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ATTAINMENT OF EQUILIBRIUM: MARSHALLIAN PATH ADJUSTMENT
AND BUYER DETERMINISM

Sean M. Collins, Duncan James, Maroš Servátka and
Radovan Vadovič

We examine equilibration in a market where Marshallian path adjustment
can be enforced, or not, as a treatment: a posted offer market either with buyer
queueing via value order, or random order, respectively. We derive equilibrium
predictions, and run experiments crossing queueing rules with either human or
deterministically optimizing robot buyers under both locally stationary and non-
stationary marginal cost. Results on rate of convergence to competitive equilib-
rium are obtained, and Marshallian path adjustment is established as conducive
to attaining competitive equilibrium.

Marshallian path adjustment, wherein the highest outstanding-value buyer
and the lowest outstanding-cost seller transact at each point in time is a
dynamic that allows ultimate attainment of the competitive equilibrium
price despite prior trades occurring at other prices, and which exhausts all
gains from trade. Prior work has reported evidence consistent with Mar-
shallian path adjustment as an emergent phenomenon (Cason and Fried-
man, 1997; Plott, Roy, and Tong, 2013). Instead of attempting to observe
Marshallian path adjustment as an endogenous phenomenon, we vary its
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presence or absence exogenously as a treatment, allowing observation of
market equilibration—or perhaps its failure—in the presence or absence of
Marshallian path adjustment.

Our test-bed is the posted offer market. Within the posted offer market
lies a particular design attribute—queueing protocol—that is well suited as
our key treatment variable. By means of different queuing protocols, one can
exogenously enforce or preclude Marshallian path adjustment in a posted
offer market. If one imposes value order buyer queueing (Beckman, 1965;
Levitan and Shubik, 1972; Vives, 1986) and a flat supply curve, then trades
are executed in the same order as that prescribed by Marshallian path ad-
justment.1 Conversely, one can “switch off” Marshallian path adjustment
by replacing value order queueing with exogenously randomized order buyer
queueing, which effectively precludes Marshallian path adjustment.2 We
thus present a diagnostic test of a foundational theoretical concept (Mar-
shallian path adjustment) and explore its implications for equilibration and
efficiency.

If queueing order is endogenously determined, i.e. by speed of subject re-
sponse, then ordering varies as a function of anything influencing response
speed. One influence on response speed may be excess rents (Smith, 1962):
higher available surplus from transacting (itself a function of induced value
or cost) might lead to quicker response; in the limit, de facto value order

1By contrast, call markets impose Marshallian path adjustment as part of their normal
operation.

2Readers with an industrial organization background may be familiar with work in
duopoly settings that varies buyer queueing and with a discussion over which form of
queueing is more realistically descriptive of particular industries. Our approach takes a
market design perspective. In particular, we take advantage of the remarkable and useful
coincidence (isomorphism) between Marshallian path adjustment and value order queue-
ing in a particular market (posted offer) for the purpose of investigating equilibration in
a competitive (five seller, five buyer) environment.
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queueing might thereby emerge. However, if variation across subjects in
(unobservable) calculation speeds, manual dexterity, comprehension of the
strategic implications of the market rules, and so on, overwhelms the influ-
ence of excess rents on response speed, then queueing order might appear
uncorrelated with excess rents, and in this sense appear random. Between
the preceding extremes lies a continuum of cases, over which ordering might
be “affiliated” with excess rents (induced values) to a varying degree. Our
design imposes, exogenously, two extremes of this continuum of queueing
possibilities.

Both value order and random order queueing support multiple pure strat-
egy equilibria (for particular marginal cost settings), including competitive
equilibria. One does not know ex ante which, if any, of these equilibria might
occur, and whether the price and quantity outcomes that do eventuate will
be the same or different across the different queueing rules. As it happens,
our results demonstrate that previously observed poor performance of the
posted offer market can likely be attributed to the absence of enforced Mar-
shallian path adjustment (due to use of queueing rules other than value
order), and not one-time, one-sided posting of prices. More generally, given
individual posting of offers and human buyers, the presence or absence of
an exogenously enforced Marshallian path adjustment appears to be suf-
ficient to span either convergence to the competitive equilibrium or not.
One does not need to switch institutions, say as from Chamberlin (1948) to
Smith (1962), to observe variation so wide in attainment of the competitive
equilibrium allocation.

1. BACKGROUND

Appreciation of the problem of equilibration, and in particular of out-
of-equilibrium trades, dates back at least to the 19th century. Different
resolutions include: Walras’ employment of an institution, tâtonnement,
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which determines prices centrally and precludes out-of-equilibrium trade;
Green’s (1974) Edgeworth-inspired employment of a coalition formation
process which operates on a decentralized basis and which precludes out-of-
equilibrium trade; and Marshall’s (1961) suggestion as to how a sequence
of trades, pairing the buyer with the highest outstanding value with the
seller with the lowest outstanding cost, might eventually generate a price at
the crossing of supply and demand, even if all trades except the ultimate,
marginal trade take place at prices other than the competitive equilibrium
price.3

Plott et al. (2013) examine whether Marshall’s suggested trajectory of
trades—here and elsewhere referred to as Marshallian path adjustment—
might be an emergent property of the double auction, and report data sug-
gestive of such a pattern of trades.4 Collins, James, Servátka, and Woods
(2017), hereafter CJSW, find that the combination of individually posted
prices and Marshallian Path Adjustment is associated with attainment of
competitive equilibrium in an advance production (market entry) setting.5

3Hahn and Negishi (1962) also allow for out-of-equilibrium trades; rather than di-
rectly enforcing an order over buyers’ (sellers’) actions, they require that individual and
aggregate excess demands not be allowed to have persistent opposite signs, i.e. those who
would satisfy excess supply (demand) at a uniform price call must do so.

4In a follow-up study, Plott and Pogorelskiy (2017) examine price dynamics in a
call market with two calls per trading period. While that paper tries to shed light on
conjectures about possible Walrasian or Newtonian dynamic influences on bid or ask
adjustments on either side of the calls, at any given call the mechanics of trade follow
Marshallian path adjustment. The institution implemented by Plott and Pogorelskiy
(2017) is related to the uniform-price double auction (McCabe et al., 1984).

5The uniform ex post market clearing price institution that is embedded in the mar-
ket entry game can also be argued not to violate Marshallian path adjustment. To see
this, consider a comparison with the quantities-only clearing-house (CHQ) introduced by
Friedman and Ostroy (1995). CHQ works by accepting quantity messages from agents
and imputing limit prices for those agents from their actual cost or valuation parame-
ters. CJSW’s uniform price market (the market entry game) treats demand equivalently.
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A method by which Marshallian Path Adjustment can be turned on or
off turns out to be manipulation of the buyer queueing rule. Edgeworth
(1925) pioneered the study of buyer queuing in a setting where each firm
has capacity that is both insufficient to supply the entire market and fixed,
or at least less easily changed than prices. The work of Beckman (1965) and
Levitan and Shubik (1972) further examine the role of buyer queueing as
a critical determinant of residual demand. These latter works specify the
mechanics of value order buyer queueing in a duopoly.6

Vives (1986) finds that given sufficiently large aggregate capacity and
number of firms, value order queueing (“surplus maximizing rationing” in
his terminology), can lead to attainment of the competitive price. While
our parameterization is directly linked to that of the market entry game
(Selten and Güth, 1982) rather than Vives’ setting, we too provide theo-
retical results that the competitive equilibrium is a possible outcome under
value order queuing. Which of the possible outcomes, of which the compet-
itive equilibrium is just one, eventuates is of course an empirical question,
addressed in our results section.7 (See subsection A.1 of the appendix for a

Further, supply in CJSW’s uniform price market can be viewed as equivalent to a (single-
unit-per-producer) CHQ if producers (entrants) are held to have submitted a “quantity
equals one” message at that juncture; their marginal cost, being sunk, is imputed as
equal to zero. Consequently, the value-order queuing used in CJSW’s posted offer ad-
vance production treatment imposes Marshallian Path Adjustment.

6Levitan and Shubik (1972) make special mention of the importance of the choice of
buyer queueing rule in obtaining particular equilibria, and also acknowledge that, “The
actual shape of contingent demand cannot be specified generally from a priori reasoning.
It will depend upon priorities in service of customers and … needs specific empirical
investigation and model building” (pg. 119).

7We are first and foremost interested in value order queueing as a means to exogenously
enforce Marshallian path adjustment in order to document its effect on equilibration.
However, let us also point out that value order queueing may be an emergent phenomenon
in naturally-occurring settings in its own right, for example, in the operation of call
markets.
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more detailed survey of related literature.)

Marshallian path adjustment might be disrupted if buyers do not engage
in deterministic demand revealing behavior. Human buyers might possess
notions—e.g. fairness norms and/or expectations of either a relative (split)
or absolute (hourly compensation) nature—prompting them to view some
offers as unacceptable even if profitable (Cox, Friedman, and Gjerstad,
2007); alternatively, they might make mistakes. Thus, human buyers might
refuse profitable offers or accept offers at a loss (neither is possible with
robot buyers programmed to accept an offer if and only if profit is greater
than or equal to zero). Any of the preceding could as a byproduct disrupt
Marshallian path adjustment, even when value order queueing is in use.
Despite this, prior studies using value order (see Table A.1 in Appendix A)
exclusively use robot buyers, creating a confound in the existing literature.
To eliminate this confound, our design provides, ex ante, for variation in
buyer determinism and then controls, ex post, for any effect thereof, from
whatever source(s).

Finally, our design draws on the literature on incomplete information
market experiments, wherein often each participant knows only their own
marginal cost (resale value). Smith (1962), Plott and Smith (1978), and
Forsythe, Palfrey, and Plott (1982) examine whether markets arrive at
Pareto optimal outcomes despite each agent lacking information about their
opponents’ costs or valuations (and hence their payoff functions). More re-
cent examples examining duopoly/oligopoly (and attainment, or not, of
Nash Equilibrium) include Cox and Walker (1998), Huck, Normann, and
Oechssler (1999) (especially their NOIN treatment), and Friedman, Huck,
Oprea, and Weidenholzer (2015). These studies suppress information about
opponents in order to test conjectures recurrent in economics from Smith
(1776) through Hayek (1945) to the present day, as to whether systemic
benchmark allocations can be achieved given decentralized, private infor-
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mation (or perhaps missing information). Hence our design keeps marginal
costs as private information (while the demand curve, overall, is disclosed
to sellers to allow calculation of their respective, conditional payoffs).

2. DESIGN

Our design is based on that used in the Poap (i.e. posted offer with ad-
vance production) treatments in CJSW (2017), which were constructed so as
to be payoff-equivalent at competitive equilibrium to an empirically-studied
parameterization of the market entry game.8 Thus the design incorporates:

1. five buyers, each capable of buying one unit, comprising a market
demand curve with resale values {8,6,4,2,0};

2. five sellers, each capable of producing and selling one unit;9

3. an advance production environment, wherein sellers must choose whether
or not to produce and pay for their unit before entering the market
and all production decisions are known to all, before pricing;10

4. the posted offer institution, wherein those sellers who have become
producers post a price for their unit; and

5. a buyer queueing method.
In addition, variation of the determinism of buyer behavior is included

in this design as a treatment allowing a robustness check on the impact of
8Our design is also comparable, though less closely, to that of Mestelman and Welland

(1988). See further discussion in CJSW (2017, p. 279, 289).
9Note also that restricting buyers and sellers to one unit each is recommended by

Plott et al. (2013) when Marshallian path adjustment is the object of study.
10There is a payoff of 1 to staying out of the market and a payoff of 1 for entering

the market; the latter is added to the profit or loss from producing and, should there be
a sale, selling the unit produced as a condition of advance production. This shift does
not change any Nash equilibria, or prices and quantities at the margin, but necessitates
that profits in equilibrium will be 1 rather than zero. This design choice is implemented
to facilitate comparison with other designs in a larger research program which elsewhere
nests the market entry game (CJSW, 2017).
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TABLE I

Matrix of Treatments
Marshallian Path Adjustment

Enforced, per Not Enforced, per
Value Order Queue Random Order Queue

Human Buyers VOHB ROHB
Robot Buyers VORB RORB

Marshallian path adjustment, and more finely a scale comparison between
the effects of queueing method and buyer determinism (see Table I).11

In a given round, play unfolds as follows.12 First, the sellers are informed
of their respective costs, MC. Costs are identical across sellers in a given
round; i.e. MCi = MC, ∀i, but sellers are informed only of their own
costs.13 Buyers’ resale values are disclosed at the beginning of each round
to all sellers, but buyers know only their own resale value.14 Resale values

11VORB in this paper is the same parameterization as Poap in CJSW (2017). The
reference acronym is changed for ease of reference for the reader within the present study.

12Complete instructions are reproduced in Appendix C.
13Subjects knowing only their own cost (resale value) information is a feature of nu-

merous experimental studies. Two studies which feature private but identical marginal
costs across sellers (as ours does) are Smith and Williams (1989) and Cason and Williams
(1990).

14Disclosing the demand curve to all sellers allows each seller to calculate their own
payoff for any possible choice of (non-)production and pricing that they might consider,
contingent upon their beliefs about other sellers’ choices. Beliefs might eventuate such
that outcomes theoretically-derived under complete information emerge nonetheless un-
der conditions of incomplete information. Thus the complete information equilibria from
our theory section are still interesting benchmarks, comparable to the role played by the
competitive equilibrium prediction in Plott and Smith (1978), the rational expectations
prediction in Forsythe et al. (1982), or the Cournot equilibrium prediction in Cox and
Walker (1998). Note also that such beliefs could be affected if one were to change aspects
of the design, and might as such support different empirical results. For example, mak-
ing marginal cost of each seller public might be argued to support attempts at greater
collusion by sellers or greater withholding by buyers, or possibly both, which might lead
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are the same across all rounds.

Next, the sellers, having already been informed in the instructions as to
the buyer queueing rule in effect in that session, make their production
decisions. Hereafter, we denote sellers who chose to produce in advance
as producers. All subjects are then informed of the number of producers
(equivalently, number of units for sale), m, in that round.

Subsequently producers, each with a unit for sale, make their respective
pricing decisions, which must come from the set {0,2,4,6,8,10}. Buyers are
then released, as per the queueing rule in place in that session, to evaluate
the offers that round, each buyer either to buy one unit, or zero, as they so
choose. Human buyers also earn a commission of 0.1, distinct from surplus
from trading, each time they buy a unit, thus eliminating indifference in
favor of procurement when a buyer’s value equals the lowest available ask.15

After the end of the round, the number of producers and the prices posted
are displayed to all, while each individual’s payoff is displayed privately, as
feedback.

There are 96 rounds in an experimental session. Each session is divided
into 6 blocks of 16 rounds. Within each such block, during the first 4
rounds MC (identical across subjects, but private information) is varied ran-
domly without replacement through {2,4,6,8}. During the middle 8 rounds,
MC = 4 throughout. During the final 4 rounds, MC varies randomly but
without replacement via a different drawing than the first 4 rounds. (The
same MC sequence is used in all sessions.) This alternation of blocks allows
for capture of observations under (locally) stationary conditions as well as
under non-stationary conditions. A stationary environment is so common

to results similar to Ruffle (2000). We thank an anonymous referee for pointing this out.
15The use of commissions conditional on completing a trade was first discussed in

published work by Smith (1976), and first used in practice by Plott and Smith (1978) in
experiments conducted prior to the former publication. See also Ketcham et al. (1984).
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as to be arguably a default setting in market experiments. A non-stationary
environment allows interesting additional comparisons—not least another
robustness check on conclusions about treatment effects—and is specifically
suggested by Plott et al. (2013, pg. 193) as a way to allow the separation of
the equilibrating properties of Marshallian path adjustment from possible
development of price expectations otherwise. Thus, we implement alternat-
ing stationary and non-stationary segments.

All subject groups are disjoint, and no subject participated in more than a
single session. Each group consists of five human sellers (and in human buyer
sessions, also five human buyers) and is fixed throughout that session, while
there are two concurrent, unrelated groups per session. All experiments took
less than two and a half hours. Payoffs consisted of one period randomly
selected, after the experiment, from each of the six blocks, plus a show-
up fee.16 Experiments were conducted in z-Tree (Fischbacher, 2007) and
subjects were recruited using ORSEE (Greiner, 2015). All sessions were run
at the New Zealand Experimental Economics Laboratory at the University
of Canterbury.

3. THEORY

For a posted offer with advance production, and a value order buyer
queue, the pure strategy equilibria fall into three categories: (1) the com-
petitive market equilibrium with marginal cost pricing, (2) (tacitly) collusive

16This method is that used by Duffy and Hopkins (2005) and thereafter by CJSW
(2017). It is implemented here, as it was in those prior studies, as the most appropriate
method (given the informational conditions imposed in the experiment) to avoid incen-
tive and protocol issues that could otherwise arise if earnings are accrued cumulatively
throughout the experiment. If earnings had instead accrued cumulatively, then draw-
down of earnings or even bankruptcy on the part of subjects would have been possible,
due to the advance production (equivalently, pre-committed entry) environment. Subject
payments are detailed in subsubsection A.2.1 of the appendix.
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pure strategy equilibria involving fewer units produced supporting higher
prices, and (3) (tacitly) collusive equilibria involving some units produced
not sold, supporting higher prices. There are also mixed strategy equilibria,
involving slightly different advance production (equivalently, entry) proba-
bilities than would be predicted under an otherwise similarly parameterized
market entry game; this difference stems from a difference in pricing pos-
sibilities.17 All of these results for the value order queueing version of the
posted offer with advance production are established in CJSW (2017).

Our point of departure for characterizing equilibria under random order
queueing is to point out where they begin to differ from those under value
order queueing. As per (1) above, under value order queueing there is a
pure strategy Nash equilibrium (PSNE) in which each agent nominates their
asking price via Pi = P (m), the market clearing price. That is, each agent,
i, posts as their asking price, Pi, a number equal to the price coordinate
on the demand curve, P (m), given that m units are known to have been
produced in the first stage of the game. (For ease of exposition, we shall
refer to Pi = P (m) ∀i, as “pricing via the demand curve”.) For m = 3

additional uniform price equilibria, featuring unsold units as per (3) above,
arise even with value order queueing. The set of equilibria then gets richer
still when queueing is instead done in random order, because here there may
now exist an incentive for producers to post higher-than-Bertrand asks in
anticipation of encountering high-valuation buyers later in the queue than
would be possible under value order. Notably, the m = 3 case under random
order queueing supports two asymmetric pricing equilibria. For m > 3,
pricing via the demand curve is not a PSNE under random order queueing

17Since the market entry game employs an embedded administered pricing rule, while
the posted offer with advance production allows free individual posting of prices, the
possible gains or losses associated with entry can vary across the two games, thus altering
the probability of entry which establishes indifference with not entering.
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(unlike for value order queueing).18

By the time of the pricing subgame, (1) marginal cost is sunk, and (2)
the number of producers is known and common knowledge; therefore, at
that juncture, asking prices consistent with pure strategy Nash equilibria
depend only on the number of producers, m. Thus, we can meaningfully
divide analysis of equilibria between the pricing subgame and the game
composed of the advance production decision and pricing subgame jointly.
We provide such a taxonomy of equilibria in Table II. Panel A presents all
pure strategy Nash equilibria in the pricing subgame, not all of which are
subgame perfect. (Those PSNE that are not subgame perfect may still arise
empirically, and thus need to be accounted for.) Panel B presents subgame
perfect equilibria; these involve asking prices, number of producers, and
marginal costs.

We identify two types of (tacitly) collusive equilibria. In one, at the ad-
vance production stage, quantity is restricted to less than the competitive
amount of advance production, permitting higher equilibrium prices; we
term this collusive production. In the other, at the pricing stage, some or
all of the m producers may possibly price above the competitive price, re-
sulting in less than m units taken by buyers; we term this collusive pricing.
As Table II shows, given our study’s parameterization, random order and
value order each support collusive pricing pure strategy equilibria, and the
collusive pricing equilibria possible under value order are a subset of the
collusive pricing equilibria possible under random order.19

18Further alternatives, in the form of strategies exploiting repetition of play, are ex-
plored in subsubsection B.3.1 of the appendix. There we demonstrate theoretically a
possible collusive repeated game equilibrium (and what is required for its implementa-
tion by sellers).

19Even more strikingly, random order does not support any pricing via the demand
curve—a necessary condition for competitive equilibrium—when there are more than
three producers (m > 3). It might also be noted that, for uniform pricing equilibria, the
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TABLE II

Description of Pure Strategy and Subgame Perfect Nash Equilibria

Panel A. Asking Prices Supporting Pure Strategy Nash Equilibria in the Pricing
Subgame Given Advance Production

Number of Posted Asking Prices
Producers Value Order Queuing Random Order Queuing

m = 1 {8} {8}

m = 2 {6,6} {6,6}

m = 3 {4,4,4},{6,6,6} {4,4,4},{4,4,6},{4,6,6},{6,6,6}

m = 4 {2,2,2,2},{4,4,4,4} {4,4,4,4}

m = 5 {0,0,0,0,0},{2,2,2,2,2},{4,4,4,4,4} {2,2,2,2,2},{4,4,4,4,4}

Note: Asking prices supporting PSNE in the pricing stage are listed for value and random order
queueing, given demand schedule {8,6,4,2,0}, with marginal cost sunk. A subset of these PSNE in
the pricing subgame support the pure SPNE (for advance production and pricing) enumerated in
Panel B. Asking prices in bold are consistent with pricing via the demand schedule, i.e. each seller
i posting a price Pi(m) where m is the number of producers and P (·) is the demand schedule.

Panel B. Advance Production (Quantities) and Asking Prices Supporting Subgame
Perfect Nash Equilibria

Marginal Cost Number of Posted Asking Prices
of Production Producers Value Order Queueing Random Order Queueing

MC = 8
{ m = 0 ∅ ∅

m = 1 {8} {8}

MC = 6 m = 2 {6,6} {6,6}

MC = 4 m = 3 {4,4,4},{6,6,6} {4,4,4},{4,4,6},{4,6,6},{6,6,6}

MC = 2
{ m = 4 {2,2,2,2} —

m = 5 {4,4,4,4,4} {4,4,4,4,4}

Note: Asking prices supporting pure SPNE are listed for value and random order queueing, given
marginal cost MC = {8, 6, 4, 2} and demand schedule {8,6,4,2,0}. The PSNE in the pricing subgame
are enumerated in Panel A. Cells for which no PSNE in the pricing stage support a SPNE have
dashes. Asking prices in bold are consistent with pricing via the demand schedule.
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Special attention is warranted in the case of three producers (m = 3). In
this case, both value order and random order support the competitive equi-
librium. However, they each also support collusive pricing equilibria, and
there are important differences among these. Under random order queue-
ing, each producer is indifferent, in expectation, between pricing at 4 or 6,
while under value order queueing, in equilibrium agents must ask the same
price. Under random order queueing, all producers pricing at 6 is robust
to trembles (Selten, 1975), but under value order queueing, all producers
pricing at 6 is not robust to trembles.

4. RESULTS

4.1. Overview of Results

The treatments we evaluate are described in Table I. For each of these
four treatments, we consider data generated by four groups. This totals
16 groups formed from 80 human sellers, 40 human buyers, and 40 robot
buyers. Across 96 periods, this yields 7,680 seller-level observations, 3,840
human-buyer-level observations, and 1,536 group-level observations.

With this data, the questions that we address include: (1) do we observe
convergence to any equilibria; (2) do we observe convergence to different
equilibria when exogenous enforcement of Marshallian path adjustment is
or is not in place due to use of different queuing treatment; (3) does the rate
of convergence vary by queuing treatment; (4) does the selection of equilibria
or speed of convergence vary by buyer behavior treatment (robot or human);
(5) are there other possible effects of human, rather than robotic, buyer

payoffs of the pricing subgame (to producers and buyers) are the same under random
order and value order. This occurs because, under both value and random order: (1)
equilibrium pricing at or above m steps down the demand curve, and (2) uniform pricing,
together guarantee that all buyers with a higher value than the uniform asks will receive
an opportunity to purchase (at the same price), with lower-value buyers not able to
purchase profitably, regardless of queuing order.
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behavior; and (6) how does all of this interact with the advance production
decision preceding the pricing subgame?

To first provide a visual overview of results, Figure 1 graphically illus-
trates production choices, asking prices, quantity sold, and efficiency from
the stationary marginal cost periods of the experiment for one session from
each treatment. (The stationary periods, for which MC = 4 unchanging,
are 5 through 12, 21 through 28, and so on.) Open dots represent unfilled
asks and closed dots represent filled asks (realized transactions); the verti-
cal coordinate for either denotes the price at which the ask was made. The
left-to-right position of a dot within the vertical bar associated with the
period denotes which seller made the ask (e.g. left-most position, seller 1;
… ; right-most position, seller 5). The number of transactions in a period
is the number interior to the bottom of the graph, while the efficiency in
that period, measured as the fraction of (expected) total surplus realized,
is the number immediately exterior to the bottom of the graph. Aggregate
efficiency under VORB, VOHB, RORB, and ROHB is respectively 98.9%,
93.2%, 92.6%, and 85.2%. (We present similar graphs for all sessions and
details on efficiency and buyer behavior in subsections A.2.2 and A.6.1 of
the appendix, respectively.)

Value order sessions for both human and robot buyers converge to the
competitive equilibrium of three units produced, all priced at 4, while ran-
dom order sessions exhibit a wide range of behaviors anticipated in the the-
ory presented in section 3, including non-uniform pricing equilibria detailed
there. As we shall see, econometric analysis supports this characterization.

4.2. Convergence to Competitive Equilibrium

Likely the foremost question in market experiments is whether or not com-
petitive equilibrium is attained. There are two distinct, but nested, senses
in which competitive equilibrium might be judged as occurring. The less
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restrictive sense is that familiar from market experiments with production-
to-order (e.g. Plott and Smith, 1978): are the competitive price and quan-
tity predictions observed?20 The more restrictive sense also applies that
criterion, but adds another: are the individual producers who deliver the
competitive equilibrium quantity the same from one round to the next?
This additional criterion isolates instances where asymmetric PSNE play is
responsible for the occurrence of competitive equilibrium quantity (as op-
posed to, say, turn-taking in production, which would be admitted under
the less restrictive standard).

We present results addressing both standards of equilibrium attainment,
for both stationary and non-stationary rounds. Whether CE price and quan-
tity have occurred is straightforward to document; thus for the looser stan-
dard of CE attainment we present a probit where the dependent variable is
1 if both CE price and CE quantity occur, and 0 otherwise. For the tighter
standard we further refine the dependent variable, such that it receives the
value 1 only if all of the preceding is true and a particular stable pattern
(described next) manifests in the identities of the individual producers.

We evaluate the emergence of the temporally stable, individual advance
production decisions that support competitive equilibrium in pure strategy
play as follows. Loosely following Duffy and Hopkins (2005), we identify
ex post the players who are most likely to be producers, by reference to
late round behavior, and having done so then track (from the first round
onwards) the adjustment process that leads to the outcome observed at

20The minimum criteria we set for observation of CE are the observation of both: (1)
a SPNE number of entrants, given marginal cost, and (2) uniform pricing at the price
implied by the demand curve, given the number of entrants observed under (1). Note
that the preceding conditions imply zero economic profits. This includes the cases where
MC = 6 and two sellers choose to produce (and price at 6), and where MC = 8 and one
seller chooses to produce (and price at 8), and where M = 8 and no seller produces.
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the end of each session.21 This categorization and tracking process which
we employ is suited to uncover assortative behavior, for instance a pecking
order in advance production for which frequency of advance production is
monotonic on the part of each individual seller. Under such a pecking order,
the seller who produces when MC = 8 should a fortiori produce when
MC = 6, and so on. The seller who joins in at MC = 6 should produce at
MC=4, and so on.

Graphically, over a block of four periods, the ordering described above
would in stationary (MC = 4 only) rounds lead to a configuration such
as that in the left-hand panel of Figure 2, while in non-stationary rounds
(MC = {2, 4, 6, 8}) would lead to a configuration such as the two right-hand
panels of Figure 2.

As examples of the evolution of actual advance production decisions—
possibly towards the assortative benchmarks in Figure 2—among a group
of sellers in Session 2 of each treatment see the data presented in Figure 3. In
reading the graphs, in left-to-right temporal order of blocks, we would point
out the following particular phenomena as being of interest. First, for any
group, the final block does not exhibit the same entry pattern as the first
block; there is change in advance production decisions over the course of the
experiment. Second, there are instances of adjacent blocks exhibiting iden-

21Which players are predicted to engage in advance production is determined by the
following algorithm adapted from Duffy and Hopkins (2005), implemented over four-
period blocks of data: (1) begin in final block τ = {T} with all I = {1, 2, 3, 4, 5} sellers,
(2) order the I sellers by number of periods of production for block(s) τ and prior block
min{τ}−1, denoting this θt(I) and θt−1(I) respectively; (3) breaking any ties in ordering
by the number of period of production in t = 1, . . . , T ; then (4) if min{τ} − 1 = 1 or if
θt−1 = θt, return θt−1 as the predicted ordering, else (5) update τ = {min{τ}−1, . . . , T}

and return to step 2. For ease of exposition, we describe advance production decisions
exactly matching the assortative pattern predicted by this algorithm as “temporally
stable” in identities, as for instance, in Table III.
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Figure 2: Competitive Equilibrium Arrangement of Advance Production
Note: Each row shows the identity of each seller (vertical axis labeling, 1 . . . ...5). Each column shows
whether a given seller would engage in advance production (black) or not (white) within a block of four
contiguous rounds given all of the following: (a) marginal cost in that round is as listed at the bottom
of that column, on the horizontal axis, (b) there is a “pecking order” in advance production that
respects monotonicity at the individual level (and a fortiori at the group level), and (c) total number
of producers is that which would be observed given both SPNE advance production decisions and zero
economic profits (i.e. a SPNE number of producers and uniform pricing at the level then implied by the
demand curve). (Note the following special cases. First, that gray is used for the MC = 8 cases as
either advance production by one seller, or no production at all, each feature SPNE play and zero
economic profits. Second, that in the case of random order queueing and MC = 2, there are no SPNE
featuring the uniform pricing that would be implied by the demand curve; thus the MC = 2 column
for random order is occupied by the null set.)

tical patterns; stability of advance production—associated with pure strat-
egy play—may be emerging over the course of the experiment. Third, the
patterns emerging in actual play may resemble the monotonic-in-advance-
production, pure strategy benchmarks seen in Figure 2; the VORB data
contain more instances conforming to such benchmark configurations than
do, say, the ROHB data. In subsubsection A.2.2 of the appendix we present
visualizations of advance production data for all sessions, and there include
the MC = 2 data from RO sessions in figures otherwise constructed as per
Figure 3. In subsection A.4 of the appendix, we present a non-parametric
analysis of all advance production data that shows a significant and down-
ward ordinal time trend in instability among the set of producers, given
stationary environment, for all treatments except RORB.

workingpaper.cls ver. 2006/04/11 file: paper.tex date: September 5, 2020



20

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

5 6 7 8 9 10 11 12 21 22 23 24 25 26 27 28 37 38 39 40 41 42 43 44 53 54 55 56 57 58 59 60 69 70 71 72 73 74 75 76 85 86 87 88 89 90 91 92

5
4

3
2

1

MC

Period

VORB, Session 2

S
u
b
je

ct
 N

u
m

b
er

 w
it

h
in

 G
ro

u
p

2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8

123 4 1314 15 16 17 1819 20 29 30 31 32 3334 35 36 45464748 4950 51 52 61 6263 64 65 6667 68 77 7879 80 818283 84 9394 95 96

5
3

4
1

2

MC

Period

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

5 6 7 8 9 10 11 12 21 22 23 24 25 26 27 28 37 38 39 40 41 42 43 44 53 54 55 56 57 58 59 60 69 70 71 72 73 74 75 76 85 86 87 88 89 90 91 92

1
5

3
2

4

MC

Period

VOHB, Session 2

S
u
b
je

ct
 N

u
m

b
er

 w
it

h
in

 G
ro

u
p

2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8

123 4 1314 15 16 17 1819 20 29 30 31 32 3334 35 36 45464748 4950 51 52 61 6263 64 65 6667 68 77 7879 80 818283 84 9394 95 96

5
1

4
3

2

MC

Period

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

5 6 7 8 9 10 11 12 21 22 23 24 25 26 27 28 37 38 39 40 41 42 43 44 53 54 55 56 57 58 59 60 69 70 71 72 73 74 75 76 85 86 87 88 89 90 91 92

1
2

4
3

5

MC

Period

RORB, Session 2

S
u
b
je

ct
 N

u
m

b
er

 w
it

h
in

 G
ro

u
p

4 6 8 4 6 8 4 6 8 4 6 8 4 6 8 4 6 8 4 6 8 4 6 8 4 6 8 4 6 8 4 6 8 4 6 8

124 1315 16 1819 20 30 31 32 33 35 36 454647 49 51 52 61 6264 65 66 68 77 78 80 818284 9395 96

1
2

4
3

5

MC

Period

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

5 6 7 8 9 10 11 12 21 22 23 24 25 26 27 28 37 38 39 40 41 42 43 44 53 54 55 56 57 58 59 60 69 70 71 72 73 74 75 76 85 86 87 88 89 90 91 92

4
2

1
5

3

MC

Period

ROHB, Session 2

S
u
b
je

ct
 N

u
m

b
er

 w
it

h
in

 G
ro

u
p

4 6 8 4 6 8 4 6 8 4 6 8 4 6 8 4 6 8 4 6 8 4 6 8 4 6 8 4 6 8 4 6 8 4 6 8

124 1315 16 1819 20 30 31 32 33 35 36 454647 49 51 52 61 6264 65 66 68 77 78 80 818284 9395 96

4
1

2
5

3

MC

Period

Figure 3: Advance Production in Session 2 of Each Treatment
Note: Session 2 seller decisions to engage in advance production (black) or not (white). Y-axis: subject
numbers within group (corresponding also to subjects’ respective horizontal locations in Figure 1)
arrayed in a monotonic “pecking order“ of advance production, per the algorithm described in
footnote 21. X-axis: lexicographic sorting; first, by chronology across four-contiguous-period blocks;
second by (weakly) ascending marginal cost (MC) within each block; third, for stationary rounds,
chronologically within each block. This arrangement of the data is constructed for visual comparison to
Figure 2 (i.e. under RO, no competitive equilibrium prediction exists when MC = 2, thus above and in
Figure 2 the column above MC = 2 is null). Advance production data arrayed as in Figure 2, but with
MC = 2 data also included for RO sessions, is found in Figures A19 through A22 of the appendix,
constituting all sessions.
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TABLE III

Marginal Effects of Probit on Attainment of Competitive Equilibrium

Stationary Non-Stationary
CE P&Q + Stable Identities CE P&Q + Stable Identities

(1) (2) (3) (4)

Robot Buyers −0.2478∗∗∗ −0.1483 −0.0584 −0.0190

(0.0823) (0.1060) (0.0724) (0.0558)

Random Order −0.0998 −0.1438 −0.0308 −0.0707

(0.0948) (0.0879) (0.0746) (0.0560)

Period 0.0015∗∗∗ 0.0043∗∗∗ 0.0033∗∗∗ 0.0028∗∗∗

(0.0012) (0.0013) (0.0007) (0.0009)

Period × Robot Buyers 0.0015∗∗∗ 0.0018 0.0004 −0.0004

(0.0012) (0.0016) (0.0011) (0.0010)

Period × Random Order −0.0020∗∗∗ −0.0035∗∗ −0.0013 −0.0002

(0.0014) (0.0015) (0.0012) (0.0010)

Observations (Groups) 768 (16) 768 (16) 672 (16) 672 (16)

Notes: Reported are marginal effects on attainment of asking prices and quantities (Models 1 and
3) and stable seller identities (Models 2 and 4) consistent with competitive equilibrium. Stable
seller identities are defined in footnote 21. Corresponding standard deviations are in parentheses.
Standard errors are clustered at group level, with 4 groups per each of the 4 treatments. Competitive
equilibrium is not attainable in RO under MC = 2 (see Figure 2); therefore we omit MC = 2 for
RO sessions in Models 3 and 4. (We report estimates with MC = 2 observations omitted for both
VO and RO treatments in Table A3).

∗∗∗ Significant at the 1 percent level.
∗∗ Significant at the 5 percent level.
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Table III presents probit marginal effects on attainment of equilibrium.
Starting with the stationary rounds, we see that under Model 2 (using
the more stringent standard of CE, including stability of the identities of
individual entrants) the approach to CE over time is strongly impeded by
random order queueing; the probit estimations (reported in subsection A.3
of the appendix) underlying the marginal effects imply that expected time to
95% realization of individually stable CE is 124 rounds under value order,
but 342 rounds under random order, given robot buyers in each case. A
similar finding emerges in Model 1 under the looser CE standard (price and
aggregate quantity, only), with the additional proviso that in this case some
credit for the hastening of CE is attributed to the presence of robot buyers;
the underlying probit model implies that estimated time to 95% realization
of CE price and quantity is 108 rounds with robot buyers but 146 rounds
with human buyers, given value order queueing in each case.

The non-stationary rounds present a contrast. The fastest predicted con-
vergence result under Model 3 (Model 4) is 239 rounds (311 rounds) to 95%
realization of competitive equilibrium, using the VORB (VOHB) treatment
combination. Clearly, convergence to either standard of CE (without or
with stable individual seller identities) is impeded by a non-stationary en-
vironment.

The contrast in results across stationary and non-stationary environments
may illustrate consequences of agents not knowing other agents’ marginal
costs, impacts of imposing a (non-)stationary experimental environment,
and most especially possible interactions there between. That is, in a sta-
tionary environment, with repetition, agents with limited, private infor-
mation have in prior studies been observed to achieve outcomes originally
predicted by theorists under the assumption that agents had full informa-
tion and common knowledge (e.g. Forsythe et al. (1982); see Background
section). We observe that here, too. But what we do not observe is simi-
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larly speedy attainment of CE when instead a non-stationary environment
is imposed. This is consistent with the following conjecture: in a repeated,
stationary environment agents may be (better) able to make sufficient in-
ferences, from opponents’ past play, as to underlying motivations and/or
parameterizations (e.g. opponents’ MC) such that attainment of outcomes
theoretically derived under richer information conditions is not precluded.22

We demonstrate the sorting that would be expected under fictitious play in
subsubsection B.3.2 of the appendix.

4.3. Equilibria Beyond Competitive Equilibria

Having thus far focused on attainment of CE, what happens more gener-
ally? For instance, what if SPNE entry decisions are not observed—is some
PSNE in the pricing subgame reached nonetheless? Note also that once the
entry stage in a round has passed, marginal cost is sunk (and thus informa-
tion partitions with respect to marginal cost are no longer a consideration
under many standard theories of choice).

As the theory section shows, there are many pure strategy Nash Equilibria
under each of value order and random order queueing; Table IV reports
the proportion of trading periods in which equilibrium asking prices were
observed, disaggregated by treatment and number of producers. (A longer
discussion of this table follows in subsection A.5 of the appendix.)

We also note that price dispersion differs across queueing methods. 23

Table V reports the mean and standard deviations of transaction prices,
disaggregated by treatment and number of producers.24

22We thank an anonymous referee for pointing this out.
23Even in cases with unique NE, possibility of errors or near-indifference may give rise

to significant price dispersion. See Baye and Morgan (2004).
24 Note that in Table V we report descriptive statistics of transaction prices and in

Table IV we report the proportion of asking prices consistent with PSNE. For instance,
the upper-left cell of Table IV reports that in the case of m = 1 producing seller in
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TABLE IV

Proportion of Asking Prices Consistent with Pure Strategy Nash
Equilibrium in the Pricing Subgame

Number of Value Order Queueing Random Order Queueing
Producers PSNE Human Buyers Robot Buyers Human Buyers Robot Buyers

(VOHB) (VORB) (ROHB) (RORB)
m = 1 {8} 0.71 0.64 0.62 0.55

m = 2 {6,6} 0.54 0.62 0.45 0.29

m = 3



























Any PSNE 0.75 0.73 0.88 0.89
{4,4,4} (CE) 0.73 0.69 0.26 0.03
{4,4,6} — — 0.18 0.45
{4,6,6} — — 0.40 0.32
{6,6,6} 0.02 0.04 0.04 0.09

m = 4







Any PSNE 0.46 0.44 0.09 0.13
{2,2,2,2} (CE) 0.05 0.02 — —
{4,4,4,4} 0.41 0.42 0.09 0.13

m = 5















Any PSNE 0.13 0.32 0.12 0.09
{0,0,0,0,0} (CE) 0.00 0.00 — —
{2,2,2,2,2} 0.00 0.00 0.00 0.00
{4,4,4,4,4} 0.13 0.32 0.12 0.09

Note: Reported are proportions of asking prices consistent with the PSNE in the pricing subgame
described in Panel A of Table II. Cells for which there are no asking prices consistent with PSNE have
dashes. Competitive equilibria are denoted CE. Asking prices in bold are consistent with pricing
via the demand schedule.

Across all cases, the standard deviation of prices under value order queue-
ing is approximately 1.13, while it is 1.37 under random order queueing;
prices are more dispersed under random order queueing (p < 0.0001, via a
Siegel-Tukey test of non-parametric dispersion). Across all cases, the stan-
dard deviation of prices with human buyers is 1.27, while it is 1.29 with
robot buyers; there is no significant difference in dispersion (p ≈ 0.1457

via a Siegel-Tukey test).25 Theoretically, random order queueing supports

VOHB, 22 of 31 (71%) of asking prices were consistent with PSNE (i.e. at 8); 19 of those
22 asks at 8 resulted in a transaction, as did all 9 asks at other prices, for a total of 28
transactions in the upper-left cell of Table V.

25We also perform the nonparametric Fligner-Killen test on homogeneity of variances;
we find a significant difference between random and value order queueing (p < 0.0001),
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TABLE V

Description of Prices and Price Dispersion

Number of Value Order Queueing Random Order Queueing
Producers Human Buyers Robot Buyers Human Buyers Robot Buyers

(VOHB) (VORB) (ROHB) (RORB)

m = 1
6.93 7.25 6.90 6.34

(1.76, 28) (1.42, 24) (1.66, 60) (2.23, 41)

m = 2
5.08 5.65 5.41 6.42

(1.16, 145) (0.83, 139) (1.09, 186) (1.04, 99)

m = 3
4.06 4.13 4.51 4.99

(0.45, 421) (0.64, 463) (0.97, 262) (1.06, 350)

m = 4
3.50 3.72 4.04 4.12

(0.91, 131) (0.82, 171) (0.75, 151) (1.09, 195)

m = 5
2.99 3.43 3.62 3.71

(1.01, 56) (0.91, 56) (0.79, 73) (0.81, 110)

Note: Reported are mean transaction prices, with standard deviations and number of observations,
respectively, in parenthesis below each. Excluding a seller who repeatedly took negative payoffs in
the m = 1 monopoly case in RORB, the mean transaction price in the upper right cell would become
7.19.

non-competitive strategies—and resultant price dispersion—which will only
be used given the possibility of prolonged availability of high-value buy-
ers (Ronayne and Myatt, 2019). Our empirical results are consistent with
that theoretical finding, and with random order queueing promoting con-
vergence to some non-uniform pricing equilibria identified in our Theory
section. Finally, note that in addition to the differences in price dispersion,
there are differences in level of prices across treatments that are significant.
We present further discussion and statistical tests in subsection A.6 of the
appendix.

but there would only be a significant difference between human and robot buyers if one
admitted type I error at 10% level (p ≈ 0.0604).
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5. CONCLUSIONS

In order to appreciate the most wide-reaching implications of our results,
one might first consider this surprising finding: the posted offer market’s
canonical characterization as a poorly equilibrating form of market is not
entirely accurate.26 This characterization rests on a large number of results
obtained using queuing protocols where the direct proportionality between
excess rents and response speed conjectured by Smith (1962) was at best
not enforced, and in the case of exogenously randomized ordering effectively
precluded (see appendix Table A1 for examples).27 This current paper pro-
vides the previously missing comparison between random and value order
queuing when there are more than two agents on both sides of the market.
In the presence of the counterfactual created by varying (within an other-
wise identical setting) value order or random order queueing, prior results
take on new meaning: poor equilibration appears likely due, at the margin,
largely to issues around buyer queueing, rather than the rules of the posted
offer market itself.

The ultimate point here is not so much to exonerate the posted offer
market as to try to identify the real culprit in past poor equilibration—
still at large and possibly active in other forms of market. We thus make
the following testable conjecture: any combination of environment and in-
stitution which actively precludes Marshallian Path Adjustment will gen-

26For instance, of posted-offer markets (Plott, 1982, pg. 1498) writes “adjustment to
equilibrium tends to be from above and either converges to equilibrium more slowly [than
in double auctions] or does not converge at all”.

27Note also that if endogenous random order (colloquially known as “first come, first
served”) is driven by buyer characteristics (e.g. manual dexterity as applied to the use of
a computer mouse) which are unobservable to the sellers, then from the point of view of
the sellers endogenous order may appear, subjectively, indistinguishable from exogenous
random order. As such, sellers facing endogenous ordering might at least temporarily
strategize and respond as if they were facing exogenous random ordering.
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erate inefficient allocations relative to some combination which does not
preclude Marshallian Path Adjustment (but is otherwise similar). Random
order buyer queueing appended to the posted offer market actively precludes
Marshallian Path Adjustment, while value order queueing actively enforces
it. (The presence of human buyers might in principle disrupt Marshallian
Path Adjustment, relative to demand revealing robot buyers, but there is
only limited empirical support for that in our data.) We conjecture that
other forms of allocative process thus distinct would have similar disparities
in empirical allocative efficiency.

This conjecture can be integrated with the finding from CJSW (2017)
that individual posting of offers, rather than an ex post market clearing
price, aids equilibration. Only when both (a) Marshallian path adjustment
is imposed and (b) prices are informed by individual posting of offers is
the competitive equilibrium allocation reliably attained. Removing either
(a or b) leads to supra-competitive pricing or cycling, respectively. Inter-
estingly, the double auction allows individual posting, and may encourage
Marshallian path adjustment as an emergent phenomenon; whether its ro-
bust equilibration has roots in these traits is an intriguing topic for future
research.

We also conjecture that the price discovery encouraged by value order
queueing has real effects on entry. That is, by allowing speedier attainment
of pricing via the demand curve during the pricing subgame (see Table A6
in subsection A.5 of the appendix), value order queueing then indirectly
allows speedier resolution (i.e. sorting) in the entry subgame.

The above conjectures offer testable predictions, and provisional guides to
market design. While said conjectures apply more broadly than just to issues
of buyer and/or seller queueing, we also note that queueing issues specif-
ically are at the heart of current work on high-frequency trading (Aldrich
and Friedman, 2019; Budish et al., 2015) wherein endogenous purchase of
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trading priority (e.g. by server colocation privileges) is the unregulated or
default state of affairs. To the extent that the traders with the highest
surplus associated with trading are best able to purchase priority, then a
familiar form emerges: value order queueing. A proposed countermeasure
to this state of affairs is to replace continuous trading with frequent batch
auctions that pool orders over time, erasing time priority stemming from
emergent value order queueing; order execution proceeds instead along other
familiar lines: exogenous random ordering, imposed by design. Which forms
of queuing either emerge, exist as a matter of default, or are imposed by de-
sign will likely vary across allocation problems. However, subject to coming
into use, each queuing structure will have at the margin a distinct effect on
market dynamics. We hope that our results offer a low cost source of insight
for wide-ranging market design efforts in future.
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APPENDIX A: ADDITIONAL ANALYSIS (FOR ONLINE PUBLICATION)

A.1. Additional Background

A.1.1. Market Equilibration

Appreciation of the problem of equilibration, and in particular of out-
of-equilibrium trades, dates back at least to the 19th century. Different
resolutions include: Walras’ employment of an institution, tâtonnement,
which determines prices centrally and precludes out-of-equilibrium trade;
Green’s (1974) Edgeworth-inspired employment of a coalition formation
process which operates on a decentralized basis and which precludes out-of-
equilibrium trade; and Marshall’s (1961) suggestion as to how a sequence
of trades, pairing the buyer with the highest outstanding value with the
seller with the lowest outstanding cost, might eventually generate a price at
the crossing of supply and demand, even if all trades except the ultimate,
marginal trade take place at prices other than the competitive equilibrium
price.

In characterizing behavior in the double auction, Plott et al. (2013) exam-
ine whether Marshall’s suggested trajectory of trades—here and elsewhere
referred to as Marshallian path adjustment—might be an emergent property
of the double auction. That is, for reasons not yet fully understood, trades
within the double auction might, at any point in time, have a tendency to
match the highest value buyer and lowest cost seller. Plott et al. report data
suggestive of such a pattern of trades.

In a follow-up study, Plott and Pogorelskiy (2017) examine price dynamics
in a call market with two calls per trading period.28 While that paper tries
to shed light on conjectures about possible Walrasian or Newtonian dynamic
influences on bid or ask adjustments on either side of the calls, at any given

28The institution implemented by Plott and Pogorelskiy (2017) is related to the
uniform-price double auction (McCabe et al., 1984).
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call the mechanics of trade follow Marshallian path adjustment. That is, at
each call bids and asks are paired by the experimenter until no further pairs
with bid exceeding ask remain; the midpoint of the closest (and last) such
bid-ask pair becomes the uniform clearing price for all transacting pairs (see
pp. 7, 8, and 14). Thus Walrasian or other adjustment across calls can only
take place given Marshallian mechanics have been implemented at each call.

The observation of endogenous Marshallian path adjustment within the
double auction is a welcome clue about the generally reliable equilibration in
that institution. Furthermore, both such emergent behavior and the implicit
construction of Marshallian path adjustment that takes place as part of the
regular operation of a call market constitute evidence that such adjustment
may be a survival-positive trait for evolved institutions used in commercial
settings.

Further suggestion of the possible importance of Marshallian path ad-
justment is found in Collins, James, Servátka, and Woods (2017), hereafter,
CJSW. CJSW compare equilibration across two forms of market that share
payoff equivalence given competitive pricing: the posted offer market with
advance production environment (POAP), and a uniform ex-post market-
clearing price, centrally administered. Both markets are implemented in the
same advance production environment. Furthermore, the pairing of the uni-
form ex post market clearing price institution with an advance production
environment is isomorphic to the market entry game (Selten and Güth,
1982). Implementing value order queueing of buyers and a flat supply curve
in POAP; CJSW enforce a sequence of trades that satisfy Marshallian path
adjustment, as is further discussed in the next section.29 CJSW find that

29The uniform ex post market clearing price institution can also be argued not to vio-
late Marshallian path adjustment. To see this, consider a comparison with the quantities-
only clearing-house (CHQ) introduced by Friedman and Ostroy (1995). CHQ works by
accepting quantity messages from agents and imputing limit prices for those agents from
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while the uniform price institution generates cycling prices that may not
converge to the competitive equilibrium, the POAP converges to competi-
tive equilibrium. This happens despite individually posted offers supporting
additional equilibria to those possible given the uniform, centrally adminis-
tered ex-post clearing price (one that is implicitly embedded in the market
entry game).

A crucial next step for this literature is to ask: “What happens to equi-
libration if one switches Marshallian path adjustment off”? Since one can
modularly switch out the buyer queueing rule in the posted offer market,
the posted offer is a natural venue in which to address this question. Results
under a value order queueing, Marshallian path adjustment treatment may
then be compared with data resulting when an alternative form of buyer
queueing—say, random order—is used instead. Is Marshallian path adjust-
ment critical to attainment of the competitive equilibrium allocation in this
case? The theory and results sections of this present paper will address these
questions in terms of predictions and empirical results, respectively.

We next review how queuing order, which can be used to enforce Marshal-
lian path adjustment, and degree of determinism in buyer behavior, have
been dealt with in the literature.

A.1.2. Buyer Queuing

The buyer queueing rule in effect in a given market can radically change
the predictions across markets that otherwise are identically parameterized,
and which further have in common the use of a particular trading institu-
tion (e.g. posted offer). For instance, in the duopoly case, if one or both

their actual cost or valuation parameters. CJSW’s uniform price market (the market entry
game) treats demand equivalently. Further, supply in CJSW’s uniform price market can
be viewed as equivalent to a (single-unit-per-producer) CHQ if producers (entrants) are
held to have submitted a “quantity equals one” message at that juncture; their marginal
cost, being sunk, is imputed as equal to zero.
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firms have capacity sufficient to serve only a “small” portion of the demand
curve, or if the residual demand curve faced by the higher-pricing firm is not
constructed by first removing the highest valuation buyers from the overall
market demand curve, then there is scope for pricing above marginal cost
even in the presence of Bertrand price competition.

The above described line of inquiry was initiated by Edgeworth (1925),
focusing on the role of firms’ production capacity, which for each firm was
held to be insufficient to supply the entire market and also fixed, or at least
less easily changed than prices. The work of Beckman (1965) and Levitan
and Shubik (1972) brings focus onto the role of buyer queueing, as a critical
determinant of residual demand. These latter works specify the mechanics
of value order buyer queueing in a duopoly. Algebraically, for total demand
curve Q = a − p, and (symmetric) firm capacity k, where k ≤ a, quantity
demanded will be split across firms according to

(1) Qi(pi|pj) =



















a− pi, if pi < pj,

1
2
(a− pi), if pi = pj,

a− k − pi, if pi > pj.

Operationally, the highest valuation buyer gets to choose first, and buys
from the lower priced firm first; the higher priced firm can only receive
business once the lower priced firm has sold all its units.30 We shall refer to
the generalized, m-seller version of this method of buyer queueing as value
order queueing. (This is the means by which the Marshallian adjustment
path can be exogenously enforced—at least where buyers are deterministi-
cally programmed to maximize their own point-in-time surplus.)

30Levitan and Shubik (1972) make special mention of the importance of the choice of
buyer queueing rule in obtaining particular equilibria, and also acknowledge that, “The
actual shape of contingent demand cannot be specified generally from a priori reason-
ing. It will depend upon priorities in service of customers and…needs specific empirical
investigation and model building” (pg. 119).
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Vives (1986) finds that given sufficiently large aggregate capacity and
number of firms, value order queueing (“surplus maximizing rationing” in
his terminology), can lead to attainment of the competitive price. While
our parameterization is directly linked to that of the market entry game
rather than Vives’ setting, in deriving our theoretical predictions in the next
section, we too find that the competitive equilibrium is a possible outcome
under value order queuing. Which of the possible outcomes, of which the
competitive equilibrium is just one, eventuates is of course an empirical
question, addressed in our results section.31

Queueing of market participants arises in the experimental literature, too.
Chamberlin (1948) provides a very early example of an economics exper-
iment. In setting up a real time market, Chamberlin, like all subsequent
experimenters, had to make, by commission, omission and/or default, de-
cisions regarding market and experimental design. Ultimately he allows for
unstructured and unregulated markets in which buyers and sellers negotiate
prices while freely moving around a room. Chamberlin finds that this “ran-
dom meeting” of buyers and sellers generates systematic deviations from
competitive equilibrium. In the experimental literature on the posted offer,
random order buyer queueing has been the default; for an early example see
Ketcham, Smith, and Williams (1984, pg. 598), with Davis and Williams
(1991) and other papers cited in our reference section being just a small
sampling of subsequent experimental posted offer studies using random or-
der queueing.

Much less has been done with value order queueing in experiments. To our

31We are first and foremost interested in value order queueing as a means to exoge-
nously enforce Marshallian path adjustment in order to document its effect on equili-
bration. However, let us also point out that value order queueing may be an emergent
phenomenon in naturally-occurring settings in its own right, for example, in the operation
of call markets.
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knowledge the only experimental studies with posted offers that implement
both value order queueing and queues incorporating randomness in ordering
do so in duopoly. Kruse (1993) examines variation of buyer queueing rule as
a treatment in experimental posted offer duopoly markets, and finds higher
prices and greater price dispersion under random order queueing. Lepore
and Shafran (2013) use proportional queueing instead of random order and
find qualitatively similar results to Kruse.32 However the parameters in these
prior studies—understandably, given the focus on duopoly—do not support
the competitive equilibrium as a pure strategy Nash Equilibrium (ours do).
Thus the kind of comparison we seek in this paper was precluded by the
design of that earlier work.

In Table A1, we summarize the experimental literature employing the
posted offer by its queuing rule.

A.1.3. Robustness to Variation in Buyer Determinism

The buyers’ task in a posted offer market is simple in operation: they face
only a binary decision on whether or not to buy (a single unit) from among
the offers remaining at the time of their choice opportunity. But this still
allows substantial complication in buyer behavior in practice. Compare hu-
man buyers to “demand revealing” robot buyers.33 Trivially, human buyers

32Related theoretical studies are as follows. In a duopoly setting, Kreps and
Scheinkman (1983) derive Cournot pricing, despite value order queuing, given a particu-
lar timeline and structure of firms’ capacity choices. Also in a duopoly setting, Davidson
and Deneckere (1986) find that replacing value order queueing with alternatives such as
proportional queueing rule out the Cournot result obtained by Kreps and Scheinkman
(1983), finding instead a wider range of prices, and lower profits resulting from unsold
goods.

33In this context, demand revealing means that a buyer will attempt to maximize
surplus at each point in time with no attempt to influence the future, and will not reject
an offer as long as it offers non-negative surplus and buying capacity has not yet been
exhausted.
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Table A1: Summary of Experimental Posted Offer Literature by Queuing Rule
Exogenous random order First come first served Proportional rationing Value order

(Endogenous random order) (Efficient rationing)
Buchheit and Feltovich (2011) Helland, Moen and Preugschat (2017) Jacobs and Requate (2016) Davis (2003)
Isaac and Smith (1985) Lepore and Shafran (2013) Davis, Holt and Villamil (1990)
Millner, Pratt and Reilly (1990) Goodwin and Mestelman (2010)
Ruffle (2000) Jacobs and Requate (2016)

Kruse (1993)
Lepore and Shafran (2013)

Borck, Engelmann, Müller and Normann (2002) Davis, Holt and Villamil (1990)
Cason and Williams (1990) Davis and Korenok (2009)
Cason, Friedman and Milam (2003) Davis and Wilson (2000)
Cason, Gangadharan and Nikiforakis (2011) Collins, James, Servátka, and Woods (2017)
Coursey and Smith (1983) Collins, James, Servátka, and Vadovič
Davis and Williams (1986)
Davis and Williams (1991)
Davis and Wilson (2008)
Deck and Wilson (2003)
Deck and Wilson (2006)
Holt and Sherman (1990)
Isaac and Reynolds (1992)
Ketcham, Smith and Williams (1984)
Plott and Smith (1978)
Collins, James, Servátka, and Vadovič
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can make errors. Perhaps more interestingly, human buyers might withhold
demand (refusing to buy, even when doing so generates positive surplus for
them) in an effort to negotiate with sellers (albeit across periods). That is,
by refusing to buy for a “small” profit in a given round, a buyer might influ-
ence sellers to lower their prices in subsequent rounds, potentially allowing
for a net increase in buyer surplus over the entirety of their interaction.

The possibility of this kind of buyer behavior is addressed in Cason and
Williams (1990), Davis and Williams (1991), Ruffle (2000), and Davis and
Wilson (2008), who find evidence suggestive of demand withholding by hu-
man buyers in the posted offer markets they present. The meta-analysis
over Coursey, Isaac, and Smith (1984b), Coursey, Isaac, Luke, and Smith
(1984a), and Brown-Kruse (1991) conducted by Kruse (2008) compares de-
viations in pricing from long-run competitive equilibrium (i.e. minimum of
average total cost) between sessions using robot buyers and those using
human buyers. Kruse finds that deviations are lower in the presence of hu-
man buyers, and that this is not inconsistent with tougher negotiation on
the part of human buyers—or at least that the threat thereof is taken into
account by sellers.

Since our design crosses “human buyer versus robot buyer” and “random
order queueing versus value order queueing”, we are able to gauge relative
magnitudes of any effect each treatment might have, holding constant all
other aspects of the experimental design. Most important, we can check
robustness: for instance, are results on the effect of queuing on equilibration
robust to variation in buyer determinism?
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A.2. Additional Data Analysis

A.2.1. Buyer and Seller Earning Distributions

Figure A1 illustrates the distribution of raw, unadjusted earnings in ex-
perimental currency units (ECUs) for sellers and buyers in the experiment.
Subjects were paid at a rate of exchange of 5 NZD per ECU, in addition
to a 5 NZD show-up payment and 5 NZD deposit. The 6.25% (5 of 80) of
sellers who experienced negative raw earnings of less than one ECU (to the
left of the dashed line) forfeited their deposit and received only a 5 NZD
show-up payment. The histogram includes the 0.1 ECU commision paid to
buyers for each purchase, with final payments rounded up (unannounced)
to the nearest whole amount in NZD.

Sellers receive a payoff of 1 ECU per round in all competitive equilibria
wherein pricing is as off the demand curve. (See Table C1 for a full enu-
meration of PSNE payoffs.) In this case, sellers would be paid at a rate of 5
NZD per ECU for six periods, earning a total of 30 NZD in addition to the
5 NZD show-up fee and 5 NZD deposit, for a total of 40 NZD. In realized
payoffs, subjects earned an average of just under 37.94 NZD.

A.2.2. Additional Graphical Illustration and Overview of Results

Figure 1 graphically illustrates production choices, asking prices, quantity
sold, and efficiency from the stationary marginal cost periods of the exper-
iment for the second session of each treatment. Here, in each of sixteen
Figures A2 through A17, we extend the analysis described in subsection 4.1
by presenting for each session a figure consisting of four panels. Each panel
contains a temporarily ordered sequence of trading periods data specific to
a particular value of marginal cost.

We note the following. The value order sessions for both human and
robot buyers exhibit tendency to converge during the stationary marginal
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Figure A1: Distribution of Raw Earnings in ECUs for Buyers and Sellers
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cost periods to the competitive equilibrium of three units produced, all three
transacting at a uniform price of 4. In contrast, the random order sessions
exhibit a wide range of behaviors anticipated in the theory presented in
section 3 during the stationary marginal cost periods, including non-uniform
pricing equilibria detailed there; and occasionally even the high uniform
price, low quantity, equilibrium featuring two units produced, with both
traded at a price of 6.

Looking across the cross-section of eight random order groups, at the time
series of eight periods in the final stationary segment, we observe 2 out of 64
periods exhibiting three produced units, all transacting at a uniform price of
4. Whereas for value order 43 of the 64 periods (eight final stationary periods
across eight value order groups) show three produced units, all transacting
at a uniform price of 4. As we shall see, econometric analysis supports the
conjecture that the competitive equilibrium is much more readily reached
under Marshallian path adjustment (i.e. with value order queueing in use)
than otherwise (i.e. with random order queueing instead).

We explain how we evaluate the emergence of the temporally stable, indi-
vidual advance production decisions that support competitive equilibrium
in pure strategy play in subsection 4.2. Here, as a complement to Figure 2,
as present an alternative arrangement for advance production decisions that
support subgame perfect pure strategy play in Figure A18. Additionally, as
examples of the evolution of actual entry decisions—possibly towards the
assortative benchmarks in Figure 2 and/or Figure A18—we present all ad-
vance production from the experiment in each of four Figures A19 through
A22.

A.3. Additional Analysis of Convergence to Competitive Equilibrium

Table III reports marginal effects of a probit on attainment of equilib-
rium, according to each standard (requiring individual seller stability, or
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TABLE A2

Probit on Attainment of Competitive Equilibrium

Stationary Non-Stationary
CE P&Q + Stable Identities CE P&Q + Stable Identities

(1) (2) (3) (4)

Constant −0.8346∗∗∗ −1.2384∗∗∗ −0.5192∗∗∗ −0.7972∗∗∗

(0.1837) (0.2020) (0.1657) (0.1742)

Robot Buyers −0.9118∗∗∗ −0.6969∗∗ −0.1513 0.0545

(0.2595) (0.2953) (0.2026) (0.2126)

Random Order −0.4600∗ −0.6757∗∗ −0.0799 −0.2042

(0.2683) (0.3343) (0.2054) (0.2170)

Period 0.0171∗∗∗ 0.0205∗∗∗ 0.0086∗∗∗ 0.0079∗∗∗

(0.0033) (0.0035) (0.0029) (0.0030)

Period × Robot Buyers 0.0146∗∗ 0.0085∗ 0.0011 −0.0012

(0.0045) (0.0049) (0.0036) (0.0037)

Period × Random Order −0.0217∗∗∗ −0.0165∗∗∗ −0.0035 −0.0004

(0.0047) (0.0054) (0.0036) (0.0038)

Observations (Groups) 768 (16) 768 (16) 672 (16) 672 (16)

Notes: Reported are probit estimates on attainment of asking prices and quantities (Models 1 and 3)
and stable seller identities (Models 2 and 4) consistent with competitive equilibrium. Corresponding
(unclustered and non-robust) standard deviations are in parentheses. Marginal effects with cluster-
robust standard errors at the group level are reported in Table III

∗∗∗ Significant at the 1 percent level.
∗∗ Significant at the 5 percent level.
∗ Significant at the 10 percent level.
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Figure A18: Arrangement of Advance Production Supporting Subgame Per-
fect Nash Equilibria
Note: Each column shows the identity of each seller (vertical axis labeling, 1 . . . ...5). Each column
shows whether a given seller would engage in advance production (black) or not (white) within a block
of four contiguous rounds given all of the following: (a) marginal cost in that round is as listed at the
bottom of that column, on the horizontal axis, (b) there is a “pecking order” in advance production
that respects monotonicity at the individual level (and a fortiori at the group level), and (c) total
number of producers is that which would be observed given both advance production decisions
consistent with an SPNE. (Note the following special cases. First, that gray is used for the MC = 8

cases as either one producer, or no production at all, each support SPNE play. Second, gray is also
used in the case of value order queueing and MC = 2, as both four or five producers can each support
SPNE play.)

not), for stationary and for non-stationary rounds. In Table A2 we report
the results of the probit regression from which the marginal effects were
computed. These estimates inform the time-to-convergence predictions re-
ported in subsection 4.2.

Competitive equilibrium is not attainable in RO under MC = 2; therefore
we omit MC = 2 for RO sessions in Models 3 and 4 of Table III. We
report estimates with MC = 2 observations omitted for both VO and RO
treatments in Table A3.
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Figure A19: Advance Production in Value Order Robot Buyer (VORB)
Treatment
Note: Seller decisions to engage in advance production (black) or not (white). Y-axis: subject numbers
within group (corresponding also to subjects’ respective horizontal locations in Figures A2 through
A17) arrayed in order of advance production, per the algorithm described in footnote 21. X-axis:
lexicographic sorting; first, by chronology across four-contiguous-period blocks; second by (weakly)
ascending marginal cost (MC) within each block; third, for stationary rounds, chronologically within
each block.
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Figure A20: Advance Production in Value Order Human Buyer (VOHB)
Treatment
Note: Seller decisions to engage in advance production (black) or not (white). Y-axis: subject numbers
within group (corresponding also to subjects’ respective horizontal locations in Figures A2 through
A17) arrayed in order of advance production, per the algorithm described in footnote 21. X-axis:
lexicographic sorting; first, by chronology across four-contiguous-period blocks; second by (weakly)
ascending marginal cost (MC) within each block; third, for stationary rounds, chronologically within
each block.
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Figure A21: Advance Production in Random Order Human Buyer (RORB)
Treatment
Note: Seller decisions to engage in advance production (black) or not (white). Y-axis: subject numbers
within group (corresponding also to subjects’ respective horizontal locations in Figures A2 through
A17) arrayed in order of advance production, per the algorithm described in footnote 21. X-axis:
lexicographic sorting; first, by chronology across four-contiguous-period blocks; second by (weakly)
ascending marginal cost (MC) within each block; third, for stationary rounds, chronologically within
each block.
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Figure A22: Advance Production in Random Order Human Buyer (ROHB)
Treatment
Note: Seller decisions to engage in advance production (black) or not (white). Y-axis: subject numbers
within group (corresponding also to subjects’ respective horizontal locations in Figures A2 through
A17) arrayed in order of advance production, per the algorithm described in footnote 21. X-axis:
lexicographic sorting; first, by chronology across four-contiguous-period blocks; second by (weakly)
ascending marginal cost (MC) within each block; third, for stationary rounds, chronologically within
each block.
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TABLE A3

Marginal Effects of Probit on Attainment of Competitive Equilibrium in
Non-Stationary Periods

Non-Stationary
CE P&Q + Stable Identities

(3′) (4′)

Robot Buyers −0.0671 0.0276

(0.0863) (0.0663)

Random Order −0.1319 −0.1595∗∗

(0.0845) (0.0649)

Period 0.0042∗∗∗ 0.0035∗∗∗

(0.0010) (0.0012)

Period × Robot Buyers 0.0005 −0.0007

(0.0014) (0.0012)

Period × Random Order −0.0022 −0.0006

(0.0014) (0.0012)

Observations (Groups) 576 (16) 576 (16)

Notes: Reported are marginal effects on attainment of asking prices and quantities (Model 3′) and
stable seller identities (Model 4′) consistent with competitive equilibrium. Corresponding standard
deviations are in parentheses. Standard errors are clustered at group level, with 4 groups per each
of the 4 treatments. MC = 2 observations are omitted for both VO and RO treatments.

∗∗∗ Significant at the 1 percent level.
∗∗ Significant at the 5 percent level.
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A.4. Analysis of Trends in Individual Stability of Advance Production
Decisions

In this section, we evaluate the emergence (or not) of stable advance
production decisions in stationary and non-stationary portions of the data
without considering attraction to any particular outcome (e.g. competitive
equilibrium).

We begin by example, illustrating in Table A4 a series of transition matri-
ces for session 2 of the VORB treatment, following Table 6 of Sundali et al.
and Table 4 of CJSW (2017). To do this, we first divide the 48 stationary
and non-stationary periods of the experiment each into 12 contiguous four-
period blocks. Then, we tabulate a 2×2 matrix that summarizes the overlap
(or lack thereof) across the (“Produce” or “Do Not” produce) decisions ob-
served in a given period and those observed in the first immediately prior
period ordered (lexicographically) in marginal cost and then chronology.34

Equivalently, it can be said in reference to Figures A19 through A22,
that a table like Table A4 would summarize the overlap (or lack thereof)
in advance production decisions between each cell (row and column) of a
block and the same cell (row and column) in the preceding and subsequent
blocks.

As in Sundali et al. (1995) and CJSW, the off-diagonal cells of these
matrices do not all contain a count of zero, and are therefore inconsistent
with instant and complete adoption of stable strategies. To more compactly
summarize instability in advance production decisions, we follow Sundali
et al. by computing for each transition matrix an index of change (IC) as
the sum of off-diagonal entries in each matrix over the sum of entries in the

34Thus, decisions in non-stationary periods are compared to the identically parame-
terized period in the prior block, and decisions in stationary periods are compared to
the decision in the period of the prior block for which the same number of periods have
elapsed within each block.
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TABLE A4

Transition Matrices Between Adjacent Blocks of Stationary MC = 4

Periods of Session 2 of VORB
Block 2

Do Not Produce
Block Do Not 4 3

1 Produce 4 9
IC=0.35

Block 3
Do Not Produce

Block Do Not 5 3
2 Produce 3 9

IC=0.00

Block 4
Do Not Produce

Block Do Not 8 0
3 Produce 0 12

IC=0.00

Block 5
Do Not Produce

Block Do Not 8 0
4 Produce 0 12

IC=0.00

Block 6
Do Not Produce

Block Do Not 8 0
5 Produce 0 12

IC=0.00

Block 7
Do Not Produce

Block Do Not 8 0
6 Produce 1 11

IC=0.05

Block 8
Do Not Produce

Block Do Not 8 1
7 Produce 0 11

IC=0.05

Block 9
Do Not Produce

Block Do Not 8 0
8 Produce 0 12

IC=0.00

Block 10
Do Not Produce

Block Do Not 8 0
9 Produce 0 12

IC=0.00

Block 11
Do Not Produce

Block Do Not 7 1
10 Produce 0 12

IC=0.05

Block 12
Do Not Produce

Block Do Not 7 0
11 Produce 1 12

IC=0.05
Note: Transition matrices summarize the overlap (or not) across decisions to produce in advance
(“Produce”) or not (“Do Not”) observed in a given period and those observed in the first immediately
prior four-contiguous-period block ordered (lexicographically) in marginal cost and then chronology.
IC is the index of change, or the proportion of observations in the off-diagonal cells.
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TABLE A5

Tests of Monotonic Trend in Indices of Change by Spearman Rank
Correlation

Stationary Non-Stationary
Treatment Correlation P-value Correlation P-value

VORB −0.8808 0.0003 −0.5057 0.1125

VOHB −0.8342 0.0014 −0.3489 0.2929

RORB −0.2187 0.5183 −0.3250 0.3295

ROHB −0.7123 0.0139 −0.3180 0.3406

Note: Reported are Spearman rank correlations and p-values of a test between indices of
change (ICs) and the chronological ordering of the blocks from which the ICs were calculated.

matrix.
We next compute 32 sets of 11 transition matrices across stationary and

non-stationary portions of each session of each treatment, then add the
matrices across all four sessions to create 8 sets of 11 summary matrices
across stationary and non-stationary portions of each treatment.35 From
this, we then compute 11 ICs for each of the 8 sets of matrices.

Finally, we seek to characterize any monotonic (but not necessarily linear)
relationship that may exist between the ICs calculated for each treatment.
We proceed by conducting a Spearman rank correlation test between the ICs
and the chronological ordering of the blocks from which the ICs were calcu-
lated. We report the results of these tests for stationary and non-stationary
portions of each treatment in Table A5. We note from the table that the
calculated correlations reflect a negative trend in the index of change in all
treatments (and therefore less instability in advance production decisions);
however, correlation is only significantly different from zero at conventional
levels for the stationary portions of the VORB, VOHB, and ROHB treat-
ments.36

35We do not report all transition matrices, but note that these are calculable from
Figures A19 through A22.

36The reader may of course test for a significantly negative trend by dividing the
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A.5. Additional Analysis of Consistency with Pure Strategy Nash
Equilibrium in the Pricing Subgame

We now addend subsection 4.3 with additional consideration of Table IV.
We observe that attainment of pricing consistent with PSNE is overall less
frequent for random order queuing than value order queueing (and this
difference is significant; p < 0.0001 in χ2 test over proportions). Equally in-
teresting is the single exception to this finding at a more disaggregated level:
the m = 3 subset of the data. When m = 3, random order queueing allows
attainment of some PSNE in almost 90% of cases, but more often of the
non-uniform pricing equilibria that exist only under random order queueing
({4,6,6} and {4,4,6}), and of the uniform supra-competitive pricing equi-
libria for three producers ({6,6,6}), than of the competitive equilibrium. In
the m = 3 case, value order queuing tends to competitive equilibrium in a
far greater percentage of rounds than does random order queueing.

A different notable phenomenon is observed within the random order
treatments when m = 3. Human buyers are associated with observation
of competitive equilibrium pricing and allocation 26% of the time, while
robot buyers are associated with observation of competitive equilibrium
pricing and allocation only 3% of the time (p < 0.0001 in χ2 test over
proportions). Conditional on random order queueing being in use, and on
there already being three entrants, human buyers may have some context-
specific efficacy in bringing about the price component of the competitive
equilibrium allocation.

In the m = 1, 2, 4, and 5 cases, we observe more instances of pricing
consistent with some PSNE under value order queueing than under random
order queueing.37 This suggests that value order queueing may lead to adop-

p-values reported in Table A5 in half.
37Given discreteness in pricing, one might wonder how likely it is to observe pric-

ing consistent with PSNE by chance. Assuming a uniform likelihood of each price
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tion of pricing consistent with PSNE faster than random order queueing.
To evaluate convergence to PSNE pricing even in those cases where entry

decisions were not consistent with SPNE, we run two random effect probit
regressions with cluster-robust standard errors at the group level. The de-
pendent variable in each regression is realization, or not, of PSNE pricing
in the pricing subgame. We do this for (1) uniform PSNE subgame pricing
only (as per competitive equilibrium), and (2) all (uniform and non-uniform)
PSNE subgame pricing. We report these results in Table A6.

A.6. Additional Analysis of Pricing and Price Dispersion

We further addend subsection 4.3 with additional consideration of Ta-
ble V. for the cases with the same equilibria under both value and random
order queuing (m = 1 and m = 2 producers), the mean transaction prices
are 5.63 with value order queuing and 6.00 with random order queueing
(there is no difference in central tendency; p ≈ 0.8747, via a rank sum test
over differences in the mean price across the 16 groups). For cases in which
the theoretically predicted equilibria differ under value order and random
order, i.e. m ≥ 3 producers, the mean transaction prices are 3.90 with value
order queuing and 4.39 with random order queueing (p ≈ 0.0011, via a rank
sum test).

An overview of the impact of human or robot buyer behavior is also
possible. Across all cases, the mean transaction price is 4.40 with human
buyers and 4.58 with robot buyers (p ≈ 0.6454, via a rank sum test over

{0,2,4,6,8,10} being chosen, pricing consistent with PSNE would emerge randomly in
approximately 0.167 of trials when m = 1, and in around 0.027 of trials when m = 2,
under either queueing method. Under value order queuing, pricing consistent with PSNE
would emerge randomly in around 0.009 of trials when m = 3, in 0.0015 of trials when
m = 4, and in 0.0004 of trials when m = 5. Under random order queuing, pricing consis-
tent with PSNE would emerge randomly in around 0.037 of trials when m = 3, in 0.0008
of trials when m = 4, and in 0.0001 of trials when m = 5.
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TABLE A6

Marginal Effects of Probit on Pure Strategy Nash Equilibrium Subgame
Pricing

Uniform Pricing PSNE All PSNE

(1) (2)

Robot Buyers −0.1124 −0.0808

(0.0628) (0.0585)

Random Order −0.1533∗∗ −0.0173

(0.0619) (0.0588)

Period 0.0063∗∗∗ 0.0045∗∗∗

(0.0012) (0.0007)

Stationary MC = 4 0.0241 0.0544

(0.0453) (0.0437)

Period × Robot Buyers 0.0004 0.0016∗

(0.0012) (0.0012)

Period × Random Order −0.0043∗∗∗ −0.0017∗

(0.0013) (0.0013)

Period × Stationary MC = 4 −0.0011 0.0012

(0.0012) (0.0009)

Observations (Groups) 1,382 (16) 1,382 (16)

Notes: Reported are marginal effects on PSNE subgame pricing as described in Panel A of Table II,
with standard deviations in parentheses below each. Standard errors are cluster-robust at group
level, with 4 groups per each of the 4 treatments, and 96 periods per group; 153 periods with no
producers are omitted.

∗∗∗ Significant at the 1 percent level.
∗∗ Significant at the 5 percent level.
∗ Significant at the 10 percent level.
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differences in the mean price across the 16 groups).38

A.6.1. Allocative Efficiency, Division of Surplus, and Buyer Behavior in
the Pricing Stage

To maximize immediate surplus, buyers should select the lowest available
profitable ask when queued. By construction, robot buyers do this 100% of
the time. Human buyers are, however, not constrained in this manner, and
do not always do so. Reasons might include making mistakes, a desire to
punish producers, and so on.

So, do human buyers leave money on the table in practice? Yes. Take
ROHB, for example: there are no less than 5 instances in the periods of
non-varying marginal cost (MC = 4) where a buyer leaves a full-step-of-
the-demand-curve’s worth of surplus, $2.00, untouched by the mouse-click
needed to take it. What kind of impact does the possibility of this kind
of behavior, not possible with robot buyers, have on efficiency? We report
descriptive statistics in Table A7.39

38In the reported rank sum tests over mean prices, we treat each of the 16 groups
as the unit of observation. If we instead treated transactions as independent units of
observation, we find a significant and higher central tendency in mean transaction prices
under random order than under value order queuing (p < .0001), as well as a significant
difference in the central tendency of mean transaction prices between human and robot
buyers (p ≈ 0.0007).

39Note that realized surplus can be negative for producers, as MC is subtracted when
producing in advance. Note also that in random order treatments, the surplus that might
be realized depends upon the order in which buyers enter the queue. (Consider an example
with robot buyers where seller asks are {8,6}. Under value order queuing, consumer
surplus will always be 2. Under random order queueing, consumer surplus will be 0 if the
buyer with a value of 6 is queued before the buyer with value 8, and 2 if the higher-valued
buyer comes first; with each ordering equally likely, the expected consumer surplus is 1.)
Thus, in the first two rows of Table A7, we report fractions of deterministic surplus for
the value order queuing, and fractions of expected surplus for random order queuing. In
expectation, the fraction of consumer surplus realized by buyers (second row) in RORB
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TABLE A7

Mean Efficiency and Distribution of Surplus

Value Order Queueing Random Order Queueing
Human Buyers Robot Buyers Human Buyers Robot Buyers

Measure VOHB VORB ROHB RORB

Efficiency (Fraction of [Expected] 0.9315 0.9891 0.8517 0.9256

Total Surplus Realized) (0.2222) (0.0732) (0.3657) (0.2574)

Fraction of (Expected) Consumer 0.9788 1.0000 1.0026 0.9878

Surplus Realized by Buyers (0.1348) (0.0000) (0.5318) (0.4096)

Fraction of Realized Total 0.8447 0.8533 0.6261 0.5807

Surplus Accrued to Buyers (0.3472) (0.3364) 0.3442) (0.3580)

Note: Reported are proportions described in the left-most column, with standard deviations in
parenthesis below each. In the first two rows, we report fractions of deterministic surplus for value
order queuing, and of expected surplus for random order queuing, as explained in footnote 39.

Under random order queueing, realized buyer surplus—net of demand
withholding by buyers, price concessions by producers worried about de-
mand withholding, mistakes, etc.—is higher when humans are the buyers
(the third row of Table A7). However, this effect pales in comparison to the
increase in percentage of total surplus (and also raw, dollar-denominated
surplus) that occurs with a change in buyer queueing type: a switch to
value-order queueing is far more effective at gaining surplus for buyers (and
overall) than any uncoordinated efforts by individual buyers.40

To take a more granular look at buyer decision-making, we consider the
ways it differs from the deterministic demand-revealing benchmark (i.e.
“robot” behavior) in the VOHB treatment. In this treatment, 50% (10 of
20) of human buyers committed at least one deviation from the demand-
revealing benchmark, with approximately 1.67% (32 of 1920) of human
buyer decisions being categorized as deviations, and approximately 0.52%

approaches 1 in the limit, but diverges in this case (1.0026) because the sample is finite
and particular orderings can thus be oversampled relative to the population.

40Greater impact of buyer withholding might be observed if buyers are large relative
to the market, e.g. Ruffle (2000) employs two buyers rather than five.
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TABLE A8

Correlations between Frequency of Advance Production and Asking
Prices Among Sellers

Mean Price of
Price 10 8 6 4 2

Pearson Correlation 0.3277 0.2208 0.1595 0.2343 −0.0975 −0.3312

P-value
Independent 0.0030 0.0491 0.1576 0.0365 0.3897 0.0027

Clustered 0.0046 0.0448 0.3897 0.0821 0.5518 < 0.0001

(10 of 1920) resulting in a loss to the buyer greater than the commission
payment. Of these deviations, approximately 84% (27 of 32) were forgone
profitable trades, 13% (4 of 32) were taking a price above value, and 3% (1
of 32) were taking a profitable ask greater than the lowest available ask.

A.6.2. Analysis of Correlation between Advance Production and Pricing

In Table A8, we report Pearson product moment correlation coefficients.
These are between the cross-section of frequency of advance production
across sellers and the cross-section of asking prices (for units both trans-
acted and not transacted) offered by sellers. The leftmost column reports
the correlation between the frequency of advance production and the mean
asking price for each of seller, while the rightmost five columns report the
correlation between the frequency of advance production and the frequency
of the offer of a specific asking price in {10, 8, 6, 4, 2} for each seller.41 All
80 sellers are included. We test whether each correlation coefficient is differ-
ent from zero in two ways. First, we calculate a t-test statistic and report
the associated p-value in where we assume the samples follow independent
normal distributions. Second, we standardize each variable and run a lin-
ear regression of advance production on asking price with standard errors
clustered by group; the estimated slope coefficient is then necessarily the

41Sellers were permitted to ask at 0; because this occured for only 4 of 7680 recorded
asks, we exclude this in the table.
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correlation coefficient, and the affiliated p-value is reported in the table.

This positive and significant correlation between advance production and
mean asking price indicates that sellers who more frequently choose to en-
gage in advance production also price higher, on average. This interpretation
is consistent with the positive correlations (some significant) between ad-
vance production and frequency of pricing above 4 and negative correlations
(some significant) between advance production and frequency of pricing be-
low 4.

A.6.3. A Unifying Framework for Attributes Impacting Equilibration

Table A9 presents statistical results over a wide range of experiments
nesting and unifying the Market Entry Game and the Posted Offer Market
with Advance Production. We do this by merging the data presented in this
study with that reported in CJSW (2017).

This statistical analysis employes additional explanatory variables, as
there are more possible design settings across this larger pool of experi-
ments. Classic results on the Market Entry Game (Rapoport, 1995) employ
a global shifter, “capacity”, changes in which can be shown to be equivalent
to shifts in the demand curve; such studies also represent payoff informa-
tion as payoff functions, rather than via demand and supply curves; we vary
both of the preceding, as a control. Thus “individual-level shifter” refers to
parametrization changes by the experimenter being implemented at the lo-
cal (e.g. individual marginal cost level) rather than demand/capacity level,
while “demand curve representation” refers to information being disclosed
to subjects as demand and supply curves, rather than abstract payoff func-
tions. The Market Entry Game has implicit in it an ex post market clearing
price rule, while the Posted Offer allows individual sellers to post their own
(respective) offers; the “individual-price posting” variable tracks which con-
dition is in effect in a given session. All other variables are as defined in the
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main text of this paper.
Collectively, these variables allow us to parse exhaustively the influences

on attainment of competitive equilibrium across the Market Entry Game
and the Posted Offer with Advance Production, with implications for yet
other institutions; attainment of competitive equilibrium is hastened by in-
dividual posting of offers, robot (demand revealing) buyers, and a station-
ary demand and supply environment; it is delayed by random order buyer
queueing.

APPENDIX B: DERIVATION OF PURE STRATEGY NASH EQUILIBRIA (FOR
ONLINE PUBLICATION)

A derivation of the pure strategy Nash equilibria (PSNE) and subgame
perfect Nash equilibria (SPNE) under value order queueing is provided in
CJSW (2017). Below we consider a more general case including random
order queuing, including both analytic and numerical derivation of PSNE
and SPNE for the parameters used in the experiment.

B.1. Enumeration of Subgame Perfect Nash Equilibria

In Table C1 we provide a description of the (expected) payoffs for pure
strategy Nash equilibria. Note that the payoff for opting out of advance pro-
duction is 1, so a seller earning a payoff of 1 is indifferent between advance
production and not, holding pricing constant.

B.2. Derivation of Pure Strategy Nash Equilibria

B.2.1. Overview of the Strategic Environment

We begin with a short overview of the strategic environment. Consider
a market with M sellers and N buyers. Each buyer j has a valuation vj

for a single unit of a good (in our experiment vj ∈ {0, 2, 4, 6, 8}). The
sellers independently decide whether to produce a single unit of a good. The
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TABLE A9

Marginal Effects of Probits on Advance Production (Quantity)
Necessary to Support Competitive Equilibrium

Competitive Equilibrium Production
(1) (2)

Individual-level Shifter −0.0419 −0.0405

(0.0621) (0.0556)

Demand Curve Representation 0.0781 0.0762

(0.0770) (0.0701)

Individual-price Posting −0.0646 −0.0609

(0.0750) (0.0725)

Robot Buyers −0.0743 −0.0687

(0.0746) (0.0816)

Random Order 0.0043 0.0038

(0.0757) (0.0892)

Stationary MC = 4 (Capacity) −0.0050 −0.0049

(0.0359) (0.0480)

Period −0.0027 −0.0025

(0.0013) (0.0022)

Period × Individual-level Shifter 0.0006 0.0006

(0.0008) (0.0011)

Period × Demand Curve Representation −0.0011 −0.0010

(0.0009) (0.0013)

Period × Individual-price Posting 0.0041∗∗∗ 0.0039∗∗

(0.0009) (0.0015)

Period × Robot Buyers 0.0040∗∗∗ 0.0038∗∗

(0.0009) (0.0019)

Period × Random Order −0.0025∗∗∗ −0.0023

(0.0010) (0.0018)

Period × Stationary MC = 4 (Capacity) 0.0023∗∗∗ 0.0022∗∗

(0.0007) (0.0007)

Observations (Groups) 3360 (36) 3360 (36)

Note: Reported are marginal effects on attainment of levels of production necessary to
support competitive equilibrium contingent on exogenously imposed marginal cost or market
capacity. Corresponding standard deviations are in parentheses. In Model 1, random effect
is at group level; and in Model 2, standard errors are cluster-robust; each with 4 groups
per each of the 9 treatments, and 96 periods per group, except where MC = 2 omitted for
random order treatments (due to nonexistence of CE in RO when MC = 2).

∗∗∗ Significant at the 1 percent level.
∗∗ Significant at the 5 percent level.
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Table C1: Asking Prices Supporting Pure Strategy Nash Equilibria in the Pricing Subgame, with (Expected) Payoffs
Stratified by Advance Production

Marginal Cost Number of Posted Asking Prices (Excepted) Payoffs
of Production Producers Value Order Queueing Random Order Queueing Value Order Queueing Random Order Queueing

MC = 8







































m = 1 {8} {8} {1} {1}

m = 2 {6,6} {6,6} {−1,−1} {−1,−1}

m = 3 {4,4,4},{6,6,6} {4,4,4},{4,4,6},{4,6,6},{6,6,6} {−3,−3,−3},{−3,−3,−3} {−3,−3,−3},{−3,−3,−3},{−3,−3,−3},{−3,−3,−3}

m = 4 {2,2,2,2},{4,4,4,4} {4,4,4,4} {−5,−5,−5,−5},{−4,−4,−4,−4} {−4,−4,−4,−4}

m = 5 {0,0,0,0,0},{2,2,2,2,2},{4,4,4,4,4} {2,2,2,2,2}{4,4,4,4,4} {−7,−7,−7,−7,−7},{−5.4,−5.4,−5.4,−5.4,−5.4},{−4.6,−4.6,−4.6,−4.6,−4.6} {−5.4,−5.4,−5.4,−5.4,−5.4},{−4.6,−4.6,−4.6,−4.6,−4.6}

MC = 6







































m = 1 {8} {8} {3} {3}

m = 2 {6,6} {6,6} {1,1} {1,1}

m = 3 {4,4,4},{6,6,6} {4,4,4},{4,4,6},{4,6,6},{6,6,6} {−1,−1,−1},{−1,−1,−1} {−1,−1,−1},{−1,−1,−1},{−1,−1,−1},{−1,−1,−1}

m = 4 {2,2,2,2},{4,4,4,4} {4,4,4,4} {−3,−3,−3,−3},{−2,−2,−2,−2} {−2,−2,−2,−2}

m = 5 {0,0,0,0,0},{2,2,2,2,2},{4,4,4,4,4} {2,2,2,2,2}{4,4,4,4,4} {−5,−5,−5,−5,−5},{−3.4,−3.4,−3.4,−3.4,−3.4},{−2.6,−2.6,−2.6,−2.6,−2.6} {−3.4,−3.4,−3.4,−3.4,−3.4},{−2.6,−2.6,−2.6,−2.6,−2.6}

MC = 4







































m = 1 {8} {8} {5} {5}

m = 2 {6,6} {6,6} {3,3} {3,3}

m = 3 {4,4,4},{6,6,6} {4,4,4},{4,4,6},{4,6,6},{6,6,6} {1,1,1},{1,1,1} {1,1,1},{1,1,1},{1,1,1},{1,1,1}

m = 4 {2,2,2,2},{4,4,4,4} {4,4,4,4} {−1,−1,−1,−1},{0,0,0,0} {0,0,0,0}

m = 5 {0,0,0,0,0},{2,2,2,2,2},{4,4,4,4,4} {2,2,2,2,2}{4,4,4,4,4} {−3,−3,−3,−3,−3},{−1.4,−1.4,−1.4,−1.4,−1.4},{−0.6,−0.6,−0.6,−0.6,−0.6} {−1.4,−1.4,−1.4,−1.4,−1.4},{−0.6,−0.6,−0.6,−0.6,−0.6}

MC = 2







































m = 1 {8} {8} {5} {5}

m = 2 {6,6} {6,6} {5,5} {5,5}

m = 3 {4,4,4},{6,6,6} {4,4,4},{4,4,6},{4,6,6},{6,6,6} {3,3,3},{3,3,3} {3,3,3},{3,3,3},{3,3,3},{3,3,3}

m = 4 {2,2,2,2},{4,4,4,4} {4,4,4,4} {1,1,1,1},{2,2,2,2} {2,2,2,2}

m = 5 {0,0,0,0,0},{2,2,2,2,2},{4,4,4,4,4} {2,2,2,2,2}{4,4,4,4,4} {−1,−1,−1,−1,−1},{0.6,0.6,0.6,0.6,0.6},{1.4,1.4,1.4,1.4,1.4} {0.6,0.6,0.6,0.6,0.6},{1.4,1.4,1.4,1.4,1.4}

Note: Asking prices and payoffs supporting pure strategy Nash equilibria are listed for value and random order queueing, given marginal cost MC = {8, 6, 4, 2}

and demand schedule {8,6,4,2,0}, with marginal cost sunk. A subset of these PSNE in the pricing subgame support the SPNE (for advance production and pricing)
enumerated in Panel B of Table II; the PSNE in the pricing subgame are enumerated in Panel A of Table II. Cells for which no PSNE in the pricing stage support a
SPNE have dashes. Asking prices in bold are consistent with pricing via the demand schedule.
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marginal cost of production is MC (in our experiment MC ∈ {2, 4, 6, 8}).
Once the production decisions have been made, the supply (the number of
units produced) m is revealed and the firms set prices (in the experiment
the prices were restricted to multiples of r = 2 in the set {0, 2, 4, 6, 8, 10}).
Then, the market opens and buyers arrive either in the descending order
of their valuations (the value order queuing case) or in random order (the
random order queuing case). A trade results in the following payoffs for the
buyer and the seller respectively:

vj − Pi + δ and Pi −MC,

where δ is small and positive utility from trading intended to break indif-
ference when the seller’s price equals the valuation Pi = vj. (Without loss
of generality, we can in the analysis of the pricing subgame ignore sellers’
entry/exit subsidies, which are both equal to 1, and serve only to shift profit
from 0 to 1.)

We will characterize SPNE of the game while restricting attention to
pure pricing strategies. In the spirit of backward induction, we first take
a look at buyers’ subgames. In each subgame, one buyer with valuation vj

makes a buy or pass decision with respect to m available objects with prices
{P1, ..., Pm}. The following lemma lays out buyer’s optimal response.
Lemma 1 The buyer has a dominant (behavior) strategy to buy an object
k iff vj ≥ Pi, where Pi = min{P1, ..., Pm}.

The argument follows directly from buyer’s rationality. The buyer chooses
to buy if and only if his valuation exceeds the lowest of the available prices.

Next we move on to pricing subgames. Each subgame is parameterized
by the number of sellers m who have produced and have an object to sell.
Because the cost is sunk at this point, each seller’s objective is to maximize
their revenue. We characterize subgame perfect equilibria in pure strategies,
which, however, coincide with PSNE. Behavior will depend on the buyer
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arrival process. We examine two different types of queuing: the random
order and value order.

B.2.2. Pricing Subgame: Value Order Queuing

By Lemma 1, the cheapest objects are always bought first. Because buyers
arrive in the descending order of their valuations, if there is a trade in the
(buyer’s) subgame j, then there must have been trades in all preceding
buyer subgames {1, ..., j − 1}. Similarly, if there is no trade in subgame
j, then there will be no trade in all subsequent subgames {j + 1, ...,m}.
Given these observations, we first establish that there is no PSNE in which
different sellers offer different prices.
Lemma 2 In any PSNE: Pk = Pl, k, l ∈ {1, ...,m}.
Proof. Suppose this is not the case and all sellers do not offer the same
price. Order the prices in the ascending order. Now define the marginal
seller to be the one with the price Pi at which the the demand meets the
supply, i.e., at which the i-th buyer still buys but i + 1-th buyer does not.
Note, if multiple sellers price at Pi, then each one of them is a marginal
seller. By definition, the probability that the marginal seller makes a sale is

(2) q(Pi) = max

[

1,
d(Pi)− s(Pi − r)

s(Pi)− s(Pi − r)

]

.

In the second term of the max operator, d(Pi)− s(Pi − r) is the difference
between the number of objects demanded at Pi and the number supplied at
Pi − r (where r is the smallest price increment); similarly, s(Pi)− s(Pi − r)

is the difference between the number of objects supplied at Pi and Pi − r.
The ratio can be interpreted as the number of buyers who are available and
willing to buy (at Pi) per object offered in the market.

Suppose that Pi maximizes the marginal seller’s revenue. If this were
not the case, then he could profitably deviate by lowering the price. (It is
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never optimal to price higher than Pi as that would result in no sale and
zero revenue.) If Pi is set optimally, then it cannot be profit-maximizing for
any other seller to set a lower price, Pk < Pi. To see this, note that if the
marginal seller prices optimally, then

(3) q(Pi)Pi ≥ Pi − r.

The right-hand side is the expected revenue from dropping the price by the
smallest price increment (r) and trading with certainty. So it follows that if
q(Pi)Pi ≥ Pi − r, then it must be that q(Pi)Pi ≥ Pk.

However, if any one of the sellers with the lower price, Pk, switched to Pi,
then this seller would get q′(Pi)Pi, where q′(Pi) > q(Pi). To understand the
last inequality, let us express q(Pi) as (d − s−r)/(s − s−r). Then, q′(Pi) =

(d−(s−r−1))/(s−(s−r−1)) = (d−s−r+1)/(s−s−r+1). In words, the one
seller who upped his price from Pk to Pi will now compete for objects with
all the incumbent Pi-sellers – hence, the +1 in the numerator; and, because
this seller set his price at Pi, there is an additional object being offered (at
Pi) – hence, the +1 in the denominator.

Since, q′(Pi)Pi > q(Pi)Pi > Pi− r, a Pk-seller can improve his revenue by
pooling with the marginal seller(s) at Pi.

Next, let us define a market clearing price, P (m), to be equal to the m-th
highest valuation among the buyers.
Proposition 3 Under the value order queueing, uniform pricing at the
market clearing level, Pi = P (m), is a PSNE.
Proof. We need to verify that there is no opportunity to profitably deviate.
Suppose all sellers set Pi = P (m) and consider a seller k. In the supposed
equilibrium, the k-seller sells and gets P (m). Dropping a price below P (m)

is clearly not profitable as that would give a revenue Pk < Pi = P (m).
Raising the price above P (m) is also not profitable since that would result
in no sale and zero revenue.
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We have established (in Proposition 3) that pricing at the market clearing
level is always a PSNE and, by Lemma 2, there is no (asymmetric) equilib-
rium involving different prices. It is easy to see that uniform pricing below
the market clearing level cannot be an equilibrium because any seller could
profitably deviate by rising his price to P (m).

It remains to examine whether uniform pricing above the market clearing
level (Pi > P (m)) could be an equilibrium. Pricing above market clearing
is not ruled out by Lemma 2. Suppose all sellers price at Pi > P (m). This
would be an equilibrium if a seller could not unilaterally deviate to a lower
price Pi− r, i.e., if the following deviation condition holds q(Pi)Pi ≥ Pi− r.
The deviation condition is more likely to hold when Pi is close to the market
clearing level P (m) and the minimum price increment is large. In fact, when
r → 0 the deviation condition (q(Pi)Pi ≥ Pi − r) is bound to fail.

For our experimental parametrization, all equilibria (in pure strategies)
for value order queuing are summarized in Table II in the main text. The
market clearing equilibria fall under the proposition 3. The remaining uni-
form pricing equilibria can be readily verified by checking that unilateral
deviation is not profitable, i.e., q(Pi)Pi > 0 for upward deviation and
q(Pi)Pi > Pi − r for downward deviation.42 For the sake of completeness,
let us list them below:

• Subgame m = 1: (8)
• Subgame m = 2: (6, 6)
• Subgame m = 3: (4, 4, 4), (6, 6, 6)
• Subgame m = 4: (2, 2, 2, 2), (4, 4, 4, 4)
• Subgame m = 5: (0, 0, 0, 0, 0), (2, 2, 2, 2, 2), (4, 4, 4, 4, 4)

42Equilibria can be identified through a numerical, exhaustive algorithm such as that
reported in subsubsection B.3.3.
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B.2.3. Pricing Subgame: Random Order Queuing

In this section we consider a random queuing of buyers under which
buyers’ arrival in the market is independent of their valuations. Here we
show that random queuing alters the incentives of sellers in the pricing
subgame. For instance, it is not true anymore that market clearing pricing
is always a PSNE; nor it is true that a uniform pricing PSNE always exists.
Let us explore these claims in more detail. We start by developing some
intuition.

The following lemma establishes a lower bound on equilibrium pricing.

Lemma 4 P (m) dominates pricing at any Pi < P (m).

Proof. At any profile of prices, where the seller i prices below the market
clearing level, Pi < P (m), the sale is guaranteed q(Pi) = 1. Hence, the seller
can do better by increasing the price to P (m) and getting a revenue P (m)

(> Pi).

Next, let us focus on uniform pricing equilibria. We state the following
(non-)existence result.

Proposition 5 Under the random order queuing, a uniform pricing PSNE
need not exist.

Proof. By Lemma 4, no seller will set a lower price than P (m). So suppose
that sellers price uniformly at Pi ≥ P (m). Each expects to get q(Pi)Pi =

(d(Pi)/m)Pi, where the probability of sale is the number of buyers who are
willing to buy (with vj ≥ Pi) divided by the number of available objects
at Pj. Consider what would happen if one of the sellers set a higher price,
P ′

k > Pi. Then, that seller’s object would not be considered by buyers until
possibly the very last subgame. Because the buyers arrive in random order,
the probability that the k-buyers’s valuation in the last subgame exceeds
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the price is d(P ′

k)/m. A deviation to P ′

k will not be profitable when

(4) d(Pi)

m
Pi ≥

d(P ′

k)

m
P ′

k ⇐⇒
d(Pi)

d(P ′

k)
≥

P ′

k

Pi

,

for all P ′

k > Pi.
Next, consider a deviation to a lower price P ′′

k < Pi. This puts the seller
in the position of being the very first one to sell. As long as Pi < max{vj},
the probability of making a sale is 1. From this, it follows that the optimal
P ′′

k is Pi − r. A deviation to a lower price is not profitable when

(5) d(Pi)

m
Pi ≥ P ′′

k ⇐⇒
d(Pi)

m
≥

Pi − r

Pi

.

Satisfying both (4) and (5) may not be possible when (i) r → 0 and (ii)
the market clearing pricing is in the inelastic region of the demand curve.
(i) essentially forces Pi → P (m) in order for (5) to hold. But (ii) implies

(6)

(P (m)+r)d(P (m)+r) > P (m)d(P (m)) ⇐⇒
d(P (m))

d(P (m) + r)
<

P (m) + r

P (m)
,

which violates (4).
There may be asymmetric equilibria in which different sellers set different

prices or equilibria in mixed strategies. However, there is not much more we
could say with a high degree of generality. Therefore, we turn to our exper-
imental parametrization and characterize all pure strategy Nash equilibria
in pricing subgames.

We start by noting that no seller will ever set a price greater than 8. If
he did, he would price himself out of the market and earn zero revenue. For
this reason, in what follows, we do not consider deviations to prices that
are higher than 8.

• Subgame m = 1: The seller is a monopolist, and hence, prices at 8.
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• Subgame m = 2: In the duopoly case there are only three candidates
for PSNE: {(6, 6), (6, 8), (8, 8)}. (8, 8) is not an equilibrium as there is
a profitable deviation to 6. By (5), 1/2 < 6/8. (6, 6) is an equilibrium
as both, (4) and (5), are satisfied. The former holds because 2/1 > 8/6;
the latter holds because 2/2 > 4/6. It follows that (6, 8) cannot be an
equilibrium.

• Subgame m = 3: First note that, in equilibrium, no seller will ever
price at 8. The most the seller can earn by pricing at 8 is when the
other two sellers also price at 8. The expected revenue is (1/3) × 8.
However, dropping the price to 4 would guarantee a sale and a revenue
equal to 4 > 8/3. This leaves four equilibrium candidates: {(4, 4, 4),
(4, 4, 6), (4, 6, 6), (6, 6, 6)}. All four are equilibria.
Note that at (6, 6, 6) a deviation to 4 is not (strictly) profitable as
(2/3) × 6 = 4. At (4, 4, 4) both, (4) and (5), hold and (4) holds with
equality: 3/2 = 6/4. Lastly, the revenue from pricing at 4 when prices
are (4, 4, 6) is 4, which is the same as the expected revenue from pricing
6 when prices are (4, 6, 6), i.e., (2/3)×6. Together, these observations
imply that both (4, 4, 6) and (4, 6, 6) are also equilibria.

• Subgame m = 4: First, no seller wants to price at 8. If all four sellers
priced at 8, there is a profitable deviation to 6 – since (1/4)× 8 < 6.
If at least one of the sellers prices below 8, then the maximum a seller
can earn is less than (1/4)×8. By setting a price at 2 he can guarantee
himself a revenue of 2. Given this, we now argue that no seller will
ever price at 6 as well. The highest expected revenue from pricing at
6 is (2/4) × 6, which happens only in the case when all other sellers
also price at 6. Otherwise, his revenue is less than 3. Notice, however,
that deviation to 4 gives a revenue of 4 as long as at least one of the
other sellers prices at 6; and he expects to earn (3/4) × 4 when all
other sellers price at 4.
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The remaining equilibrium candidates are various permutations of 2
and 4. (2, 2, 2, 2) is not an equilibrium as there is a profitable devi-
ation to 4, i.e., (4) is violated: 4/3 < 4/2. Because this is the most
unfavorable pricing case for a seller who prices at 4, the deviation
condition has to hold as well for the next three equilibrium candi-
dates: {(2, 2, 2, 4), (2, 2, 4, 4), (2, 4, 4, 4)}. It follows that (4, 4, 4, 4) is
an equilibrium.

• Subgame m = 5: As in the previous case (m = 4), no seller would
price at either 8 or 6. Parallel arguments apply and we will not repeat
them here.
No seller will ever price at 0. With zero price he would earn zero while
pricing at 2 yields a strictly positive expected revenue, i.e., at least
(4/5) × 2. This leaves us with several equilibrium candidate pricing
profiles that are various permutations of 2 and 4. Observe first that
(4, 4, 4, 4, 4) is an equilibrium. A unilateral deviation to 2 would give
2, which is less than the expected revenue from pricing at 4: (3/5)×4.
(2, 2, 2, 2, 2) is also an equilibrium. Deviating to 4 would give the seller
zero revenue. From this we can also conclude that no pricing profile
which involves a unilateral deviation from one of the two equilibria
can itself be an equilibrium. Among the remaining pricing profiles
none is an equilibrium. To see this, let us restrict attention to pricing
profiles where at least two sellers price at 2 and another two sellers
price at 4. For all these profiles there is a profitable deviation from 4

to 2. By pricing at 2 the seller can guarantee a revenue of 2, which is
more than the most he can get from keeping the price at 4: (1/3)× 4.

In summary, the pure strategy equilibria in the pricing subgame, for each
possible m are as follows:

• Subgame m = 1: (8)
• Subgame m = 2: (6, 6)
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• Subgame m = 3: (4, 4, 4), (4, 4, 6), (4, 6, 6), (6, 6, 6)
• Subgame m = 4: (4, 4, 4, 4)
• Subgame m = 5: (2, 2, 2, 2, 2), (4, 4, 4, 4, 4)

B.2.4. Advance Production

Lastly, let us take a look at the advance production decisions. Each of the
sellers has a binary choice to produce or not. Denote the production strategy
as σ ∈ [0, 1]. We focus on equilibria in symmetric production strategies.
Denote by E(m) = P1, ..., Pm an equilibrium, in a pricing subgame m ∈

{1, 2, 3, 4, 5}. Let πi(E(m)) denote the seller i’s expected revenue in the
pricing subgame when sellers price according to equilibrium E(m). (Seller
entry/exit subsidies do affect decisions at this stage, and are included in the
analysis thereof.) The seller’s expected profit from producing an object is
given by

(7)
4

∑

l=0

(

4

l

)

σl(1− σ)4−lπi(E(l + 1))−MC + 1

The profit from not producing is 1. The seller will choose to produce when

(8)
4

∑

l=0

(

4

l

)

σl(1− σ)4−lπi(E(l + 1)) ≥ MC.

In our experiment MC ∈ {2, 4, 6, 8}. Let us first focus on equilibria in pure
strategies. There are only two candidates for subgame perfect equilibria
in symmetric pure production strategies: (i) none of the sellers produces
(σ = 0) and (ii) all sellers produce (σ = 1). When MC = 8, not producing
is an equilibrium for either type of queuing. The reason is that the seller
can break even only in the case when she is the only one producing. In all
other cases, he is better off not producing (because the prices are less than
8). However, in any symmetric equilibrium, σ > 0, all pricing subgames are
reached with positive probability. Hence, the expected revenue falls short

workingpaper.cls ver. 2006/04/11 file: paper.tex date: September 5, 2020



89

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

of the cost of production. This rules out any symmertic equilibrium with
σ > 0.

The second candidate, σ = 1, can be also sustained as an equilibrium,
for either type of queuing, when either (i) MC = 2 and P5 = (2, 2, 2, 2, 2),
or (ii) when MC = 4 and P5 = (4, 4, 4, 4, 4) in the m = 5 subgame. The
reason is simple: when all other sellers produce, it is optimal for the seller
to produce when the expected revenue in the m = 5 subgame at least covers
his cost of production. That is the case under (i) and (ii).

For all other parametric configurations, a symmetric subgame perfect
equilibrium involves mixed production strategies. Depending on which pric-
ing equilibria are played in various subgames m ∈ {1, 2, 3, 4, 5}, the equilib-
rium production probability σ satisfies the following indifference condition
that balances the costs and benefits of producing a unit:

(9)

MC =

(

4

0

)

σ0(1− σ)4πi(E(1))+

(

4

1

)

σ1(1− σ)3πi(E(2))+

(

4

2

)

σ2(1− σ)2πi(E(3))+

(

4

3

)

σ3(1− σ)1πi(E(4))+

(

4

4

)

σ4(1− σ)0πi(E(5)).

There is a unique mixture σ for each combination of pricing equilibria
in various subgames {E(1), ..., E(5)}, with the exception of the cases where
equilibria are in pure strategies.

Deriving the subgame perfect equilibrium predictions for the advance pro-
duction decisions requires that we specify pricing equilibria in all six pricing
subgames m ∈ 0, ..., 5. Because of the multiplicity of such equilibria under
both types of queuing, there are too many possibilities to consider. There
is also no satisfactory equilibrium selection criterion that we could rely on
to pick the most likely candidate for each subgame. Instead of explicitly
considering all combinations of possible equilibria, we examine equilibria
that give us the upper and the lower bound on subgame perfect produc-
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tions decisions. In other words, we consider the maximal and the minimal
selection form the equilibrium set, derive the subgame perfect production
probabilities and highlight the differences between the two types of queuing.

We begin by noting that the maximal selection from the equilib-
rium set under the random queuing and the value queuing is the same:
{{8}, {6, 6}, {6, 6, 6}, {4, 4, 4, 4}, {4, 4, 4, 4, 4}}; the minimal selection, how-
ever, is not. Under the value order queuing, the minimal selection is
{{8}, {6, 6}, {4, 4, 4}, {2, 2, 2, 2}, {0, 0, 0, 0, 0}}, while under the random or-
der queuing we have {{8}, {6, 6}, {4, 4, 4}, {4, 4, 4, 4}, {2, 2, 2, 2, 2}}. Hence,
for MC > 2 we would expect strictly more production to take place under
the value order queueing than under the random order queuing.

Table II enumerates the PSNE, including the subgame perfect PSNE
incorporating the advance production stage.

B.2.5. Numerical Derivation

The functions below, coded in R, may be used to calculate the pure strat-
egy Nash equilibria and sub-game perfect Nash equilibria for the parameters
used in the study. The calls spne(order="value") and
spne(order="random") enumerate the SPNE under value and random or-
der queueing, respectively.

# Function: permutations
# Calculates the permutations of a vector sequence, x; returns a matrix.
permutations <- function(x,prefix=c())
{

if(length(x)==0) { return(prefix); }
do.call(rbind,sapply(1:length(x),FUN=function(idx)permutations(x[-idx],c( prefix,x[idx])),simplify = FALSE));

}

# Function: prob.sale
# Takes a vector of asks and for each returns the probability of a sale for each ask.
# The demand argument is a sequence of values in any order, e.g. {8,4,6,2,0}.
# The order argument takes {"random","value"}, for the order of buyer action.
prob.sale <- function(ask,demand=seq(8,0,-2),order="value")
{

# Order asks accendingly.
ask.order <- order(ask);
ask <- ask[ask.order];
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# Define variables for storage of parameters and state-dependent outcomes.
if (order=="random") { value <- permutations(demand); }
else if (order=="value") { value <- matrix(sort(demand,decreasing=TRUE),nrow=1,ncol=length(demand)); }
else { stop("Argument \"order\" must be {\"random\",\"value\"}."); }
bought <- matrix(0,dim(value)[1],length(ask)); # Create a matrix to store sales.

# In each state,...
for (state in 1:dim(value)[1])
{

# For each buyer,...
for (buyer in 1:dim(value)[2])
{

# Look through the vector of asks...
bought.buyer <- 0;
for (seller in 1:length(ask))
{

# And buy the first unsold surplus-generating unit.
if (bought.buyer==0&bought[state,seller]==0&value[state,buyer]>=ask[seller])
{

bought[state,seller] <- 1;
bought.buyer <- 1;

}
}

}
}

# Find the probabiliy of a sale.
probability <- colMeans(bought);

# For equivalent asks, merge probabilities (i.e., random tie-breaking).
for (offer in unique(ask))
{

probability[offer==ask] <- mean(probability[offer==ask]);
}

# Return probability of sale, reordering if not submitted in value order.
probability[ask.order] <- probability;
return(probability)

}

# Function: expected.value
# Takes a vector of asks and for each returns the expected value to each seller.
# The demand argument is a sequence of values in any order, e.g. {8,4,6,2,0}.
# The order argument takes {"random","value"}, for the order of buyer action.
expected.value <- function(ask,demand=seq(8,0,-2),order="value")
{

return(prob.sale(ask,demand,order)*ask);
}

# Function: psne
# Calculates the pure strategy Nash equilibria.
# The m argument takes the number of sellers (i.e. entrants).
# The demand argument is a sequence of values in any order, e.g. {8,4,6,2,0}.
# The order argument takes {"random","value"}, for the order of buyer action.
psne <- function(m,demand=seq(8,0,-2),order="value")
{

# If there is only one seller, return the highest value on the demand curve.
if (m==1) { return(max(demand)); }
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# Get all possible pure strategies for stage 2 and create storage for expected values.
asks.j <- unique(t(combn(sort(rep(demand,m-1)),m-1))); # Find all combinations of opponent asks.
asks.i <- kronecker(rep(1,dim(asks.j)[1]),sort(demand)); # Create a vector of possible responses.
asks <- cbind(kronecker(asks.j,rep(1,length(demand))),asks.i); # Combine to create a matrix of asks.
colnames(asks) <- NULL; # Clear column names from cbind.

# Iterate through asks, calculating expected values for each.
ev <- matrix(NA,dim(asks)[1],dim(asks)[2]);
for (ask in 1:dim(asks)[1])
{

ev[ask,] <- expected.value(asks[ask,],demand,order);
}

# Get unique combinations of opponent strategies and create space to store best responses.
br <- matrix(NA,nrow=dim(asks.j)[1],ncol=length(demand))
br.ev <- matrix(NA,nrow=dim(asks.j)[1],ncol=length(demand))

# Search through all unique opponent strategies for best responses.
for (j in 1:dim(asks.j)[1])
{

asks.index <- apply(as.matrix(asks[,-m]),1,identical,asks.j[j,]); # Find relevant rows.
ev.response <- ev[asks.index,m]; # Find expected value of all responses.
br.index <- as.logical(ev.response==max(ev.response)); # Find best responses.
br[j,1:sum(br.index)] <- asks[asks.index,m][br.index]; # Store best responses strategies.
br.ev[j,1:sum(br.index)] <- ev[asks.index,m][br.index]; # Store expected value of best responses.

}

# Create a list of possible equilibria.
x <- matrix(NA,0,m)
for (col in 1:dim(br)[2])
{

x.add <- cbind(asks.j,br[,col]);
x <- rbind(x,na.omit(x.add))

}

# Determine if possible equilibria are, in fact, pure startegy Nash equilibria (PSNE).
equilibrium <- rep(TRUE,dim(x)[1])
for (row in 1:dim(x)[1])
{

# Get unique permutations of the row, with other players strategies sorted as per the asks above.
x.permutations <- unique(permutations(x[row,]));
for (r in 1:dim(x.permutations)[1]) { x.permutations[r,-m] <- sort(x.permutations[r,-m]); }
x.permutations <- unique(x.permutations);

# Go through all permutations of the row, finding the best reponse.
for (r in 1:dim(x.permutations)[1])
{

# All permutations must be a best response to other players' strategies to support PSNE.
row.match <- apply(as.matrix(x[,-m]),1,identical,x.permutations[r,-m])
equilibrium[row] <- as.logical(any(x[row.match,m]==x.permutations[r,m])*equilibrium[row]);

}
}

# Eliminate reundant equilibria.
x.equilibrium <- x[equilibrium,]
if (is.matrix(x.equilibrium))
{

for (r in 1:dim(x.equilibrium)[1]) { x.equilibrium[r,] <- sort(x.equilibrium[r,]); }

workingpaper.cls ver. 2006/04/11 file: paper.tex date: September 5, 2020



93

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

x.equilibrium <- unique(x.equilibrium);
}

# Return a list of pure strategy equilibria.
return(x.equilibrium)

}

# Function: prob.purchase
# Takes a vector of asks and for each returns the probability of a purchase for each buyer value on the demand curve.
# The demand argument is a sequence of values in any order, e.g. {8,4,6,2,0}.
# The order argument takes {"random","value"}, for the order of buyer action.
# The surplus argument takes {"total","buyer","seller"}, for the surplus to be calculated.
# The h argument is the marginal cost of producing one unit, or the cost of entry.
expected.surplus <- function(ask,demand=seq(8,0,-2),order="value",surplus="total",h=NA)
{

# Order asks accendingly.
ask.order <- order(ask);
ask <- ask[ask.order];

# Define variables for storage of parameters and state-dependent outcomes.
if (order=="random") { value <- permutations(demand); }
else if (order=="value") { value <- matrix(sort(demand,decreasing=TRUE),nrow=1,ncol=length(demand)); }
else { stop("Argument \"order\" must be {\"random\",\"value\"}."); }
bought <- matrix(0,dim(value)[1],length(ask)); # Create a matrix to store sales.

# Define variables for storage of surplus.
if (surplus=="buyer"|surplus=="total") { surplus.buyer <- matrix(0,dim(value)[1],length(demand)); }
if (surplus=="seller"|surplus=="total") { surplus.seller <- matrix(0,dim(value)[1],length(ask)); }
if (surplus!="seller"&surplus!="buyer"&surplus!="total")

{
stop("Argument \"surplus\" must be {\"total\",\"buyer\",\"seller\"}.");

}
if ((surplus=="seller"|surplus=="total")&is.na(h)) { stop("Argument \"h\" must be specified."); }

# In each state,...
for (state in 1:dim(value)[1])
{

# For each buyer,...
for (buyer in 1:dim(value)[2])
{

# Look through the vector of asks...
bought.buyer <- 0;
for (seller in 1:length(ask))
{

# And buy the first unsold surplus-generating unit.
if (bought.buyer==0&bought[state,seller]==0&value[state,buyer]>=ask[seller])
{

bought[state,seller] <- 1;
bought.buyer <- 1;

if (surplus=="buyer"|surplus=="total")
{
surplus.buyer[state,buyer] <- value[state,buyer]-ask[seller];
}

if (surplus=="seller"|surplus=="total") { surplus.seller[state,seller] <- ask[seller]-h; }
}

}
}
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# If no seller sells, they still incur their entry cost.
if (surplus=="seller"|surplus=="total")
{

for (seller in 1:length(ask))
{

if(bought[state,seller]==0) { surplus.seller[state,seller] <- -h; }
}

}
}

# For sellers with the same ask, calculate the expected surplus, rather than surplus by order in the buyer queue.
for (offer in unique(ask))
{

surplus.seller[ask==offer] <- mean(surplus.seller[ask==offer]);
}

# Find and return expected surplus.
if (surplus=="buyer") { return(colMeans(surplus.buyer)); }
else if (surplus=="seller") { return(colMeans(surplus.seller)); }
else if (surplus=="total") { return(sum(colMeans(surplus.buyer))+sum(colMeans(surplus.seller))); }

}

# Function: spne
# Calculates and enumerates the subgame perfect Nash equilibria.
# The demand argument is a sequence of values in any order, e.g. {8,4,6,2,0}.
# The order argument takes {"random","value"}, for the order of buyer action.
# The h argument is the marginal cost of producing one unit, or the cost of entry.
spne <- function(demand=seq(8,0,-2),order="value",mc=seq(8,2,-2),list.all.psne=FALSE)#h=seq(8,2,-2))
{

# Declare the entry subsidy. (Does not affect PSNE or SPNE since it is added in all cases.)
v <- 1;

# Create space to store the SPNE.
x <- data.frame(h=numeric(),m=numeric(),asks=character(),surplus=character(),stringsAsFactors=FALSE);

# Iterate through marginal costs.
for (h in mc)
{

# Iterate through the possible number of entrants.
for (m in 1:length(demand))
{

# Calculate PSNE pricing given m entrants (and turn vectors in row matrices).
psne.m <- psne(m,demand=demand,order=order);
if (!is.matrix(psne.m)) { psne.m <- matrix(psne.m,nrow=1); }

# Iterate through strategies in PSNE and determine if they support entry.
for (s in 1:dim(psne.m)[1])
{

# Equilibrium occurs where there is no positive incentive to enter or exit.
# Equilibrium can also occur where there is a positive incentive to enter if there are max entrants.
pi <- as.character(expected.surplus(psne.m[s,],demand=demand,order=order,surplus="seller",h=h)+v);
if (list.all.psne|(all(surplus==v)|(m==length(demand)&all(surplus>=v))))
{

x <- rbind(x,data.frame(h,m,paste(as.character(psne.m[s,]),collapse=","),paste(pi,collapse=",")));
}

}
}

}
# Apply user-friendly column names.
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colnames(x) <- c("h","m","asks","surplus");

# Return a list of subgame perfect equilibria.
return(x);

}

B.3. Dynamic Incentives in the Repeated Game

B.3.1. Collusion

We now explore dynamic incentives in our experiment. Recall that the
experimental environment consists of several stationary and nonstationary
sequences of rounds. In each stationary sequence MC = 4; in the non-
stationary sequence, each value of MC ∈ {2, 4, 6, 8} comes up exactly once
in a scrambled order. Throughout the experiment subjects encounter each
value of MC at least 16 × 2 = 32 times. We will refer to this game as a
large finitely-repeated game (LFRG).

When it comes to LFRG, if there are multiple subgame perfect Nash
equilibria (SPNE), then it is typically the case that there are too many of
them to enumerate. This is true in our case as well. We will therefore not
attempt to characterize the whole set of equilibria. Instead, we will focus
on a specific question of whether players can use dynamically optimized
strategies to collude on some output-price pair that is more profitable than
playing the best SPNE in every stage. In doing so, we will also assume that
there is no discounting and our players are able to coordinate on asymmetric
stage-game SPNE.

First, let us define the best collusive outcome as an output-price pol-
icy that maximizes the total stage-game profit. The table below gives the
optimal collusive outcomes for each value of MC.

MC 2 4 6 8
Price profile (6,6) {(6,6),(8)} (8) (8)

Note, other collusive arrangements are possible, e.g., (4, 4, 4) in MC = 2
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case, but they are less profitable.
In the next claim we argue that players are unable to benefit from collu-

sion when the marginal cost is higher than 2.
Proposition 6 In stage-games where MC ∈ {4, 6, 8}, players cannot achieve
a greater stage-game payoff by colluding, than by playing one of the stage-
game SPNEs.
Proof. The proof follows directly from the observation that in all of these
cases, when MC > 2, one of the profit-maximizing outcomes is also a stage-
game SPNE. Because these equilibria are asymmetric, only some players
(who happen to produce) benefit. All players, however, can achieve the
greatest expected profit by taking turns as they go through the rounds of the
experiment (please see below where we explicitly illustrate this procedure).

This leaves us with the case of MC = 2. In rounds where MC = 2,
colluding on (6, 6) can generate greater total profit than playing the most
profitable stage-game SPNE (4, 4, 4, 4). Next we will construct an SPNE
of the LFRG in which players collude in almost all MC = 2 rounds. We
take the standard route of building a carrot-and-stick trigger strategy by
exploiting the fact that some stage-game SPNEs yield higher and some yield
lower profit.

Let T denote the last round and consider the following strategy profile.
Equilibrium: On-path: in all rounds t ≤ T − 4, players produce and price
according to the schedule in the table below.

Round MC 2 4 6 8
Price profile (6,6) (6,6) (8) (8)

In the last four rounds players play the lowest price stage-game SPME
corresponding to the actual round MC as stated in Table 2, panel B.

Off-path: in any off-path pricing subgame (where m is from what it should
be on-path according to the table above), players play the lowest price NE
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as stated in Table 2, panel A of the paper; once the history of play is off-
path, then in each subsequent round players play the lowest price stage-game
SPNE corresponding to the actual round MC as stated in Table 2, panel B.

To ensure that all players benefit from collusion, players take turns en-
tering the market by cycling in a clock-wise direction. To help visualize this,
consider the player circle shown below:

1
5 2

4 3

In the first round, only the player 1 enters if MC ∈ {6, 8}; or players 1
and 2 enter if MC ∈ {2, 4}. Then, in every subsequent round, the entering
player is the one (if MC ∈ {6, 8}) or the two (if MC ∈ {2, 4}) who are
immediate successors in terms of the player-index to the previous round
entrants in the clock-wise direction.

Let us now verify that this constitutes an SPNE of our LFRG. In the
last T − 12 periods players play a stage-game SPNE on equilibrium path.
Hence, there are no incentives to deviate. Similarly, in all earlier rounds
where MC > 2 the trigger strategy prescribes a stage-game SPNE. Hence,
there are no incentives to deviate in those rounds as well. This leaves us
with the rounds (except the last one) where MC = 2

Deviation in any one of those rounds triggers the “punishment phase”.
Hence, if we can prevent a deviation in one of the MC = 2 rounds, we
prevent a deviation in all of them. Consider an MC = 2 round. On the
equilibrium path, exactly two players produce and price at 6. These two
players cannot do any better, and hence, do not have a profitable devia-
tion. The remaining four players do not produce. Consider one of those four
players. The only alternative to on-path pay is to produce a unit. Then, all
players observe that there are 3 rather than the expected 2 market entrants,
i.e., firms know one of them has deviated. The play is off-the-equilibrium
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path and players price via the demand schedule: (4, 4, 4). Hence, the devi-
ating player gains 4− 2 = 2 relative to saying out of the market. However,
form that point on all players produce and price via the demand schedule
if MC > 2 in all subsequent rounds. In particular, in all stationary rounds
in t ∈ {T − 12, ..., T − 4}, where MC = 4, the players produce-and-price
(4, 4, 4), earning zero net gain relative to staying out of the market. If the
play remained on-path, the players would have played (6, 6) which yields
the producing players a net gain of 3 − 1 = 2 relative to staying out of
the market. And because on the equilibrium path the players take turns
producing and there are 8 > 5 stationary rounds, it is guaranteed that each
of the players would have gained at least 2 from staying on-the-equilibrium
path. Hence, a deviation is not profitable.

This equilibrium is not the punishment “tightest” trigger strategy equi-
librium that can be designed, but it is one of the most transparent ones.
Our objective here was to clearly illustrate that collusion is possible in our
game, but if it were to happen it is likely going to be restricted to rounds
in which MC = 2. If players were to collude in other rounds they would
have to do it at production-price profiles that are less profitable than what
they can achieve without any collusion in an individual round SPNE. It is
worth highlighting that along the way of constructing this trigger strategy
equilibrium we have used some possibly strong assumptions, such as, that
players can coordinate on asymmetric strategies and are able to cycle across
rounds, that they know everyone’s MC and that they know the structure
of the rounds (stationary/non-stationary) forthcoming. None of this was,
however, a common knowledge in our experiment.

B.3.2. Fictitious Play and Learning with Incomplete Information

Let us examine more closely whether subjects who lack information on
the payoffs of their opponents are able to lock into one of the equilibria over
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time. One of learning or evolutionary models in the literature might shed
some light on this question. There is a wide variety of such models that have
been applied to different economic games. For instance, evolutionary models
have been used to sift through a myriad of dynamic strategies in repeated
minority game (Linde, Sonnemans, and Tuinstra, 2014) and repeated pris-
oner’s dilemma game (Romero and Rosokha, 2019). Reinforcement learning
and fictitious play have been studied and tested in the context of the mar-
ket entry game in Duffy and Hopkins (2005). More sophisticated models,
such as, experience weighted attraction (Camerer and Ho, 1999) and inertia,
sampling and weighting (I-SAW) model (see Erev et al. 2010), have been
pitted against one another in a market entry prediction competition where
the latter outperforming the former. A battery of learning and evolutionary
models have been examined within the context of normal form game play in
Pangallo et al. (2019). This work uncovers a relationship between the pro-
cess of best-reply dynamics and convergence of various learning algorithms.
Finally, models of imitation along with several other learning heuristics
(such as, win-continue, lose-reverse) have been examined in the context of
a repeated Cournot game (i.e., Friedman et al. 2015). The results point to
a two-tier model where the initial learning via imitation is later replaced
with a more cooperative heuristic (also see Huck et al. 2017).

Out of this multitude of possibilities we pick a model that is simple,
workable and has been applied in the same economic context that we work
with, i.e., the market entry game. In this sense Duffy and Hopkins (2005),
hereafter DH, is probably the closest to what we do. They compare the
outcomes of reinforcement learning and fictitious play in a market entry
game. The latter converges more rapidly and has a better fit with the ex-
perimental data. In the long run (over a span of 96 periods) the learning
process converges to a noisy equivalent of asymmetric Nash equilibrium
in pure strategies. This is indeed what we observe in the experiment. The
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setup of DH differs from ours in three important ways. First, DH consider a
“bare” market entry game. The pricing subgame is hardwired in the payoff
function. Second, DH assume that players have a complete information re-
garding their payoffs, i.e., there is no uncertainty regarding marginal costs.
And third, the payoff function does not change between rounds of repetition.
Let us address each of these in turn.

In order to reconcile the first of the above differences between DH’s mar-
ket entry game and our advance production posted offer market (which
can be thought of as a relaxation of the market entry game), we will in
our simulations impose an assumption about pricing. To this end, notice
that conditional on producing an item and entering the market, the un-
certainty regarding marginal costs of the opponents is a non-issue. At that
point marginal costs are sunk, and hence, in the pricing subgame all firms
are strategically identical. One could therefore broadly divide the learning
problem into two parts: (i) learning production and (ii) learning pricing. To
address our case as simply and directly as we can, we will abstract from
learning pricing, and focus on learning production (i.e. entry). Thus we will
assume that pricing is via the demand schedule following the competitive
pricing rule.

The second difference between our experiment and DH has to do with
the uncertainty regarding marginal costs. When it comes to stochastic fic-
titious play (as well as reinforcement learning), however, whether marginal
costs are known or unknown should not make any difference. But this might
matter for the actual behavior in the experiment. Our simulations confirm
the former. Our experiments then demonstrate that behavior is also quali-
tatively consistent with the simulations.

Lastly, the third difference has to do with variation in the payoff function
between rounds. Our experiment involved an alternating pattern of blocks of
stationary and non-stationary rounds. Again, our simulations demonstrate

workingpaper.cls ver. 2006/04/11 file: paper.tex date: September 5, 2020



101

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

that even with this alternating pattern, the production strategy profile tends
toward the (noisy equivalent of) asymmetric pure strategy equilibrium.

Our stochastic fictitious play model involves the following structure. The
payoffs are:

πi(si,t = 1;MCt,m) = 8− 2(m− 1)−MCt

and

πi(si,t = 0;MCt,m) = 0,

where si,t ∈ {0, 1} represents the production decision (1 denotes “pro-
duced a unit” and 0 that the firm stayed out of the market) and MCt is a
production cost for firm i in a given round t (i.e., MCi,t = MCt). Firms’
beliefs are captured by ht which is a vector with elements hi,t indicating
the frequency of production decisions up to round t for each firm i. hi,t is
updated according to the following rule

hi,t+1 =
δhi,t + si,t
δt+ 1

.

The δ parameter reflects limited memory and discounts the more distant
past in an exponential manner.

The decision rule is σi,t which gives the probability of producing a unit.
In round t, for a given ht, each decision maker evaluates his expected payoff
from producing a unit Eπi,t(si,t = 1;MCi,t) and from staying out of the
market Eπi,t(si,t = 0;MCt). Let ∆i,t denote the difference. The firm i’s
decision of whether to produce or not is governed by a perturbed best-reply
rule

σi,t =

{

1− εθ(1+∆i,t) if ∆i,t ≥ 0

εθ(1−∆i,t) if ∆i,t < 0
,

where ε is an error term and θ is the payoff salience parameter.
We present outcomes of the simulations for three scenarios: 1. station-

ary rounds only (where MCi,t = 4 in all rounds); 2. non-stationary rounds
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only (where in each block of 4 rounds MCi,t is chosen at random without
replacement from {2, 4, 6, 8}); and 3. the case that corresponds to our exper-
imental implementation, where blocks of 8 stationary and non-stationary
rounds alternate in regular intervals. We ran 1000 simulations for each mar-
ket over the span of 200 rounds. Parameters were set at the following values
ε = 0.05, θ = 1, δ = 0.9, and hi,0 ∈ []0, 1] was determined randomly. The
results are illustrated respectively in Figures C1, C2, and C3.

For each round, we first order the hi,t from the lowest to the highest.
Then, in the first panel of each figure we display the lowest hi,t in each of
the 1000 simulations; the second panel in a row shows the same but for the
second lowest hi,t; etc. In each panel we also display the path through cross-
sectional sample means as well as the 95% confidence region highlighted in
gray color.

We make three observations: 1. when marginal costs are stationary, the
learning process seems to converge toward (a noisy equivalent of) asym-
metric equilibrium strategy profile with 2 or 3 firms producing; 2. when
marginal costs are not stationary, we also get a convergence but to a dif-
ferent strategy profile, namely one where all firms randomize with equal
probability; 3. in the setting which mirrors our experimental implementa-
tion we get a similar tendency toward the asymmetric strategy profile as
in the first case, but this time the non-stationary blocks clearly add some
noise and disturbance to the process.

B.3.3. Numerical Derivation

The code below, when compiled in Python, may be used to calculate the
figures reported in Figures C1, C2, and C3.

#Needs numpy, numba and decimal
import numpy as np
import itertools as itrt
from numba import jit
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Figure C1: Simulations with Stationary Rounds Only

Figure C2: Simulations with Nonstationary Rounds Only

Figure C3: Simulations with Alternating Blocks
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import decimal

def Error_rule_simple(err, u_one, u_two, theta):
if u_one >= 0:

Pr_SM = 1 - np.power(err,theta*(1+u_one))
else:

Pr_SM = 0 + np.power(err,theta*(1+np.absolute(u_one)))
#print(Pr_SM)
return Pr_SM

def Get_p_mc(step, MC, P, stationary):
if stationary == 1:

return [el - 4 for el in P], MC
else:

return [el - MC[0] for el in P], MC

def Outcome_distr(sig_noti,P_mc):
num_noti = len(sig_noti)
num_mrk_out = len(sig_noti)+1
sig_noti_rec = np.ones(num_noti) - sig_noti

#create permuations matrix for all possile outcomes
I_sig = np.array(list(itrt.product(range(2), repeat=num_noti)))
I_sig_rec = np.subtract(np.ones(I_sig.shape),I_sig).astype(int)

#multiply by the probabilities cell-by-cell
Pr_all_sig = I_sig * sig_noti
Pr_all_sig_rec = I_sig_rec * sig_noti_rec
Pr_all = Pr_all_sig + Pr_all_sig_rec

Pr_all = np.prod(Pr_all, axis = 1)

#sum instances for same market outcomes
Out_sum = []
for i in range(num_mrk_out):

Out_sum.append([1 if i==sum(el) else 0 for el in I_sig])
Out_sum = np.array(Out_sum)

#pr. distr. over market outcomes
Dstr_out = np.dot(Out_sum, Pr_all)

#calculate expected payoff
Exp_pi = np.dot(Dstr_out, P_mc)

return Exp_pi

def Update_beliefs_actions_FL(act_counter, sigma, P_mc, err, theta, delta):
Exp_pi_enter = []
for i in range(len(sigma)):

#create sigma not i vector
sig_noti = [sigma[j] for j in range(len(sigma)) if j != i]

Exp_pi_enter.append(Outcome_distr(sig_noti,P_mc))

for i in range(len(sigma)):
#comapre exp. payoffs and bump counter
exp_pi = Exp_pi_enter[i]
max_pi = 6
#print(exp_pi)
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#deterministic rule
#if 1 < exp_pi:
#stochastic rule
act_counter[i,:] = delta*act_counter[i,:]
if np.random.rand() < Error_rule_simple(err, exp_pi, 0, theta):

act_counter[i,0] += 1
else:

act_counter[i,1] += 1

#recalculate sigma
sigma[i] = act_counter[i,0]/sum(act_counter[i,:])

return act_counter, sigma

def Run_fict_learning(err, theta, delta, it, players, P, stationary):
#probabilities of mrk. entry for the 5 players
sigma = np.random.rand(players)
#counter of how many times each player chose the given strategy {enter, stay out}
act_counter = np.zeros((players,2))

Results[0][it][:] = sigma

#This is the part where to switch between:
#only stationary (set synch_switch = 1 #*********** to synch_switch = 5 #*********** and comment out synch_switch = 1 #$$$$$$$$$$$$$) vs.
#nonstationary (set set synch_switch = 1 #*********** and enable synch_switch = 1 #$$$$$$$$$$$$$) vs.
#alternating (set set synch_switch = 1 #*********** and comment out synch_switch = 1 #$$$$$$$$$$$$$)
synch_switch = 5 #***********
MC = []
for step in range(maxit):

if len(MC) <= 1:
if synch_switch == 1 or synch_switch == 4:

MC = [2,4,6,8]
np.random.shuffle(MC)
if synch_switch >= 4:

synch_switch = 1
else:

MC = [4,4,4,4]
synch_switch += 1

else:
MC = MC[1:]

#synch_switch = 1 #$$$$$$$$$$$$$
P_mc, MC = Get_p_mc(step, MC, P, stationary)

#print('++++++++++++++ run round ++++++++++++++')
act_counter, sigma = Update_beliefs_actions_FL(act_counter, sigma, P_mc, err, theta, delta)

Results[step][it][:] = sorted(sigma)

return Results

#parameters
maxit = 200
no_iterations = 1000
err = 0.05
theta = 1
delta = 0.9

#if rounds are stationary then 1
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stationary = 0
#players
players = 5
#market payoffs
P = [8,6,4,2,0]

global Results
Results = np.zeros((maxit, no_iterations, players))

for it in range(no_iterations):
Run_fict_learning(err, theta, delta, it, players, P, stationary)

#Process results and plot
x = []
pl_one = []
pl_two = []
pl_three = []
pl_four = []
pl_five = []

indx = 1
for el in Results:

for els in el:
x.append(indx)
pl_one.append(els[0])
pl_two.append(els[1])
pl_three.append(els[2])
pl_four.append(els[3])
pl_five.append(els[4])

indx += 1

x = np.zeros((maxit))
ln_one = np.zeros((maxit,3))
ln_two = np.zeros((maxit,3))
ln_three = np.zeros((maxit,3))
ln_four = np.zeros((maxit,3))
ln_five = np.zeros((maxit,3))

_round = 0
for el in Results:

x[_round] = _round
ln_one[_round,0] = np.mean(Results[_round,:,0])
ln_one[_round,1] = sorted(Results[_round,:,0])[50]
ln_one[_round,2] = sorted(Results[_round,:,0])[-50]
ln_two[_round,0] = np.mean(Results[_round,:,1])
ln_two[_round,1] = sorted(Results[_round,:,1])[50]
ln_two[_round,2] = sorted(Results[_round,:,1])[-50]
ln_three[_round,0] = np.mean(Results[_round,:,2])
ln_three[_round,1] = sorted(Results[_round,:,2])[50]
ln_three[_round,2] = sorted(Results[_round,:,2])[-50]
ln_four[_round,0] = np.mean(Results[_round,:,3])
ln_four[_round,1] = sorted(Results[_round,:,3])[50]
ln_four[_round,2] = sorted(Results[_round,:,3])[-50]
ln_five[_round,0] = np.mean(Results[_round,:,4])
ln_five[_round,1] = sorted(Results[_round,:,4])[50]
ln_five[_round,2] = sorted(Results[_round,:,4])[-50]
_round += 1
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#import numpy as np
import pylab as plt

fig, axs = plt.subplots(2, 3, sharex=True, sharey=True)

axs[0,0].plot(x, ln_one[:,0], lw=1, label='mean', color='black', ls='--')
axs[0,0].fill_between(x, ln_one[:,1], ln_one[:,2], facecolor='lightgray', alpha=0.5,

label='95% range')
axs[0,0].set_xlabel('rounds')
axs[0,0].set_ylabel('pr. of production')

axs[0,1].plot(x, ln_two[:,0], lw=1, label='mean', color='black', ls='--')
axs[0,1].fill_between(x, ln_two[:,1], ln_two[:,2], facecolor='lightgray', alpha=0.5,

label='95% range')
axs[0,1].set_xlabel('rounds')

axs[0,2].plot(x, ln_three[:,0], lw=1, label='mean', color='black', ls='--')
axs[0,2].fill_between(x, ln_three[:,1], ln_three[:,2], facecolor='lightgray', alpha=0.5,

label='95% range')
axs[0,2].set_xlabel('rounds')

axs[1,0].plot(x, ln_four[:,0], lw=1, label='mean', color='black', ls='--')
axs[1,0].fill_between(x, ln_four[:,1], ln_four[:,2], facecolor='lightgray', alpha=0.5,

label='95% range')
axs[1,0].set_xlabel('rounds')
axs[1,0].set_ylabel('pr. of production')

axs[1,1].plot(x, ln_five[:,0], lw=1, label='mean', color='black', ls='--')
axs[1,1].fill_between(x, ln_five[:,1], ln_five[:,2], facecolor='lightgray', alpha=0.5,

label='95% range')
axs[1,1].set_xlabel('rounds')

axs[1,2].axis('off')

plt.tight_layout()
plt.show()

APPENDIX C: INSTRUCTIONS (FOR ONLINE PUBLICATION)

Note: Subject instructions did not have headings indicating the treatment;
these are provided for the convenience of the reader only.

C.1. Instructions Given at the Beginning of Each Session

C.1.1. Overview

You are about to participate in an experiment in the economics of decision-
making. If you follow these instructions carefully your decisions might earn
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you a considerable amount of money which will be paid to you in cash at
the end of the experiment. If you have a question at any time, please feel
free to ask the experimenter. We ask that you not talk otherwise for the
duration of the experiment. Also, please turn off your cell-phone and do not
use the computer for any other purpose than your participation in the ex-
periment requires. If you break these rules, we will have to exclude you from
the experiment and from all payments. Each of you is seated at a computer
workstation. You will use these computer workstations to enter information
by means of mouse clicks and/or typing. (If you happen to have entered a
number and things do not work, please make sure you also haven’t hit the
space bar).

C.1.2. Earnings

Every participant will get 5 NZD as a show up fee for today’s session, and
a separate 5 NZD as a deposit. In addition, you will have the opportunity
to earn money in the experiment.

The experiment will consist of 6 separate segments. At the beginning of
each segment you will receive detailed instructions. You will be paid for
one randomly chosen decision from each segment. Note that each of your
decisions has an equal chance of being chosen and you do not know in
advance which will be chosen, so think about each decision carefully. Your
earnings from all 6 segments will be summed with your deposit in order to
determine how much you are paid, in total, within the actual experiment.
(Your show up fee is separate and you get to keep it regardless.)

Note that it is also possible to lose money in a given segment. If the sum
over all 6 segments’ earnings is negative, but between zero and −4.99 NZD,
this sum will be subtracted from your 5 NZD deposit and you will only get
to keep the remainder of the deposit. If such a sum exceeded −5.00 NZD,
you would lose your entire deposit, and then your total earnings from the
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experiment itself would be set to equal zero. If the sum over the 6 segments
is greater than or equal to zero, you will get to keep both that non-negative
sum of earnings over the 6 segments plus the entire deposit. Again, you will
get to keep the show up fee regardless.

The payoffs in today’s experiment will be denoted in experimental cur-
rency unit (ECU).

1 ECU = 5 NZD

Your ECUs will be converted to dollars at this rate, and you will be paid in
NZD when you leave the lab. The more ECUs you earn, the more dollars
you earn.

C.2. Instructions for Treatment Value Order Human Buyer (VOHB)

C.2.1. Seller Instructions

This Segment
In the rounds about to begin, and which will continue until further notice,
there are 10 human participants: 5 acting as sellers and 5 acting as buy-
ers. You are a seller. In each round, you will have the opportunity to make
a decision between one of two possible actions. Once all participants have
made their decisions, a second screen will appear which will report to you
your payoff resulting from that round’s events, and also the determinants of
that payoff—namely your decision, and the decisions of others also partic-
ipating. (More on this below.) There will be multiple rounds. Throughout
these rounds you will stay in the same group of 5 sellers, while the group of
5 buyers will also stay the same.

The Sequence of Play in a Round
The first computer screen you see in each round asks you to make a decision
between two actions: IN or OUT. You enter your decision by using the mouse
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to fill in the radio-button next to the action you wish to take. If you want
to choose action IN, fill in the circle next to IN by clicking on it with the
mouse; If you want to choose action OUT, fill in the circle next to OUT
by clicking on it with the mouse. Once all participants have entered their
decisions, a second screen will appear. This second screen reminds you of
your decision for the round, informs you of your payoff for the round, and
informs you of other determinants of your payoff (e.g. the decisions taken by
other participants). Your payoff represents an amount in ECU that could
be paid to you in cash (if the given round is randomly selected for payoff)
as will be explained below.

How Payoffs are Determined

Payoffs are determined as follows:

• If you choose OUT your payoff for the round is equal to 1 (this is true
in each round).

• If you choose IN, your payoff will be equal to 1 + Price − MCi. The
components of this payoff are given by the following:

– Price will be determined by (a) what you nominate as a price
(which must be an even number) and (b) whether a buyer chooses
to purchase from you at the price you nominate. There are 5 hu-
man buyers, each of whom can re-sell a purchased unit to the
experimenter, such that:
One buyer has a resale value of 8.
One buyer has a resale value of 6.
One buyer has a resale value of 4.
One buyer has a resale value of 2.
One buyer has a resale value of 0.
(Note also that at the beginning of each round, you will be in-
formed of the number of units at which the demand schedule and
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the supply schedule intersect in that round.)

– The buyers will get to choose (among units listed for sale) in de-
scending order of resale value—that is, the buyer with the high-
est resale value chooses first, the buyer with the second highest
resale value chooses second, and so on.

– A buyer who purchases a unit will receive a commission. (This
will be credited directly to the buyer, by the computer, such that
no funds and no additional actions from any sellers are involved.)
The commission is larger than zero, but the exact amount is the
buyer’s private information.

– If no buyer purchases from you (in a round in which you have
chosen IN), price will equal 0 for purposes of determining your
payoff in that round.

– You have an individual marginal cost of supplying a unit, MCi

(which may vary by round).

For example, if you choose IN, and MCi = 2, and you nominate a price
equal to 4, and a buyer purchases your unit, then your payoff from choosing
IN would be: 1 + 4− 2, which equals 3.

As another example, suppose all of the numbers in the first example
stayed the same, except MCi which was instead equal to 6. Then your
payoff from choosing IN would be: 1 + 4− 6, which equals −1.

As another example, suppose all of the numbers in the first example
stayed the same, except the price you nominated was 6. Then your payoff
from choosing IN would be: 1 + 6− 2, which equals 5.

Are there any questions before we begin?

C.2.2. Buyer Instructions

How Payoffs are Determined
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In this part of the experiment there are 5 buyers and 5 sellers in a market.
You are a buyer.

You have a resale value for a unit of the good in that market; this means
that if you purchase a unit of the good, you can re-sell it to the experimenter
for the amount of the stated resale value.

• If you buy a unit, your payoff for that round would equal:

Payoff = (Resale value − price paid) + 0.10.

(The 0.10 is a commission you receive if you buy a unit.)
• If you do not buy a unit, your payoff for that round would be zero.
In any one round you can buy at most 1 unit.
Buyers take turns a evaluating offers to sell; the order of turns is in

descending order of buyers’ respective resale values; starting with the buyer
with the highest resale value, and continuing to the buyer with the second
highest resale value, and so on.

C.3. Instructions for Treatment Value Order Robot Buyer (VORB)

This Segment
In the rounds about to begin, and which will continue until further notice,
there are 5 human participants acting as sellers and 5 robots acting as buy-
ers. In each round, you will have the opportunity to make a decision between
one of two possible actions. Once all participants have made their decisions,
a second screen will appear which will report to you your payoff resulting
from that round’s events, and also the determinants of that payoff—namely
your decision, and the decisions of others also participating. (More on this
below.) There will be multiple rounds. Throughout these rounds you will
stay in the same group of 5 human participants as sellers (with 5 robots as
buyers).
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The Sequence of Play in a Round

The first computer screen you see in each round asks you to make a decision
between two actions: IN or OUT. You enter your decision by using the mouse
to fill in the radio-button next to the action you wish to take. If you want
to choose action IN, fill in the circle next to IN by clicking on it with the
mouse; If you want to choose action OUT, fill in the circle next to OUT
by clicking on it with the mouse. Once all participants have entered their
decisions, a second screen will appear. This second screen reminds you of
your decision for the round, informs you of your payoff for the round, and
informs you of other determinants of your payoff (e.g. the decisions taken by
other participants). Your payoff represents an amount in ECU that could
be paid to you in cash (if the given round is randomly selected for payoff)
as will be explained below.

How Payoffs are Determined

Payoffs are determined as follows:

• If you choose OUT your payoff for the round is equal to 1 (this is true
in each round).

• If you choose IN, your payoff will be equal to 1 + Price − MCi. The
components of this payoff are given by the following:

– Price will be determined by (a) what you nominate as a price
(which must be an even number) and (b) whether a robot buyer
chooses to purchase from you at the price you nominate. There
are 5 robot buyers, each of whom can re-sell a purchased unit to
the experimenter, such that:
One buyer has a resale value of 8.
One buyer has a resale value of 6.
One buyer has a resale value of 4.
One buyer has a resale value of 2.
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One buyer has a resale value of 0.
(Note also that at the beginning of each round, you will be in-
formed of the number of units at which the demand schedule and
the supply schedule intersect in that round.)

– The robot buyers are programmed to choose (among units listed
for sale) in descending order of resale value—that is, the robot
buyer with the highest resale value chooses first, the buyer with
the second highest resale value chooses second, and so on. A
robot buyer chooses the lowest priced unit available, provided
that resale value is greater than or equal to the price (otherwise
it will not purchase at all).

– If no robot buyer purchases from you (in a round in which you
have chosen IN), price will equal 0 for purposes of determining
your payoff in that round.

– If multiple units are listed at a given price, then the robot buyers
may purchase all, none, or one or some but not all units. In
the last case (in which only one or some but not all units are
purchased) a random tie-breaker is employed to determine which
of the units are purchased or not.

– You have an individual marginal cost of supplying a unit, MCi

(which may vary by round).

For example, if you choose IN, and MCi = 2, and you nominate a price
equal to 4, and a buyer purchases your unit, then your payoff from choosing
IN would be: 1 + 4− 2, which equals 3.

As another example, suppose all of the numbers in the first example
stayed the same, except MCi which was instead equal to 6. Then your
payoff from choosing IN would be: 1 + 4− 6, which equals −1.

As another example, suppose all of the numbers in the first example
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stayed the same, except the price you nominated was 6. Then your payoff
from choosing IN would be: 1 + 6− 2, which equals 5.

Are there any questions before we begin?

C.4. Instructions for Treatment Random Order Human Buyer (ROHB)

C.4.1. Seller Instructions

This Segment
In the rounds about to begin, and which will continue until further notice,
there are 10 human participants: 5 acting as sellers and 5 acting as buy-
ers. You are a seller. In each round, you will have the opportunity to make
a decision between one of two possible actions. Once all participants have
made their decisions, a second screen will appear which will report to you
your payoff resulting from that round’s events, and also the determinants of
that payoff—namely your decision, and the decisions of others also partic-
ipating. (More on this below.) There will be multiple rounds. Throughout
these rounds you will stay in the same group of 5 sellers, while the group of
5 buyers will also stay the same.

The Sequence of Play in a Round
The first computer screen you see in each round asks you to make a decision
between two actions: IN or OUT. You enter your decision by using the mouse
to fill in the radio-button next to the action you wish to take. If you want
to choose action IN, fill in the circle next to IN by clicking on it with the
mouse; If you want to choose action OUT, fill in the circle next to OUT
by clicking on it with the mouse. Once all participants have entered their
decisions, a second screen will appear. This second screen reminds you of
your decision for the round, informs you of your payoff for the round, and
informs you of other determinants of your payoff (e.g. the decisions taken by
other participants). Your payoff represents an amount in ECU that could
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be paid to you in cash (if the given round is randomly selected for payoff)
as will be explained below.

How Payoffs are Determined
Payoffs are determined as follows:

• If you choose OUT your payoff for the round is equal to 1 (this is true
in each round).

• If you choose IN, your payoff will be equal to 1 + Price − MCi. The
components of this payoff are given by the following:

– Price will be determined by (a) what you nominate as a price
(which must be an even number) and (b) whether a buyer chooses
to purchase from you at the price you nominate. There are 5 hu-
man buyers, each of whom can re-sell a purchased unit to the
experimenter, such that:
One buyer has a resale value of 8.
One buyer has a resale value of 6.
One buyer has a resale value of 4.
One buyer has a resale value of 2.
One buyer has a resale value of 0.
(Note also that at the beginning of each round, you will be in-
formed of the number of units at which the demand schedule and
the supply schedule intersect in that round.)

– The buyers will get to choose (among units listed for sale) in
random order. That is, any buyer is equally likely to be, say,
the one who gets the opportunity to choose in a given round
(similarly for second, third, fourth, and fifth to choose in a given
round). A fresh random ordering will be made each round (i.e.
the random order in which buyers get to choose will be redrawn
each round).
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– If no buyer purchases from you (in a round in which you have
chosen IN), price will equal 0 for purposes of determining your
payoff in that round.

– You have an individual marginal cost of supplying a unit, MCi

(which may vary by round).

For example, if you choose IN, and MCi = 2, and you nominate a price
equal to 4, and a buyer purchases your unit, then your payoff from choosing
IN would be: 1 + 4− 2, which equals 3.

As another example, suppose all of the numbers in the first example
stayed the same, except MCi which was instead equal to 6. Then your
payoff from choosing IN would be: 1 + 4− 6, which equals −1.

As another example, suppose all of the numbers in the first example
stayed the same, except the price you nominated was 6. Then your payoff
from choosing IN would be: 1 + 6− 2, which equals 5.

Are there any questions before we begin?

C.4.2. Buyer Instructions

How Payoffs are Determined
In this part of the experiment there are 5 buyers and 5 sellers in a market.
You are a buyer.

You have a resale value for a unit of the good in that market; this means
that if you purchase a unit of the good, you can re-sell it to the experimenter
for the amount of the stated resale value.

• If you buy a unit, your payoff for that round would equal:

Payoff = (Resale value − price paid) + 0.10.

(The 0.10 is a commission you receive if you buy a unit.)
• If you do not buy a unit, your payoff for that round would be zero.
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In any one round you can buy at most 1 unit.
Buyers take turns a evaluating offers to sell; the order of turns is random.

That is, any buyer is equally likely to be, say, the one who gets the oppor-
tunity to choose in a given round (similarly for second, third, fourth, and
fifth to choose in a given round). A fresh random ordering will be made each
round (i.e. the random order in which buyers get to choose will be redrawn
each round).

C.5. Instructions for Treatment Random Order Robot Buyer (RORB)

This Segment
In the rounds about to begin, and which will continue until further notice,
there are 5 human participants acting as sellers and 5 robots acting as buy-
ers. In each round, you will have the opportunity to make a decision between
one of two possible actions. Once all participants have made their decisions,
a second screen will appear which will report to you your payoff resulting
from that round’s events, and also the determinants of that payoff—namely
your decision, and the decisions of others also participating. (More on this
below.) There will be multiple rounds. Throughout these rounds you will
stay in the same group of 5 human participants as sellers (with 5 robots as
buyers).

The Sequence of Play in a Round
The first computer screen you see in each round asks you to make a decision
between two actions: IN or OUT. You enter your decision by using the mouse
to fill in the radio-button next to the action you wish to take. If you want
to choose action IN, fill in the circle next to IN by clicking on it with the
mouse; If you want to choose action OUT, fill in the circle next to OUT
by clicking on it with the mouse. Once all participants have entered their
decisions, a second screen will appear. This second screen reminds you of
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your decision for the round, informs you of your payoff for the round, and
informs you of other determinants of your payoff (e.g. the decisions taken by
other participants). Your payoff represents an amount in ECU that could
be paid to you in cash (if the given round is randomly selected for payoff)
as will be explained below.

How Payoffs are Determined
Payoffs are determined as follows:

• If you choose OUT your payoff for the round is equal to 1 (this is true
in each round).

• If you choose IN, your payoff will be equal to 1 + Price − MCi. The
components of this payoff are given by the following:

– Price will be determined by (a) what you nominate as a price
(which must be an even number) and (b) whether a robot buyer
chooses to purchase from you at the price you nominate. There
are 5 robot buyers, each of whom can re-sell a purchased unit to
the experimenter, such that:
One buyer has a resale value of 8.
One buyer has a resale value of 6.
One buyer has a resale value of 4.
One buyer has a resale value of 2.
One buyer has a resale value of 0.
(Note also that at the beginning of each round, you will be in-
formed of the number of units at which the demand schedule and
the supply schedule intersect in that round.)

– The robot buyers are programmed to choose (among units listed
for sale) in random order. That is, any robot buyer is equally
likely to be, say, the one who gets the opportunity to choose in
a given round (similarly for second, third, fourth, and fifth to
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choose in a given round). A fresh random ordering will be made
each round (i.e. the random order in which buyers get to choose
will be redrawn each round). A robot buyer chooses the lowest
priced unit available, provided that resale value is greater than
or equal to the price (otherwise it will not purchase at all).

– If no robot buyer purchases from you (in a round in which you
have chosen IN), price will equal 0 for purposes of determining
your payoff in that round.

– If multiple units are listed at a given price, then the robot buyers
may purchase all, none, or one or some but not all units. In
the last case (in which only one or some but not all units are
purchased) a random tie-breaker is employed to determine which
of the units are purchased or not.

– You have an individual marginal cost of supplying a unit, MCi

(which may vary by round).

For example, if you choose IN, and MCi = 2, and you nominate a price
equal to 4, and a buyer purchases your unit, then your payoff from choosing
IN would be: 1 + 4− 2, which equals 3.

As another example, suppose all of the numbers in the first example
stayed the same, except MCi which was instead equal to 6. Then your
payoff from choosing IN would be: 1 + 4− 6, which equals −1.

As another example, suppose all of the numbers in the first example
stayed the same, except the price you nominated was 6. Then your payoff
from choosing IN would be: 1 + 6− 2, which equals 5.

Are there any questions before we begin?
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