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Abstract

An estimator is incentive-compatible (for a given prior belief re-

garding the model’s true parameters) if it does not give an agent an

incentive to misreport the value of his covariates. Eliaz and Spiegler

(2019) studied incentive-compatibility of estimators in a setting with

a single binary explanatory variable. We extend this analysis to

penalized-regression estimation in a simple multi-variable setting. Our

results highlight the incentive problems that are created by the ele-

ment of variable selection/shrinkage in the estimation procedure.
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1 Introduction

The rise of data science and the growing use of big data has led to the adop-

tion of machine-learning techniques for the purpose of prediction and auto-

mated decision-making. For instance, online platforms rely on such methods

to display content that is predicted to be attractive for the user. These

methods are also starting to be used in the medical arena for automating

check-up and test appointments for patients based on their medical history.

The common practice is to feed the automatic prediction system data from

past users, in order to estimate the parameters of a model that relates a

user’s characteristics to his best outcome. The user is then assigned the

predicted outcome (say, a song or a doctor’s appointment) according to his

own personal characteristics, which he himself provides to the system - either

actively by means of an explicit report or passively through his observed be-

havior (e.g. his internet navigation history). A natural question that arises is

whether it is in the user’s best interest to truthfully report his characteristics

to the system that tries to predict his best outcome.

Obviously, if the user’s data is also utilized for other purposes that may

adversely affect him (e.g., being sold to third parties for purposes of mar-

keting or price discrimination), then the user may prefer not to disclose his

private characteristics. However, even if the user’s private information is

employed exclusively for the purpose of predicting his best outcome, do the

special features of common machine-learning methods incentivize the user to

distort his true characteristics?

While a wide variety of estimation techniques have been developed for big

data, the vast majority of them involve an element of variable selection - i.e.,

they try to identify the important variables for prediction and exclude others.

Variable selection (or “regularization”) is typically carried out by augmenting

the loss function of the estimation procedure (which is related to the distance

between the estimated variable and its true underlying value) to include

penalties for model complexity. A prevalent procedure knows as LASSO
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(Least Absolute Shrinkage and Selection Operator (Tibshirani (1996))) is a

variant on standard linear regression analysis, which adds a cost function

that penalizes non-zero coeffi cients. A penalized-regression procedure like

LASSO is considered useful in situations where users have a great number of

potentially relevant characteristics, but only few of them are actually relevant

for predicting the agent’s best outcome (i.e., the true data-generating process

is sparse). This feature of penalizing the inclusion of explanatory variables

creates an incentive for users not to disclose their true characteristics to the

system that employs this prediction method.

Specifically, we present a simple model of an interaction between an

“agent”and a “statistician”, where the latter represents an automated algo-

rithm that gathers data about the agent and outputs an action on his behalf.

The agent’s ideal action is a linear function of binary personal characteris-

tics. The parameters of this function are unknown. The statistician learns

about them by means of a sample that consists of noisy observations of the

ideal actions of other agents with heterogeneous characteristics. This sample

is the statistician’s private information - i.e., the agent is not exposed to it.

However, the sample design (i.e., the number of observations for each vector

of personal characteristics) is common knowledge. The statistician employs a

penalized linear regression to predict the agent’s ideal action as a function of

his characteristics. The penalty taxes non-zero estimated coeffi cients. We as-

sume it is a linear combination of the three most basic forms: L0, L1 (LASSO)

and L2 (Ridge).1 The agent’s characteristics are his private information, and

he reports them to the statistician. The action that the statistician takes

is the penalized regression’s predicted output, given the reported values of

the agent’s personal characteristics. We take the statistician’s procedure as

given, without trying to “rationalize”it (see a discussion in Section 2). The

agent’s payoff is a standard quadratic loss function - thus coinciding with the

1An L0 penalty is a fixed cost for the mere inclusion of a non-zero coeffi cient. An L1
penalty is a cost for the magnitude of the coeffi cient in absolute value. An L2 penalty is
a cost for the squared value of the coeffi cient.
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most basic criterion for evaluating estimators’predictive success.

We pose the following question: Fixing the statistician’s procedure and

the agent’s prior belief over the true model’s parameters, would the agent

always want to truthfully report his personal characteristics to the statisti-

cian? When this is the case for all possible priors in some class, we say that

the statistician’s procedure (or “estimator”) is incentive-compatible for this

class of priors. In Eliaz and Spiegler (2019) we analyzed a simple example

in which the agent has a single binary characteristic that he needs to report

to the statistician. In this case, we showed that an incentive problem arises

only in the presence of asymmetrically distributed sampling error.

This paper extends the example to the case of multiple binary variables.

The underlying source of the incentive problem in this setting is fundamen-

tally different than in the single-variable setting. In particular, the element

of variable selection in the statistician’s procedure can generate an incentive

problem even when the statistician faces no sampling error, and also when

the error distribution is symmetric. The reason is that the cumulative bias

due to the exclusion of some variables can be so large that the agent would

like to introduce a counter-bias by misreporting the value of a variable he

does expect to be included.

We proceed to investigate whether the estimator is incentive compatible

for some natural classes of the agent’s prior belief over the model’s true

coeffi cients. To be able to do this analytically and tractably, we focus on

normally distributed sample noise and assume that there is an equal number

of sample points for each value of the agent’s covariates. These assumptions

also ensure that OLS is incentive-compatible. That is, the only source of

incentive problems in our example is the penalization of model complexity.

The stark OLS benchmark thus enables us to focus on the role of variable

selection and shrinkage in generating incentive problems.

Our first main result is that the estimator is not incentive-compatible for

an unrestricted class of prior beliefs. The reason is that there exist prior
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beliefs that exhibit an asymmetry between variables, such that the agent

would like to misreport at least one characteristic. We then show that when

the agent’s prior over each coeffi cient is independent and symmetric around

zero (reflecting agnosticism regarding the effect of each variable), he has no

incentive to misreport. Finally, and perhaps most interestingly, when the

agent’s prior over each coeffi cient is i.i.d (but with a non-zero mean), the

agent has no incentive to misreport only if his characteristics vector is suffi -

ciently balanced - i.e., its numbers of 0’s and 1’s are not too different. This

result has the following implication with regards to an agent’s incentive to

hide his navigation history - say, by “deleting cookies”from his computer -

when facing an online platform that employs a penalized-regression predic-

tion method: The agent has an incentive to delete cookies only if there are

relatively few stored in his browsing history.

2 Related literature

Our paper joins a recent literature in computer science that studies the prob-

lem of a planner who wishes to compute and implement some function of

inputs provided by agents, where these agents can manipulate the inputs to

their advantage. Since this literature is growing rapidly, we mention here

only a sample of notable works, organizing them according to the kind of

statistical procedure that the statistician performs.

One strand of literature focuses binary classification procedures. Meir

et al. (2012) consider an environment with a set of input vectors, where

each vector is the private information of some agent. Agents report binary

labels for each vector. A planner wants to design an aggregate classifier of the

users’private information that minimizes the average mistake (misclassifying

an input) across users. The problem is that each agent can misreport his

information in an effort to minimize the average mistake only on his own

inputs. Under some restrictions on the domain, the authors characterize the
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optimal classifier among those that induce truth-telling.

Hardt et al. (2016) consider a population of users who independently

and privately draw an input from a common distribution. There is a true

underlying classifier that assigns a binary label, low or high, to each input.

A planner, who wishes to assign each agent to his true label, commits to a

classifier and asks each agent to report his input. Each agent can incur a

cost to manipulate his report. The agent trades off the probability of being

assigned the high label against the manipulation cost. The authors show

that for some family of cost functions, there exists a classifier for the planner

that attains a classification error that is arbitrarily close to the theoretical

minimum.

In Haghtalab et al. (2020), inputs are interpreted as features and the

associated label is interpreted as the agent’s quality. A planner observes only

a subset of the features and can assign (or classify) each vector of observable

features to a probability of accepting the agent. The planner’s objective is to

design a classifier that maximizes the expected quality of the agents, taking

into account that each agent can incur a cost to change his features so as to

maximize his probability of acceptance.

Kleinberg and Raghavan (2020) study a model in which an agent has a

budget of effort that he can privately allocate across actions. Each profile of

efforts induces some vector of observable outputs. A planner wishes to im-

plement a particular allocation by mapping each vector of outputs to a real

valued score, taking into account that the agents choose their allocation in

order to maximize their score. The authors show that under certain assump-

tions, a linear function of the outputs implements any desired allocation.

In Krishnaswamy et al. (2021), the key strategic decision for agents is

whether to withhold information. In their model, there is a known distrib-

ution of agents who are characterized by a vector of binary attributes and

an associated binary label. A planner, who aims to predict the label for

each agent, chooses a classifier that will be applied to reported attributes by
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agents. Agents can strategically omit attributes in order to maximize the

chance of being assigned the high label. The authors characterize classifiers

that maximizes the chances of correctly predicting the label of each agent,

subject to the constraint that truthful reporting is a dominant action.

A second related strand of literature focuses on statistical procedures

that, like the present paper, are based on linear regressions. Perote and

Perote-Pena (2004), Dekel et al. (2010) and Chen et al. (2018) consider the

problem of a statistician who aims to minimize a loss function over the union

of all the samples, while each agent would like the estimation to minimize the

loss function only over their own sample. The first paper characterizes loss

functions that induce truthful reporting in a dominant strategy equilibrium

when the function is linear and each agent’s sample is a single observation.

The second paper allows the statistician to pay the agents and also extends

the analysis to a larger class of functions and to samples that can be any arbi-

trary distribution. The third paper extends the analysis to multi-dimensional

inputs. The source of the conflict of interest between the planner and the

agents in these papers is essentially the same as in Meir et al. (2012).

Other papers in this second strand examine alternative motives for the

agents. Cummings et al. (2015) assume that agents may manipulate their

private information in order to avoid a loss of privacy (modeled via differen-

tial privacy). The authors characterize a payment scheme that under certain

assumptions, achieves the following objectives as the number of agents in-

creases: (i) the mean squared error of the planner’s estimator goes to zero,

(ii) agents have no incentive to misreport and attain a positive payoff, and

(iii) the total payments to agents go to zero. Caragiannis et al. (2016) study

the problem of estimating the population mean of an unknown unidimen-

sional distribution from samples that are provided by strategic agents, who

wish to move the estimate as close as possible to their own value. The au-

thors characterize the worst-case optimal truthful estimator, and show that it

achieves a lower mean square error than the sample median (which is known
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to be strategy-proof). Cai et al. (2018) consider a statistician who wants to

estimate a function that maps each vector of inputs into a real-valued output.

The data for the estimation is privately held by agents who can provide only

a noisy observation of the output associated with each input, and must incur

a cost to reduce this noise. The authors analyze the problem of designing a

payment scheme that minimizes the sum of the mean squared error of the

estimator and the total payments to the agents.

Throughout the literature summarized in this section, a running theme is

the existence of an explicit conflict of interest between the statistician/planner

and the agents who provide the data - because the latter might be concerned

about their privacy, or they might have to incur a cost in order to provide

a precise report, or they might have a different objective than the statisti-

cian. In contrast, our question is whether variable selection and shrinkage -

which is a characteristic of prevalent machine-learning procedures - gives an

incentive to misreport, even in the absence of an explicitly modeled conflict

of interest between the two parties.

3 A Model

Let x1, ..., xK be a collection of binary explanatory variables; xk ∈ {0, 1} for
every k = 1, ..., K. Each variable represents a personal characteristic of an

agent. In the context of medical decision making, a variable can represent

a risk factor (obesity, smoking, etc.). Under the online-content-provision

interpretation, a variable can represent whether the agent visited a particular

website. Denote X = {0, 1}K and x = (x1, ..., xK). In what follows, it will

be convenient (as well as conventional) to add a fictitious variable x0, which

is deterministically set at x0 = 1.

A statistician must take an action a ∈ R on behalf of the agent (e.g.,

dosage of some drug, or a proportion of rock versus hip-hop music in a

playlist). The agent’s payoff from action a is −(a− f(x))2, where f(x) is the
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agent’s ideal action as a function of x, given by

f(x) =
K∑
k=0

βkxk

The coeffi cients β0, ..., βK are fixed but unknown. The value of x is the agent’s

private information. Before taking an action, the statistician privately gets

access to a sample that consists of N observations per value of x. For every

x ∈ X, the N observations are (ynx)n=1,...,N , where ynx = f(x) + εnx, and ε
n
x

is random noise that is drawn i.i.d from a normal distribution with mean

zero and variance σ2. Denote ε = (εnx)x,n. The observations do not involve

the agent himself. We have thus described an environment with two-sided

private information: the agent privately knows x, whereas the statistician

privately learns the sample.

We will discuss the importance of the uniform-sample assumption in Sec-

tion 3. The broader assumption that the statistician has observations for

every value of x means that the total number of observations is large relative

to the number of potentially relevant variables. It also rules out the possibil-

ity that some of the variables represent interactions among other variables.

This is a limitation of our model: In practice, one motivation for estimation

procedures that involve variable selection is the “big data”predicament of

having more explanatory variables than observations. However, another key

motivation for such procedures - namely, an underlying belief that the true

model is sparse (i.e. βk = 0 for most values of k) - is consistent with our

specification.

The statistician wishes to estimate the function f - equivalently, the co-

effi cients β0, ..., βK . He follows a penalized regression procedure that assigns

costs to including explanatory variables in the regression. We assume a gener-

alized penalty function that is additively separable in the three most common

forms of penalties: a fixed cost for the mere inclusion of a non-zero coeffi cient

(L0 penalty), a cost for the magnitude of the coeffi cient in absolute value
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(the LASSO or L1 penalty) and cost for the squared value of the coeffi cient

(the “Ridge”or L2 penalty).2

Formally, given the sample (ynx)n=1,...,Nx∈X , the statistician solves the follow-

ing minimization problem,

min
b0,...,bK

∑
x∈X

N∑
n=1

(ynx −
K∑
k=0

bkx
n
k)2 + 2KN

K∑
k=1

(
c01bk 6=0 + c1|bk|+ c2b

2
k

)
(1)

We denote the solution to this problem by b(ε, β) = (b0(ε, β), ..., bK(ε, β)),

and refer to it as the estimator. The dependence on (ε, β) follows from the

fact that the estimator depends on the sampled observations (ynx)n=1,...,Nx∈X , and

these observations are determined by (ε, β). Note that there are no costs as-

sociated with the intercept b0. Note also that the penalty costs are multiplied

by the number of observations, such that the cost per observation remains

constant. When c0 = c1 = c2 = 0, we are back with the OLS estimator.

We sometimes refer to c0, c1, c2 as complexity costs. We treat them as con-

stant per observation for notational convenience, as N is taken to be fixed

for almost throughout the paper.

Having estimated f , the statistician receives a report r ∈ X from the

agent. Denote r0 = 1 for convenience. The statistician then takes the action

a =
∑K

k=0 bk(ε, β)rk. The agent’s expected payoff for given β0, ..., βK is

therefore

−Eε

[
K∑
k=0

(bk(ε, β)rk − βkxk)
]2

(2)

The quadratic loss function is a standard criterion for evaluating estima-

tors’predictive success. Suppose r = x - i.e., the agent reports truthfully.

Then, f̂(x) =
∑K

k=0 bk(ε, β)xk is the predicted ideal action. Expression (2)

can thus be written as −Eε[f̂(x) − f(x)]2 - i.e., the agent’s expected payoff

is defined by the estimator’s mean squared error.

2A combination of LASSO and Ridge penalties is known as an "elastic net" regression.
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Discussion: Why does the statistician use penalized regression?

Real-life use of penalized regression methods such as (1) is motivated by

an attempt to perform well according to criteria like mean squared error.

Consider the following quote from Hastie et al. (2015, p. 7):

“There are two reasons why we might consider an alternative

to the least-squares estimate. The first reason is prediction ac-

curacy: the least-squares estimate often has low bias but large

variance, and prediction accuracy can sometimes be improved by

shrinking the values of the regression coeffi cients, or setting some

coeffi cients to zero. By doing so, we introduce some bias but

reduce the variance of the predicted values, and hence may im-

prove the overall prediction accuracy (as measured in terms of

the mean-squared error). The second reason is for the purposes

of interpretation. With a large number of predictors, we often

would like to identify a smaller subset of these predictors that

exhibit the strongest effects.”

The first reason says that in the absence of a clear prior idea of the

true data-generating process, a penalized regression is a plausible method

for making automatic predictions on the basis of statistical data. In this

informal sense, there is no conflict of interests between the two parties in

our model: the statistician follows a procedure that is considered useful for

predictive success, where the criterion for predictive success coincides with

the agent’s expected utility given the true model.

More formal justifications for penalized-regression methods (see Ch. 11

in Hastie et al. (2015)) often show that their predictive success (measured

by the mean squared error criterion) is good under some restrictions on the

domain of the true parameters β0, ..., βK - e.g., when K is large and yet the

statistician is convinced that βk = 0 for most values of k (or that βk = 0

with high independent probability for each k). This rationale for penalized
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regression is relevant for our example - see our analysis of restricted classes

of prior beliefs in Section 4.4. In contrast, another common justification for

penalized regression - namely, situations in which the number of covariates

is large relative to the number of observations - cannot be invoked in our

example, since it assumes that sample size increases exponentially with K.

This is a limitation of our example.

Note that this type of justification does not amount to a completeBayesian

rationalization of penalized regression. Although one can justify LASSO es-

timates as properties of a Bayesian posterior derived from some prior (Tib-

shirani (1996), Park and Casella (2008), Gao et al. (2015)), these properties

are not necessarily relevant for maximizing the agent’s welfare. Furthermore,

the priors that rationalize LASSO in this manner are rarely used in economic

applications (the priors in the above-cited papers involve Laplacian distrib-

utions over parameters).

The second justification for penalized regression that the quote from

Hastie et al. (2015) invokes is essentially a bounded rationality rationale.

Dealing with large models is diffi cult. Both practitioners of statistical analy-

sis and their audience benefit from a model that simplifies things by omitting

most variables, hopefully leaving only a few relevant ones. The penalty func-

tion is a way of capturing this implicit cognitive constraint. Penalized re-

gression is an instrument for mitigating false discovery when K is large. The

constant c0 can be interpreted as a “statistical significance threshold”that

excludes variables whose OLS-estimated coeffi cient is small. In this sense,

the statistician in our model (or his implicit audience) can be viewed as a

boundedly rational decision maker - somewhat as in Gabaix (2014), who of-

fers a more elaborate sparsity-based model to describe decision makers with

limited ability to pay attention to multiple variables.

Finally, the complexity cost c0 can be motivated by physical costs of

obtaining personal information from the agent. Even if many personal char-

acteristics are relevant for predicting the agent’s ideal action, it is costly
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to collect them from the agent (e.g. because this requires long forms), and

therefore it makes sense to truncate the list of variables in order to save these

implementation costs. However, while bounded rationality or physical data

collection are plausible informal justifications for the relevance of complex-

ity costs, they do not amount to strict rationalizations of the statistician’s

procedure, in the absence of an explicit model for how cognitive or physical

costs are traded off against some clear ex-ante objective.

3.1 Solving for the Estimator

We begin this sub-section with some notation that will serve us for the rest of

the paper. Let ȳ and ε̄ denote the sample averages of the dependent variable

and the noise:

ȳ =
1

2KN

∑
x∈X

N∑
n=1

ynx ε̄ =
1

2KN

∑
x∈X

N∑
n=1

εnx

In addition, ε̄xk=1 and ε̄xk=1 denote the average noise realization in the sub-

samples for which xk = 1 and xk = 0, respectively:

ε̄xk=1 =
1

2K−1N

∑
x|xk=1

N∑
n=1

εnx ε̄xk=0 =
1

2K−1N

∑
x|xk=0

N∑
n=1

εnx

Finally, define ∆k ≡ ε̄xk=1 − ε̄xk=0.

We are now able to give a complete characterization of the solution to the

statistician’s penalized regression problem. Our convention will be that when

the statistician is indifferent between including and excluding a variable, he

includes it. This characterization makes use of an auxiliary estimator b̃k of
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βk defined as follows:

b̃k(ε, β) =


(βk + ∆k − c1)/(1 + 2c2) if βk + ∆k ≥ c1

(βk + ∆k + c1)/(1 + 2c2) if βk + ∆k ≤ −c1
0 if −c1 < βk + ∆k < c1

(3)

Lemma 1 The solution to the statistician’s minimization problem (1) is as

follows:

bk(ε, β) =

{
b̃k(ε, β) if (b̃k(ε, β))2 ≥ 2c0

0 if (b̃k(ε, β))2 < 2c0
(4)

for every k = 1, ..., K, and

b0(ε) = ȳ − 1

2

K∑
k=1

bk(ε, β)

Note that (4) means that when the statistician (who does not know βk

and does not observe the realized noise in each data point) performs the

penalized regression and ends up including the k-th variable, the numerical

estimate of βk is determined by the true value of βk and the realized sample

noise according to the function described in (3).

The L2 penalty factor shrinks the coeffi cient bk but it does not lead to

variable selection - i.e., it does not affect the statistician’s decision whether

to set bk 6= 0. In contrast, the L0 penalty term only leads to variable selection

but it does not affect the value of bk conditional on being non-zero. Finally,

the L1 penalty term leads to both shrinkage and variable selection. When

c1 = c2 = 0, the characterization of bk is very simple: bk = βk + ∆k when

(βk + ∆k)
2 ≥ 2c0, and bk = 0 when (βk + ∆k)

2 < 2c0. When c0 = 0, bk = b̃k.

Note that bk(ε, β) is only a function of βk + ∆k - i.e., it is functionally

independent of βj and ∆j for all j 6= k (this simplicity is due to our assump-

tion of a uniform sample). Of course, this by itself does not imply that it
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is statistically independent of ∆j, j 6= k. However, the assumption that the

sample noise is normally distributed implies that for every k = 1, ..., K:

∆k ∼ N(0,
σ2

2K−2N
)

This gives rise to the following useful observation.

Lemma 2 For every distinct k, j ∈ {1, ..., K}, ∆k and ∆j are statistically

independent.

This lemma implies that the estimators for different coeffi cients k, j > 0

are both functionally and statistically independent.

3.2 Incentive Compatibility

The following are the key definitions of this paper.

Definition 1 The estimator is incentive compatible at a given prior
belief over the true model’s parameters β = (β0, β1, ..., βK) if the agent is

weakly better off with truthful reporting of his personal characteristic, given

his prior. That is,

EβEε

[
K∑
k=0

(bk(ε, β)− βk)xk

]2
≤ EβEε

[
K∑
k=0

(bk(ε, β)rk − βkxk)
]2

for every x = (x1, ..., xK), r = (r1, ..., rK).3

In this definition, the expectation operator Eε is taken with respect to
the given exogenous distribution over the noise realization profile (since the

agent does not observe the statistician’s sample). The expectation operator

3Recall that r0 = x0 = 1 by definition.
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Eβ is taken with respect to the agent’s prior belief over β. Note that this
definition does not rely on the explicit solution we provide for the estimator,

and would therefore be well-defined in extensions of the model for which a

simple closed-form solution for the estimator is unavailable.

Definition 2 The estimator is incentive compatible if it is incentive com-
patible at every prior belief. Equivalently,

Eε

[
K∑
k=0

(bk(ε, β)− βk)xk

]2
≤ Eε

[
K∑
k=0

(bk(ε, β)rk − βkxk)
]2

(5)

for every β = (β0, ..., βK), x = (x1, ..., xK) and r = (r1, ..., rK).

Incentive compatibility means that the agent is unable to perform better

by misreporting his personal characteristic, regardless of his beliefs over the

true model’s parameters. When incentive compatibility fails, there are op-

portunities for new firms to enter and offer the agent paid advice for how to

manipulate the procedure - in analogy to the industry of “search engine opti-

mization”. Incentive compatibility eliminates the need for such an industry.

In some contexts (especially online content provision), certain misreporting

strategies take the form of erasing part of the agent’s internet navigation his-

tory (“deleting cookies”). Such deviations are straightforward to implement,

and the agent can check if it makes him better off in the long run. Definitions

1 and 2 may be interpreted as Bayesian and ex-post incentive-compatibility,

where the relevant state space consists of the possible realizations of β.

The incentive compatibility requirement can be described as a collection

of bias-variance trade-offs between our estimator and alternative ones. Be-

cause of the form of the agent’s payoff function, his expected utility takes the

form of mean square deviation of the estimator from the true model. This

loss function is known to be decomposable into two terms, one capturing

the bias of estimator and another its variance. Comparing the predictive
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success of different estimators thus boils down to trading off the estimators’

bias and variance. The incentive compatibility condition can be viewed as a

bias-variance comparison between two estimators: one is the statistician’s es-

timator, and another is an estimator that applies the statistician’s procedure

to r rather than x. The latter is not an estimation method that a statistician

is likely to propose, but it arises naturally in our setting.

4 Analysis

Eliaz and Spiegler (2019) analyzed the case of K = 1 and showed that a

symmetric noise distribution ensures incentive-compatibility of the estima-

tor. Since we assume here that the noise is normally distributed, this settles

the case of K = 1. Let us turn to analyzing the estimator’s incentive com-

patibility when K > 1.

4.1 Preliminary Observations

We begin with some convenient notation. First, represent a deviation from

truth-telling by the subset M = {k = 1, ..., K | rk 6= xk}. That is, M is the

set of variables that the agent’s reporting strategy misrepresents. Second,

denote

wk = 1− 2xk

This is merely a rescaling of xk such that it gets the values −1 and 1.

The normality assumption - specifically, the property that the noise den-

sity is a well-defined, decreasing function of the distance from zero - enables

a useful characterization of the ex-ante expectation of estimated coeffi cients.

Recall that the formula for bk(ε, β) is purely a function of βk + ∆k, and that

the distribution of ∆k is the same for all k. Therefore, we can write the
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ex-ante expectation of bk(ε, β) as a deterministic function of βk:

e(βk) = Eε(bk(ε, β))

Lemma 3 If for every x and n, εnx is i.i.d according to a normal distribution,
then the function e is: (i) anti-symmetric; (ii) strictly increasing, and (iii)

shrinking βk toward zero - i.e., e(βk)βk > 0 and 0 < |e(βk)| < |βk| whenever
βk 6= 0.

Parts (i) and (ii) only rely on symmetry of the sample noise distribution,

without requiring normality. When c0 = 0, part (iii) (which means that the

estimator shrinks the true coeffi cient on average) holds whenever the sample

noise has symmetric density. However, when c0 > 0, it also requires the

property that the density of sample noise is decreasing in the distance from

zero.

The following is an alternative formulation of the inequality that underlies

the definition of incentive compatibility.

Lemma 4 A deviation M is unprofitable for given β, x if and only if(∑
k∈M

e(βk)wk

) K∑
k=1

βkwk −
∑
j /∈M

e(βj)wj

 ≥ 0 (6)

This condition is convenient because it is stated entirely in terms of the

expected coeffi cients of individual variables according to the agent’s prior.

4.2 Two Benchmarks

Before we embark on our analysis, two benchmark cases will be useful. These

cases do not require the assumption that the sample noise is normally dis-

tributed.
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Benchmark I: Precise Measurement

Suppose that εnx = 0 with probability one for every n, x. Consider the L0
estimator - i.e., c0 > 0 = c1 = c2. Then, for every k, bk = βk if (βk)

2 ≥ 2c0,

and bk = 0 otherwise. The subset of selected variables is given by V = {k =

1, ..., K | (βk)2 ≥ 2c0}. The inequality (6) can be written as( ∑
k∈V ∩M

βkwk

)( ∑
k/∈V−M

βkwk

)
≥ 0 (7)

When K = 1, this is reduced to 0 ≥ 0 or β21 ≥ 0, which obviously holds.

The condition is also satisfied when K = 2, for the following reason.

Without loss of generality, let x = (0, 0) and consider the possible config-

urations of V and M . First, suppose that V = M = {1, 2}. Then, the
inequality becomes (β1 + β2)

2 ≥ 0. Second, suppose that V = {1, 2} and
M = {1}. Then, the inequality becomes (β1)

2 ≥ 0. Third, suppose that

V = M = {1}. Then, the condition becomes β1(β1 + β2) ≥ 0. This in-

equality must hold because by the definition of V , |β1| ≥
√

2c0 ≥ |β2|, such
that sign(β1 + β2) = sign(β1). The cases of V = {1, 2},M = {2} and
V = M = {2} are essentially the same. Finally, if V ∩ M is empty, the

condition becomes 0 ≥ 0.

However, incentive compatibility can fail when K > 2. To see why,

suppose thatK = 3, and let β1 =
√

2c0+δ, β2 = β3 = −
√

2c0+δ, where δ > 0

is arbitrarily small. Then, V = {1}. Suppose that the agent’s characteristics
are x = (0, 0, 0), and that he deviates to the report r = (1, 0, 0) - i.e.,

M = {1}. Then, V ∩M = {1} and V −M = ∅. The condition becomes

β1 · (β1 + β2 + β3) ≥ 0

This inequality fails because β1+β2+β3 = −
√

2c0+3δ < 0, whereas β1 > 0.

Thus, unlike the K = 1 case, precise measurement of coeffi cients does not

eliminate the incentive problem due to variable selection. The reason is as
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follows. When there are multiple variables, omitting some of them because

their coeffi cients are too close to zero leads to a biased action. The bias from

the omission of any single variable is small (because by definition, their true

coeffi cients are small to begin with). However, omitting several variables can

generate a large cumulative bias, such that the agent may find it profitable

to counter this bias by misreporting the value of one of the variables that

are selected.

Benchmark II: OLS

Now consider the model with non-degenerate noise, but without variable

selection - i.e., c0 = c1 = c2 = 0. This produces the OLS estimator bk =

βk + ∆k for every k = 1, ..., K.

Proposition 1 The OLS estimator is incentive-compatible.

Thus, OLS estimation does not generate an incentive problem. Note that

the result does not rely on any property of the sample noise distribution

beyond the assumption of zero mean. Instead, it relies on the property

that ε̄xk=1 and ε̄xk=0 are i.i.d, which in turn relies on the uniform-sample

assumption. It should be emphasized that the OLS estimator does not induce

the Bayesian-optimal action given the agent’s prior. Nevertheless, this de-

facto conflict of interests does not give the agent an incentive to misreport his

personal characteristics. It is easy to verify that this conclusion extends to

the case of Ridge regression - i.e., c2 > 0 = c0 = c1. Thus, variable selection

is crucial for the incentive to misreport.

4.3 Failure of Incentive Compatibility

Let us now turn to the case of noisy measurement where either c0 > 0

or c1 > 0 or both, such that the statistician’s procedure involves variable

selection. The following is our first main result, which is a simple consequence
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of Lemma 4 and our observation that |βk| > |e(βk)| (see part (iii) of Lemma
3).

Proposition 2 The estimator is not incentive-compatible for any K > 1.

Proof. Suppose that the agent’s prior is degenerate, with βk = 0 for all

k > 2. Then, e(βk) = 0 for all k > 2. Consider a deviation M = {1}. The
condition for its unprofitability is

(e(β1)w1) (β1w1 + β2w2 − e(β2)w2) ≥ 0

Select β1 and β2 such that sign(β1w1) = −sign(β2w2). Since sign(e(β1)) =

sign(β1) and sign(β2 − e(β2)) = sign(β2), we obtain that if sign(w2) =

−sign(β2) and |β1| is suffi ciently small relative to |β2|, the inequality will be
violated.

Thus, unlike the precise-measurement benchmark case, noisy measure-

ment means that the estimator fails incentive compatibility even whenK = 2.

4.4 Incentive Compatibility for Restricted Classes of

Priors

In the remainder of this section, we characterize incentive compatibility for

three specific families of priors.

An ultra-sparse prior

Suppose that the agent believes that only one variable is relevant, say β1 > 0,

whereas βk = 0 for all k > 1. Then, e(βk) = 0 for all k > 1. If 1 /∈ M , the
condition for the unprofitability of the deviation M trivially becomes 0 ≥ 0.

If 1 ∈ M , the condition is reduced to e(β1)β1 ≥ 0, which holds by part (iii)

in Lemma 3. This observation implies the following corollary.
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Corollary 1 The estimator is incentive-compatible at any prior over (β1, ..., βK)

that only assigns positive probability to profiles in which at most one coeffi -

cient is non-zero.

Independent, symmetric priors

Suppose that the agent’s prior over (β1, ..., βK) is independent across compo-

nents, such that for each k = 1, ..., K, the prior over βk is symmetric around

zero. This reflects the agent’s agnosticism regarding the sign of the effect

of each variable. We do not require the priors to be identical. Also, the

agent’s belief over β0 is irrelevant. Given such a prior, the agent will report

truthfully if the L.H.S of (6) is non-negative in expectation (with respect to

the agent’s prior) for every deviation M .

Proposition 3 Suppose that the agent’s prior over βk for each k is indepen-
dent and symmetric around zero. Then, the estimator is incentive-compatible

at this prior.

i.i.d priors

Now suppose that the agent’s prior over βk is i.i.d for each k. Let β
∗ denote

the expectation of βk. Accordingly, e
∗ is the expected estimated coeffi cient

of each variable.

In this special case incentive compatibility has a very simple structure

because the most profitable deviation can be pinned down. The following

notation is useful for our next result. For any x ∈ X, define m(x) as the

number of components k = 1, ..., K for which xk = 1. Define the subset

M∗ ⊆ {1, ..., K} as follows:

M∗ =

{
{k | xk = 1} if m(x) ≤ K

2

{k | xk = 0} if m(x) > K
2

That is,M∗ is the smaller between the set of characteristics that get the value

1 and the set of characteristics that get the value 0. Denote m∗ = |M∗|.
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Proposition 4 Suppose that the agent’s prior over βk for each k is i.i.d.
Then, the following three statements are equivalent:

(i) The estimator is incentive-compatible at the agent’s prior.

(ii) M∗ is not a profitable deviation.

(iii) The following inequality holds:

E(e(β)β) + (e∗)2(K −m∗) + e∗β∗[(m∗ − 1)− (K −m∗)] ≥ 0

Suppose that there is an equal number of 1’s and 0’s in x - i.e., m∗ = K
2
.

Plugging this value into the condition for incentive compatibility, we obtain

the following corollary.

Corollary 2 Suppose that the agent’s prior over βk for each k is i.i.d. When
m(x) = K

2
, truth-telling is optimal.

Thus, the characteristics vectors that are most conducive to deviation

from truth-telling are those that are very skewed - i.e., the number of 1’s is

either very small or very large. When the vector is perfectly balanced (with

the same number of 0’s and 1’s), truth-telling is optimal. The result also im-

plies that the x that is most conducive to violation of incentive compatibility

has m = 1, such that the condition for profitable deviation becomes

E(e(β)β)− e∗(β∗ − e∗)(K − 1) < 0

It follows that if K is small enough, the estimator is incentive-compatible,

but when K is large enough, there will be values of x for which the agent

will deviate from truth-telling.

Comment: “Deleting cookies”

Suppose that the set of feasible deviations is restricted, such that the agent

can only deviate downward - i.e. if rk 6= xk then xk = 1 and rk = 0. One
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interpretation is that every variable indicates whether a particular “cookie”

is installed on the agent’s computer (where K is the number of cookies on

which there is data); the agent can delete cookies but he cannot manufacture

a “fake cookie”.4 Suppose that the agent’s prior over βk is i.i.d across k.

Our previous characterization is the same, except that M∗ is now forced to

be {k | xk = 1}, such that truthful reporting is profitable if only if

E(e(β)β) + e∗β∗(m(x)− 1)− e∗(β∗ − e∗)(K −m(x)) < 0

Thus, the values of x that are conducive to misreporting by deleting cookies

are those in which m(x) is small - i.e., when the number of cookies is small

(and in particular, strictly lower than K
2
). Note that in this special case,

checking whether truthful reporting is optimal for the agent is simple - it

suffi ces to compare it with the deviation of deleting all the cookies.

5 Conclusion

This paper examined the incentive compatibility of penalized regression with

multiple variables. We constructed a simple example that involves binary

covariates, uniform sample design and normally distributed sample noise.

These simplifying assumptions played two roles. First, they ensured that

the unpenalized-regression (OLS) benchmark is incentive-compatible, thus

enabling us to focus on the incentive effects of variable selection and shrink-

age. Second, they gave rise to simple closed-form solutions for the penalized-

regression estimators, which enabled a tractable characterization of incentive

compatibility for various classes of prior beliefs.

These characterizations conveyed two major insights. First, when the

4An incentive to delete cookies in order to manipulate an estimator bears resemblance
to strategically witholding information in order to manipulate a classifier. This latter
incentive was studies by Krishnaswamy et al. (2020), who propose methods for training
classifiers that will make them robust to this type of manipulation.
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agent’s prior belief over variable coeffi cients displays an asymmetry across

variables, there is an incentive problem because the agent may want to mis-

report the variable his prior belief deems relatively unimportant, in order to

mitigate the bias due to the possible omission of another variable he deems

more important. Second, when the agent’s prior is symmetric across vari-

ables but his covariates are unbalanced (in the sense that the numbers of 1’s

and 0’s are very different), there is an incentive problem because the agent

may want to misrepresent the “minority variables” in order to counter the

estimation bias of the “majority variables”. We believe that these forces have

broader relevance beyond our simple example, even in settings that do not

allow tractable analytical characterizations, and including machine-learning

methods outside the domain of penalized linear regression.

By its nature, our example leaves a number of open technical problems.

First, there remains the challenge of extending our results to environments

with continuously distributed covariates and general samples. Second, an

important case our analysis left out is where the number of covariates ex-

ceeds the sample size, which is a typical justification for applying machine

learning techniques. As mentioned above, the technical diffi culty here is that

there is no closed-form characterization of the penalized regression estima-

tors. A step in this direction is carried out in Caner and Eliaz (2021). That

paper, which follows up the current one, provides suffi cient conditions for

asymptotic incentive compatibility of the Lasso and general weighted Lasso

estimators. Caner and Eliaz borrow tools from high-dimensional economet-

rics to characterize the rate at which the penalty parameter needs to change

as a function of the sample size in order to preserve incentive compatibil-

ity in large samples. Surprisingly, incentive compatibility demands that the

penalty parameter is not too low. This means that the considerations that

are relevant for asymptotic incentive-compatibility of a estimator are distinct

from those that pertain to its asymptotic consistency.
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Appendix: Proofs

Proof of Lemma 1
Fix the realization of sample noise ε and denote the set of non-zero coeffi cients

(the set of included variables) by V (ε) = {k ∈ K | bk(ε) 6= 0}. These

coeffi cients are given by the solution to the first-order conditions of

min
b0,...,bK

∑
x∈X

N∑
n=1

(ynx − b0 −
K∑
k=1

bkx
n
k)2 + 2KN

K∑
k=1

(
c01bk 6=0 + c1|bk|+ c2b

2
k

)
where the dependence of the coeffi cients b0, ..., bK on the noise realization ε

is suppressed for notational ease. The first-order condition with respect to

b0 is ∑
x∈X

N∑
n=1

(ynx − b0 −
∑
k∈V (ε)

bkx
n
k) = 0 (8)

while the first-order condition with respect to each bj, j ∈ V (ε), is

2
∑
x∈X

N∑
n=1

xnj (ynx − b0 −
∑
k∈V (ε)

bkx
n
k) = 2KN((sign(bj)c1 + 2c2bj) (9)

From (8) we obtain

b0 = ȳ − 1

2

∑
k∈V (ε)

bk

Substituting (8) into (9) yields b̃j whenever βj+∆ /∈ (−c1, c1). When βj+∆ ∈
(−c1, c1), the first-order condition is self-contradictory, and therefore we must
have b̃j = 0.

The remaining task is to derive V (ε). Let P = 2KN denote the total

number of observations. In this proof, use xpk and y
p to denote the values

of xk and y in observation p ∈ {1, ..., P}. Without loss of generality, let us
compare the residual sum of squares (RSS) when the admitted coeffi cients
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are b0, b1, ..., bm and when bm is omitted. The RSS in the former case is

RSS(b0, ...bm−1, bm) =
P∑
p=1

(
b0 +

m−1∑
k=1

bkx
p
k + bmx

p
m − yp

)2

=
P∑
p=1

(
bmx

p
m +

(
b0 +

m−1∑
k=1

bkx
p
k − yp

))2

while in the latter case it is

RSS(b0, ...bm−1) =
P∑
p=1

(
1

2
bm +

(
b0 +

m−1∑
k=1

bkx
p
k − yp

))2

As we have already shown, the values of the coeffi cients b1, ..., bm are inde-

pendent of whether bm is included. We use b0 to denote the intercept in the

regression with bm.

The difference between RSS(b0, ...bm−1, bm) and RSS(b0, ...bm−1) is equal

to

P∑
p=1

(1

2
bm +

(
b0 +

m−1∑
k=1

bkx
p
k − yp

))2
−
(
bmx

p
m +

(
b0 +

m−1∑
k=1

bkx
p
k − yp

))2
which can be rewritten as a sum of three terms:

P∑
p=1

[
1

4
(bm)2 − (bmx

p
m)2
]

+ bm

P∑
p=1

(
b0 +

m−1∑
k=1

bkx
p
k − yp

)

−2bm

P∑
p=1

xpm

(
b0 +

m−1∑
k=1

bkx
p
k − yp

)

29



Each of the three terms in this sum can be further simplified as follows. First,

P∑
p=1

[
1

4
(bm)2 − (bmx

p
m)2
]

= (bm)2
P∑
p=1

[
1

4
− (xpm)2

]
= (bm)2 ·

[
K · 2n

4
−K · 2n−1

]
= −(bm)2 ·K · 2n−2

Second,

bm

P∑
p=1

(
b0 +

m−1∑
k=1

bkx
p
k − yp

)

= bm

P∑
p=1

(
b0 +

1

2
bm +

m−1∑
k=1

bkx
p
k − yp −

1

2
bm

)

= bm

P∑
p=1

(
b0 +

1

2
bm +

m−1∑
k=1

bkx
p
k − yp

)
− 1

2
bm

P∑
p=1

bm

= −1

2
(bm)2 ·N · 2K

where the last equality follows from observing that in the regression without

bm, the first-order condition with respect to b0 implies that

b0 +
1

2
bm +

m−1∑
k=1

bkx
p
k − yp = 0

30



Finally,

−2bm

P∑
p=1

xpm

(
b0 +

m−1∑
k=1

bkx
p
k − yp

)

= −2bm

P∑
p=1

xpm

(
b0 +

m∑
k=1

bkx
p
k − yp − bmxpm

)

= −2bm

P∑
p=1

xpm

(
b0 +

m∑
k=1

bkx
p
k − yp

)
+ 2(bm)2

P∑
p=1

(xpm)2

= 2(bm)2 ·N · 2K−1

where the last equality follows from observing that in the regression with bm,

the first-order condition with respect to bm implies that

P∑
p=1

xpm

(
b0 +

m∑
k=1

bkx
p
k − yp

)
= 0

Adding all three terms yields

(bm)2 ·N ·
[
−2K−2 − 2K−1 + 2K

]
= (bm)2 ·N · 2K−2

We include bm in V (ε) if and only if this term is weakly greater than Nc0. �

Proof of Lemma 2
By definition,

∆k =
1

2

[
ε̄x|xk=1,xj=0 + ε̄x|xk=1,xj=0 − ε̄x|xk=0,xj=1 − ε̄x|xk=0,xj=0

]
∆j =

1

2

[
ε̄x|xk=1,xj=1 + ε̄x|xk=0,xj=1 − ε̄x|xk=1,xj=0 − ε̄x|xk=0,xj=0

]
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Thus, ∆k = A+B and ∆j = A−B, where

A = ε̄x|xk=1,xj=1 − ε̄x|xk=0,xj=0
B = ε̄x|xk=1,xj=0 − ε̄x|xk=0,xj=1

By definition, A and B are i.i.d, and therefore E(A+B)(A−B) = E(A2)−
E(B2) = 0. Therefore, cov(∆k,∆j) = 0. Since ∆k and ∆j are normally

distributed, this also implies their statistical independence. �

Proof of Lemma 3
Denote c∗ = (1 + 2c2)

√
2c0 + c1. Use g to denote the (normal) density of ∆k,

and G to denote its induced cdf . By symmetry of g, G(∆) +G(−∆) = 1 for

every ∆. For notational ease, remove the subscript from βk. Then,

e(β) =
1

1 + 2c2

[∫ −c∗−β
−∞

(β + ∆ + c1)g(∆) +

∫ ∞
c∗−β

(β + ∆− c1)g(∆)

]
We can rewrite e(β) as follows:

e(β) =
β[1−G(c∗ − β) +G(−c∗ − β)] + c1[G(−c∗ − β) +G(c∗ − β)− 1]−

∫ c∗−β
−c∗−β ∆g(∆)

1 + 2c2

(i) Anti-symmetry of e (i.e., e(−β) = −e(β)) follows mechanically from the

formula for e and the symmetry of g. �

(ii) For the purpose of this claim, we can ignore the term 1/(1 + 2c2), and

rewrite the formula for e as follows:

e(β) = β + (c∗ − β)G(c∗ − β)− (−c∗ − β)G(−c∗ − β)−
∫ c∗−β

−∞
∆g(∆)

+

∫ −c∗−β
−∞

∆g(∆)− (c∗ − c1)[G(c∗ − β) +G(−c∗ − β)]− c1
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Using integration by parts, this is equal to

β +

∫ c∗−β

−∞
G(∆)−

∫ −c∗−β
−∞

G(∆)− (c∗ − c1)[G(c∗ − β) +G(−c∗ − β)]− c1

hence

e(β) = β +

∫ c∗−β

−c∗−β
G(∆)− (c∗ − c1)[G(c∗ − β) +G(−c∗ − β)]− c1 (10)

Now differentiate this expression with respect to β:

1−G(c∗ − β) +G(−c∗ − β) + (c∗ − c1)[g(c∗ − β) + g(−c∗ − β)]

= G(β − c∗) +G(−c∗ − β) + (c∗ − c1)[g(c∗ − β) + g(−c∗ − β)]

Each of the terms in this expression are strictly positive, hence the derivative

is strictly positive. �

(iii) For a demonstration that e(β)β ≥ 0, see the proof of Proposition 3 in

Eliaz and Spiegler (2019). Our remaining task is thus to show that |e(β)| ≤
|β|. The proof will rely on two properties of G: (1) G(∆) + G(−∆) = 1 for

every ∆ (due to symmetry of g); (2) G is strictly convex over ∆ < 0 and

strictly concave over ∆ > 0 (due to normality of g). Suppose β > 0, without

loss of generality. Denote d(β) = (1+2c2)e(β)−β. Note that d(β) ≤ e(β)−β.
Substituting (10) for (1 + 2c2)e(β), we obtain

d(β) =

∫ c∗−β

−c∗−β
G(∆)− (c∗ − c1)[G(−c∗ − β) +G(c∗ − β)]− c1

Define d0(β) as the value of d(β) when c1 = 0. That is,

d0(β) =

∫ c∗−β

−c∗−β
G(∆)− c∗[G(−c∗ − β) +G(c∗ − β)]

Let us first prove the claim for d0. By property (1) above, d0(0) = 0.
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Assume β > 0 (this is without loss of generality). The above expression for

d0(β) can be viewed as the difference between two terms. The first term,∫ c∗−β
−c∗−β G(∆), represents the area under G over the range [−c∗ − β, c∗ − β].

The second term, c∗[G(c∗ − β) + G(−c∗ − β)], is the area of the trapezoid

whose nodes are the points (c∗−β, 0), (c∗−β,G(c∗−β)), (−c∗−β, 0), (−c∗−
β,G(−c∗−β)). Our task is to show that the area represented by the first term

is strictly smaller than the area represented by the second term. Suppose

that β ≥ c∗. Then, because G is strictly convex over ∆ < 0, the trapezoid

strictly contains the area under G in the range [−c∗ − β, c∗ − β], which

immediately implies the result for this range of values of β. Next, suppose

that β ∈ (0, c∗). Consider the line that connects the points (c∗−β,G(c∗−β))

and (−c∗+β,G(−c∗+β)). Thanks to property (2) above, this line lies below

G when ∆ ∈ [0, c∗− β] and above G when ∆ ∈ [−c∗+ β, 0]. By property (1)

above, the areas between this line and G over the two intervals [0, c∗−β] and

[−c∗+β, 0] are equal. Now, because G is strictly convex over negative values

of ∆, the line lies strictly below the side of the trapezoid that connects the

nodes (c∗−β,G(c∗−β)) and (−c∗−β,G(−c∗−β)). This in turn implies that

the area between this trapezoid side and G to the left of their intersection

point is strictly larger than the area between the trapezoid side and G to

the right of their intersection point, which proves the result for this range of

values of β.

Now, observe that

d(β) = d0(β) + c1[G(−c∗ − β) +G(c∗ − β)− 1]

≤ d0(β) + c1[G(−c∗) +G(c)− 1]

= d0(β)

where the first inequality follows from examining the case of β > 0, and the

second equality follows from the symmetry of g around zero. Then, we have

established that d(β) ≤ d0(β) < 0. Thus, e(β) < β. �
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Proof of Lemma 4
Throughout the proof, we use V to denote the set of selected variables given

some ε - i.e.,

V = {k = 1, ..., K | bk(ε) 6= 0}

We begin with the following lemma.

Claim 1 The deviation M is unprofitable for given β, x if and only if

Eε

[(∑
k∈M

bk(ε, β)wk

)(
2ε̄+

K∑
k=1

βkwk −
∑
k/∈M

bk(ε, β)wk

)]
≥ 0 (11)

Proof. Denote zk = rk − xk. Inequality (5) can be rewritten as:

Eε

[
b0(ε, β) +

K∑
k=1

bk(ε, β)xk − β0 −
K∑
k=1

βkxk

]2

≤ Eε

[
b0(ε, β) +

K∑
k=1

bk(ε, β)xk +
K∑
k=1

bk(ε, β)zk − β0 −
K∑
k=1

βkxk

]2

This inequality can be simplified into

Eε

(
K∑
k=1

bk(ε, β)zk

)(
K∑
k=1

bk(ε, β)zk + 2b0(ε, β) + 2
K∑
k=1

bk(ε, β)xk − 2β0 − 2
K∑
k=1

βkxk

)
≥ 0

Then, (5) can be rewritten as

Eε

[(∑
k∈V

bk(ε, β)zk

)(∑
k∈V

bk(ε, β)zk + 2b0(ε, β) + 2
∑
k∈V

bk(ε, β)xk − 2β0 − 2
K∑
k=1

βkxk

)]
≥ 0

Note that for each k ∈ M ∩ V, zk = 1 − 2xk, while for each k ∈ V −M,
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zk = 0. Note also that

b0(ε, β) = β0 +
1

2

K∑
k=1

βk + ε̄− 1

2

∑
k∈V

bk(ε, β)

Hence, we can rewrite the above inequality as follows:

Eε

{[ ∑
k∈M∩V

bk(ε, β)(1− 2xk)

][
2ε̄+

K∑
k=1

βk(1− 2xk)−
∑

k∈V−M

bk(ε, β)(1− 2xk)

]}
≥ 0

Since wk = 1 − 2xk and bk(ε, β) = 0 for each k /∈ V, the above inequality is
equivalent to (11).

Fix a profile of realized coeffi cients b = (b1, ..., bK). Our first step is

to show that E(ε̄ | b) = 0. We already observed that E(∆kε̄) = 0 for any

k = 1, ..., K. Because both∆k and ε̄ are normally distributed with mean zero,

this means that ε̄ and ∆k are statistically independent for all k = 1, ..., K.

Since b is purely a function of ∆1, ...,∆K , it follows that ε̄ is independent of b.

Since E(ε̄) = 0, we conclude that E(ε̄ | b) = 0 for any b, hence E(ε̄ | V ) = 0

for any V . This means that inequality (11) can be simplified into

∑
V

Pr(V )Eε

[( ∑
k∈V ∩M

bk(ε, β)wk

)(
K∑
k=1

βkwk −
∑

k∈V−M

bk(ε, β)wk

)
| V
]
≥ 0

Our next step is to characterize Pr(V ), namely the probability that the set

of variables V is selected. Recall that whether or not bk(ε, β) 6= 0, and the

distribution of bk(ε, β), conditional on it being non-zero, depend only on ∆k

and the parameters of the model (the true coeffi cients and the costs). Because

all ∆k are mutually independent, the probability that k ∈ V is independent,
and denoted λk = Pr(βk + ∆k)

2 > c∗ (where c∗ is defined as in the previous
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proof). Therefore,

Pr(V ) =
∏

k∈V
λk
∏

j /∈V
(1− λj) (12)

This enables us to further simplify the condition for the unprofitability of

the deviation:

K∑
k=1

βkwk
∑
k∈M

λkwkEε(bk(ε, β) | k ∈ V )

−
∑
k∈M

∑
j /∈M

λkλjwkwjEε(bk(ε, β)bj(ε, β) | {k, j} ⊆ V ) ≥ 0

Because we have established that bk and bj are statistically independent

whenever k 6= j,

Eε(bk(ε, β)bj(ε, β) | {k, j} ⊆ V ) = Eε(bk(ε, β) | k ∈ V )Eε(bj(ε, β) | j ∈ V )

Furthermore, observe that λkEε(bk(ε, β) | k ∈ V ) is equal to Eε(bk(ε, β)),

namely the ex-ante expectation of bk - which we have denoted by e(βk).

Therefore, we can further simplify the inequality into(∑
k∈M

e(βk)wk

) K∑
k=1

βkwk −
∑
j /∈M

e(βj)wj

 ≥ 0

This completes the proof. �

Proof of Proposition 1
Plug bk(ε, β) = βk + ∆k into Condition (11):

Eε

(∑
k∈M

(βk + ∆k)wk

)(
2ε̄+

K∑
k=1

βkwk −
∑
k/∈M

(βk + ∆k)wk

)
≥ 0
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The L.H.S can be elaborated as follows:

2
∑
k∈M

βkwkE(ε̄) +
∑
k∈M

2wkE(∆kε̄) +

(∑
k∈M

βkwk

)2
+
∑
k∈M

(wk)
2βkE(∆k)

−
(∑
k∈M

βkwk

)∑
j /∈M

wjE(∆j)

− E(∑
k∈M

∆kwk

)∑
j /∈M

∆jwj


The first term is equal to zero because E(ε̄) = 0. Likewise, the fourth and

fifth terms are equal to zero because E(∆k) = 0 for every k. The last term is

equal to zero because E(∆k∆j) = 0 whenever k 6= j. As to the second term,

Finally, recall that for every k, we can write

∆k = ε̄xk=1 − ε̄xk=0
2ε̄ = ε̄xk=1 + ε̄xk=0

such that

E(∆kε̄) = E(ε̄xk=1 + ε̄xk=0)(ε̄xk=1 − ε̄xk=0) = E
[
(ε̄xk=1)

2 − (ε̄xk=0)
2
]

which is equal to zero because ε̄xk=1 and ε̄xk=0 are i.i.d. It follows that the

only non-zero term on the L.H.S of the condition is(∑
k∈V1

βkwk

)2

which is obviously non-negative. �

Proof of Proposition 3
Denote βM = (βk)k∈M , β−M = (βk)k/∈M . Because of the independence across
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components, the L.H.S of (6) can be written as

EβM

[(∑
k∈M

e(βk)wk

)(∑
k∈M

βkwk

)]

−EβM

(∑
k∈M

e(βk)wk

)
Eβ−M

∑
j /∈M

(e(βj)− βj)wj


Recall that e is an anti-symmetric function. Therefore, e(β)− β is also anti-
symmetric. Combined with the symmetry around zero of the prior over each

βj, Eβj(e(βj) − βj)wj = 0 for every j. Recall that wk ∈ {−1, 1}, such that
(wk)

2 = 1. The inequality thus becomes

EβM

[(∑
k∈M

e(βk)wk

)(∑
k∈M

βkwk

)]

= EβM

[∑
k∈M

e(βk)βk +
∑

k,j∈M,k 6=j

e(βk)βjwkwj

]
=

∑
k∈M

E(e(βk)βk) +
∑

k,j∈M,k 6=j

wkwjE(e(βk))E(βj) ≥ 0

Because E(βj) = 0 for every j, this inequality is reduced to∑
k∈M

E(e(βk)βk) ≥ 0

Recall that sign[e(β)] = sign(β) for every β, hence this inequality holds. �

Proof of Proposition 4
Given the independence assumption, a deviation M is profitable if

EβM

[(∑
k∈M

e(βk)wk

)(∑
k∈M

βkwk

)]
−EβM

(∑
k∈M

e(βk)wk

)
Eβ−M

∑
j /∈M

(e(βj)− βj)wj


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is strictly negative, as in the previous example. Denote m = |M |. Using the
i.i.d assumption, we can simplify the terms. The first term is

EβM

[(∑
k∈M

e(βk)wk

)(∑
k∈M

βkwk

)]
=

∑
k∈M

E(e(βk)βk) +
∑

k,j∈M,k 6=j

wkwjE(e(βk))E(βj)

= mE(e(β)β) + e∗β∗
∑

k,j∈M,k 6=j

wkwj

The second term is

EβM

(∑
k∈M

e(βk)wk

)
Eβ−M

∑
j /∈M

(e(βj)− βj)wj


= ((e∗)2 − e∗β∗)

∑
k∈M

wk
∑
j /∈M

wj

The condition then becomes

mE(e(β)β) + e∗

β∗ ∑
k,j∈M,k 6=j

wkwj + (β∗ − e∗)
∑
k∈M

wk
∑
j /∈M

wj

 < 0 (13)

Define M to be homogenous if wk = wj for every k, j ∈ M . Suppose

that M is not homogenous - i.e., there exist k, j ∈ M such that wk = 1

and wj = −1. Let us consider two cases. First, suppose m = 2. Then,∑
k∈M wk = 0 and

∑
k,j∈M,k 6=j wkwj = −1, such that (13) is reduced to

E(e(β)β)− e∗β∗ < 0

Because e is strictly increasing in β, this contradicts Chebyshev’s algebraic

inequality. Therefore, M is unprofitable, a contradiction. Second, suppose
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that m > 2. Consider the deviation M ′ = M − {k, j}. Then:

|M ′| = m− 2∑
i∈M ′

wi =
∑
i∈M

wi∑
i,h∈M ′,i 6=h

wiwh =
∑

i,h∈M,i 6=h

wiwh + 1

such that as a result of the deviation, the L.H.S of (13) decreases by 2E(e(β)β)−
2e∗β∗, which we have established to be weakly positive. We can repeat this

argument until we obtain a homogenous deviation M ′′ that is at least as

profitable as M .

It follows that if there is a profitable deviation M , we can set it to be

homogenous without loss of generality. Inequality (13) becomes

mE(e(β)β) + e∗ [β∗m(m− 1)− (β∗ − e∗)m(K −m)] < 0

We have already established that e(β)β ≥ 0 and 0 < |e∗| < |β∗|. Therefore,
e∗β∗ > 0 and e∗(β∗−e∗) > 0. The L.H.S of the inequality thus unambiguously

increases with m. There are two candidates for a homogenous deviation:

{k | wk = 1} or {k | wk = −1}. Therefore, the more profitable of them is the
smaller one, namely M∗. �
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