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A monopoly sells a network good to a large population of consumers. We explore how the monopoly’s profit and the consumer surplus
vary with the arrival of public information about the network structure. The analysis reveals that, under homogeneous preferences for 
the good, degree assortativity ensures that information arrival increases both profit and consumer surplus. In contrast, heterogeneous
preferences for the good can create a tension between consumer surplus and profit.

1. Introduction

Consider a consumer estimating his projected consumption of a network good (like a mobile phone, an online game, 
membership of a social club, etc.). Faced with network effects, he needs to estimate the consumption of his neighbors, 
which in turn depend on the consumption of their neighbors, and so on. Thus, the consumer really needs to know the 
complete pattern of interactions among all consumers to get a precise measure of his own consumption needs.

When the consumer has little information about the network structure, he tries to figure out whether his neighbors are 
more central or peripheral in the network, guessing that centrality is correlated with consumption levels. Now suppose that 
consumers learn new information about the network structure. Depending on his initial information, a consumer may then 
become more convinced that his neighbors are central or, conversely, peripheral in the network, with the consequence that 
some consumers may increase their consumption while others may reduce their consumption. The new information may 
thus lead to either an increase or a decrease in demand, profit and consumer surplus. This raises the following question: 
is there a network property ensuring that the arrival of information about the network structure is beneficial to firms and 
consumers?

We investigate the value of network information in the context of linear price discrimination by a monopolist. The firm 
sells a divisible good to a large number of consumers organized in a network of local complementarities in consumption 
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and positive externalities. Consumer utilities are linear-quadratic, which generates a linear interaction between consumption 
decisions. For clarity of exposition, our benchmark model assumes homogeneous preferences for the good and undirected 
networks; this benchmark contains the core analysis of the overall study. Under undirected networks, prices are independent 
of the network structure, meaning that the firm does not adjust prices with the arrival of information. Hence, both profit 
and welfare variations are exclusively related to demand effects. Profit is driven by the aggregate consumption level and 
consumer surplus by the sum of squared consumption levels.

We consider two information sets. Under the initial information set, consumers only know their number of neighbors 
(i.e., their degree), as well as the degree distribution of the network, and the monopolist observes each consumer’s degree. 
We assume that the degree distribution of potential neighbors is the same for all consumers under the initial information 
set (Assumption 1). This means that consumers cannot infer any further information about the network structure; in par-
ticular, there is no degree correlation between linked consumers. Under the enriched information set, on top of the initial 
information there is additional and public information about the network structure. For example, this can take the form of 
information on the distribution of neighbors’ degrees conditional on own degree for each consumer, or, in extreme cases, 
the full network structure.1 We compare monopoly profit and consumer surplus under the two information sets. We say 
that a network generates a positive information value for monopoly profit (resp. for consumer surplus) when monopoly 
profit (resp. consumer surplus) is greater under enriched information. Our main objective is to characterize the types of 
information on the network structure that drive positive information values.

Under the initial information set, individual consumption is a function of consumer degree, while under the enriched 
information set it is in general a function of the whole network structure. We then show, and this is our main result 
(Theorem 1), that both profit and consumer surplus increase with the arrival of network information for all intensities 
of interaction, if and only if the matrix of interaction representing the enriched information game is degree assortative, 
i.e. if consumers with similar degrees tend to be linked with each other.2 The intuitive mechanism at play is that, under
degree assortativity, enriched information leads high-degree (resp. low-degree) consumers to increase (resp. decrease) their
expectations as to their neighbors’ consumption and thus increase (resp. decrease) their own consumption. Now, degree
assortativity means that the indirect influence of high-degree consumers on others’ behaviors is larger than that of low-
degree consumers, which explains the increase in aggregate consumption. And because this increase is driven by high-degree
consumers, it also guarantees an increased sum of squared consumption levels. This result is positive, given the well-
documented stylized fact that social networks generally exhibit degree assortativity (see Newman (2002), Table I, p. 2, or
Serrano et al. (2007)). Its suggests that, for such social networks, providing information about the network structure can
create value.

We then incorporate consumers’ heterogeneity in individual preferences for the good, assuming that the monopoly fully 
observes individual characteristics. With heterogeneous preferences, it is not only degree assortativity that plays a role, 
but also other assortativity coefficients. Homophily refers to assortativity by preferences, and indicates that consumers are 
more likely to be linked to consumers with similar preferences. Preference-degree assortativity measures the tendency of 
high-preference consumers to be linked to high-degree consumers. The positiveness of the three assortativity coefficients 
guarantees that the arrival of network information will increase profit for all intensities of interaction. For instance, the value 
of network information can be negative on a network that is degree assortative and homophilic but is preference - degree 
dis-assortative. Yet these conditions do not necessarily imply increased demand, which explains how consumer surplus can 
fall when the intensity of interaction is sufficiently high. Hence, in contrast to homogeneous preferences, heterogeneity can 
create a discrepancy between consumer surplus and profit under assortative mixing.

We extend our results in several directions. First, we explore alternative information structures by relaxing Assumption 1. 
In particular, we consider initial information sets in which agents have more information than degree distribution alone. 
Then, extensions are detailed in separate appendices. Appendix B presents directed networks, which mainly differs from 
undirected networks in that, in this more general setting where prices depend on the network, information arrival induces 
a price effect. We extend Theorem 1 to directed networks and show that, under degree assortativity of the - symmetric 
- network of averaged interaction, both profit and consumer surplus increase with information. Appendix C presents two
alternative pricing scenarios that confirm the crucial role of assortative mixing: we consider optimal pricing, and we also
examine the case where the firm cannot price discriminate by considering a homogeneous fixed price under both the initial
and enriched information sets. In Appendix D, we discuss more general utilities with linear best-responses, which is relevant
under a deterministic interpretation of the model. All these extensions confirm the key role played by assortative mixing.

Our results have two major policy implications. First, when the network has assortative mixing properties, it is in the 
firm’s interest to make the information available to consumers. Second, a discrepancy between profit and consumer surplus 
creates a need for regulation, like restricting access to this kind of information, or denying the firm to right to make it 
available to consumers.

1 A huge amount of information about consumer relationships is available today, with the rise of digital technologies. Consumers are better informed
about the social network structure, thanks to online social networks (like Klout, Facebook, LinkedIn, etc.).

2 Assortative mixing plays a crucial role in our study. A social network exhibits assortative mixing (Newman (2002)) if there is a positive correlation in
the characteristics of people socially connected with each other. In general, the characteristics can be a personal attribute such as age, education, socio-
economic status, physical appearance, and religion, or a measure of centrality, e.g., degree, betweenness, Bonacich centrality, etc.
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The article is organized as follows. Section 2 discusses the related literature. Section 3 presents the benchmark model 
under homogeneous preferences for the good and undirected networks. Section 4 examines the sign of the value of informa-
tion. We explore heterogeneous preferences in Section 5 and Section 6 provides a discussion about consumers’ information 
structures and considers more general utilities. Section 7 concludes. Appendix A contains all proofs, Appendix B presents 
directed networks and Appendix C explores alternative pricing. Appendix D examines more general utilities. Appendix E 
presents assortative mixing coefficients in detail.

2. Related literature

Our work contributes to the classical literature on the economics of privacy (see Acquisti et al. (2015) for a recent survey) 
by highlighting the role of assortative mixing in assessing the value of social network data under markets with network ex-
ternalities. Such markets are explored by the classical IO literature on network effects initiated by Farrell and Saloner (1985)
or Katz and Shapiro (1985). Recently, monopoly pricing under network effects has been studied using two approaches. 
First, Candogan et al. (2012) and Bloch and Quérou (2013) address this issue under full information. Using a setup that 
incorporates an explicit network structure, they mainly establish a link between consumption levels and Bonacich central-
ities.3 Second, some papers consider incomplete network information. Candogan et al. (2012) compare the case where the 
monopolist does not know network effects (whereas consumers do know them) to the case of complete information, and 
quantify the positive impact of network information on the monopolist. Fainmesser and Galeotti (2016) consider incomplete 
network information in a model where consumers only know the distribution of in-degrees and out-degrees in the network. 
The authors examine how increased information held by the monopoly about consumers’ degrees impacts both monopoly 
profit and welfare. There are two major differences between FG’s model and ours. First, we focus on the arrival of infor-
mation about the network structure whereas, in FG, the information simply concerns about in- or out-degrees (obviously, 
knowledge of consumers’ degrees alone does not provide a comprehensive description of the network structure). Second, 
the consumers learn in our setting whereas, in FG, the consumers’ information structure is kept fixed. The figure below ex-
plains the difference between our paper and Fainmesser and Galeotti (2016) in terms of information structures: our initial 
information corresponds to their additional information, and our enriched information is about network structure.

It should be stressed that, when the information is about network structure, it is crucial that consumers learn it, otherwise 
information arrival generates no value. This is obvious in the undirected case where prices are independent of the network 
structure. However, it is also true in the directed case, because the arrival of information does not affect optimal pricing 
strategy when demand is kept unchanged. By considering information on network structure, we fill the gap between FG and 
Candogan et al., and can apply our results to compare the outcomes of the two models.

This paper also builds on the theoretical literature on network games.4 Ballester et al. (2006) consider network effects 
in a game of linear-quadratic utilities under complete information, and establish a relation between equilibrium play and 
Bonacich centrality. An emerging literature, including Bramoullé et al. (2014), follows this pioneering work. Jackson and 
Yariv (2005, 2007) study diffusion of behavior and equilibrium properties in a network game with incomplete network 
information. Galeotti et al. (2010) take this a step further, discussing strategic equilibrium in a wide set of network games. 
Considering utility functions concave in degrees, they compare outcomes from different degree distributions. In contrast, we 
compare networks with the same joint degree distributions. One contribution of our study is that it incorporates network 
structure considerations into a model of incomplete network information. Moreover, our approach can be generalized beyond 

3 These papers study linear-in-sum games. Ballester et al. (2006) show that Bonacich centralities play a prominent role in such games. Briefly, this index
counts the number of walks to others on the network, where the walk counting is decayed geometrically with walk length through an exogenous decay
parameter.

4 Our work also echoes the literature studying the efficiency of stratification under complementarities. See Becker (1973), Bénabou (1996), Durlauf and
Seshadri (2003). Our main departure from this literature lies in introducing a network structure between interacting agents.
3



monopoly pricing. For example, because our results are driven by demand effects, they extend to the general environment of 
linear games played on networks. Charness et al. (2014) use experimental economics to test network games with incomplete 
information. Other theoretical articles on network games with incomplete information include Sundararajan (2008), Kets 
(2011), De Marti and Zenou (2015), and Lambert et al. (2018). In a setup similar to ours, Jackson (2019) studies the following 
friendship paradox: on average, people have strictly fewer friends than their friends have. He shows that this may lead to 
an overestimation of actions for all agents. The friendship paradox does not, however, explain our results, since it is linked 
to variance in neighbors’ degrees whereas our results are driven by degree assortativity, i.e. correlation between neighbors’ 
degrees.

Homophily is widely studied in network economics; see Currarini et al. (2009) for the formation of friendship networks, 
Golub and Jackson (2012) in the context of learning, Galeotti and Rogers (2013) on strategic immunization incentives, or 
Cabrales et al. (2014) for risk-sharing networks. However the impact of degree assortativity on economic outcomes has 
so far received little attention.5 To our knowledge, this paper is the first to highlight the role of degree assortativity in 
the context of networked interaction. Interestingly, the literature has identified network formation dynamics that generate 
degree assortativity. Jackson and Rogers (2007) consider a network formation process mixing random and network-based 
search. Bramoullé et al. (2012) introduce individual heterogeneity in the framework of Jackson and Rogers (2007), and study 
how homophily affects network integration. In König et al. (2010), agents form and sever links based on the centrality of 
their potential partners, and in a context of capacity constraints on the number of links agents can maintain.

3. The model

A single monopolist produces a divisible good at no cost, and charges linear prices in the presence of local network
effects among a large population of homogeneous consumers.6 We consider two information sets, respectively called the 
initial and the enriched information sets. Under the initial information set, both the firm and consumers know the degree 
distribution of the network, consumers also know their own degree and the firm knows each consumer’s degree. Under the 
enriched information set, both consumers and the monopoly obtain new and public information (common knowledge) on 
the network structure, on top of the initial information. The extent of this additional information ranges from small, like the 
number of links between a given pair of degrees, to large, like the number of links between every pair of degrees or even 
the full network. The key is that the corresponding game is represented by a matrix of interaction that encodes the relevant 
information. This requirement is not restrictive. Essentially, consumers update the probability distribution of their neighbors’ 
degrees; what is important is that, under the enriched information set, we can compute the probability that some given 
link of a given consumer i connects to a consumer with a given degree d.

We present first the benchmark model under complete information, then the game under incomplete information. Im-
portantly, we show a correspondence between the partial information game and a game under complete information where 
there is an adequate matrix of interaction reflecting the available information. We will use this correspondence extensively 
to compare outcomes of the two games. Then we present the equilibrium outcomes in unified notation.

Complete information game. We consider a two-stage game, with a set N = {1, 2, · · · , n} of consumers organized in a 
social network. In the first period, the monopolist sets prices and in the second period, consumers buy a divisible quantity 
of the good.

We let the n × n matrix G = [gij], with gij ∈R+ , represent the network of interaction between consumers, with gij > 0
when agent i is influenced by agent j and gij = 0 otherwise. By convention, gii = 0 for all i. We will refer to it as network 
G. We assume that bilateral interactions are symmetric, i.e. GT = G where superscript T denotes the transpose operator
(Appendix B examines directed networks). Symbols 0, 1 represent respectively the n-dimensional vectors of zeros and ones,
I the n-dimensional identity matrix, d = G1 the profile of consumers’ degrees, di the degree of consumer i, g = 1T G1 the
sum of degrees in network G. For simplicity and without loss of generality, we exclude isolated consumers from the analysis,
i.e. we assume that di ≥ 1 for all i. For all degrees d ∈ {1, · · · , n − 1}, we let sd represent the number of consumers of degree
d in network G.

We let qi(G) ∈ R+ represent the quantity purchased by consumer i for a given network of interactions G, and q(G) =
(qi(G))i∈N the corresponding vector of consumptions. The monopolist selects a vector p(G) = (pi(G))i∈N of prices where 
pi(G) ≥ 0 represents the linear price charged to consumer i for one unit of the good; for convenience and when there is no 
possibility of confusion, we may omit reference to network G in individual variables (Appendix C examines two alternative 
pricing scenarios). In this context, the monopoly profit on network G is given by �(G) = p(G)T q(G). Writing for convenience 
q = (qi, q−i), the utility that agent i derives from consuming the quantity qi of the good on network G is given by:

u(qi,q−i) = qi − 1

2
q2

i − piqi + δ
∑
j∈N

gijqiq j (1)

5 Degree assortativity has been studied very intensively and prominently in network analyses in physics, in biology and in the social sciences. For
instance, degree assortativity is known to play an important role in diffusion processes and has an impact on connectivity properties of large networks.

6 Introducing a constant and positive marginal production cost would affect outcomes but plays no role in the analysis. We thus normalize the marginal
cost to zero.
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This linear-quadratic utility specification was introduced by Ballester et al. (2006) and used by Candogan et al. (2012) in 
the context of monopoly pricing. The last term represents the utility that consumer i derives from neighbors’ consumption. 
We consider δ > 0, which implies positive externalities and local complementarities: incentives to consume increase with 
neighbors’ consumption. The consumer surplus on network G is given by ω(G) = ∑

i∈N
u(qi, q−i).

Incomplete information game. The incomplete information setup corresponds to an environment in which consumers are 
aware of their propensity to interact with other consumers, but they do not know the network structure when taking con-
sumption decisions. To model incomplete information, agents commonly assume that the network is drawn from a random 
network formation process, i.e. all agents, including the monopolist, have a common prior about the underlying network, 
and they receive signals. Let I be the set of information. In the paper we will consider two sets corresponding respectively 
to the initial and the enriched information sets. Under both information sets, when consumption decisions are made, each 
consumer i knows her number of neighbors and the degree distribution of her potential neighbors in the network (this 
probability is updated under information arrival), and the monopoly knows every consumer’s degree. In this model, con-
sumers are naturally typed by their degrees. We define by T = {1, 2, · · · , n − 1} the set of consumer types, i.e. degrees. 
We focus on Bayesian Nash equilibrium with type space T which are symmetric in degrees, i.e. configurations where all 
consumers of the same degree t choose the same consumption level, generically called qt (this assumption is standard in 
the literature, see Galeotti et al. (2010) and related discussion there-in). We let PI

t represent the degree distribution of the 
population of degree-t consumer’s potential neighbors (as a proportion of the total population) conditional on information 
I . Denoting by P̃I

t (t′) the probability of any neighbor of a degree-t agent having degree t′ in network G conditional on 
information set I , we have P̃I

t (t′) = t′ PI
t (t′)

Et [d] , where Et[·] is the expectation associated with PI
t . As explained before, this

probability will be updated under information arrival. The expected utility of a degree-t consumer i is given by

EUi(qi,q−i) = (1 − pt)qt − q2
t

2
+ δqtt AV I

t (q)

where AV I
t (q) refers to the expected average consumption level of a degree-t consumer’s neighbors under information set 

I , which is given by AV I
t (q) = ∑

t′∈T P̃I
t (t′)qt′ .

In order to obtain tractable comparisons between the outcomes of games with distinct information sets, we establish 
an equivalence between the incomplete information game and a game of complete information with adequate matrix of 
interaction, similar to that established independently by Fainmesser and Galeotti (2016). To obtain the system of agent 
interactions for given distribution of neighbors’ degrees { P̃I

t (t′)}(t,t′)∈T ×T , we multiply this quantity by t and divide by st′ , 

the number of agents of degree t′ . Let W = (wij), with wij = t P̃I
t (t′)
st′

where t is the degree of consumer i and t′ the degree 
of consumer j. This matrix is called the matrix of agent interactions (here termed network W). Consumer i’s expected 
utility becomes ui(qi, q−i) = (1 − pi)qi − q2

i
2 + δ

∑
j∈N

wijqiq j . Networks W and G have the same degree distributions, and 

network W is usually weighted, even though network G is binary. The Bayesian Nash equilibrium of the second stage of the 
incomplete information game played on network G generates the same consumption profile as the Nash equilibrium of the 
complete information game played on network W.7

We will consider two sets I0, I1, corresponding respectively to the initial and the enriched information sets. Under the 
initial information set I0, we assume that probability PI0

t (t′) only depends on t′ . Formally, recalling that st represents the
number of consumers of degree t in network G:

Assumption 1. Under the initial information set I0, the degree distribution of the population of potential neighbors is the 
same for all consumers, and is given by PI0 (t) = st

n .

This assumption implies that there is no correlation between linked consumers. It requires a large number of consumers, 
and excludes any network structure whose degree distribution allows consumers to infer more information on the proba-
bility distribution of their neighbors (an extreme example is the star network, where the degree distribution fully reveals 
the network structure). Assumption 1 implies that P̃I0

t (t′) = t′st′
g (given Assumption 1 and noting that 

∑
t tst = g). This 

ratio is equal to the number of links involving consumers of degree d over the total number of links in the network; i.e. it 
simply refers to the density of links of degree t-consumers among all links. This assumption is extensively used in Galeotti 
et al. (2010) and Fainmesser and Galeotti (2016) (we relax Assumption 1 in Section 6; see Propositions 8 and 9). Hence, 
the expected average consumption level of neighbors is the same for all consumers and given by AV I0 (q) = ∑

t∈T
tst
g qt . 

The equilibrium outcomes of this incomplete information game can be expressed as functions of the statistics of the degree 
distribution, and in particular consumption is an affine function of degrees (see equations (8) and (9) in Appendix A). The 

7 This formulation of an equivalent game of complete information is only for technical convenience, for the purposes of our comparative static study.
Hence, it is not necessary to alleviate the non-null diagonal entries of matrix W.
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system of agent interactions, here called network H for convenience (i.e., W = H), is given by H = ddT

g , so that hij = did j
g for 

all i, j, including the diagonal.
Under the enriched information set I1, agents have access to additional signals, e.g., about assortativity or other struc-

tural properties related to the draw of the underlying network; at the extreme, consumers learn the full network structure 
and play the game of complete information. With this additional information, all consumers update the degree distribution 
of the population of their potential neighbors. Note that, under the enriched information set, the degree distributions of 
potential neighbors differ across consumers. We illustrate the representation of enriched information by a matrix of agent 
interactions with two examples, in decreasing order of network information. We denote by V the matrix of agent interac-
tions (i.e., W = V).

Example 1. Under the enriched information set, agents know the number of links between each pair of degrees. We define 
matrix � = [ψtt′ ] where ψtt′ represents the total number of links between degree-t and degree-t′ consumers, where t
is the type of consumer i, t′ the type of consumer j and st the number of consumers of type t . When the network is 
large, probability P̃I1

t (t′) can be approximated by ψtt′
tst

. In order to obtain the system of agent interactions, we multiply this
quantity by t and divide by st′ , the number of agents of degree t′ . The corresponding matrix of agent interactions therefore 
satisfies

vij = ψdid j

sdi sd j

Example 2. Under the enriched information set, agents know the number of links between a given degree t0 and all other 
degrees. That is, agents know all the entries ψt0t′ for every degree t′ in matrix � previously defined in Example 1. When 
the network is large, the matrix of agent interactions encoding this information is written⎧⎪⎪⎨

⎪⎪⎩
vij = ψdi ,d j

sdi
sd j

if di = t0 or d j = t0

vij =
(

di−
ψdi ,t0

sdi

)(
d j−

ψd j ,d0
sd j

)
g−∑

t′ ψt0,t′
if di �= t0,d j �= t0

Finally, if agents learn the full network under the enriched information set, network G represents the matrix of the 
system of agent interactions.

Under the enriched information set, the equilibrium quantities, in particular profit and consumer surplus, can differ from 
their values under the initial information set. In this paper we compare the equilibrium quantities before/after the arrival 
of additional information.8

Equilibrium outcomes and Bonacich centralities. We let μ(W) denote the largest eigenvalue of matrix W = {V, H}. We im-
pose the following assumption:

Assumption 2. δ · max(μ(V), μ(H)) < 1

Assumption 2 guarantees that both games, under initial and under enriched information, admit a single and interior 
solution, by ensuring that optimal consumption levels are finite. For a given price vector, the first-order condition on the 
demand of consumer i on network W ∈ {V, H} is written:

qB R
i = 1 − pi + δ

∑
j∈N

wijq j (2)

Optimal profit and consumer surplus can therefore be expressed as functions of the position of agents on the network 
through Bonacich centralities, b(W, δ) = (I − δW)−11. Assumption 2 guarantees (I − δW)−1 ≥ 0.9 More generally, for any 
n-dimensional vector z, the vector bz(W, δ) = (I − δW)−1z represents the Bonacich centrality of network W weighted by z.
For convenience, we will omit reference to parameter δ in centralities, profit, and consumer surplus. We also introduce the 
Euclidian norm ‖z‖ = √

zT z. Recall that:

8 Note that the Friendship Paradox generally arises in the initial information game, and its prevalence is impacted by information arrival. At the extreme,
if the new information is such that there is perfect degree assortativity, the paradox disappears.

9 The inverse matrix can be developed as an infinite sum, so that b(W, δ) =
+∞∑
k=0

(δW)k1. The quantity bi(G, δ) represents the number of walks from agent 

i to others in network G, where a walk of length k is weighted by factor δk . Note that network H is weighted and has a non-null diagonal; it is still possible
to interpret bi(H, δ) as a Bonacich centrality if we consider weighted walks.
6



Proposition 1 (Candogan et al. (2012)). For network W ∈ {V, H}, prices, consumption levels, optimal monopoly profit, and consumer 
surplus are written⎧⎪⎪⎨

⎪⎪⎩
p(W) = 1

2 1
q(W) = 1

2 b
(
W

)
π(W) = 1

4 1T b
(
W

)
ω(W) = 1

8

∥∥b
(
W

)∥∥2

Both profit and consumer surplus depend on the Bonacich centralities. And since network W is undirected, the price 
vector is independent of the network structure. Bloch and Quérou (2013) obtain similar characterization when their equi-
librium is interior. That is, the price is identical under both information sets (this is not the case for directed networks -
see Appendix B). For convenience, vector y (resp. x) will refer to the consumption profile in the game under initial (resp. 
enriched) information throughout the article.

4. The value of network information

In this section, we compare monopoly profit and consumer surplus between the two games under initial and enriched
information on undirected networks and under homogeneous preferences for the good. Information arrival generates a pure 
demand effect that modifies both profit and consumer surplus. For clarity, we present intuitions through the benchmark 
case where enriched information game is the game of complete information. Then we present the main results in the 
more general case of partial information arrival. However, we first need to define the coefficient of degree assortativity, a 
cornerstone of the results under homogeneous preferences.

Let coefficient rd(V) measure the level of (dis)assortative mixing by degree.10 Degree assortativity (resp. degree disassor-
tativity) holds whenever rd(V) > 0 (resp. rd(V) < 0), and indicates that consumers are more (resp. less) likely to be linked 
to consumers with similar degrees than in a random network with the same degree distribution. As an extreme case, the 
correlation coefficient of a complete bipartite network, including the star network, takes the value −1. However, in general 
non-complete bipartite networks can be assortative. By contrast, the Pearson coefficient of the union of two components in 
which every agent has the same degree with at least two distinct degrees takes the value 1. The following lemma (proved 
in Appendix E) will be useful for the analysis under homogeneous preferences. It establishes a link between the degree 
assortativity and the difference between the two matrices of interaction H and V:

Lemma 1. Consider an undirected network V with degree vector d = V1 and g = 1T d the sum of degrees, let H = ddT

g and let � =
V − H. Then,

rd(V) > 0 if and only if dT �d > 0 (3)

Note that the degree assortativity coefficient rd(H) = 0.
We now turn to the analysis. To start with, we assume that consumers learn the full network G. The monopoly’s profit is 

proportional to the sum of Bonacich centralities, and the consumer surplus is proportional to the sum of squares of Bonacich 
centralities. To determine the sign of the value of network information, we thus need to compare Bonacich centralities on 
networks G and H, both of which have the same degree distribution. In general, either positive or negative information 
values are possible outcomes.

We illustrate how things work on a simple example consisting of two eight-consumer networks (the example is only 
illustrative and does not match the theory, since the results in this paper apply to large networks). Fig. 1 depicts two 
networks GA and GB with the same degree distribution. Four consumers have two neighbors, four have three neighbors. 
Black (resp. white) nodes represent degree-3 (resp. degree-2) consumers. Both networks GA and GB have the same degree 
distribution. For δ = 0.2, network GA represented in Fig. 1-Left (resp. GB in Fig. 1-Right) generates a negative (resp. positive) 
profit gap. In network GA (resp. GB ), consumers with the highest degrees decrease (resp. increase) their consumption level 
with information, while consumers with the lowest degrees increase (resp. decrease) their consumption level. In total, in 
network GA (resp. network GB ) information generates a decrease (resp. increase) in aggregate consumption and profit. It 
can be seen that in network GA , high-degree consumers tend to be linked with low-degree consumers, while in network 
GB high-degree consumers tend to be linked with high-degree consumers. This suggests that degree assortativity may play 
a role.

To further grasp this intuition, assume that δ is close to zero. In order to assess the variation in consumption, we need 
to compare aggregate Bonacich centralities in networks G and H. A consumer’s impact on others is mainly given by his 
degree (for very low values of δ, the influence on the behaviors of neighbors’ neighbors is much weaker than the influence 
on neighbors’ behaviors). Since networks H and G have the same sum of degrees, aggregate demands are identical under 

10 The coefficient is defined by Newman (2002), see Appendix E for details.
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Fig. 1. Two networks with the same number of consumers and the same degree distributions; black consumers have three neighbors, white consumers
two; δ = 0.2; y (resp. x) codes for consumption under the initial (resp. complete) information set. For network GA , both degree assortativity coefficient and 
profit variation are negative while for network GB both are positive.

Taylor approximation of order 1. At order two, a consumer’s impact on others is given by the sum of her neighbors’ degrees. 
Again, for the same degree distribution, the sum of neighbors’ degrees over all agents is identical in both networks H and 
G, which means that both demands are also identical at order two. Hence we need to consider order three. The sum, over 
all agents, of the degrees of neighbors’ neighbors is equal to the number of walks of length three, which is related to the 
coefficient of degree assortativity. Indeed, by Lemma 1, rD(G) is positive whenever the difference between the number of 
walks of length three in network G and network H is positive. This means that, when network G is degree assortative, the 
aggregate demand increases. The same reasoning applies for consumer surplus. When the previous analysis is applied to 
network V instead of G, we obtain:

Proposition 2. Under sufficiently low intensity of interaction δ, both profit and consumer surplus increase with information arrival if 
and only if network V is degree assortative.

By Proposition 2, the sign of the degree assortativity coefficient coincides with the sign of outcome variations under 
sufficiently low intensities of interaction. For higher intensities of interaction, however, walks of lengths greater than 3 can 
no longer be ignored, but degree assortativity is still relevant. We now consider general intensities of interaction. The next 
theorem shows that, when the matrix of interaction V is degree assortative, the arrival of information increases profit and 
welfare:

Theorem 1. Assume that Assumptions 1 and 2 hold. Denote by V the matrix of interaction of the game with enriched information on 
the network structure. When �d �= 0, the profit and the consumer surplus are larger in the enriched information game than in the 
initial information game for all intensities of interaction if and only if network V is degree assortative (i.e., rd(V) ≥ 0). When �d = 0, 
information affects neither profit nor consumer surplus for all intensities of interaction.

Theorem 1 is powerful because the assortativity condition is independent of the intensity of interaction. Moreover, it 
is worth mentioning that it is not possible to obtain a finer condition that is independent of the intensity of interaction, 
because a sufficient condition becomes necessary too when the intensity of interaction is sufficiently low.

For the class of networks satisfying �d = 0, the two games have the same outcomes, i.e., this class corresponds to 
the degenerate case in which network information does not affect decisions. A network satisfies �d = 0 if the average 
neighbors’ degree is the same for all consumers. Moreover, in such networks there is no assortative mixing by degree. This 
class of networks includes regular networks (i.e., networks where all agents have the same degree), as well as other network 
structures with heterogeneous degree distributions, as illustrated by the twelve-consumer sixteen-link network depicted in 
Fig. 2.

Theorem 1 can be grasped by examining the correlation between variation in consumption x − y and initial consumption 
y, which is aligned with degree:

Proposition 3. When network V is degree assortative, the correlation between variation in consumption and initial consumption is 
positive. Moreover, consumption variance increases with network information.

Under degree assortativity, high-degree consumers increase their consumption on average, i.e. there is a positive cor-
relation between variation in consumption and initial consumption. High-degree consumers being more influential than 
low-degree consumers in the network, this explains the increase in aggregate consumption (and thus profit), and drives the 
increase in average squared consumption (and thus consumer surplus).
8



Fig. 2. A non-regular network such that �d = 0; black consumers have degree 4, white have degree 2.

One implication of Theorem 1 is that, in an environment where a firm possesses information on the network whereas 
consumers do not, it is in the firm’s interest to publicly reveal the information.11

Actually, increased profit entails increased consumer surplus, and the magnitude of changes can be bounded from below 
by thresholds proportional to degree assortativity. Defining ν = δ

2
g

g−δdT d
, we get:

Proposition 4. For all intensities of interaction δ, the variation in profit and consumer surplus are bounded below by the following 
thresholds:⎧⎨

⎩ π(V) − π(H) ≥ (dT d − g2

n ) ν2δg · rd(V)

ω(V) − ω(H) ≥
(

1 + ν
δ

)
(dT d − g2

n ) ν2δg · rd(V)
(4)

Hence, the higher the degree assortativity coefficient, the larger the lower bound on outcome variations.
It is important to stress that, following the arrival of information, a fraction of consumers may lose, depending on the 

intensity of interaction. However, for very high intensities of interaction, we find:

Proposition 5. Assume that intensity of interaction δ is sufficiently high (i.e., δ tends to 1
μ(V)

). When network V is degree assortative, 
network information increases the consumption (and thus the utility) of every consumer.

5. Heterogeneous preferences

We now take into account heterogeneous private preferences for the good. This adds complexity to the model, because
now consumers may differ in both their position on the network and their private preference.

We let parameter ai represent consumer i’s private preference for the good, and vector a = (ai)i∈N the corresponding 
profile of preferences. Incorporating heterogeneity, the utility that agent i derives from consuming quantity qi of the good 
under full network information is now given by:

u(qi,q−i) = aiqi − 1

2
q2

i − piqi + δ
∑
j∈N

gij qiq j (5)

Under the incomplete information setup, each consumer knows the joint distribution of degrees and preferences, as well 
as her own degree and own private preference. The monopoly knows every consumer’s preference and degree. In this 
situation, consumers are naturally typed by degree - preference (di, ai). As with homogeneous preferences, under the initial 
information set consumers believe that there is no correlation between linked types. According to this hypothesis, the 
same matrix of interaction H as that under homogeneous preferences ensures that this heterogeneous preferences setup 
corresponds to a game of complete information. Note also that, in the game under enriched information, agents can acquire 
information about preference parameters; e.g., in the benchmark where the enriched information set corresponds to full 
information, they perfectly learn preference parameters.

Under preference heterogeneity, for network W ∈ {V, H}, prices are still independent of the network structure but 
driven by individual preferences, i.e. p(W) = a

2 . Furthermore, we have q(W) = 1
2 ba

(
W

)
, π(W) = 1

2 aT q(W), and ω(W) =
1
8

∥∥ba
(
W

)∥∥2
. A key observation is that, unlike under homogeneous preferences, profit is no longer proportional to aggregate

demand.
With heterogeneous preferences, it is not only degree assortativity that plays a role, but also three other assortativity 

coefficients (details are given in Appendix E). First, coefficient ra(V) measures the level of (dis)assortative mixing by charac-
teristic a. Homophily then refers to the case in which ra(V) > 0 (i.e., aT �a > 0), and indicates that consumers are more likely 

11 This does not preclude consumers from investing in information acquisition; see for instance Leister (2019) for a related analysis of network games
with similar utility functions.
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Fig. 3. The network and preferences in Example 3; numbers are the preference parameters; black nodes have degree 3, white nodes have degree 2. In this 
example, we have V = G, ra(G) > 0, rd(G) > 0, ra,d(G) > −√

ra(G)rd(G) but ω(G) − ω(H) < 0.

to be linked to consumers with similar preferences.12 Second, coefficient ra,d(V) measures the tendency of high-preference 
consumers to be linked to high-degree consumers. When ra,d(V) > 0 (i.e., aT �d > 0), there is preference-degree assortativity. 
Last, coefficient ra,b(V)(V) measures the tendency of high-preference consumers to be linked to high-Bonacich centrality 
consumers. When ra,b(V)(V) > 0 (i.e., aT �b(V) > 0), there is preference-Bonacich centrality assortativity.

We first address profit and then consumer surplus. A legitimate question is whether having degree assortativity and 
homophily simultaneously guarantees that profit increases with information. Simple examples show that it doesn’t: when 
high-preference consumers are connected to low-degree consumers, there can be a negative information value. The next 
proposition shows that the coefficient of assortative mixing between preferences and degrees13 does matter:

Proposition 6. Assume that Assumptions 1 and 2 hold. When �a �= 0 or �d �= 0, network information increases the profit for all 
intensities of interaction δ when the following three conditions on network V hold simultaneously: degree assortativity (rd(V) ≥ 0), 
homophily (ra(V) ≥ 0) and the condition ra,d(V) ≥ −√

ra(V) · rd(V). When �a = �d = 0, network information does not affect profit 
for all intensities of interaction δ.

The three assortative mixing conditions given in Proposition 6 guarantee assortative mixing in initial consumption, i.e. 
consumers with similar consumption tend to be linked with each other, which drives the profit increase. In short, these 
conditions guarantee that degrees and preferences reinforce each other in such a way that the average increase in the 
consumption level of high-degree consumers dominates the consumption decrease of low-degree consumers. Conversely, 
when the disassortativity between preferences and degrees is too strong, preferences and degrees are misaligned, which can 
produce a decrease in profit.

Next, we look at the consumer surplus, providing conditions under which network information increases consumer 
surplus. Remember that coefficient ra,b(G)(V) measures assortative mixing between Bonacich centralities and preferences. 
We obtain:

Proposition 7. Assume that Assumptions 1 and 2 hold. When �a �= 0 or �d �= 0, network information increases consumer surplus 
when the following four conditions on network V hold simultaneously: degree assortativity (rd(V) ≥ 0), homophily (ra(V) ≥ 0), the 
condition ra,d(G) ≥ −√

ra(V) · rd(V), and assortative mixing between Bonacich centralities and preferences (ra,b(V)(V) ≥ 0). When 
�a = �d = 0, information does not affect consumer surplus for all intensities of interaction δ.

The key in Proposition 7 is that preference-Bonacich centrality assortativity guarantees increased demand, which in turn, 
combined with increased profit, guarantees increased consumer surplus. The condition ra,b(V)(V) ≥ 0 depends on the inten-
sity of interaction, which means that, as parameter δ varies, the sign of coefficient ra,b(V)(V) can change.14 It is important to 
stress that, when ra,b(V)(V) < 0, the aggregate demand can fall, which explains the potential decrease in consumer surplus. 
In Example 3 below, aggregate demand decreases with network information because high-preference consumers are linked 
to low-degree consumers. This in turn generates a decrease in consumer surplus:

Example 3. Consider n = 6, δ = 0.1624, V = G and consider the network and preferences depicted in Fig. 3. We have 

12 The notion of assortative mixing by individual characteristics such as age, gender, ethnicity, etc., is also called homophily - see Lazarsfeld and Merton
(1954), McPherson et al. (2001).
13 Assortative mixing between preferences and degrees may in particular exist for types of good such that part of the preference is increasing in the

ability to use them socially or to display them to others (fashion, gaming, etc.). To our knowledge, the economic literature is silent about this coefficient.
Closely related, although distinct, is the correlation between valuations and number of friends (see for instance Campbell (2013) for a comparative statics
exercise with respect to this coefficient).
14 Taking V = G, we explored whether the three conditions ra(G) ≥ 0, rd(G) ≥ 0, ra,d(G) ≥ 0 guarantee an increase in consumer surplus (for networks such 

that either �a �= 0 or �d �= 0). They do, under both sufficiently low and sufficiently high intensities of interaction. However, for intermediate intensities,
the question remains open (we found no counter-example in our simulations). One difficulty is that demand can decrease under these three conditions.
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ra(G) = 0.228, rd(G) = 0.333, ra,d(G) = −0.258 > −√
ra(G) · rd(G) = −0.275 and ω(G) − ω(H) = −0.0087. We also have 

π(G) − π(H) = 0.1190 and 1T (x − y) = −0.0119.

This tension between profit and consumer surplus does not emerge under either very low or very high interactions. 
Indeed, when intensity of interaction δ is sufficiently low, a Taylor approximation at order one of the demand shows that 
homophily guarantees that network information increases both profit and consumer surplus. Similarly, for a sufficiently 
high intensity of interaction, degree assortativity guarantees that network information increases both profit and consumer 
surplus.15

For networks satisfying �d = 0, we have rd(V) = ra,d(V) = ra,b(V)(V) = 0. Proposition 6 and Proposition 7 thus show that, 
when �a �= 0, homophily guarantees a positive network information value (aggregate consumption is identical in the two 
games).

6. Discussion

We discuss alternative information structures, directed networks, and alternative pricing. For simplicity, we assume that
preferences for the good are homogeneous, i.e. a = 1.

Alternative information structures. So far, we have considered the arrival of public information. Our results are driven 
by variations in demand, i.e. learning by consumers is crucial to our analysis, otherwise the information is of no value. 
By contrast, the firm’s learning the information is generally not crucial to establishing our results. Indeed, under linear 
pricing and undirected networks, prices do not depend on network structure (but do depend on preferences). However, 
price depends on the network structure under directed networks, or under alternative pricing (like optimal pricing, or no 
price discrimination). Thus, in such environments, there is a price effect as well as the demand effect. We explore this in 
Appendices B and C, and we confirm the key role played by assortative mixing (see the paragraphs below).

Here, we focus on the consumer information set. We perform a comparative statics on the amount of information re-
ceived, by extending the model to a richer information set. We relax Assumption 1, assuming here that, initially, consumers 
know the degree distribution plus a public supplementary information on the network structure. Under this richer initial 
information set, the degree distribution of potential neighbors is not usually the same for all agents. Could profit and con-
sumer surplus be said to grow if the arrival of information induces an increase in degree assortativity? We call the agent 
interaction matrix of the initial information game V0, and the corresponding consumption profile in the initial information 
game y0. In general, this consumption profile is Bonacich centrality, i.e. it is by no means reducible to degrees. For low 
intensities of interaction, previous results generalize directly. We find:

Proposition 8. When the intensity of interaction δ is sufficiently low, and when (V − V0)d �= 0, we have both π(V) > π(V0) and 
ω(V) > ω(V0) if and only if rd(V) ≥ rd(V0).

Proposition 8 can easily be shown by using the Taylor approximation at order three of Bonacich centralities (proof 
omitted). For high intensities of interaction, degree assortativity is no longer relevant. We obtain results for profit:

Proposition 9. When (V − V0)y0 �= 0, we have π(V) > π(V0) for all δ ∈]0, 1
μ(V)

[ if and only if ry0(V) ≥ ry0(V0), i.e. consumers with 
high initial consumption levels are more likely to be linked under enriched information.

Hence, profit increases with network information if the assortativity in initial consumption increases with the arrival of 
information. For consumer surplus, the same condition guarantees an increase for low and high intensities of interaction, but 
the result remains to be proved for intermediate intensities of interaction (we found no counter-example in our simulations).

Directed networks. We extend our analysis to directed networks (see Appendix B for more details). In the initial informa-
tion set, consumers know their own in-degrees, their own out-degrees and the distributions of in-degrees and out-degrees. 
The main difference from the case of undirected networks is that in this more general setting, information arrival induces a 
price effect, because prices depend on the network. We extend Theorem 1 to directed networks as follows. We show that 
under degree assortativity of the - symmetric - network of averaged interaction, both profit and consumer surplus increase 
with information (see online Appendix B). This condition is now only sufficient in contrast to the undirected case. The main 
message is thus that even with directed networks, degree assortativity still guarantees increased outcomes.

Alternative pricing. We explore two alternative pricing strategies by the monopolist (see Appendix C for more details). We 
first examine optimal pricing where the monopolist extracts all consumer surplus. When the firm proposes prices that lead 
to extraction of the full consumer surplus rather than linear pricing, we find:

Proposition 11. When the firm offers optimal prices and provided that �d �= 0, network information increases profit for all intensities 
of interaction if and only if network V is degree assortative (i.e., rd(V) ≥ 0).

15 By degree assortativity, we have that μ(V) > μ(H). Hence, all consumptions tend to infinity on network V when δ tends to 1
μ(V)

whereas they are still
finite on network H.
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Then we explore the situation where the firm cannot price discriminate by considering a homogeneous fixed price under 
both the initial and the enriched information sets. This corresponds the case where the firm does not learn information 
about the network of consumers (i.e., only consumers learn). Clearly, the no-discrimination scenario only arises under het-
erogeneous preferences, since under homogeneous preferences, price is independent of position on the network. When the 
firm cannot price discriminate, and instead offers a homogeneous price to all consumers, we obtain that similar conditions 
on assortative mixing guarantee increased profit and increased consumer surplus (see online Appendix C).

7. Conclusion

In this article, we considered a monopoly selling a network good to explore whether information on the network struc-
ture is valuable to the firm and to consumers. Our analysis shows the key impact of degree assortativity, homophily, 
preference-degree assortativity and preference-Bonacich centrality assortativity. These results are interesting in the light 
of the empirically documented properties of social networks: degree assortativity and homophily.

One important insight from the above analysis is that, under heterogeneity in consumer preferences, profit and consumer 
surplus may vary in opposite directions following the arrival of new information. This raises the issue of the regulation of 
provision of information about the network structure. Our work suggests that the intensity of interaction is decisive. When 
the intensity of interaction is low or high, there is no need for public intervention under assortative mixing, because the 
assortativity conditions that guarantee increased profit also ensure increased consumer surplus. For instance, the firm will 
want to share some information on the network with individuals during its product launch, which is good for consumers. 
However, under intermediate intensities of interaction, there are circumstances under which profit increases but consumer 
surplus decreases.

Several questions remain open. First, it could be valuable to explore how competition between firms affects the value 
of information in the presence of network effects. Second, there is an issue of network evolution is an issue: for example, 
firms often attempt to influence the creation of opinion leaders, or to foster social relations. Lastly, consumers’ investment 
in data protection would be an interesting line of research to pursue.

Appendix A. Proofs

Outcomes in the game under initial information. We define the matrix H = 1
g ddT , which represents the matrix of 

interaction between agents under initial information. It is easily seen that the vector of consumption on network H is 
written:

y = 1

2
1 + ν d (6)

with

ν = δ

2

g

g − δdT d
(7)

Recalling that g = dT 1, profit and consumer surplus are given by:

π(H) = n

4
+ 1

2
νg (8)

and

ω(H) = n

8
+ 1

2
νg + 1

2
ν2dT d (9)

We present two lemmatas which, combined with Lemma 1, prove useful to establish Theorem 1, Proposition 6, and 
Proposition 7. Let a = (ai)i∈N represent the profile of preferences and consumers i’s utility given by equation (5). We 
consider an undirected network V and we define M = (I − δV)−1. The respective consumption profiles under complete and 
incomplete information are x = 1

2 (I − δV)−1a and y = 1
2 (I − δH)−1a. For every vector r, we let ‖r‖M = √

rT Mr denote the 
M-norm of vector r (this is a norm as matrix M is positive definite), and we let ‖r‖ represent the Euclidian norm.

Lemma 2. We have

π(V) − π(H) = δ2‖�y‖2
M + δyT �y (10)

Proof of Lemma 2. We have (I − δV)x = (I − δH)y, or equivalently, given that M = (I − δV)−1,

x − y = δM�y (11)

Thus, 1 aT (x − y) = δxT �y, that is,
2
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π(V) − π(H) = δxT �y (12)

Plugging x = y + δM�y (from equation (11)) into equation (12), we obtain π(V) − π(H) = δyT �y + δ2yT �T M�y. �
Lemma 3. We have

ω(V) − ω(H) = δ2

2
‖M�y‖2 + δyT M�y (13)

Proof of Lemma 3. Basically, ω(V) − ω(H) = 1
2 (xT x − yT y). Recalling that x = y + δM�y, we deduce that

xT x − yT y = δ2(M�y)T (M�y) + 2δyT M�y

From equation (12), we also know that 1T (x − y) = π(V) − π(H). The result follows directly. �

Proof of Theorem 1. The proof uses Lemma 1, Lemma 2 and Lemma 3. We recall that a = 1, x = 1
2 b(V), and y = 1

2

[
1 +(

δ

1−δ dT d
g

)
d

]
.

• If �d �= 0:
Monopoly profit. We prove that the condition rd(V) ≥ 0 is sufficient. Note that �d �= 0 implies �y �= 0. By equation (10)

in Lemma 2, π(V) − π(H) > 0 if

yT �y ≥ 0 (14)

Plugging equation (6) into condition (14) and recalling that �1 = 0, we get dT �d ≥ 0, which is equivalent to rd(V) ≥ 0
by Lemma 1.

We prove that the condition rd(V) ≥ 0 is also necessary. Suppose that rd(V) < 0. We have, for small enough δ,

2x = 1 + δV1 + δ2V21 + δ3V31 + o(δ3)

2y = 1 + δH1 + δ2H21 + δ3H31 + o(δ3)

We recall that π(V) − π(H) = 1
2 (x − y), and that, because networks V and H have the same vector of degrees, �1 = 0

and 1T (V2 − H2)1 = 0. We thus obtain π(V) − π(H) = 1
4 δ3 1T (V3 − H3)1 + o(δ3). Now, we observe that, because V1 = H1, 

we have 1T (V3 − H3)1 = dT �d. By Lemma 1, rd(V) < 0 involves dT �d < 0, and therefore π(V) − π(H) < 0 for sufficiently 
low δ.

Consumer surplus. We prove that the condition rd(V) ≥ 0 is sufficient. By equation (6), y = 1
2 1 + νV1. Hence, we get 

yT M�y = 1
2 1T M�y + ν1T GM�y. We note that 1

2 1T M�y = xT �y. Moreover, because x − 1
2 1 = δGM1 and GM = MG (since 

VT = V), we have 1T GM�y = 1
δ

(
x − 1

2 1
)T

�y. In the end, we find that yT M�y = xT �y + ν
δ

(
x − 1

2 1
)T

�y. Exploiting that 

�T 1 = �1 = 0, we obtain

δyT M�y = (ν + δ)xT �y (15)

Now, by equation (12) we have

xT �y = π(V) − π(H)

δ
(16)

Combining equation (13) in Lemma 3, (15) and (16), we get

ω(V) − ω(H) = δ2

2
‖M�y‖2 +

(
1 + ν

δ

)(
π(V) − π(H)

)
(17)

where ν > 0. Since �y �= 0, we have M�y �= 0. The condition rd(V) ≥ 0 involving a positive profit gap, we conclude by 
equation (17) that this also entails a positive consumer surplus gap.

We prove that the condition rd(V) ≥ 0 is also necessary. Suppose first that rd(V) < 0. Recalling that ω(V) − ω(H) =
1
2 (xT x −yT y), we obtain ω(V) −ω(H) = 1

2 δ31T (V3 −H3)1 +o(δ3). Note that, because V1 = H1, we have 1T (V3 −H3)1 = dT �d
and thus, rd(V) < 0 implies ω(V) − ω(H) < 0 by Lemma 6.

• If �d = 0, we have that �y = �(1 + νd) = 0. By equation (11), we have that x = y, which implies π(V) = π(H) and
ω(V) = ω(H). �
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Proof of Proposition 3. We start by showing that the correlation coefficient is positive. Let x̄ = x
n and ȳ = y

n . Then define 
the coefficient ρ = (x − y − (x̄ − ȳ)1)T (y − ȳ1). Using equation (11), we get ρ = δyT �M(y − ȳ1). Exploiting that yT �My =
1
2

(
1 + 1

1−δ dT d
g

)
xT �y and that x = 1

2 M1, we get ρ = 1
2

(
1−δd

1−δ dT d
g

)
xT �y. Now, rd(V) > 0 implies xT �y > 0.

We then show that the variance is positive. The variance of vector x is written V ar(x) = xT x − (1T x)2

n . As x = y + δM�y
(and thus 1T x = 1T y + δ1T M�y), we get

V ar(x) − V ar(y) = δ2
[

yT �M2�y − 1

n
(1T M�y)2

]
︸ ︷︷ ︸

=V ar(M�y)

+2δ

[
yT M�y − 1

n
(1T y)1T M�y

]
︸ ︷︷ ︸

=φ

That is, given that x − y = δM�y

V ar(x) − V ar(y) = V ar(x − y) + 2δ φ

But we have φ > 0 and rd(V) ≥ 0: indeed, φ = yT M�y − 1
n (1T y)xT �y. Since y = 1

2 1 + νd, we have yT M�y = ( 1
2 1 +

νd)T M�y. Hence, given δGM = M − I, we get yT M�y = 1
2 xT �y + ν1T M−I

δ
�y. Exploiting �1 = 0, we find yT M�y =( 1

2 + ν
δ

)
xT �y. Therefore, since 1T y

n = 1
2 + νd, we obtain that φ = ν 1−δd

δ
xT �y. Because δd < 1 (as d ≤ μ(V)), we conclude 

that φ > 0 whenever xT �y > 0, which is itself guaranteed by the condition rd(V) ≥ 0. �
Proof of Proposition 4. Using equations (10) and (17), we get π(V) − π(H) ≥ δyT �y and ω(V) − ω(H) ≥

(
1 + ν

δ

)(
π(V) −

π(H)
)

. To compute the thresholds, we substitute y given by equation (6) and ν by equation (7) (setting a = 1), and we 

obtain a threshold depending on the quantity dT �d. Then we use dT �d = g(dT d − g2

n )rd(V) as established from the
definition of degree assortativity (see the online Appendix E) and the variance of degrees. The expression of lower bounds 
follows directly. �
Proof of Proposition 5. By the condition rd(V) > 0, Theorem 1 in the article implies that the sum of Bonacich centralities is 
strictly larger on network V than on network H for all intensities of interaction. Moreover, for network V (resp. H), Bonacich 
centralities tend to infinity when δ tends to 1

μ(V)
(resp. 1

μ(H)
). Thus, we have μ(V) ≥ μ(H). This implies that network 

information increases each individual consumption when parameter δ tends to 1
μ(V)

. �
Proof of Proposition 6. There are two cases:

• �a �= 0 or �d �= 0: in this case �y = �(a + νd) �= 0, inducing ‖�y‖M > 0. Then, by Lemma 2, we have that

yT �y ≥ 0 implies π(V) − π(H) > 0

We exploit y = a
2 + νd (see equation (6)). Define

ζ(t) =
( a

2
+ td

)T
�

( a

2
+ td

)
The sufficient condition is thus expressed as ζ(ν) ≥ 0. Note that parameter ν is increasing with δ, and when δ goes from 0
to its maximal bound, ν goes from 0 to infinity.

Now, by Lemma 6, ra(V) ≥ 0 implies ζ(0) ≥ 0. Moreover, rd(V) ≥ 0 implies ζ(+∞) ≥ 0. For intermediate values of 
parameter ν , note that rd(V) ≥ 0 entails that ζ(.) is U-shaped. The minimum is attained at ν∗ = − 1

2
aT �d
dT �d

, and ζ(ν∗) ≥ 0 if 
ra,d(V) ≥ −√

ra(V) · rd(V).
• When �a = �d = 0, we have �y = 0. Lemma 2 then involves π(V) = π(H). �

Proof of Proposition 7. There are two cases:
• �a �= 0 or �d �= 0: assume that rd(V) ≥ 0, ra(V) ≥ 0, ra,d(V) ≥ −√

ra(V) · rd(V), and rb(V),a(V) ≥ 0.
We have �y = �(a + νd) �= 0, so ‖M�y‖ > 0. Then, by Lemma 3, yT M�y > 0 guarantees that ω(V) > ω(H). Since 

yT M�y = xT �y + ν 1T GM�y, we need to show that xT �y > 0 and 1T GM�y > 0.
� xT �y > 0: recall that π(V) − π(H) = δxT �y. Therefore, under the three first conditions, xT �y > 0.
� 1T GM�y > 0: Note that GM = M−I

δ
, so 1T GM�y > 0 whenever b(V)T �y > 0 (with b(V) = M1).

Since y = a
2 + νd, the inequality b(V)T �y > 0 is implied by b(V)T �a > 0 and b(V)T �d > 0. Now, on the one hand, 

rb(V),a(V) ≥ 0 means aT �b(V) ≥ 0. On the other hand, rd(V) > 0 implies dT �b(V) > 0. This stems from Theorem 1: indeed, 
this theorem states that profit gap is positive when dT �d > 0, and in the case of homogeneous preferences, profit gap is 
proportional to b(V)T �(1 + νd), i.e., to b(V)T �d.

• When �a = �d = 0, we have �y = 0. Lemma 3 then involves ω(V) = ω(H). �
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Appendix B. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .geb .2020 .12 .008.
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