r′i∈Ri:
r′i(σu)=1

Gi(u, r
/
r′i),

where r ∈ R is the realization plan profile of β.

Intuitively, a behavior strategy βi is a u-best response to β if and only if it places positive
probability only on choices c ∈ Cu which are part of some player i’s optimal strategy in the game
following information set u.

Theorem 2. Given a perturbed sequence form (ΓS, {`i}i∈N), let:

1. r ∈ R be such that r(ε) is a Nash equilibrium of ΓS(ε);

2. β ∈ P be such that β(ε) has r(ε) as realization plan profile.

Then, any limit point (as ε goes to zero) of β(ε) is a quasi-perfect equilibrium of Γ.

Proof. Let us fix r ∈ R such that r(ε) is a Nash equilibrium of ΓS(ε), and let β ∈ B be a limit
point (as ε goes to zero) of β(ε). In order to prove that β is a quasi-perfect equilibrium of Γ, it
is sufficient to show that condition (2) in Definition 3 holds. First, notice that there must exist
ε̄ ∈ (0, 1) such that, for all ε ∈ (0, ε̄), and for every player i ∈ N , information set u ∈ Ui, and
choice c ∈ σu, if βi (c) > 0, then ri(ε, σuc) > `i(ε, σuc). Otherwise, by conditions (1) and (2) in
Definition 4, it would be βi (c) = 0. Let us fix i ∈ N , u ∈ Ui, and c ∈ σu. Suppose that βi (c) > 0.
For all ε ∈ (0, ε̄), we have that ri(ε, σuc) > `i(ε, σuc), which, by Theorem 1, implies the following:

max
r′i∈Ri

r′i(σuc)=1

Gi(u, r(ε)
/
r′i) = max

r′i∈Ri:
r′i(σu)=1

Gi(u, r(ε)
/
r′i).

Thus, Lemma 1 allows us to conclude that βi ∈ BRu(β(ε)) eventually, i.e., for ε ∈ (0, ε̄). This
implies that β ∈ B is a quasi-perfect equilibrium of Γ.

4.1. Discussion on Miltersen-Sørensen Perturbed Games

Miltersen and Sørensen (2010) study a particular class of perturbed games in sequence form in
which the lower bounds on the probabilities of playing sequences si ∈ Si are defined as ε|si|, where
|si| denotes the number of choices in the sequence si (i.e., its length). These perturbed games
are a special case of ours, obtained by letting `i(ε, si) = ε|si| for every player i ∈ N and sequence
si ∈ Si. Clearly, lower bounds `i(ε, si) satisfy conditions (1) and (2) in Definition 4.

Miltersen and Sørensen (2010) prove that, in two-player games in extensive form with nature,
any limit point of a sequence of Nash equilibria of their perturbed games is a quasi-perfect equi-
librium of the original game. Thus, our Theorem 2 is a generalization of their result that works
for a broader class of perturbed games in sequence form (see Definition 4) and is not restricted to
the specific setting of two-player games. 9 Moreover, as the authors point out, Miltersen-Sørensen

9Notice that the proof of Theorem 2 is not a generalization of the proof of Lemma 1 by Miltersen and Sørensen
(2010), as it requires completely different techniques that rely on mathematical programming. We also remark that
Miltersen and Sørensen (2010) restrict their attention to two-player games for computational purposes.
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Figure 1: Example showing that Miltersen-Sørensen perturbed games do not allow to capture all the quasi-perfect
equilibria, even in the basic setting of two-player games.

perturbed games do not allow to capture all the quasi-perfect equilibria, and, thus, they are not
sufficient to provide a characterization of quasi-perfect equilibria (even in the two-player setting).

In Figure 1, we provide a two-player game in extensive form in which the perturbed games
defined by Miltersen and Sørensen do not identify all the quasi-perfect equilibria, thus motivating
the introduction of our general class of perturbed games.

In particular, in the game of Figure 1, the sets of Nash equilibria, of normal-form perfect
equilibria, of extensive-form perfect equilibria, and of quasi-perfect equilibria coincide and they
are the union of {β1 ∈ B1 : β1 (A) = β1 (C) = 1}×

{
β2 ∈ B2 : β2(a) ≥ 1

2

}
and {β1 ∈ B1 : β1(E) = 1,

β1(C) ∈ [0, 1]}×{β2 ∈ B2 : β2(a) ≤ 1
2
}. However, notice that, in the Miltersen-Sørensen perturbed

game, it holds r1 (B) ≥ ε and r2 (AD) ≥ ε2, which implies that, in any Nash equilibrium of the
Miltersen-Sørensen perturbed game, sequence b is played with probability 1 − ε by the second
player. Then, the first player chooses sequence E with probability 1 − 2ε and sequence AC with
probability ε− ε2. Hence, the Nash equilibria of the Miltersen-Sørensen perturbed game are:{

β1 ∈ B1 : β1 (E) = 1− 2ε, β1 (C) =
ε− ε2

ε

}
× {β2 ∈ B2 : β2 (b) = 1− ε} .

This shows that the game in Figure 1 admits a continuum of quasi-perfect equilibria which are
not limit points (as ε goes to zero) of Nash equilibria of the Miltersen-Sørensen perturbed game,
for instance all those with β2(a) ≥ 1

2
and β1(A) = β1(C) = 1. In particular, when using the

Miltersen-Sørensen perturbations, there is no sequence of Nash equilibria having as limit point a
quasi-perfect equilibrium in which the terminal node with payoffs (4, 0) is reached. Instead, using
our perturbed games, it is sufficient to define `1(ε, A) = `1(ε, E) = ε and `1(ε, B) = `1(ε, AC) =
`1(ε, AD) = ε2 (satisfying conditions (1) and (2) in Definition 4) to obtain as limit point of
sequences of Nash equilibria all the quasi-perfect equilibria in {β1 ∈ B1 : β1 (A) = β1 (C) = 1} ×{
β2 ∈ B2 : β2(a) ≥ 1

2

}
.

5. Quasi-Perfect Equilibria are Nash Equilibria of Perturbed Games in Sequence Form

In this section, we prove the second part of our main result (Theorem 3), i.e., any quasi-perfect
equilibrium of a game in extensive form Γ can be obtained as limit point of a sequence of Nash
equilibria of perturbed games in sequence form ΓS(ε), for a suitably defined perturbed sequence
form of Γ. The general idea of the proof is the following:

10



1. From Remark 1, we know that any quasi-perfect equilibrium β ∈ B of a game in extensive
form Γ can be obtained for some completely mixed β ∈ P such that β is rational.

2. Letting r ∈ R be such that r(ε) is the realization plan of β(ε), we define a rational r̃ ∈ R
such that r̃(ε) = r(εη), where η = maxi∈N,si∈Si |si| is the length of the longest sequence in
the game. Then, we show that:

• for every player i ∈ N and information set u ∈ Ui, player i’s optimal strategies in
the game following information set u are preserved when replacing the realization plan
profile r(ε) with r̃(ε) (see Lemma 2);

• β is a limit point (as ε goes to zero) of β̃(ε), where β̃ ∈ P is such that r̃(ε) is the
realization plan of β̃(ε);

• given our choice of η, we can build a particular perturbed sequence form (ΓS, {`βi }i∈N)
of Γ, which depends on the quasi-perfect equilibrium β, such that each r̃(ε) is a valid
realization plan for the perturbed game ΓS(ε) (see Definition 7).

3. Finally, we prove that r̃(ε) defines a sequence of Nash equilibria of perturbed games ΓS(ε).

Before showing the details of our results, notice that, given a rational r ∈ R, for every player
i ∈ N and sequence si ∈ Si, we can write:

ri(ε, si) = a0(si) +
a1(si)ε+ . . .+ adN (si)(si)ε

dN (si)

1 + b1(si)ε+ . . .+ bdD(si)(si)ε
dD(si)

= a0(si) +
PolyNi (ε, si)

PolyDi (ε, si)
,

where a0(si) ∈ [0, 1], aj(si) ∈ R for all j ∈ {1, . . . , dN(si)}, and bj(si) ∈ R for all j ∈ {1, . . . , dD(si)}
are the coefficients of the polynomials PolyNi (ε, si) and PolyDi (ε, si), whereas dN(si), dD(si) ∈ N
denote their degrees. Moreover, given a rational β ∈ P , it is easy to prove that r ∈ R, where r(ε)
is the realization plan of β(ε), is rational too. This is a direct consequence of the fact that the
product of rational functions is rational.

Now, we are ready to prove our first result, i.e., for any player i ∈ N and information set
u ∈ Ui, replacing r(ε) with r̃(ε) does not affect player i’s optimal strategies in the game following
u, provided that ε is sufficiently small. This is the fundamental step that allows us to prove that
r̃(ε) defines a sequence of Nash equilibria of perturbed games (see Theorem 3). The proof of the
following lemma is reported in the Appendix.

Lemma 2. Given a game in sequence form ΓS and a rational r ∈ R, there exists ε̄ ∈ (0, 1) such
that, for all ε ∈ (0, ε̄), and for any player i ∈ N , information set u ∈ Ui, and choice c ∈ Cu, it
holds:

max
r′i∈Ri:

r′i(σuc)=1

Gi(u, r(ε)
/
r′i) = max

r′i∈Ri:
r′i(σu)=1

Gi(u, r(ε)
/
r′i)

m
max
r′i∈Ri:

r′i(σuc)=1

Gi(u, r̃(ε)
/
r′i) = max

r′i∈Ri:
r′i(σu)=1

Gi(u, r̃(ε)
/
r′i),

where r̃ ∈ R is such that r̃(ε) = r(εη), with η = maxi∈N,si∈Si |si|. 10

10The choice of η is made in such a way that it is always possible to built a perturbed sequence form (ΓS , {`βi }i∈N )
(see Definition 7). Notice that the lemma is still valid if we use any η ∈ N, while we remark that the following
Theorem 3 may not hold if η is arbitrary.
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Notice that, letting β̃ ∈ P be such that r̃(ε) is the realization plan of β̃(ε), it is a direct
consequence of the definition of r̃ that β and β̃ have the same limit points (as ε goes to zero), i.e.,

lim
ε→0+

β(ε) = lim
ε→0+

β̃(ε).

Now, we show how to build the desired perturbed sequence form (ΓS, {`βi }i∈N) associated with
a given quasi-perfect equilibrium β ∈ B. For the ease of presentation, given β ∈ B, for every player
i ∈ N and sequence si ∈ Si, we say that si ∈ S(β) if and only if βi (c) > 0, where c is the last
choice in sequence si, i.e., S(β) represents the support of β, which is the set of sequences whose
last choice is played with positive probability in β. Then, we introduce the following definition:

Definition 7. Given a quasi-perfect equilibrium β ∈ B of a game in extensive form Γ, we define
its associated perturbed sequence form (ΓS, {`βi }i∈N) such that, for any player i ∈ N and sequence
si ∈ Si, it holds:

• if si ∈ S(β), then `βi (ε, si) = εd
N
min(s

′
i)+|si|−|s′i|, where s′i ∈ Si is the longest sequence such

that s′i v si (with s′i 6= si) and s′i /∈ S(β), while dNmin(s′i) is the minimum degree of ε in the
polynomial PolyNi (ε, s′i) appearing in the expression of r̃i(ε, s

′
i);

• if si /∈ S(β), then `βi (ε, si) = r̃i(ε, si).

Let us remark that, given Definition 7 and how r̃ is defined, it is always the case that each `βi is
well defined and satisfies the conditions of Definition 4. This is an immediate consequence of our
choice for η, since, given our definition r̃(ε) = r(εη), for any two distinct sequences si, s

′
i /∈ S(β)

with s′i v si it is always the case that dNmin(s′i)− dNmin(si) ≥ η. Thus, the perturbed sequence form
(ΓS, {`βi }i∈N) is always well defined.

Next, we state our main result.

Theorem 3. Given a quasi-perfect equilibrium β ∈ B of a game in extensive form Γ, consider its
associated perturbed sequence form (ΓS, {`βi }i∈N). Then, r̃(ε) defines a sequence of Nash equilibria
of perturbed games ΓS(ε) and β is a limit point (as ε goes to zero) of β̃(ε).

Proof. Let us consider an ε̄ ∈ (0, 1) such that, for all ε ∈ (0, ε̄), r̃(ε) is a well-defined realization
plan profile of ΓS(ε) and Lemma 2 holds. Clearly, we have that β is a limit point (as ε goes to
zero) of β̃(ε). Moreover, given Definition 7, we have that, for every player i ∈ N , information set
u ∈ Ui, and choice c ∈ σu, if βi (c) = 0, then r̃(ε, σuc) = `βi (ε, σuc), while, whenever βi (c) > 0, we
have r̃(ε, σuc) > `βi (ε, σuc). Invoking Lemma 1 and Theorem 1 allows us to conclude that r̃(ε) is
a Nash equilibrium of ΓS(ε).

5.1. Polynomial Lower Bounds are Sufficient in Two-Player Games with Nature

A natural interesting question is whether rational functions are necessary or, instead, one
can still characterize quasi-perfect equilibria by restricting the attention to a smaller family of
functions. Next, we show that, in the special case of two-player games in extensive form with
nature, polynomial lower bounds are indeed sufficient.

In order to show this, we prove that, in any two-player game in extensive form with nature, all
the results previously presented in this section continue to hold even if we change the rational func-
tions defining r̃ so as to make them polynomial functions of ε. This allows us to define perturbed
sequence forms (ΓS, {`βi }i∈N) where the lower bounds are defined as polynomial functions.

12



Next, we introduce the transformation that we need to apply to r̃ in order to make it polyno-
mial. Intuitively, we multiply all the terms depending on ε that appear in the rational functions
defining r̃ by the same function of ε, which is defined in such a way that the results can be
expressed as polynomials of ε. The following definition formally introduces our transformation.

Definition 8. Given a rational r ∈ R, letting Π(ε) =
∏

i∈N
∏

si∈Si Poly
D
i (ε, si), we define a

polynomial r̃p ∈ R such that:

r̃pi (ε, si) = a0(si) +
PolyNi (εη, si)

PolyDi (εη, si)
Π(εη),

for every player i ∈ N and sequence si ∈ Si.

Notice that r̃p is obtained from r by first substituting εη for ε (recall that η = maxi∈N,si∈Si |si|)
and, then, by multiplying the terms depending on ε by the product of the polynomials PolyDi (εη, si).
In this way, the denominators in the rational functions defining r̃ cancel out, obtaining polynomials.

Letting β̃
p ∈ P be such that β̃

p
(ε) has r̃p(ε) as realization plan, it is a direct consequence of

Definition 8 that β and β̃
p

have the same limit points (as ε goes to zero), i.e.,

lim
ε→0+

β(ε) = lim
ε→0+

β̃
p
(ε).

The following lemma (whose proof is in the Appendix) is the equivalent of Lemma 2 for r̃p,
showing that, for any player i ∈ N and information set u ∈ Ui, replacing r(ε) with r̃p(ε) does not
affect player i’s optimal strategies in the game following u, provided that ε is sufficiently small.

Lemma 3. Given a two-player game in sequence form ΓS with nature 11, let r ∈ R be rational
and r̃p be defined as in Definition 8, then there exists ε̄ ∈ (0, 1) such that, for all ε ∈ (0, ε̄), and
for any player i ∈ N , information set u ∈ Ui, and choice c ∈ Cu, it holds:

max
r′i∈Ri:

r′i(σuc)=1

Gi(u, r(ε)
/
r′i) = max

r′i∈Ri:
r′i(σu)=1

Gi(u, r(ε)
/
r′i)

m
max
r′i∈Ri:

r′i(σuc)=1

Gi(u, r̃
p(ε)

/
r′i) = max

r′i∈Ri:
r′i(σu)=1

Gi(u, r̃
p(ε)

/
r′i).

Finally, we introduce a perturbed sequence form (ΓS, {`βi }i∈N) as in Definition 7, where we
use r̃p instead of r̃. This results in lower bounds defined as polynomial functions of ε. Moreover,
Theorem 3 continues to hold, provided that we employ Lemma 3 instead of Lemma 2 in its proof.

6. Concluding Remarks

We conclude our work with some remarks related to our characterization of quasi-perfect equi-
libria.

11Let us remark that Lemma 3 only holds for two-player games with nature, while it does not hold for games
with more than two players. The game in Figure 2 provides a counterexample.
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Figure 2: Example showing that perturbed sequence forms defined by rational lower bounds are necessary to
characterize the quasi-perfect equilibria of games in extensive form with three or more players.

6.1. Rational Lower Bounds are Necessary in Games with Three or More Players

We provide an example which shows that, while polynomial lower bounds are sufficient for
characterizing quasi-perfect equilibria in two-player games in extensive form with nature, rational
functions are necessary in games with three or more players. This shows that our characterization
of quasi-perfect equilibria is strict, since the family of functions that we prove is sufficient for the
characterization cannot be further restricted.

Let us consider the game in Figure 2, where there are three players, each with a unique infor-
mation set (u1, u2, and u3, respectively). It is easy to see that the following behavioral strategies
define a quasi-perfect equilibrium of the game:

β1(A) = 1, β1(B) = 0, β2(C) = 1, β2(D) = 0, β3(a) =
1

2
, and β3(b) =

1

2
,

which is obtained, e.g., for a rational β ∈ P defined as follows:

β1(ε, A) = 1− ε,β1(ε, B) = ε,β2(ε, C) =
1− 2ε

1− ε
,β2(ε,D) =

ε

1− ε
, and β3(ε, a) = β3(ε, b) =

1

2
.

Moreover, it is easy to show that there is no perturbed sequence form with polynomial lower
bounds that admits this quasi-perfect equilibrium as limit point of a sequence of Nash equilibria.
Suppose that `1(ε, B) = f(ε) and `2(ε,D) = g(ε), where f(ε) and g(ε) are polynomial functions of
ε (while the other lower bounds can be any polynomial function of ε). Then, in a Nash equilibrium
of the resulting perturbed games, it must be the case that r1(ε, A) = 1 − f(ε), r1(ε, B) = f(ε),
r2(ε, C) = 1− g(ε), and r2(ε,D) = g(ε). Then, the third player plays both a and b with positive
probability in a Nash equilibrium of perturbed games if and only if (1− f(ε))g(ε) (the probability
of being in the left node of u3) is equal to f(ε) (the probability of being in the right node of
u3) for all ε ∈ (0, ε̄), for some sufficiently small ε̄ ∈ (0, 1). Thus, it must be the case that
(1 − f(ε))g(ε) − f(ε) = 0 for all ε ∈ (0, ε̄), which implies, by applying the fundamental theorem
of algebra, that (1− f(ε))g(ε)− f(ε) = 0 for every ε. This implies that (1− f(ε))g(ε) = f(ε) for

every ε, which gives g(ε) = f(ε)
1−f(ε) , contradicting the fact that g(ε) is a polynomial function of ε.

This example allows us to conclude that, in order to capture all the quasi-perfect equilibria
of a game in extensive form with three or more players, it is necessary to take into consideration
perturbed sequence forms in which the lower bounds are rational functions of ε.
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6.2. On the Characterization of Quasi-Perfect Equilibria with Perturbed Games in Extensive Form

Our characterization of quasi-perfect equilibria as limit points of sequences of Nash equilibria
of perturbed games crucially relies on the fact that trembles are defined in the sequence form. This
is in contrast with most of the other Nash equilibrium refinements, which can be characterized
using trembles defined in the extensive form. Nevertheless, in the following, we show that our
results can also be expressed in terms of perturbed games in extensive form, though not compliant
with the original definition of perturbed game provided by Selten (1975).

Let us recall that, for any game in extensive form Γ, Selten (1975) defines a perturbed game
in extensive form as a pair (Γ, η) where η is a function η : D → (0, 1) assigning a positive lower
bound on the probability of playing each choice c ∈ D, such that, for any information set u ∈ U ,
it holds

∑
c∈Cu η (c) < 1.

As discussed in Section 2.1, given a game in extensive form with perfect recall and its corre-
sponding sequence form, we can transform behavior strategies into realization plans and vice versa,
even if the transformation from realization plans to behavior strategies is not uniquely determined.
However, things are slightly more complex with perturbed games.

Consider perturbed games in extensive form. Let a Selten perturbed game in extensive form
(Γ, η) be given. Since for any player i ∈ N , information set u ∈ Ui, and choice c ∈ Cu, it holds

βi (c) = ri(σuc)
ri(σu)

≥ η(c), we can build an associated perturbed game in sequence form in which, for

any i ∈ N , u ∈ Ui, and c ∈ Cu, it must be the case that ri (σuc) ≥ η(c) ri (σu). This means that, in
the associated perturbed game in sequence form, the realization plan of a sequence σuc is subject
to a lower bound which depends on the realization plan of the sequence σu.

12

On the other hand, given a perturbed sequence form (ΓS, {`i}i∈N), since for any i ∈ N , u ∈ Ui,
and c ∈ Cu, it holds ri (σuc) =

∏
c′∈σu βi(c

′)βi(c) ≥ `i(ε, σuc), we can construct an associated
perturbed game in extensive form where, for any i ∈ N , u ∈ Ui, and c ∈ Cu, it must be the case
that βi (c) ≥ `i(ε,σuc)∏

c′∈σu βi(c
′)

. This means that, in the associated perturbed game in extensive form,

the behavior strategy of a choice c is subject to a lower bound that depends on the probabilities
of the choices in σu (the sequence leading to the information set where c is played). Clearly, this
lower bound is not compliant with the definition of perturbed games introduced by Selten (1975),
which requires that the lower bound only depends on ε and not on βi.

Nevertheless, it is easy to see that our results continue to hold when considering perturbed
games in extensive form as defined above, thus providing a characterization of quasi-perfect equi-
libria as limit points of sequences of Nash equilibria of this class of perturbed games in extensive
form.
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A. Proofs

We provide all the proofs omitted from the main paper.

A.1. Proofs Omitted From Section 3

Before proving Theorem 1, we introduce some useful lemmas and remarks.

Lemma 4. Given a perturbed sequence form (ΓS, {`i}i∈N), r(ε) is a Nash equilibrium of a perturbed
game in sequence form ΓS(ε) if and only if, for every player i ∈ N , r̄i(ε) = ri(ε) − `i(ε) is an
optimal solution to Problem (4).

max
∑
s∈S

gi(s) ∏
j∈N∪{0}, j 6=i

rj(ε, sj)

 r̄i(ε, si) s.t. (4a)

r̄i (ε,∅) = 1− `i(ε,∅) (4b)∑
c∈Cu

r̄i (ε, σuc)− r̄i (ε, σu) = `i(ε, σu)−
∑
c∈Cu

`i (ε, σuc) ∀u ∈ Ui (4c)

r̄i(ε, si) ≥ 0 ∀si ∈ Si. (4d)

Proof. In a Nash equilibrium every player must play a best response to the opponents’ strategies.
Let us fix a player i ∈ N . Consider the best-response problem of player i against r(ε) in ΓS(ε),
which reads as follows:

max
∑
s∈S

gi(s)
∏

j∈N∪{0}

rj(ε, sj) s.t.

ri (ε,∅) = 1

ri (ε, σu) =
∑
c∈Cu

ri (ε, σuc) ∀u ∈ Ui

ri(ε, si) ≥ `i(ε, si) ∀si ∈ Si.

Then, by introducing variables r̄i(ε, si) = ri(si)− `i(ε, si) for si ∈ Si, the problem can be rewritten
as follows:

max
∑
s∈S

gi(s) ∏
j∈N∪{0}, j 6=i

rj(ε, sj)

 r̄i(ε, si) +
∑
s∈S

gi(s) ∏
j∈N∪{0}, j 6=i

rj(ε, sj)

 `i(ε, si) s.t.

r̄i (ε,∅) + `i(ε,∅) = 1

r̄i (ε, σu) + `i(ε, σu) =
∑
c∈Cu

r̄i (ε, σuc) +
∑
c∈Cu

`i (ε, σuc) ∀u ∈ Ui

r̄i(ε, si) ≥ 0 ∀si ∈ Si.

which, by rearranging the terms in the constraints, is equivalent to Problem (4) since the second
term in the objective function is a constant.

Problem (4) is a linear program, as all players’ realization plans are fixed, except for that of
player i. In the following lemma, we introduce the dual of Problem (4).
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Lemma 5. Given a perturbed sequence form (ΓS, {`i}i∈N), for every realization plan profile r(ε)
of ΓS(ε) and player i ∈ N , Problem (5) is the dual of Problem (4), where the variables v(u), for
u ∈ Ui, denote the dual variables associated with Constraints (4c).

min
∑
u∈Ui

(
`i(ε, σu)−

∑
c∈Cu

`i(ε, σuc)

)
v(u) s.t. (5a)

v(u) ≥
∑
s∈S:
si=σuc

gi(s) ∏
j∈N∪{0}, j 6=i

rj(ε, sj)

+
∑
u′∈Ui:
σu′=σuc

v(u′) ∀u ∈ Ui,∀c ∈ Cu. (5b)

Proof. The dual of Problem (4) reads as follows:

min (1− `i(ε,∅)) v(∅) +
∑
u∈Ui

(
`i(ε, σu)−

∑
c∈Cu

`i(ε, σuc)

)
v(u) s.t.

v(∅) ≥
∑
s∈S:
si=∅

gi(s) ∏
j∈N∪{0}, j 6=i

rj(ε, sj)

+
∑
u′∈Ui:
σu′=∅

v(u′)

v(u) ≥
∑
s∈S:
si=σuc

gi(s) ∏
j∈N∪{0}, j 6=i

rj(ε, sj)

+
∑
u′∈Ui:
σu′=σuc

v(u′) ∀u ∈ Ui,∀c ∈ Cu,

where v(∅) and v(u), for u ∈ Ui, denote the dual variables associated with Constraints (4b)-(4c).
Since `i(ε,∅) = 1 by Definition 4, we can remove variable v(∅) and obtain the result.

The optimal solutions to Problem (5) enjoy some particular properties, which are stated in the
following lemmas. The first lemma says that, in an optimal solution, each variable v(u) is set to
the value of player i’s expected utility for an optimal strategy in the game following information
set u, and this holds for any u ∈ Ui because of perturbations.

Lemma 6. Given a perturbed sequence form (ΓS, {`i}i∈N), for every realization plan profile r(ε) of
ΓS(ε) and player i ∈ N , the values v∗(u), for u ∈ Ui, constitute an optimal solution to Problem (5)
if and only if, for every u ∈ Ui, it holds:

v∗(u) = max
r′i∈Ri:
r′i(σu)=1

Gi(u, r(ε)
/
r′i). (6)

Proof. Let us consider Problem (5), First, observe that the objective function coefficient for the
variable v(u) associated with u ∈ Ui is equal to `i(ε, σu) −

∑
c∈Cu

`i(ε, σuc), which is positive by

Definition 4. Thus, in an optimal solution v∗(u) (for u ∈ Ui), each variable v(u) is set to its
minimum value given Constraints (5b).

(⇐=) Suppose v∗(u) (for u ∈ Ui) is an optimal solution to Problem (5). We prove Equation (6)
using a simple inductive argument. The base case of the induction is when there is no information
set u′ ∈ Ui with u ≺ u′. For every choice c ∈ Cu, it holds

v(u) ≥
∑

s∈S:si=σuc

gi(s) ∏
j∈N∪{0}, j 6=i

rj(ε, sj)

 ,
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which, using the fact that v∗(u) must be set to its minimum possible value given the constraints,
implies the following:

v∗(u) = max
c∈Cu

∑
s∈S:
si=σuc

gi(s) ∏
j∈N∪{0}, j 6=i

rj(ε, sj)

 = max
r′i∈Ri:
r′i(σu)=1

Gi(u, r(ε)
/
r′i),

where the last equality holds since there is no u′ ∈ Ui such that u ≺ u′ and
∑
c∈Cu

r′i(σuc) = r′i(σu) = 1,

for the definition of realization plan. As for the inductive step, let us consider an information set
u ∈ Ui and assume, by induction, that Equation (6) holds for every information set u′ ∈ Ui with
u ≺ u′. We can write:

v∗(u) = max
c∈Cu


∑
s∈S:
si=σuc

gi(s) ∏
j∈N∪{0}, j 6=i

rj(ε, sj)

+
∑
u′∈Ui:
σu′=σuc

v∗(u′)

 =

= max
c∈Cu


∑
s∈S:
si=σuc

gi(s) ∏
j∈N∪{0}, j 6=i

rj(ε, sj)

+
∑
u′∈Ui:
σu′=σuc

max
r′i∈Ri:

r′i(σu′ )=1

Gi(u, r(ε)
/
r′i)

 =

= max
r′i∈Ri:
r′i(σu)=1

Gi(u, r(ε)
/
r′i),

where the first equality directly follows from the optimality of v∗(u′), the second one from the
inductive hypothesis, while the last equality holds since we have

∑
c∈Cu

r′i(σuc) = r′i(σu) = 1.

(=⇒) By contradiction, suppose that Equation (6) holds for every information set u ∈ Uu and
v∗(u) (for u ∈ Ui) is not an optimal solution to Problem (5). Thus, there must be an information
set u ∈ Ui such that Equation (6) holds for all u′ ∈ Ui with u ≺ u′ and v∗(u) satisfies all the
Constraints (5b) with strict inequality (since it is not optimal). Therefore,

v∗(u) > max
c∈Cu


∑
s∈S:
si=σuc

gi(s) ∏
j∈N∪{0}, j 6=i

rj(ε, sj)

+
∑
u′∈Ui:
σu′=σuc

v∗(u′)

 =

= max
r′i∈Ri:
r′i(σu)=1

Gi(u, r(ε)
/
r′i),

which contradicts Equation (6) for the information set u.

The following lemma says that, if an optimal solution to Problem (5) satisfies Constraint (5b)
with equality, for an information set u and a choice c ∈ Cu, then playing choice c at u is part of an
optimal strategy in the game following u, and this holds for any u ∈ Ui because of perturbations.

Lemma 7. Given a perturbed sequence form (ΓS, {`i}i∈N), for every realization plan profile r(ε)
of ΓS(ε), player i ∈ N , information set u ∈ Ui, and choice c ∈ Cu, Constraint (5b) holds with
equality in an optimal solution to Problem (5) if and only if:

max
r′i∈Ri:

r′i(σuc)=1

Gi(u, r(ε)
/
r′i) = max

r′i∈Ri:
r′i(σu)=1

Gi(u, r(ε)
/
r′i). (7)
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Proof. In the following, let v∗(u) (for u ∈ Ui) be optimal for Problem (5).
(=⇒) Because of Lemma 6 and Equation (7), we can write:

v∗(u) = max
r′i∈Ri:
r′i(σu)=1

Gi(u, r(ε)
/
r′i) = max

r′i∈Ri
r′i(σuc)=1

Gi(u, r(ε)
/
r′i) =

=
∑
s∈S:
si=σuc

gi(s) ∏
j∈N∪{0}, j 6=i

rj(ε, sj)

+
∑
u′∈Ui:
σu′=σuc

v∗(u′).

(⇐=) Using Lemma 6 we can write:

v∗(u) =
∑
s∈S:
si=σuc

gi(s) ∏
j∈N∪{0}, j 6=i

rj(ε, sj)

+
∑
u′∈Ui:
σu′=σuc

v∗(u′) =

= max
r′i∈Ri

r′i(σuc)=1

Gi(u, r(ε)
/
r′i) = max

r′i∈Ri:
r′i(σu)=1

Gi(u, r(ε)
/
r′i).

This concludes the proof.

We are now ready to prove Theorem 1.

Proof of Theorem 1. By Lemma 4, r(ε) is a Nash equilibrium of ΓS(ε) if and only if, for every
player i ∈ N , r̄i(ε) = ri(ε) − `i(ε) is an optimal solution to Problem (4). The result is a direct
application of the complementarity slackness theorem in linear programming (using the conditions
connecting the primal variables with the slack variables of the corresponding dual constraints).
Let us fix i ∈ N , u ∈ Ui, and c ∈ Cu. By applying the theorem to Problems (4) and (5) we can
conclude that r̄i(ε) and v∗(u) (for u ∈ Ui) are optimal if and only if, whenever r̄i(ε, σuc) > 0 (i.e.,
equivalently, ri(ε, σuc) > `i(ε, σuc)), then Constraint (5b) for information set u and choice c holds
with equality, which, using Lemma 7, implies Equation (7). Since the two conditions hold for every
player i ∈ N , information set u ∈ Ui, and choice c ∈ Cu, the proof is complete.

A.2. Proofs Omitted From Section 4

Proof of Lemma 1. First, let us notice that the following relation holds:

max
r′i∈Ri:

r′i(σuc)=1

Gi(u, r
/
r′i) = max

r′i∈Ri:
r′i(σu)=1

Gi(u, r
/
r′i)⇐⇒ (8)

max
β′
i∈Bi:β′

i(c)=1
Hi

(
β
/
u
β′i | u

)
= max

β′
i∈Bi

Hi

(
β
/
u
β′i | u

)
.

In order to see this, for z ∈ Z(u) (i.e., z is a terminal node reachable from u) and β′i ∈ Bi, let
Hi(z, β, β

′
i) be such that:

Hi(z, β, β
′
i) = hi(z)

 ∏
j∈N∪{0}, j 6=i

∏
c∈p(z)∩Dj

βj (c)

 ∏
c∈p(z)∩Di:c/∈σu

β′i (c)

 ,
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where we recall that p(z) represents the set of choices on the path from the root of the game to z
(see Table 1). Since r is the realization plan of β and r′i(σu) = 1, the first line of Equation (8) is
the same as:

max
β′
i∈Bi:β′

i(c)=1

∑
z∈Z(u)

Hi(z, β, β
′
i) = max

β′
i∈Bi

∑
z∈Z(u)

Hi(z, β, β
′
i).

Then, by dividing both sides of the equality by
∑
x∈u

∏
j∈N∪{0}, j 6=i

∏
c∈p(x)∩Dj

βi (c) and using the defini-

tion of Hi(β | u), i.e.,

Hi(β | u) =

∑
z∈Z(u)

hi(z)
∏

j∈N∪{0}

∏
c∈p(z)∩Dj

βj(c)


∑
x∈u

∏
j∈N∪{0}

∏
c∈p(x)∩Dj

βj(c)
=

∑
z∈Z(u)

hi(z)
∏

j∈N∪{0}

∏
c∈p(z)∩Dj :c/∈σu

βj(c)


∑
x∈u

∏
j∈N∪{0}, j 6=i

∏
c∈p(x)∩Dj

βj(c)
,

we get the second line of Equation (8); where by c /∈ σu we mean that choice c is not contained
in the sequence σu. Clearly, we can prove the other direction of Equation (8) following the same
steps in the reverse order (and multiplying instead of dividing).

(=⇒) Suppose that the condition holds for every choice c ∈ Cu. Clearly,

max
β′
i∈Bi:βi=uβ

′
i

Hi

(
β
/
u
β′i | u

)
=
∑
c∈Cu

βi (c) max
β′
i∈Bi:β′

i(c)=1
Hi

(
β
/
u
β′i | u

)
,

and, since βi (c) > 0 only if max
r′i∈Ri

r′i(σuc)=1

Gi(u, r
/
r′i) = max

r′i∈Ri:
r′i(σu)=1

Gi(u, r
/
r′i), a direct application of Equa-

tion (8) proves the result.
(⇐=) As for the other direction, let βi ∈ BRu(β) be given. Thus, it is the case that the

following holds: max
β′
i∈Bi:βi=uβ

′
i

Hi

(
β
/
u
β′i | u

)
= max

β′
i∈Bi

Hi

(
β
/
u
β′i | u

)
. By contradiction, suppose that

max
r′i∈Ri

r′i(σuc)=1

Gi(u, r
/
r′i) < max

r′i∈Ri:
r′i(σu)=1

Gi(u, r
/
r′i) for some choice c ∈ Cu such that βi (c) > 0. Because of

Equation (8), we would have

max
β′
i∈Bi:β′

i(c)=1
Hi

(
β
/
u
β′i | u

)
< max

β′
i∈Bi

Hi

(
β
/
u
β′i | u

)
,

which implies the following:

max
β′
i∈Bi:βi=uβ

′
i

Hi

(
β
/
u
β′i | u

)
=
∑
c∈Cu

βi (c) max
β′
i∈Bi:β′

i(c)=1
Hi

(
β
/
u
β′i | u

)
< max

β′
i∈Bi

Hi

(
β
/
u
β′i | u

)
,

contradicting βi ∈ BRu(β).

A.3. Proofs Omitted From Section 5

Proof of Lemma 2. Let us fix a player i ∈ N , an information set u ∈ Ui, and a choice c ∈ Cu. First,
notice that Gi(u, r(ε)

/
r′i) can be expressed as a linear combination (with coefficients depending
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on ε) of the variables r′i(si), where the sequences si are those containing a sequence σuc
′ for some

c′ ∈ Cu. Formally,

Gi(u, r(ε)
/
r′i) =

∑
c′∈Cu

∑
si∈Si:σuc′vsi

r′i(si)γi(ε, si),

where, given that r is rational, each γi(ε, si) is a rational function of ε. Given that the terms
γi(ε, si) are expressed as rational functions of ε, there must exist a sufficiently small ε̄ ∈ (0, 1) such
that, for all ε ∈ (0, ε̄), the relative ordering of the terms γi(ε, si) is the same. Formally, there exists

an ordering s
(1)
i , s

(2)
i , . . . , s

(k)
i of the sequences si ∈ Si : σuc

′ v si for some c′ ∈ Cu such that, for all
ε ∈ (0, ε̄), it is the case that:

γi(ε, s
(1)
i ) ≥ γi(ε, s

(2)
i ) ≥ . . . ≥ γi(ε, s

(k)
i ),

where k is the number of such sequences. Let us remark that, if for two sequences s
(j)
i and s

(j+1)
i the

above relation holds with equality, i.e., γi(ε, s
(j)
i ) = γi(ε, s

(j+1)
i ), then γi(ε, s

(j)
i ) and γi(ε, s

(j+1)
i ) are

defined by the same rational function of ε. Now, let us define γ̃i(ε, si) = γi(ε
η, si) for all sequences

si ∈ Si : σuc
′ v si for some c′ ∈ Cu. Given that they are rational functions of ε, there must exist

a (different, in general) sufficiently small ε̄ ∈ (0, 1) such that, for all ε ∈ (0, ε̄), the ordering of the
sequences is preserved, i.e.,

γ̃i(ε, s
(1)
i ) ≥ γ̃i(ε, s

(2)
i ) ≥ . . . ≥ γ̃i(ε, s

(k)
i ).

Given that we can write

Gi(u, r̃(ε)
/
r′i) =

∑
c′∈Cu

∑
si∈Si:σuc′vsi

r′i(si)γ̃i(ε, si),

by using the fact that Gi(u, r(ε)
/
r′i) and Gi(u, r̃(ε)

/
r′i) are linear functions of r′i, we can conclude

that, for ε ∈ (0, ε̄), if the two max expressions on the left-hand side of the condition stated in the
lemma are the same, then the same holds for the two appearing in the right-hand side, and vice
versa. Since these arguments hold for every i ∈ N , u ∈ Ui, and c ∈ Cu, it is sufficient to take a
sufficiently small ε̄ ∈ (0, 1) to conclude the proof.

A.4. Proofs Omitted From Section 6

Proof of Lemma 3. The proof follows the line of that of Lemma 2. Since the game has only two
players, it holds N = {1, 2}, and, thus, for the ease of presentation, given a player i ∈ N , we
let j be her opponent. Once fixed i ∈ N , u ∈ Ui, and c ∈ Cu, the proof follows the same steps
as that of Lemma 2, where, in this case, we define γ̃i(ε, si) = γi(ε

η, si)Π(ε). Remember that
Π(ε) =

∏
i∈N
∏

s′i∈Si
PolyDi (ε, s′i). Notice that, in a two-player game with nature, γi(ε, si) is the

sum of rational functions of ε coming from the realization plan rj(ε), possibly multiplied by the
probabilities of chance moves (not depending on ε). Formally;

γi(ε, si) =
∑
sj∈Sj

∑
s0∈S0

gi(s0, si, sj)r0(s0)rj(ε, sj),

where we write r0(s0) in place of r0(ε, s0) as it does not depend on ε. As a result, we can write:

Gi(u, r̃
p(ε)

/
r′i) =

∑
c′∈Cu

∑
si∈Si:σuc′vsi

r′i(si)γ̃i(ε, si),
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since all the terms depending on ε are multiplied by Π(ε) only one time in r̃p(ε). Notice that this
does not hold with more than two players, as in γi(ε, si) probabilities defined by the realization
plans of different players may be multiplied. In conclusion, all the steps in the proof of Lemma 2
continue to hold since Π(ε) goes to one as ε goes to zero.
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