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Abstract

We examine innovation in a market-entry timing game with complete in-
formation and observable actions when there is a second-mover advantage.
Allowing for heterogenous payoffs between players, and for both leader’s and
follower’s payoff functions to be multi-peaked and non-monotonic, we find
that there are at most two pure-strategy subgame perfect equilibria. Some-
times these resemble familiar second-mover advantage equilibria from the
literature. However, we show that despite there being a follower advantage
at all times, there can be a preemption equilibrium with inefficient early
entry. In fact, immediate entry is possible in a continuous analogue of the
centipede game. These results are related to the observed premature entry
and product launches in various markets.
Key words: timing games, second-mover advantage, preemption.
JEL classifications: C72, L13, O31, O33.

1 Introduction

Timing can be everything. The release date can make (or break) a new product.

While this is a non-trivial decision for a monopolist, the choice of when to enter the

∗We would like to thank Murali Agastya, Mikhail Anufriev, John Asker, Nicolas de Roos,
Simon Grant, Sander Heinsalu, Ngo Van Long, Suraj Prasad and participants at the Organiza-
tional Economics Workshop 2017, University of Sydney and Microeconomic Theory Workshop
2017, Victoria University of Wellington and seminars at Kyoto University, Waseda University
and the Higher School of Economics. The authors are responsible for any errors.
†email: vladimir.smirnov@sydney.edu.au; andrew.wait@sydney.edu.au. School of Economics,

University of Sydney, NSW 2006 Australia.

1



market is complicated immensely by the presence of a rival. If the market leader

makes more than the follower, there will be an incentive to preempt one’s rival

and enter the market early (Fudenberg and Tirole, 1985). Take two rival movie

studios, for example, both contemplating when to release a new action blockbuster

in the upcoming season.1 If the first film on the market will capture the public’s

imagination and the lion’s share of viewers, each studio will vie to be the leader,

possibly resulting in both studios releasing their movie at the very beginning of

the season. But being second is sometimes best. In fact, Tellis and Golder (1996)

show that in a variety of markets, early imitators often end up doing better than

market pioneers. A follower can learn from the leader’s mistakes and free-ride on

their investment; they can imitate, then better, the pioneer in terms of quality

or cost. Waiting might also allow a firm to outmaneuver their rival; delaying

the release of a movie might allow a studio to develop more effective marketing

strategy, for instance. Recent examples of second movers outperforming their

pioneer rivals abound. Google was not the first search engine, nor was Chrome the

first web browser. Similarly, iPhone and the Samsung Galaxy were not the first

smart phones. In this paper we focus on entry games when there is a second-mover

advantage allowing for a very general structure of payoffs.

The basic features of our model are as follows. Two firms can make an irre-

versible and one-off decision to enter a market. Time is continuous and all previous

actions (entry or not) are observable; consistent with this, we focus on closed-loop

equilibria. While we place few restrictions on the payoffs, at any point in time

a firm earns more as a follower than as a market leader, herein capturing the

second-mover advantage aspect of our model.

In Fudenberg and Tirole (1985) and others, the entrants are ex ante identical

and have access to the same potential innovation. But usually firms are not all the

same. Drawing inspiration from Katz and Shapiro (1987), we study two heteroge-

nous firms that can have different payoffs from entering at a given time.2 This

1For an analysis of the timing of movie release dates see Krider and Weinberg (1998); also
see McKenzie and Smirnov (2018).

2Katz and Shapiro (1987) analyze an innovation game with heterogenous firms when there is
licensing (by the leader) and imitation (by the follower). They find that industry leaders (who
are more efficient) need not be the firm that innovates, as they might prefer to free ride on
the public good (innovation) provided by its rival. Riordan (1992) uses a similar framework to
examine the impact of regulation of technological adoption.
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assumption of heterogeneity is applicable in many situations. Firms might differ

in their ability to exploit market opportunities. Expected payoffs from launching a

new phone handset could differ between two rivals, given their preexisting reputa-

tion, network or tie-in products. The same can be said for a process (cost-saving)

innovation – its payoff depends on access to markets, how the new technology

meshes with a firm’s existing practices, and so forth. As noted above, often firms

also have to choose which technology to implement. Returning to the smartphone

example, Samsung made a choice to switch its cell phone operating system from

its own in-house system to an Android platform; Sony also made an equivalent

choice. Despite its closed system, in many ways Apple faces a similar tradeoff

when contemplating the timing of a new iOS for its devices.

Implicit in this is that not all technologies are available immediately; rather,

some technologies are only available (or worth considering) later. This potentially

changes the payoff structure. Unlike in Katz and Shapiro (1987), a leader’s or

follower’s entry payoff can be multi-peaked with respect to entry time, reflecting

when a new technology becomes available and when its profitability wanes. This

payoff structure, generated by the choice between multiple technologies, combined

with the asymmetric payoffs between players, creates a new strategic entry envi-

ronment not previously analyzed.

The key results are as follows. Adapting the technique of Smirnov and Wait

(2015), we show that there can be either one or two pure-strategy subgame perfect

equilibria. Depending on the payoffs, it could be the case that either firm enters

when its leader payoff is maximized, providing its rival with the advantage of

being the follower. It can also be the case that only one of these leader-maximized

equilibria – that is, an equilibrium in which one firm’s leader payoff is maximized –

exists. In this case, one of the firms, anticipating a lower follower payoff at the time

that its rival would have entered as a leader, preempts and opts to enter earlier

as the market pioneer. Note that this preemptive incentive exists even though

follower payoffs at any given time are higher for those of a leader.

It could be, however, that neither of these leader-maximized equilibria exist.

This is only possible when the leader and follower payoffs for at least one of the

firms is non-monotonic. In this leader-constrained equilibrium, a firm preemptively

enters the market even before its leader payoff is maximized, so as to avoid an
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anticipated lower profit in the future if it waited. As an example of this, consider

a continuous market-entry version of the centipede game in which payoffs are

increasing (overall) with later entry but that the local peaks for one firm coincide

with a relatively lower payoff for its rival. This generates an iterative process in

which each firm has an incentive to enter earlier, fearful of a lower follower payoff

it could receive if its rival was allowed to enter as a leader later. In equilibrium,

entry occurs inefficiently early – in fact, entry could occur immediately in this

example. This outcome is indicative of the products being launched when they are

really not ready, squandering opportunities for more mature and socially efficient

innovation. This type of equilibrium is relevant, capturing some of the interplay

between technology companies such as the decision as to when to launch a new

smartphone by rivals like Apple and Samsung (and others).3,4 It also suggests that

even though we observe rival studios release their new movies at the start of the

season, there could still be a follower advantage; moreover, both firms might be

better off if they could commit to not release their films until later.5

This paper draws on an extensive literature on innovation timing games.6

Our analysis of an irreversible investment decision with complete information and

observable actions (closed-loop equilibria) follows Fudenberg and Tirole (1985),

Dutta et al. (1995), Hoppe and Lehmann-Grube (2005) and Smirnov and Wait

(2015). This framework has been used to study a range of applications. For ex-

ample, Argenziano and Schmidt-Dengler (2012, 2013, 2014) adopt a variant of

Fudenberg and Tirole (1985) to examine the order of market entry, clustering and

delay. They show that with many potential entrants the most efficient firm need

not be the first to enter the market and that delays are non-monotonic with the

number of firms. In addition, they suggest a new justification for clustering of

entry. Others have studied similar issues. Extending Dutta et al. (1995), Hoppe

3See ‘Phone tag; Apple v Samsung’ in The Economist, September 16 2017.
4This sort of scenario is reminiscent of deterrence/accommodation models, such as Fudenberg

and Tirole (1984). For empirical studies of strategic entry see Gil et al. (2019) (US drive-in
cinemas), Schmidt-Dengler (2006) (MRI technology adoption in US hospitals) and Ellison and
Ellison (2011) (pharmaceuticals with expiring patents).

5It could also be the case that there are two equilibria, with one the iterative leader-constrained
equilibrium, as described above, and the other leader-maximized.

6See Hoppe (2002) or Van Long (2010, Chapter 5) for a survey of the literature. Further,
Fudenberg and Tirole (1991) consider innovation when the firms make one irreversible decision
(to enter) in a simple timing-game framework (see Sections 4.5 and 4.12).
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(2000) shows that a second-mover advantage is increasing in the costs of R&D.7

Anderson et al. (2017) study delays and rushes into a market in a stopping game

with a continuum of players.

While we assume that previous actions of a rival are observable, an alternative

approach to study innovation is to assume players’ actions are unobservable as in

Reinganum (1981a,b), where unobservable actions are equivalent to each firm being

able to pre-commit. Reinganum shows that in the open-loop equilibria there will

be diffusion in the sense that firms adopt the technology at different dates, even

though all firms are ex ante identical. Similarly, Park and Smith (2005) develop

an innovation game with unobservable actions that permits any firm (in terms of

the order of entry) to receive the highest payoff. This allows for a war-of-attrition,

with higher payoffs for late movers, a pre-emption game with higher payoffs for

early movers, or a combination of both. An important point of comparison is that

in our model firms use feedback rules to determine their strategy at any particular

point in time; this means that they are unable to commit to their strategy at the

beginning of the game.

Information also plays a key role in the players’ entry strategies. Bloch et al.

(2015) show that when two potential rivals are uncertain about their entry costs,

competition leads to inefficient entry that is too early. Other authors consider

inefficiencies in innovation when there is asymmetric information. For example,

Bobtcheff and Mariotti (2012), Hendricks (1992) and Hopenhayn and Squintani

(2011) assume that a firm’s capability to innovate is private information. In these

models, delay allows a firm to get better information about the potential innovation

(its costs, value, and so on), but waiting runs the risk that a rival will innovate

first, capturing most of the returns.

2 The model

Assume two firms (i = 1, 2) are in a continuous-time stopping game starting at

t = 0 until some terminating time T ∈ (0,∞]. Firm i’s one-off decision to stop

(that is, ‘enter’ the market) at ti ≥ 0 is irreversible and observable immediately

7For related papers also see Riordan (1992), Hoppe and Lehmann-Grube (2001), Smirnov and
Wait (2007), and Alipranti et al. (2011, 2015).
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by the other firm.8 The game ends when one of two firms has stopped/entered

the market. The payoff to each firm depends on the stopping time. If the game

ends with player i stopping at time ti, the payoffs of the leader and the follower

are Li(ti) and Fj(ti), respectively, where i, j = 1, 2 and i 6= j.

We make the following assumptions.

Assumption 1. Time is continuous in that it is ‘discrete but with a grid that is

infinitely fine’.

Assumption 2. Firms always choose to stop earlier rather than later in payoff-

equivalent situations.

Assumption 3. If more than one firm chooses to stop (enter) at exactly the same

time, one of these firms is selected to stop (each with an ex ante probability of 1
2
).

Entry models in the literature adopt equivalent assumptions. Assumption 1

invokes Simon and Stinchcombe (1989) who show that under certain conditions a

continuous-time strategy profile is the limit of a discrete-time game with increas-

ingly fine time grids. It also replicates A1 of Hoppe and Lehmann-Grube (2005).9

Assumption 2, which is similar to A3 in Hoppe and Lehmann-Grube (2005), allows

us to focus on just one (payoff-equivalent) equilibrium in the case of indifference

between early and late entry.10 This simplifies our analysis so as to focus on the

timing of entry rather than on issues of equilibrium selection.

Assumption 3 – part of A3 in Hoppe and Lehmann-Grube (2005) and Assump-

tion 5 in Dutta et al. (1995) – avoids potential coordination failures involving

simultaneous entry. The intuition underlying this assumption warrants further

discussion. In some situations, as a practical matter, if two firms try to enter the

market at the same time there might be some capacity constraint or institutional

requirement that prevents joint entry – consequently, one firm becomes the leader

and the other firm is relegated to the role of second entrant. For instance, in a

particular market there could be a bureaucratic rule that requires the leadership

role be allocated to the firm that has the first email registered in a designated

8When there is no ambiguity, we refer to payoffs as a function of t rather than t1.
9See Hoppe and Lehmann-Grube (2005), footnote 4 for a further discussion.

10Hoppe and Lehmann-Grube (2005) assume that if the follower is indifferent between two
alternative entry times, it chooses the earliest time of entry.
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inbox. Even if both firms simultaneously send their messages, only one email can

arrive first. As a consequence, with simultaneous moves, each firm has some prob-

ability of being the leader.11 Here, Assumption 3 gives either firm an equal chance

being first when there is simultaneous entry. Note, we invoke this assumption for

completeness, as simultaneous entry is not an issue on the equilibrium path given

our assumption of a follower advantage, as explicitly defined below.

The following two assumptions ensure that the leader stops in finite time. The

first element of this is that leaders’ payoff functions reach their respective global

maxima at a finite point in time; this means that both firms will not delay entry

indefinitely. Dutta et al. (1995) (Assumption 3), Fudenberg and Tirole (1985)

(Assumption 2(ii)) and Smirnov and Wait (2015) (Assumption 4) all make equiv-

alent assumptions. Secondly, we assume that entering provides a higher payoff

than each firm’s respective outside option of zero, thus ensuring that our analysis

is not unnecessarily complicated by having to consider whether one or both firms

never enter the market. Again, this mirrors assumptions made previously in the

literature; Assumption 4 in Dutta et al. (1995), Assumption 2(ii) in Fudenberg

and Tirole (1985) and Assumption 5 in Smirnov and Wait (2015).

Assumption 4. There exists a finite mi < T , which is the earliest time at which

Li(t) attains its global maximum. Specifically, Li(mi) > Li(τ) ∀ τ < mi, and

Li(mi) ≥ Li(τ) ∀ τ ≥ mi where i = 1, 2.

In other words,

mi = min arg max
t
Li(t) and mi < T. (1)

Assumption 5. Each firm’s outside (non-entry) payoff is normalized to 0, and

Li(t) ≥ 0 and Fi(t) ≥ 0 i = 1, 2.

So far, the model outlined is quite general, extending the symmetric game of

Smirnov and Wait (2015). It could incorporate all sorts of market-entry outcomes,

11Equivalent intuition applies to any (bureaucratic) tie-breaking rule that determines the win-
ner in what seems to be a dead heat. Dutta et al. (1995) present a similar rationale for this
assumption, suggesting there could be small random delays between when a decision is made
and when a new technology is adopted, meaning that there is a positive probability that either
firm will be first in the event of joint adoption.
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such as first-mover advantages or preemption games with an equalization of rents.

However, our focus here is on interesting – and empirically relevant – case when

there is a second-mover advantage. This scenario is summarized in the following

assumption.

Assumption 6. Li(t) < Fi(t) for all t and i = 1, 2.

Second-mover advantage here refers to the fact that at any given time each

firm earns a greater return as a follower than it does as a leader.

In summary, the first five assumptions are standard in the market-entry timing

game literature with complete information and observable actions; see for example

Smirnov and Wait (2015). Our last assumption allows us to consider second-

mover advantage games only.12 Unlike most of the literature we incorporate the

possibility of heterogenous players. Moreover, our set-up is more general than Katz

and Shapiro (1987) as payoffs can be multi-peaked. This allows for new interesting

equilibria not possible previously.13

2.1 Equilibrium concept

Following Fudenberg and Tirole (1985), we use subgame perfection. A history ht

is defined as the knowledge of whether or not firm i = 1, 2 previously stopped at

any time τ < t, and if so when. A strategy of firm i, denoted by σi(ht), indicates

at each history ht whether firm i stops at t (σi(ht) = 1) or does not stop at t

(σi(ht) = 0). A strategy pair (σ1, σ2) maps every history to an outcome, which

is the minimum of stopping times t1 and t2. As usual, a strategy profile (σ∗1, σ
∗
2)

constitutes a subgame perfect equilibrium (SPE) if the strategies are sequentially

rational after every history. Note here that with this representation we only need

to specify the strategies when there has been no entry in the history of the game,

12Our working paper Smirnov and Wait (2018) deals with more general scenarios, in particular
when Assumption 6 does not hold.

13It is worth noting that while all of the examples provided here use continuous functions, our
results also apply when there is a finite number of discontinuities. This is because a discontinuity
only has an impact on the equilibrium outcome when there is a change in the relative position of
the leader and follower curves for the same firm. An implication of Assumption 6 is that this is
not possible. For a detailed analysis of entry games with discontinuous (but symmetric) payoffs
see Smirnov and Wait (2015).

8



because we assume that once one firm has entered, the game ends (Katz and

Shapiro, 1987). This allows us, for ease of exposition, to refer to each firm’s entry

strategy as a function of time only, σi(t).

3 Characterization of equilibria

In this section we first describe equilibria in the case of symmetric firms (Sec-

tion 3.1), before exploring market entry when the firms potentially have different

payoffs (Section 3.2).

3.1 Symmetric firms

To outline a benchmark for the analysis that follows, first assume that both firms

are the same in terms of their potential payoffs, L(t) and F (t). Let us define the

following analog to Assumption 4:

m = min arg max
t
L(t) and m < T. (2)

The proposition below describes the method for determining the entry time of

the leader in the symmetric case.

Proposition 1. [Dutta et al. (1995)] There are two second-mover advantage pure-

strategy SPE of the symmetric model. In either equilibrium, the leader always

enters the market at t = m.

The intuition for this Proposition is illustrated in Figure 1. In this case there

are two second-mover advantage equilibria in which one of the firms enters at

t = m, whilst the other enjoys a higher payoff as a follower. The first firm to enter

the market will choose the earliest time at which the leader’s payoff is maximized.

While both firms prefer to be the follower, one will have to play the role of pioneer.

First, take the equilibrium in which firm 2 never enters first. Given this, firm 1’s

best option is to enter at m. The other equilibrium involves firm 1 always waiting,

and entry by firm 2 at m. The underlying incentives to enter and wait are not

affected if the two payoffs functions take on more complicated shapes – while one
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Figure 1: Second-mover advantage equilibria with symmetric firms

firm waits, the leader will come in at the earliest time at which the return to the

leader is maximized.

This is an example of a leader-maximized equilibrium. While it earns less than

the follower, the leader enters at a time that maximizes its return, conditional on

it being first into the market.

3.2 Asymmetric firms

As noted previously, firms are more often than not different from one another.

In this section we develop a method of determining the leader’s entry time in all

pure-strategy SPE, allowing for asymmetric payoff functions. Firstly, to find the

pure-strategy SPE we note that any equilibrium with player i entering at time ti

must satisfy two necessary conditions:

Condition 1. No preemption by the leader i (NPL): Li(ti) > Li(τ), ∀ τ ∈ (0, ti).

Condition 2. No preemption by the follower j (NPF): Fj(ti) > Lj(τ), ∀ τ ∈
(0, ti).

If the NPL does not hold, the leader (player i) will deviate by entering earlier.

Similarly, the NPF must hold in any SPE, otherwise the follower (player j) has

an incentive to preempt and enter slightly earlier than the leader, as in Fudenberg
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and Tirole (1985).14 Even if these conditions hold, they do not in of themselves

guarantee that a specific entry time is part of an SPE, because both only compare

payoffs at a particular time relative to their historic values. These conditions, by

definition, do not make any comparisons with future potential payoffs. Of course,

such a consideration is necessary when determining any SPE.

To solve for the leader’s entry time, let us eliminate all points that do not

satisfy either of these conditions (the NPL and the NPF ) by constructing sets

A1(t
′, t′′) and A2(t

′, t′′). For each firm i ∈ {1, 2}, j 6= i and T ≥ t′′ > t′ ≥ 0, define

the following set:

Ai(t
′, t′′) = { t ∈ (t′, t′′] | Li(t) > Li(τ) & Fj(t) > Lj(τ) ∀ τ ∈ (t′, t)}. (3)

By definition, a point belongs to set Ai(t
′, t′′) if it satisfies both NPL and NPF.

By way of comparison, to solve the symmetric-player entry game Smirnov and

Wait (2015) construct one set that is applicable to both firms. Here, asymmetry

requires the construction of a set Ai(.) for each firm and for any truncated game

played on interval [t′, t′′].

For each firm i ∈ {1, 2} define the following time:

t∗i =

{
arg max

t
Ai(0, T ) when Ai(0, T ) 6= ∅,

0 when Ai(0, T ) = ∅.
(4)

In addition, assume without loss of generality that t∗1 ≥ t∗2. Moreover, define

recursively for s ≥ 2 the following times t∗1,s and t∗2,s:

t∗1,s =

{
arg max

t
Ai(0, t

∗
2,s−1) when Ai(0, t

∗
2,s−1) 6= ∅,

0 when Ai(0, t
∗
2,s−1) = ∅;

(5)

and

t∗2,s =

{
arg max

t
Ai(0, t

∗
1,s) when Ai(0, t

∗
1,s) 6= ∅,

0 when Ai(0, t
∗
1,s) = ∅.

(6)

14Argenziano and Schmidt-Dengler (2014) adopt similar conditions, which they refer to as the
Leader Preemption Constraint and the Follower Preemption Constraint.
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with initial values t∗1,1 = t∗1 and t∗2,1 = t∗2.

Note that t∗i , t
∗
1,s and t∗2,s are always unique. t∗i describes the potential optimal

entry time if player i has to be the leader for t ≤ T . t∗1,s describes the potential

optimal entry time if player 1 has to preempt player 2, who is expected to enter

after t∗2,s−1. Similarly, t∗2,s describes the potential optimal entry time if player 2 has

to preempt player 1, who is expected to enter after t∗1,s. Moreover, by construction

of t∗i,s and earlier assumption t∗1 ≥ t∗2, it follows that

t∗1,1 ≥ t∗2,1 ≥ t∗1,2 ≥ t∗2,2 ≥ · · · ≥ t∗1,s ≥ t∗2,s ≥ . . . . (7)

Next, define recursively for s ≥ 2 the following times m1,s and m2,s:

m1,s = min arg max
t
L1(t) for t ≤ t∗2,s−1; (8)

and

m2,s = min arg max
t
L2(t) for t ≤ t∗1,s. (9)

with initial values m1,1 = m1 and m2,1 = m2.

As a consequence of the way they are defined, m1,s and m2,s are always unique.

m1,s describes the earliest time at which L1(t) attains its maximum for entry times

t ≤ t∗2,s−1. In the same way, m2,s describes the earliest at which L2(t) attains its

maximum for t ≤ t∗1,s.

The following lemma allows to make the following comparison of different times.

Lemma 1. The following inequality always holds: t∗i,s ≤ mi,s.

Proof: See Appendix C.

Take t∗1 and m1, for example, and assume that firm 1 will be the leader and firm

2 the follower in any equilibrium. m1 is the time at which firm 1’s leader payoff

is maximized. This means that, for firm 1 itself, the NPL condition is satisfied at

m1, but not beyond this time. Furthermore, t∗1 is constructed to be the maximum

time that satisfies both the NPL and NPF conditions. Consequently, t∗1 cannot

exceed m1 as it belongs to a more restrictive set. Depending on whether the NPF

is satisfied at m1 will determine whether t∗1 is equal to or less than m1. This logic

applies to the comparison between any pair of t∗i,s and mi,s.
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Finally, we define the following set15

S = {i = 1, 2 & s = 1, 2, . . . , sm}. (10)

Second-mover advantage equilibria

We first explore situations in which the familiar second-mover advantage equilibria

arise in the case with asymmetric firms. To do so, while we place no restrictions

on the leader payoff functions (other than continuity), in a similar way to Hoppe

and Lehmann-Grube (2005) and Argenziano and Schmidt-Dengler (2012, 2013,

2014), first consider the situation when both F1(t) and F2(t) are non-increasing.

This could be the case, for instance, when later entry by the leader affords it to

enter the market with a better (less costly) production technology or product, or

possibly both, which in turn exerts greater competitive pressure on the second

entrant.

The following proposition summarises all potential equilibria in this case.

Proposition 2. Consider the SPE of the two-player asymmetric timing game

when both F1(t) and F2(t) are non-increasing.

1. If t∗1 = m1, there are two SPE, one with firm 1 entering at t = t∗1 = m1 and

the other with firm 2 entering at t = t∗2 = m2;

2. If t∗1 < m1, there is a unique SPE with firm 2 entering at t = t∗2 = m2.

Proof: See Appendix C.

To garner some intuition for these results, with the help of Figure 2, first

consider Proposition 2(1). Note that t∗1 = m1 guarantees that L2(t
∗
2) < F2(t

∗
1).

As illustrated in the top panel of the Figure, in this case there are two SPE in

which both firms prefer to be the follower. Specifically, in each of these equilibria

one of the firms enters when they attain their highest leader payoffs mi (and the

other firm always waits, unless entering strictly dominates waiting). Note that

this example is a small perturbation of the symmetric-players case illustrated in

Figure 1.

15To avoid unnecessary complications, we assume that there is a finite sm, such that m1,sm =
m2,sm = 0. This assumption would hold in virtually all economic applications.
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The second scenario is illustrated in the example shown in Figure 2(b). If the

game reaches t∗1 < m1 without entry, firm 1 would not enter at this time; rather

it has an incentive to wait and enter at m1. Understanding firm 1’s incentive,

as F2(m1) < L2(m2), firm 2 has an incentive to preempt its rival by entering at

t∗2 = m2.
16 Consequently, there is a unique equilibrium with firm 2 entering at t∗2.

Note that t∗1 = m1 is equivalent to A1(t
∗
1, T ) = ∅, while t∗1 < m1 is equivalent

to A1(t
∗
1, T ) 6= ∅. If A1(t

∗
1, T ) = ∅, truncating the game at t∗1 does not affect the

set, nor firm 1’s decision to enter at t∗1. In other words, the binding condition that

determines A1(0, T ) is the NPL. On the other hand, if A1(t
∗
1, T ) 6= ∅, truncating

the set at t∗1 affects firm 1’s entry decision. This is because the NPF is the binding

condition for t∗1. This means that if the game were to reach t∗1 without entry, firm

1 would opt to wait until m1. Anticipating the lower payoff it would receive as a

follower at m1, firm 2 chooses to enter the market earlier as a leader at m2.

The equilibria in Proposition 2, illustrated in Figure 2, are all examples of

leader-maximized equilibria. When there are two pure-strategy equilibria, as in

Proposition 2(1), either firm enters at the time at which their payoff is maximized

as a leader (depending on which one of them is the market pioneer). In Proposi-

tion 2(2), firm 2 enters at the time at which its leader payoff is maximized. This

outcome can be thought of as a type of preemption equilibria – firm 2, anticipating

a lower payoff as a follower at t∗1, instead enters early to preempt firm 1.

Finally, note in a different context, Katz and Shapiro (1987) generate qualita-

tively equivalent equilibria. But the outcome could be different with more complex

payoff structures. We turn our attention to this situation now.

Preemption equilibria

So far we have assumed that the follower payoff functions are non-increasing with

the time of entry by the leader. Even in that case, a preemption equilibrium

with one iteration is possible. Here we show that any number of these strategic

leapfrogging iterations are possible in the general case.

16In Figure 2(b) A1(0, T ) = (0, t∗1], where t∗1 < m1 as t∗1 is determined by historical maximum
of L2. On the other hand, A2(0, T ) = (0, t∗2], where t∗2 = m2.
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To facilitate the following analysis, define the following critical time:

t∗∗ = max
i,s∈S
{t∗i,s = mi,s}, (11)

where S is defined in (10). In addition, let i∗ be firm i for which t∗i,s = mi,s is

maximized. We derive the following proposition.

Proposition 3. Consider the SPE of the two-player asymmetric timing game.

1. If t∗1 = m1, there are two SPE, one with firm 1 entering at t = t∗1 and the

other with firm i∗ entering at t = t∗∗;

2. If t∗1 < m1, there is a unique SPE with firm i∗ entering at t = t∗∗.

Proof: See Appendix C.

To work through the intuition, begin with part (2) of the Proposition when

t∗1 < m1. An example of this situation is shown in Figure 3(a) and (b).17 If the

game reaches t∗1 without entry, firm 1 will have an incentive to continue to wait

until m1. However, firm 2 prefers to come in as a leader early (at m2), because

its NPF condition does not hold beyond t∗1. In other words, anticipating firm 1

would enter at m1, firm 2 would preempt this by coming in early at m2. This

is the first preemptive iteration in this example. But this is not the equilibrium

entry time in this case, due to the complex structure of payoffs. Rather, firm 1,

anticipating its follower payoff at m2 will assess its highest payoff from entry as a

leader at any time between 0 and t∗2. By definition, this time is m1,2. Here, given

that firm 1’s leader payoff L1(m1,2) > F (m2), firm 1 would preempt firm 2’s (m2)

entry by entering itself at m1,2. This can be thought of as a second preemptive

iteration. Finally, firm 2 uses the same reasoning, considering whether it is better

off waiting to be the follower at m1,2 or a leader earlier. In this case preemptive

leadership is better, so we see firm 2 entering at t∗2,2 = m2,2. This gives rise to

three preemptive iterations, and firm 2 plays the role of the leader.

Note here that each firm is always better off being a follower at any point

in time than being a leader. However, if a firm anticipates a lower return as a

17In Appendix A we provide microfoundations for this example.
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follower at its rival’s entry time as leader in the future, a firm may well have an

incentive to preempt. Following this logic, this preemptive entry may well itself

be preempted by earlier entry from its rival. Moreover, the incentive to preempt

one’s rival in this case leads to the situation in which the leader’s payoff is not

maximized; we denote this situation as a leader-constrained equilibria. This is not

possible with relatively simple payoff functions, for example with non-increasing

follower payoffs as in Section 3.2 above, or with concave leader payoffs, as in the

Katz and Shapiro (1987). Moreover, this incentive to preempt can lead to lower

total surplus; both the leader and the follower could be better off with later entry

if they could commit to do so.

Now turn our attention to Proposition 3(1), illustrated in Figure 3(b) and

(c). This has an additional layer of complexity as compared to the case discussed

previously because there are two possible pure-strategy SPE. The first involves

firm 1 acting as the leader entering at t∗1 with firm 2 playing the role of follower.

The other equilibrium is similar to that in part (2), discussed above. Let us work

through the intuition of the preemptive iterations again. If we reach t∗2 without

entry there is an equilibrium with firm 2 entering at m2. However, as in the

example shown, firm 1 prefers to be a leader earlier at m1,2 than a follower at m2.

Of course, firm 2 will consider its options. If, as shown, its follower payoff at m1,2

is less than the payoff it can get from preempting, firm 2 will enter at t∗2,2 = m2,2 as

the leader. Note that the equilibrium with entry at t∗1 is always leader-maximized,

while the other equilibrium can be either leader-maximized or leader-constrained.

Strategies

In an attempt to minimize confusing notation, for the truncated entry game start-

ing at some time t′, there are associated points t∗i,s(t
′) and mi,s(t

′), as explicitly

defined in Appendix B.

In part 1 of Proposition 3 there are two equilibria. First consider when firm 1

is the leader at t∗1. The firms’ strategies in the SPE are:

σ1(t) =

{
1 if [t = maxi,s∈S{t∗i,s(t) = mi,s(t)}] & [i∗ = 1],

0 otherwise;
(12)
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σ2(t) =

{
1 if [t = maxi,s∈S{t∗i,s(t) = mi,s(t)}] & [i∗ = 2],

0 otherwise.
(13)

These strategies require that firm i∗ enters when it has no further incentive to

wait in the hope of a higher return later, taking into account the iterative process

described earlier – that is t = maxi,s∈S{t∗i,s(t) = mi,s(t)} – and the other firm

prefers to be a follower. Note that, for example, when both leader-maximized

equilibria are present, this strategy profile selects the equilibrium in which firm 1

is the leader.

Now consider the firm strategies in the other type of equilibrium in Proposi-

tion 3(1), which can be either leader-maximized or leader-constrained :

σ1(t) =

{
1 if [t = maxi,s∈S\{i=1,s=1}{t∗i,s(t) = mi,s(t)}] & [i∗ = 1],

0 otherwise;
(14)

σ2(t) =

{
1 if [t = maxi,s∈S\{i=1,s=1}{t∗i,s(t) = mi,s(t)}] & [i∗ = 2],

0 otherwise.
(15)

The main difference from the previous strategies given by equations 12 and 13 is

that the firms play the earlier leader-maximized equilibrium, rather than the one

with later entry. This is captured in the strategies above by i, s ∈ S \ {i = 1, s =

1}, which means that firms are iterating backwards, adjusting their preemption

strategies accordingly, from the possible entry time with t = t∗2.

For Proposition 3(2) the strategy pairs given in either set of equations sup-

port the same entry time as t∗1 < m1. As a result, there is no leader-maximized

equilibrium with entry at t∗1.

Continuous version of the centipede game

Now we describe a specific example of Proposition 3(2) with several (many) pre-

emptive iterations, leading to inefficient early entry. To do so, consider the follow-

ing continuous (market-entry) version of the centipede game illustrated in Figure 4.

Note that while there is a positive trend in the payoffs to each firm, they experi-

ence several peaks and troughs along the way. These mountainous looking payoffs
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could represent the seasonally changing payoffs associated with new versions of

two smartphones as they become available. Important also in this example is that

the local peak for one firm roughly corresponds to a time of a local trough for its

rival. In the Figure, firm 1’s potential payoffs are shown in panel (a) with the top

line being its follower payoff F1 and the bottom line its leader payoff L1, whilst

panel (b) shows the follower and leader payoffs for firm 2. Consider the equilib-

rium outcome of this centipede entry model. As with the previous equilibria, if

the game reaches t∗1 without entry, firm 1 would continue waiting until m1, as its

leader payoff is increasing and there is no credible threat of entry by firm 2. This is

a situation that firm 2 wishes to avoid, so it would be willing to enter at m2 to pre-

empt firm 1’s opportunistic actions after this time. But, given the non-monotonic

nature of the payoffs, this entry time provides firm 1 with a lower follower payoff

than it could have got as a leader previously. Moreover, entry by firm 2 at t∗2 is

not credible, because firm 2’s leader payoff is increasing at this time. To gazump

this, firm 1 will come in at m1,2, if there had been no entry prior. This preemptive

process of iterating backwards moves through all of the peaks (and corresponding

rival troughs) – before entry in equilibrium occurs immediately at t∗1,6 = m1,6 = 0.

The intuition for this equilibrium is the same as above – to avoid a lower future

payoff a firm will enter earlier, a move which itself induces even earlier entry by its

rival, and so on. In this game, the payoffs to the two firms need not be equalized,

as in the classic preemption equilibrium. Moreover, entry here is inefficient – both

firms could be made better off if they could wait and enter later.

4 Concluding comments

The decision when to launch a new product or production process is a critical

question for many firms; it can help determine profit, firm survival and the shape

of markets. More generally, it drives economic development. Given its importance,

innovation has received a great deal of attention from economists, such as in the

seminal work of Fudenberg and Tirole (1985). Getting the timing of innovation

right is difficult enough for any firm, let alone when it has a rival breathing down its

neck. In this paper we examine innovation as a market entry game with duopoly

rivals in a very general framework; our main model only assumes that payoffs
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are continuous and that there is a second-mover advantage. Most importantly,

inspired by Katz and Shapiro (1987), we allow for asymmetries between firms. This

incorporates the situation when firms have different capabilities or technologies.

Moreover, allowing for non-monotonic leader payoffs captures situations where

multiple technologies or products become available for adoption at different times.

The second-mover advantage equilibria we observe can be familiar, replicating

those in the literature (Katz and Shapiro, 1987; Dutta et al., 1995; Hoppe and

Lehmann-Grube, 2001). We dub these equilibria leader-maximized equilibria, as

the pioneer chooses a time of entry that maximizes its payoff, given that it has to

be the first into the market. The more general payoffs in our game also allows for

the possibility for different types of equilibria. For example, with non-monotonic

payoffs there can be equilibria in which there are several iterations, with each

successive preemption designed to avoid a lower payoff in the future. This incentive

to preempt, even with the ever-present follower advantage, can lead to a leader-

constrained equilibrium in which the leader enters at a time before its leader payoff

function is maximized. This type of preemption equilibrium does not arise in the

previous literature. This analysis suggests that the incentive to preempt does

not rely on a first-mover advantage. Moreover, as our continuous version of the

centipede (entry) game illustrates, the timing of entry can be inefficiently early.

Finally, our focus has been on entry (or innovation). Our analysis applies

equally well to a stopping game considering the time to exit a market. It could be

that each firm is better of remaining in the market at any point in time rather than

exiting, but anticipating future outcomes a firm may opt to exit earlier, possibly

inefficiently so.

Appendix A - Example of a game with a Second-

Mover Advantage

To provide some further intuition for the main results in the paper, and to allow

for a closer comparison with the previous literature, we construct the following

modification of Katz and Shapiro (1987). Essentially, we augment their example

to allow 1) for more than one potential innovation that firms can put into practice;
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and 2) for the second-mover advantage. As noted in the introduction, firms are

often faced with the choice between two or more alternative technologies. Exam-

ples of competing technologies for tablets, phone handsets and computer hardware

come to mind, but a similar choice often has to be made when considering adopting

cost-reducing technologies. Each technology will typically come with its own ad-

vantages and, moreover, the relative advantages of a given technology can change

over time. Our framework is general enough to capture all of these scenarios.

Here, we completely characterize all SPE of this two-player innovation game us-

ing the algorithm outlined in this paper. By doing so, we show how an augmented

example of Katz and Shapiro (1987) can provide micro-foundations for the leader-

constrained equilibrium with multiple iterations, as illustrated in Figure 3 and

discussed above.

Consider the case when two firms are contemplating when to upgrade to a new

technology, which they can implement at some time ti ∈ [0,∞) for i = 1, 2. Each

firm can choose to implement one of the two options k = 1, 2 available. For each

firm, the old (null) technology generates a flow of profit normalized to zero; that

is, πi0 = 0, i = 1, 2. After adoption, the new technology k affords firm i a flow of

profit πik > 0.

The payoffs are discounted by a common discount factor e−rt, so that the net-

present value of profits for the leader (firm i) entering at ti with technology k

is:

Li(ti, k) =

∫ ∞
ti

e−rtπikdt−K(ti, k) =
e−rti

r
πik −K(ti, k). (16)

Here, we use the exponentially declining development cost function, K(ti, k) =

K0e
−λkti +Kik, with λk > r.

The payoff to firm i if firm j enters with technology k at t is:

Fi(ti, k) = Li(ti, k) + ∆, (17)

where ∆ > 0. The assumption here is that the leader needs to incur some sunk

costs to develop the market. Once these set-up costs have been incurred, the fol-

lower can enter, free riding on the leader’s investment. Consequently, the difference

between being a leader or a follower for each firm is equal to these set-up costs ∆.
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As firm i maximizes its payoff, the net-present value of profits for the leader

(firm i) entering at ti with the best technology available is:

Li(ti) = max
k=1,2

[
e−rti

r
πik −K(ti, k)

]
; (18)

which results in

Fi(ti) = Li(ti) + ∆. (19)

The market demand in each period is 1 unit at a constant price of 1. We

assume that firms share the market equally; the profits before and after entry are

πi0 = (1− c0i )/2, πik = (1− ciik)/2,

where ci0 = 1 and cik < 1 are the costs corresponding to the old and new technology

cases.

Several points are worth noting here in relation to this example and the analysis

of the model in the paper. Firstly, the follower’s payoff function Fi(t) is always

higher than the leader’s payoff function Li(t) and the parameters are such that the

payoffs are always positive. This means that Assumptions 5 and 6 are satisfied, and

that we can apply the framework developed. Secondly, the curves – L1(t), L2(t),

F1(t) and F2(t) – in Figure 3 are all derived using equations (18) - (19). In this

way, we are able to construct an entry game with non-monotonic payoff functions

and a second-mover advantage with only a slight augmentation to an established

example in the literature. Moreover, we are able to use this example to illustrate

our novel leader-constrained equilibrium (with multiple iterations) when there is

a second-mover advantage.
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Appendix B

Let us redefine points t∗i,s(t
′) and mi,s(t

′) for a truncated game starting from t′.

For each firm i ∈ {1, 2} define the following time:

t∗i (t
′) =

{
arg max

t
Ai(t

′, T ) when Ai(t
′, T ) 6= ∅,

t′ when Ai(t
′, T ) = ∅.

(20)

In addition, assume without loss of generality that t∗1(t
′) ≥ t∗2(t

′). Moreover, define

recursively for s ≥ 2 the following times t∗1,s(t
′) and t∗2,s(t

′):

t∗1,s(t
′) =

{
arg max

t
Ai(t

′, t∗2,s−1) when Ai(t
′, t∗2,s−1) 6= ∅,

t′ when Ai(t
′, t∗2,s−1) = ∅;

(21)

and

t∗2,s(t
′) =

{
arg max

t
Ai(t

′, t∗1,s) when Ai(t
′, t∗1,s) 6= ∅,

t′ when Ai(t
′, t∗1,s) = ∅.

(22)

with initial values t∗1,1(t
′) = t∗1(t

′) and t∗2,1(t
′) = t∗2(t

′).

Next, define recursively for s ≥ 2 the following times m1,s(t
′) and m2,s(t

′):

m1,s(t
′) = min arg max

t
L1(t) for t′ ≤ t ≤ t∗2,s−1(t

′); (23)

and

m2,s(t
′) = min arg max

t
L2(t) for t′ ≤ t ≤ t∗1,s(t

′). (24)

with initial values m1,1(t
′) = m1(t

′) and m2,1(t
′) = m2(t

′).

Appendix C

Proof of Lemma 1

Compare t∗i,s and mi,s. First, they both are defined on the same time range. For

i = 1 the range is [0, t∗2,s−1], while for i = 2 the range is [0, t∗1,s]. Second, mi,s

25



is the time at which firm i’s leader payoff is maximized. This means that, for

firm i itself, the NPL condition is satisfied at mi,s, but not beyond this time.

Furthermore, t∗i,s is constructed to be the maximum time that satisfies both the

NPL and NPF conditions. Consequently, t∗i,s cannot exceed mi,s as it belongs to

a more restrictive set. Depending on whether the NPF is satisfied at mi,s will

determine whether t∗i,s is equal to or less than mi,s. �

Proof of Proposition 2

This proof consists of four parts: (A), (B), (C) and (D). In part (A) we show that

all SPE with positive entry times must belong to either A1(0, T ) if firm 1 enters

first or A2(0, T ) if firm 2 enters first. In part (B) we prove that t∗1 and t∗2 given

by (4) are well defined. Part (C) proves that if A1(t
∗
1, T ) = ∅ then there are two

SPE with firm 1 entering at t = t∗1 and firm 2 entering at t = t∗2. Finally, part (D)

considers the scenario when A1(t
∗
1, T ) 6= ∅. In this case there is a unique SPE with

firm 2 entering at t = t∗2.

(A) As a preliminary step, let us prove all SPE with positive entry times

must belong to either A1(0, T ) if firm 1 enters first or A2(0, T ) if firm 2 enters

first. Assume, on the contrary, that there is an SPE with a positive entry time

t∗i /∈ Ai(0, T ). It must be the case that both NPL and NPF conditions are satisfied.

If condition NPL is not satisfied, the leader (player i) will have an incentive to enter

earlier at τ . On the other hand, if condition NPF is not satisfied, the follower

(player j) will have an incentive to preempt the leader (player i) and enter slightly

earlier, as in Fudenberg and Tirole (1985). Neither of these situations are possible

in equilibrium. Consequently, there is a contradiction, proving the statement that

all SPE with positive entry times must belong to either A1(0, T ) if firm 1 enters

first or A2(0, T ) if firm 2 enters first.

(B) Next, let us prove that t∗i for i = 1, 2 given by (4) is well defined. Specifi-

cally, there exists a unique t∗i at which either Li(t) is maximized over Ai(0, T ) or

t∗i = 0 when Ai(0, T ) = ∅. When Ai(0, T ) = ∅, entering at t∗i > 0 can not be an

SPE; so the only potential entry time for player i is t∗i = 0.

Now consider the situation when Ai(0, T ) is not empty. Let us prove the

existence of the solution to this problem of maximizing Li(t) over Ai(0, T ) when
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Ai(0, T ) 6= ∅. Note that set Ai(0, T ) is bounded because mi is finite, where mi

is the time at which Li(t) reaches its global maximum (Assumption 4). We need

to show that set Ai(0, T ) always contains its supremum. Assume that it does

not. This means that there is a sequence {tk} contained in Ai(0, T ) that converges

to some limit t∗i that is not contained in set Ai(0, T ). This requires that either

NPL or NPF is not satisfied for t∗i . As sequence {tk} belongs to Ai(0, T ), it

means that both NPL and NPF hold for sequence {tk}. As both Li(t) and Fj(t)

are continuous functions, it means t∗i also belongs to Ai(0, T ). This leads to a

contradiction, proving existence.

The uniqueness follows immediately from the way set Ai(0, T ) is constructed.

If two entry times were to maximize Li(t) over Ai(0, T ), then the later time would

not belong to Ai(0, T ).

(C) Next, let us consider case (1) when A1(t
∗
1, T ) = ∅. In this scenario there

are two SPE with firm 1 entering at t = t∗1 and firm 2 entering at t = t∗2. Before

proceeding, let us prove that A2(t
∗
2, T ) = ∅. Note that two assumptions 1) non-

increasing F1 and 2) a smaller payoff to the leader (second-mover advantage) imply

that the follower payoff F1(t
∗
2) dominates any leader payoff L1(t) for t ≤ t∗2. This

means the NPF is satisfied at and beyond t∗2 and this critical time is determined

the by the NPL condition. Consequently, A2(t
∗
2, T ) = ∅.

Now consider an SPE where firm i is the leader and firm j is the follower

(i, j = 1, 2 and i 6= j). First, given t∗i ∈ Ai(0, T ), if the follower deviates by

entering at some time τ < t∗i , it will get a payoff of Lj(τ) < Fj(t
∗
i ). If it deviates

by entering at t∗i , it will get a payoff of (Lj(t
∗
i )+Fj(t

∗
i ))/2, which is not greater than

Fj(t
∗
i ). If the follower enters at τ > t∗i , there will be no change to the equilibrium

outcome. Consequently, there is no profitable deviation for the follower.

Second, in part (A) we proved that there is no equilibrium with the leader

entering at τ > t∗i . Given t∗i ∈ Ai(0, T ) and Ai(t
∗
i , T ) = ∅, if the leader deviates by

entering earlier at some time τ < t∗i , it will get a payoff of Li(τ) < Li(t
∗). There

is no profitable deviation for the leader.

There is no other equilibria as entering at t∗i dominates entering at any other

time. Consequently, we have proved that there are two equilibria in case (1).

(D) Next, let us consider case (2) when A1(t
∗
1, T ) 6= ∅. In this scenario relative

to part (C), firm 1 entering at t = t∗1 is not an equilibrium as at t∗1 firm 1 has an
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incentive to wait. As a result firm 2 will have incentive to preempt firm 1’s entry.

The other equilibrium is not affected as the same logics as in part (C) applies.

Consequently, there exists only one SPE with firm 2 entering at t = t∗2. This

observation concludes the proof of this Proposition. �

Proof of Proposition 3

Similar to the proof of Proposition 2, this proof consists of four parts: (A), (B),

(C) and (D). We borrow part (A) from Proposition 2; that is, below we will rely

on the result that all SPE with positive entry times must belong to either A1(0, T )

if firm 1 enters first or A2(0, T ) if firm 2 enters first. In part (B) we prove that t∗1,s

and t∗2,s given by (5) and (6) are well defined. Part (C) proves that if A1(t
∗
1, T ) = ∅

then there are two SPE with firm 1 entering at t = t∗1 and firm i∗ entering at

t = t∗∗. Finally, part (D) considers the scenario when A1(t
∗
1, T ) 6= ∅. In this case

there is a unique SPE with firm i∗ entering at t = t∗∗.

(B) Here we want to extend the part (B) proof from Proposition 2; that is,

we need to prove that t∗i,s for i = 1, 2 and s > 1 given by (5) and (6) are well

defined. Note that the only difference from earlier proof is that we construct sets

Ai(.), that are over shorter horizons. Ai(0, T ) is replaced with either Ai(0, t
∗
2,s−1)

or Ai(0, t
∗
2,s−1). The same logics directly applies.

(C) Next, let us consider case (1) when A1(t
∗
1, T ) = ∅. In this scenario there

are two SPE: one with firm 1 entering at t = t∗1 and the other with firm i∗ entering

at t = t∗∗. Note that when A2(t
∗
2, T ) = ∅, the part (C) proof from Proposition 2

directly applies. So we will only deal with the case when A2(t
∗
2, T ) 6= ∅. Note also

that even when A2(t
∗
2, T ) 6= ∅, the equilibrium with firm 1 entering at t = t∗1 is

not affected by the differences between two propositions. Consequently, we only

concentrate on the second equilibrium.

Consider an SPE where firm i∗ is the leader and the other firm j is the follower.

First, given t∗∗ ∈ Ai∗(0, T ), if the follower deviates by entering at some time

τ < t∗∗, it will get a payoff of Lj(τ) < Fj(t
∗∗). If it deviates by entering at t∗∗,

it will get a payoff of (Lj(t
∗∗) + Fj(t

∗∗))/2, which is not greater than Fj(t
∗∗). If

the follower enters at τ > t∗∗, there will be no change to the equilibrium outcome.

Consequently, there is no profitable deviation for the follower.
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Second, given t∗∗ ∈ Ai∗(0, T ) and Ai∗(t∗∗, T ) = ∅, if the leader deviates by

entering earlier at some time τ < t∗∗, it will get a payoff of Li∗(τ) < Li(t
∗∗), which

is not profitable. There is also no equilibrium with the leader entering at τ > t∗∗.

If the leader decides to wait at t∗∗, the follower will enter at its next convenient

time. As a result there is no profitable deviation for the leader. Consequently, we

have proved that there are two equilibria in case (1).

(D) Next, let us consider case (2) when A1(t
∗
1, T ) 6= ∅. In this scenario relative

to part (C), firm 1 entering at t = t∗1 is not an equilibrium as at t∗1 firm 1 has an

incentive to wait. As a result firm 2 will have incentive to preempt firm 1’s entry.

The other equilibrium is not affected as the same logics as in part (C) applies.

Consequently, there exists only one SPE with firm i∗ entering at t = t∗∗. This

observation concludes the proof of this Proposition. �
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