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Abstract

We study combinatorial auctions with bidders that exhibit endowment effect. In most of the
previous work on cognitive biases in algorithmic game theory (e.g., [Kleinberg and Oren, EC’14]
and its follow-ups) the focus was on analyzing the implications and mitigating their negative
consequences. In contrast, in this paper we show how in some cases cognitive biases can be
harnessed to obtain better outcomes.

Specifically, we study Walrasian equilibria in combinatorial markets. It is well known that
Walrasian equilibria exist only in limited settings, e.g., when all valuations are gross substitutes,
but fails to exist in more general settings, e.g., when the valuations are submodular. We consider
combinatorial settings in which bidders exhibit the endowment effect, that is, their value for items
increases with ownership.

Our main result shows that when the valuations are submodular, even a mild degree of endow-
ment effect is sufficient to guarantee the existence of Walrasian equilibria. In fact, we show that
in contrast to Walrasian equilibria with standard utility maximizing bidders — in which the equi-
librium allocation must be efficient — when bidders exhibit endowment effect any local optimum
can be an equilibrium allocation.

Our techniques reveal interesting connections between the LP relaxation of combinatorial
auctions and local maxima. We also provide lower bounds on the intensity of the endowment
effect that the bidders must have in order to guarantee the existence of a Walrasian equilibrium
in various settings.

1 Introduction

Research in algorithmic mechanism design typically assumes that bidders are utility maximizers,
i.e., they maximize their value for the chosen alternative minus their payment. However, empirical
evidence from behavioral economics suggests that this assumption is often inaccurate. In practice,
individuals tend to exhibit different cognitive biases that are not captured by the classic model
of utility maximization. For example, the price tag might affect their value for a bottle of wine
(irrational value assessment); or they may attribute higher values to items once they own them
(endowment effect).

A recent line of work in algorithmic game theory (Kleinberg and Oren [22] and their follow-ups
(33, [, 14, 23, 24, B, 2]) mathematically models and analyzes the behavior of agents that exhibit
cognitive biases in planning settings. In contrast, in this paper we initiate the study of cognitive
biases in the central setting of algorithmic mechanism design: combinatorial auctions!] Furthermore,
this line of work mostly focused on analyzing the implications of cognitive biases and mitigating their
negative consequences. In this paper we take a different approach and show that in some settings
cognitive biases can be harnessed to obtain better outcomes.

'In the context of algorithmic mechanism design, the only paper that incorporates behavioral assumptions that we
are aware of is [§]. The paper applies prospect theory to a crowdsourcing setting.


http://arxiv.org/abs/1805.10913v1

Walrasian equilibrium is the traditional concept of market equilibrium. Roughly speaking, a
market is in Walrasian equilibrium if there exists a price for each item such that every bidder is
allocated his most profitable bundle and all items are allocated. Walrasian equilibria are attractive
since they are simple and since their pricing structure is easy to understand. Not only that, it
is also guaranteed that any allocation of such an equilibrium must be efficient (the “First Welfare
Theorem”).

A major downside of Walrasian equilibria is that often they do not exist at all. In the context
of combinatorial auctions it is known that a Walrasian equilibrium is guaranteed to exist when the
valuations are gross substitutes [I5]. This relatively small class of valuations is in a (formal) sense the
maximal one guaranteeing existence [I5]. In particular, a Walrasian equilibrium is not guaranteed
to exist if the valuations are submodular.

In this paper we consider bidders in combinatorial auctions that exhibit an endowment effect.
Our main contribution is utilizing the cognitive biases of the bidders to extend the valuations classes
for which a Walrasian equilibrium exists: if bidders exhibit a mild endowment effect then a Walrasian
equilibrium is guaranteed to exist even when the valuations are submodular.

Before formally presenting our model and results, we now discuss the endowment effect.

Endowment Effect. Do owning items makes them more valuable to us? The Nobel Laureate
economist Richard Thaler coined the term endowment effect [34] to explain situations in which the
mere possession of an item makes it more valuable. An experiment by Knetsch [25] provides a stark
illustration: two groups of students received goods in return for filling out a questionnaire. One
group received mugs and the other chocolate bars. Next, the students were given the option to swap
items. Since the items were allocated to the students randomly, we expect that about half of them
would have received the less desirable item and would like to switch. In contrary to this logic, 90%
of the students in each group decided to keep their endowed item.

A classic experiment by Kahneman, Knetsch and Thaler [19] attempts to quantify the endowment
effect. In this experiment half of the students in a Law and Economics class at Cornell University
received a $6 mug. After examining the mug, the students who received the mug were asked at which
price are they willing to sell the mug (willingness to accept). The students who did not receive the
mug were asked for the price they are willing to pay for the mug (willingness to pay). As in the
Knetch’s experiment, one could have expected that about 50% of the mug owners could be matched
with a buyer that values the mug more than they do. However, in the experiment only 20% of the
mug owners sold their mug. Moreover, there was a significant gap between the median price sellers
were willing to sell at ($5.25), and the median price that buyers where willing to buy at ($2.25).

The endowment effect can be thought of as a special case of the status quo bias [31], according to
which individuals have a strong preference for the current state (i.e., a mug owner prefers to stay a
mug owner). Kahneman et al. [19, 20] claim that loss aversion from prospect theory [21] is the source
of the endowment effect (i.e., for a mug owner exchanging the mug for a chocolate bar entails losing
the mug). Kdszegi and Rabin [27] incorporate reference points and expectations into prospect theory.
Their framework suggests that the endowment effect will only appear in settings in which individuals
do not expect to tradeE Masatlioglu and Ok [29] propose a model in which the individuals make a
rational choice on a constrained set of alternatives defined according to the status quo.

Several papers study endowment effect in auction settings (e.g., [26, [I7]). However, apart from
[5] that discusses the endowment effect with multiple identical goods, all considered the single item
setting, leaving open the question of incorporating the endowment effect into the more general com-
binatorial auctions setting.

2See [28], @] for some experimental work supporting this prediction.



The Model. We consider a combinatorial auction with n bidders and a set M of m items. Each
bidder i has a valuation function v; : 2 — R, that specifies his value for every bundle. The
valuation function is non-decreasing and normalized (v;(0)) = 0).

Our modeling of the endowment effect is driven by the essence of this effect: an individual
attributes an item a higher value after owning it; his value for items that he does not own remains
the same. Formally, bidder ¢ who previously valued item a at v;(a) will now value it at «; - v;(a)
for some a; > 14 Similarly, when turning to the more general setting of combinatorial auctions we
define the value of a bundle S; that bidder ¢ owns as «; - v;(.S;). Note that it is insufficient to define
the new value of bidder ¢ only for the bundle S;, we also need to define how the value of any other
bundle T" changes when bidder i owns S;. We follow a similar line of reasoning: the value of the
items in S; N T is multiplied by «;, while the marginal contribution of the remaining items 7" — S;
remains the same. Formally, we define the endowed valuation of player ¢ with «; who is endowed
with bundle S; to beH

VI C M, 0" (T) = a;-vi(SiNT) +v(T — 8i|S;NT)

where v(X|Y) =v(X UY) —v(Y) denotes the marginal contribution of the bundle X given Y.
Recall that a Walrasian equilibrium consists of an allocation (S1,...,S,) and prices (p1,...,Pm)
such that:

1. For each player i, v;(S;) — >, Pj = vi(T) — 32 ;cr pj, for every bundle T' C M.
2. If j ¢ U;S; then p; = 0.

Several works attempted to relax the definition of a Walrasian Equilibrium in order to ensure
existence [12] 13]@ Our approach is different; Given that the endowment effect changes the valuations
anyways, we are simply interested in a Walrasian equilibrium with respect to the endowed valuations:

an allocation S and non-negative item prices (p1, ..., Py ) form an (a1, ..., a,)-endowed equilibrium in
an instance (vy, ..., v,) if they constitute a Walrasian equilibrium in the instance (vfl’al, e ,vs”’a”).

When o = a1 = ... = a, we use the compact notation a-endowed equilibrium. Let S be the
allocation and (p1,...,pm) be the prices of some (a4, ..., a,)-endowed equilibrium. Observe that S
and (p1,...,pm) also form an (o, . .., a)-endowed equilibrium, for & = max; ;. The reason is that

when S; maximizes the profit of fuf ©% it also maximizes the profit of fuf i’o‘/, for every o/ > «;. Thus,
in the rest of the paper we let a = max; a; and focus on a-endowed equilibria.

Note that for a = 1 we recover the classic notion of Walrasian Equilibrium while, roughly speak-
ing, as « goes to infinity the players insist more and more on keeping the bundle they were allocated [
Throughout the paper we say that a supports an allocation S if there exist item prices that together
with S form an a-endowed equilibrium.

3The case 0 < a; < 1 is also of conceptual interest. In particular, it models situations of the type “the grass is
always greener on the other side”, when a person values items less once he owns them. The analysis of this case is
technically simpler and is provided in Appendix [Bl

“One can also give a “classic” interpretation that does not involve cognitive biases to this transformation: consider
an environment with transaction costs, e.g., a company that acquires a new location might be subject to property
taxes and/or have to invest in new infrastructure. Similarly, a shop that moves to a new location might have to start
a costly advertising campaign to inform its costumers about the move. In all these cases after owning their resources
the preference of the agents to the new status quo allocation increases.

5Feldman et al. [12] use bundle prices instead of individual item prices and do not require market clearance; Fu
et al. [I3] define a conditional equilibrium where each player does not wish to add any items to the bundle he was
allocated. Also related are works on simultaneous first [16] and second price [7] auctions.

SWhen « is very large this is similar to conditional equilibrium [13] as the bidders do not want to discard any item
with marginal value greater than 0.



Results. Analyzing Walrasian equilibria in the context of endowed valuations brings with it a
natural question: when does an endowed equilibrium exist? The simple answer is always; we show
that in any instance there exists an o > 1 and an allocation for which an a-endowed equilibrium
exists. However, this answer completely misses the point as the value of « for which an endowed
equilibrium exists might be huge. Recall that the value of a corresponds to the intensity of the
endowment effect, thus we expect a-endowed equilibria that arise in practice to have small value of «
(in the experiment of [I9] mentioned above, for example, it seems like o was about 2). This leads us
to the definition of the endowment gap — the minimal value of « for which a Walrasian Equilibrium
is guaranteed to exist. Thus, the main question that we ask in this paper is what is the endowment
gap for different valuation classes?

Our main result shows that for submodular valuations there is always an allocation that is sup-
ported by a = 2. That is, in combinatorial auctions with submodular valuations the endowment gap
18 at most 2.

The proof of the theorem is constructive: an allocation is a local maximum if the welfare of
the allocation cannot be improved by moving a single item from one player to another. We show
that in any instance of combinatorial auctions with submodular valuations any local mazimum is
supported by o = 2. In contrast, the First Welfare Theorem asserts that the allocation in a Walrasian
equilibrium is a global optimum. Hence, a local maximum that is not a global maximum can be part
of a 2-endowed equilibrium, but cannot be a part of a Walrasian equilibrium.

Our work reveals interesting connections between the integrality gap of the linear program relax-
ation for combinatorial auctions and the endowment gap. Nisan and Segal [30] show that a Walrasian
equilibrium exists if and only if the integrality gap of a natural relaxation of the LP for combinato-
rial auctions (the “configuration LP”) is 1, in other words, if and only if there is an optimal integral
solution to the LP. This in turn implies that an (integral) allocation S is supported by « if and only
if it is an optimal solution of the (fractional) LP with respect to the perturbed valuations.

An equivalent geometric interpretation is the following: consider the polytope defined by a given
instance of a combinatorial auction. With submodular valuations, there might not be any optimal
integral solution on a vertex of the polytope. Fix some allocation and consider the change to the
objective function of the LP as a grows (changing the corresponding endowed valuations.) As «
grows, the direction changes, rotating towards the direction of the endowed allocation.

The allocation can be supported by the minimal value of « (if exists) for which the (integral)
endowment allocation becomes an optimal solution to the LP. For submodular valuations, our result
shows that this happens quickly: when the allocation is a local maximum then a value of « of only
2 suffices.

It is not hard to see that the endowment gap is at least the integrality gap. However, note that
the endowment gap is typically strictly larger. More generally, by analyzing the LP we give a precise
definition for the minimal value of « required to support a given allocation. Roughly speaking, this
minimal value of a that supports an allocation S must be bigger than some combination of the value
of any fractional solution plus the “intersection” of this fractional solution with S. See a formal
treatment in Section B3]

In fact, the LP point of view provides some interesting implications of our main result beyond the
realm of endowed valuations: it is implicit in previous work that a local maximum in combinatorial
auctions with submodular bidders provides a 2 approximation to the welfare maximizing solution.
One implication of our main result is that a local maximum provides a 2 approximation even with
respect to the optimal fractional social welfare. More generally, the equilibrium allocation in an
a-endowed equilibrium provides an « approximation to the optimal fractional social welfare.

We also show that our analysis of submodular valuations is tight in the following sense: there
is an instance in which any local maximum requires « > 2 to be supported (but there are other



allocations that can be supported by a smaller value of o). We also show that there is an instance
with just 2 bidders in which every allocation requires a@ > 1.5 to be supported. We thus conclude
that the endowment gap for submodular valuations is between 1.5 and 2.

What about classes of valuations, like XOS or subadditive? Here we give a definite negative
result: for every a > 1 there exists an instance with just two bidders with identical XOS valuations
and three identical items in which the endowment gap is o/ > a.

Open Questions. This work models the endowment effect in combinatorial auctions and analyzes
the endowment gap. Our main finding is that every local maximum can be supported by a = 2
when the valuations are submodular and that the endowment gap for submodular valuations is at
least 1.5. An obvious open question is to close this gap. A related open question is to analyze the
endowment gap of subclasses of submodular valuations. For example, for budget additive valuations
we are able to show that the endowment gap is also at least 1.5, but we are unable to prove that the
endowment gap is strictly smaller than 2 even for this restricted class.

The focus of this paper is on characterizing the existence of a-endowed equilibria. An interesting
follow-up question is to understand the “computational endowment gap”: the minimal value of « for
which an a-endowed equilibrium can be efficiently computed. One would hope that for submodular
valuations a local maximum can be efficiently computed. Unfortunately, we show that there are both
communication and computation hurdles in finding a local maximum: finding a local maximum in
combinatorial auctions with submodular bidders requires an exponential number of value queries.
Moreover, we present a family of succinctly represented submodular valuations for which finding a
local optimum is PLS hard. On the somewhat more positive side, we do know how to find with
only polynomially many value queries an allocation (not necessarily a local maximum) that can be
supported by some « > 1. However, this value of « is typically huge. Are there other allocations
that can both be efficiently computed and supported by a small value of a? Remarkably, we are
unable to provide an answer for this question for any reasonable value of a, not even for a restricted
class like budget additive valuations. In fact, we do not know if finding a local maximum when
the valuations are budget additive is computationally hard. This question might be of independent
interest, regardless of the specific application to the endowment gap.

Another interesting question is to devise natural auction methods that end up with an endowed
equilibrium. If the valuations are gross-substitutes, then there are natural ascending auctions that
end up with a Walrasian equilibrium (e.g., [15]). Are there natural ascending auctions that end up
with an endowed equilibrium when the valuations are submodular? One question that might arise
while developing such ascending auctions is to understand the extent to which bidders exhibit an
endowment effect with respect to items that are temporarily assigned to them during the auction
and take this temporary endowment effect — if exists — into account.

Finally, a natural measure of how far the market is from equilibrium suggests itself. Recall

that a valuation v is c-approximated by a valuation v’ if for every bundle S, v,(cs) < wu(S) <V(9).
Given valuations vq,...,v,, define the “distance to equilibrium” as the minimal ¢ for which there
exist v],...,v], such that each v} c-approximates v; and the instance v},...,v), admits a Walrasian
equilibrium. Since the endowment gap for submodular valuations is at most 2, this means that the
distance to equilibrium of any instance with submodular valuations is at most 2. It will be interesting
to see if this result can be improved, e.g., maybe by using valuations that are not endowed valuations.

Similarly, what is the distance to equilibrium of instances with subadditive or XOS valuations?



2 The Model

There are n players and a set M of m goods, each agent ¢ has a combinatorial valuation function
v : 2M — R,. We assume that for each player 4, v; is monotone (S C T implies v;(S) < v;(T)) and
normalized (v;() = 0). We use the notation v;(T'|S) to denote v;(SUT) — v;(S), the marginal value
of T given S.

Each player ¢ has a parameter «; that measures the intensity of his endowment effect. Specifically,
if player i is endowed with a bundle .S;, then his valuation function is

vPPOUTY) = - 0 (S; N'T) + v (T — S| 8; N T)
= Ui(T) + (Oéi - 1) . ’UZ(SZ N T)
We will use both expressions interchangeably.
An allocation S = (Si,...,S5,) assigns to each agent i a set S; such that for every i # j,

S;iNS; = 0. An allocation (Si,...,S,) and (non-negative) item prices (p1,...,pm) constitute an
(a1y...,0p)-endowed equilibrium if:

1. For each player 1, vfi’ai(Si) = jes, Pi = visi’ai(T) — > _jer by, for every bundle T' C M.

2. If j ¢ U;S; then p; = 0.

When a = a1 = ... = o, we shorten the name to a-endowed equilibrium. Let S be the allocation and
(p1,- - ., Pm) be the prices of some (a1, ..., a,)-endowed equilibrium. Observe that S and (p1,...,pm)
also form an («, a, ..., a)-endowed equilibrium, for o = max; a;. The reason for this is that when S;

: ;. . . - ol
maximizes the profit of vf ©% it also maximizes the profit of vis“a , for every o/ > «;. Thus, from

this point onwards we let &« = max; «; and focus on a-endowed equilibrium.

An allocation (Sy,...,S,) is supported by « if there exist prices (p1,...,pm) such that the prices
and the allocation form an a-endowed equilibrium. In particular, in every instance in which a Wal-
rasian equilibrium exists (e.g., every instance in which the valuation functions are gross substitutes),
we obviously have an endowed equilibrium supported by @ = 1. In instances where a Walrasian
equilibrium does not necessarily exist, we will be looking for the minimal value of a for which an
a-endowed equilibrium exists.

The conceptually and technically interesting regime is when o > 1, that is, a player assigns higher
value for items in their endowment, but see Appendix [B] for the regime 0 < o < 1.

In this work we are interested in the following valuations classes (each class is contained in its
successor in the list):

e Additive valuations: A valuation v is additive if for every S, v(S) = > ;g v({j}).

e Budget additive valuations: A valuation v is budget additive if there exists b such that for every

S, v(8) = min{b, g v({j})}-

o Submodular valuations: a valuation v is submodular if for every S, T, v(S)+v(T) > v(SUT)+
v(SNT).

e XOS wvaluations: a valuation is XOS if there exists additive valuations {ay,...,a;} such that
for every bundle S, v(S) = maxj<k<; ar(9).

e Subadditive valuations: a valuation v is subadditive if for every S, T, v(S) +v(T) > v(SUT).



3 The Endowment Gap

Consider some instance of a combinatorial auction with n players with valuations v, ..., v, and a set
M of m items. For a given instance, the endowment gap is, roughly speaking, the minimal value of «
for which an a-endowed equilibrium exists in that instance. We are interested in proving bounds on
the value of o for which an a-endowed equilibrium exists for all instances of classes of combinatorial
valuations (e.g. submodular, XOS, subadditive).

Definition 3.1 The endowment gap of an instance (vy,...,v,) with respect to an allocation A =
(Aq,...,Ay), denoted GA(vy,...,v,), is the infimum of the values of a that support A.

We naturally extend the definition of an endowment gap to an instance and to a class of valuations:
Definition 3.2

e The endowment gap of an instance (vy,...,v,) is the minimum value, over every allocation S,
of the endowment gap with respect to the allocation S: ming G (v1,...,v,).

e The endowment gap of a class of valuations V is the supremum over the endowment gaps over
all valuations profiles in which each valuation belongs to the class V:

sup min QS(vl, ceeyUp)
(V1 y..0yUn ) EVT

Next, we provide a simple characterization that shows that any allocation A that its social welfare
cannot be improved by reallocating items that do not contribute to the social welfare of A, can be
supported by some « > 1.

Definition 3.3 Let S = (Si,...,S5,) be some allocation. For every item define q; to be the marginal
contribution of item j to the allocation S as follows: if there exists i such that j € S;, let qj =
v;i(j|Si —{j}) . For every item j that is not allocated, let q; = 0. Let Z = {j|q; = 0}. S is maximal
if for every player i, v;(S; U Z) = v;(S;).

Note that in particular, in a maximal allocation there is no bidder with zero marginal value for an
item, for which some other bidder has positive marginal value given his set.

Proposition 3.4

1. Every maximal allocation S = (S1,...,S,) can be supported by some o > 0. Furthermore, for
a given allocation, we can find some « that supports it and the prices with poly(n,m) value
queries.

2. If an allocation S = (Sy,...,Sy) is not mazximal then there is no o > 1 that supports it.

Proof: Let QT = M — Z (the set of items j with positive marginal contribution. Let OPT
be some upper bound on the value of the optimal solution (e.g., n - max; v;(M) or simply OPT if
computational considerations are irrelevant). We use the following prices to support S: p; = 2-OPT

for j € Q" and p; = 0 for j € Z. We will show that a = % and these prices form an endowed
S

equilibrium.

We first show that a player will never drop items that are in his set but not in Z. lLe., if we
denote by T some bundle that maximizes the profit of player ¢ then S; — Z C T. Specifically, we
will show that v;(S; N T) = v;(S;). Observe that v;(S; NT) = v;(S;) indeed implies that S; — T C Z,



since otherwise there exists j € Q7 such that j € S; — T. We then get a contradiction since
v;i(S;) > vi(S; — {4}) > vi(S;i NT), where the first inequality is because j € QT and the second one
is due to the monotonicity of v; and the fact that j ¢ T
We now show that the profit of player ¢ from a bundle 7" such that v;(S; N'T) < v;(S;) is strictly
smaller than the profit of the bundle T'U S;.

T US;) Z pjr = - UZS)+Ui(T—Si|Si)—ij/— Z 21

J'€TUS; 5'€S; J'€T—5;
= (=1 -0(S)+u(T) = D> pi— Y, by
j'€S; j'€T—5;
=(a—1)-v(SiNT)+ (a—1) - v;(S; = T|S;NT) 4+ v;(T Zp]/— Z pjr

j'eTr 7'es; =T

Observe that v;(S; —T'[S;NT) = v;(S;) —vi(S;iNT) > g; > min;cg+ q; (which holds by our discussion

above since v;(S;) — vi(S; NT) > qj as j ¢ T and since j € QT) and (a — 1) - minjcg+ qj =
( 20m-OPT 1)
minjeQ+ qj

‘minjeo+ q; = 20m - OPT — minjco+ q; > 19m - OPT. Thus, we have that:

TUS)— Y pp=(a—1)v(SiNT)+19m - OPT +vi(T) = Y pjy —2m - OPT

j'eTus; j'eT
> (a—1) - vi(SiNT) +u(T) = > pyr
j'eT
- vy
Jj'er

We next show that the demand of any player is always a subset of S; U Z. That is, if T' is some
bundle that maximizes the profit of player i then 7' C S; U Z. Let R =T — (5; U Z) and suppose
towards contradiction that R # (). We claim that the profit of the bundle T'— R for player ¢ is strictly
higher than that of 7"

UZS“ Zp]—v (T —R)UR) — Zp]

JET JjeET
Si,a
(T—R)+v(R(T—R))— > pj—Y.p
JjeET—R JER
<o)"(T —R)+OPT— Y p; —20PT
j€ET—R
> P
JET—-R

Together with our first observation, we have that a bundle T that maximizes the profit of player
i must satisfy T'= S; U Z', for some Z’ C Z. Recall that v;(S; U Z") < v;(S; U Z) = v;(S;) and that
the price of every j € Z is p; = 0 and we get that the profit from 7' is exactly the profit of S;. Thus,
for every player i, .S; is a profit maximizing bundle, as needed. Finally, notice that to compute the
prices and some « > 0 we only need to find some upper bound on OPT (as noted above, computing
n - max; v;(M) takes n value queries) and the marginal contribution of every item j (2 queries for
each item).

For the second part of the proof, consider an allocation S that is not maximal. We will see
that for any « there are no prices that a-support this allocation. The proof is based on the simple



observation that in any endowed equilibrium the price of every item j € Z must be 0: this must be
the case by definition for every item j that is not allocated. If item j € S; and the price of j € Z
is positive, then the profit of player i from the bundle S; — {j} is greater than his profit from the
bundle S;.

Since S is not maximal, there is some player ¢ such that v;(S; U Z) > v;(S;). Using the simple
observation, the price of every item j € Z is 0, thus the profit of player ¢ from the bundle v;(S; U Z)
is strictly larger than the profit from the bundle v;(S;). Therefore, S cannot be a-supported, for any
Q. U

In Appendix [A] we use this characterization to show that not only in every instance there is an
allocation that can be supported, but there is even some welfare mazximizing allocation that can be
a-supported by some a > 1. The caveat is that the « that we guarantee might be huge. In Claim 3.8
we give the exact value of the minimal o that supports an allocation .S. However, even this precise
characterization might result in large values of «. This is no coincidence: Proposition 5.1 shows that
for every fixed « there is an instance for which the endowment gap is strictly bigger than «. Thus in
most of this paper we restrict our attention to specific classes of valuations, aiming to find bounds
on the endowment gap that hold for all instances in the class and, ideally, find prominent classes of
valuations for which the gap is small.

3.1 The Endowment Gap and the LP Relaxation

In this section we explore the connections between the endowment gap and the following linear
program relaxation for combinatorial auctions:

Mazimize: D701 > gc s Tiys - Vi)
Subject to:

e For each item j: 377 > gcppjes Tis < L.
e for each bidder i: Y gy, i < 1.
e for each ¢, S: x; 9 > 0.
This linear program is tightly connected to the notion of Walrasian equilibrium:

Theorem 3.5 ([30]) For every instance (vi,...,uv,), there exists a Walrasian Equilibrium in the
instance (v1,...,v,) if and only if the integrality gap of the above linear program is 1. Moreover,
an integral allocation is the allocation of some Walrasian Equilibrium if and only if it is an optimal
solution to the LP.

Al,a A
1

When considering endowed valuations v s, U™ the theorem immediately implies an analogous

result for a-endowed equilibrium:

Corollary 3.6 In an instance (v1,...,v,) an allocation A = (Ay,...,A,) is a-supported if and only
if A is an optimal solution to the LP of the instance (vfh’o‘, .. ,fu;?"’o‘) (implying in particular that
the integrality gap of the latter instance is 1.) Furthermore, by the first welfare theorem we get that
A is welfare mazximizing with respect to vfh’a, o unme.

We can also relate the welfare of supported allocations to that of fractional allocations. In
Subsection 4.1] we use the next corollary to improve the bounds on the welfare guaranteed by local
maxima in combinatorial auctions with submodular valuations.

Corollary 3.7 In an instance (v1,...,vy,), if an allocation A = (A1, ..., An) is a-supported then it
provides an a-approximation to the maximum fractional welfare of the instance (vi,...,vy).



Proof: Let {z; g} be some fractional solution of the LP of the instance (Ufh’a, .. ,vﬁ"’a). As the
allocation A = (44,...,A,,) is a-supported, by Corollary B.6land the definition of endowed valuations
we have that:

aZvi(Ai) > Z Z Tig - v?i’a(S) > Z Z zi g - v;(S)
i=1

i=1 SCM i=1 SCM
In particular, this holds for the welfare maximizing fractional solution of the instance (v1,...,v,),
implying that A provides an a-approximation to the value of that fractional allocation, as needed.
L]

As we will see next, the endowment gap has some interesting and useful connections to the
integrality gap. For our first application, recall that Proposition 3.4l shows that an allocation can be
supported by some « if and only if it is maximal. We now use the connection to the LP to determine
the minimal value of o that can support a maximal allocation.

Claim 3.8 Let A = (Ay,...,Ay) be some allocation. Given a fractional solution {x; s} to the LP,
define

VA fa; s} = Z Z Ty 5 v (SN A;)

i=1 SCM
Suppose that A is supported by o. Then,
1. For every fractional solution {x; s}, a-Y " 1 vi(Ai) > 3701 D gcpy is vi(S) +(a—=1)Pa (4, 63 -

2. The endowment gap with respect to A equals to

sup { > ngM x5 vi(S) — wA,{mi,S}
Z?:l UZ(AZ) - wA,{SCi’S}

{wis} st > vi(A) = YA fe,q) > 0}

i=1

Proof: By Corollary 3.6l A can be a-supported if and only if for every fractional solution {z; g}
PR ED D PR C)
i=1 i=1 SCM

Additionally, since for every bundle S, v?i’a(S ) =v;i(S)+ (a—1)-v;(SNA,;), for every fractional
solution {z; g} it holds that:

SN wis v S =30 > wis wlS) +(a— 1D Y wig-w(SN A

1=1 SCM 1=1 SCM 1=1 SCM

VA {z; 5}

Note that the combination of the above two facts already establishes that if A is a-supported
then claim () holds.

We now continue to prove the second part. Rearranging, we have that A is a-supported if and
only if for every fractional solution:

a Y oi(A) >0 Yage gy T, D s vilS) = Ya e ) (1)
=1

=1 SCM
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Consider the expression Ay o, 5} = @+ > it i(Ai) — Py (o, 5. Observe that Ay 1, ;3 > 0, simply
because ¢4 (4, 5} 1s composed of a sum of linear combinations of subsets of A;, for each player i (and
the valuations are monotone).

If A4 {z; 53 > O then obviously there is a large enough value of « such that inequality (@) holds.
Suppose that Ag (o, 53 = 0. Observe that Y71 | 3 gy %is - vi(S) > Y4 (4, o}» Simply because each
term v;(.S) in the LHS is replaced by v;(S N 4;) in the RHS and the valuations are monotone.

IEY 0 Y s a5 vi(S) > YA fe, 53 and Ay fa, 3 = 0, which holds for any A that is not maximal,
then no value of o makes inequality (IJ) hold and thus this allocation cannot be supported by any «.
However, if > 7 | ZSQM zis - vi(S) = YA {2, s} then any value of o makes the inequality hold.

We have thus identified that for an allocation not to be supported by any « it must be that there
is some fractional solution {; s} for which Ay (5, ¢} = 0 and 370, > gcpy @is - vi(S) > Vg fa, 53 If
this is not the case then by rearranging inequality (Il) we can determine the minimal value of « that
supports A:

sup { Z?:l ZSQM T8 vi(S) — 1/1A,{xi,5}
D i1 Vi(Ai) = VA (2, 63

{wis} st Y vilAi) = P fa5) > 0}

i=1

Note that the supremum is bounded, since we assume that A can be supported by some a. ]

Claim [B.8] implies that the endowment gap is at least the integrality gap: take A to be any
allocation and {z; g} to be a fractional welfare maximizing solution:

o> Z?:l ZSQM 75 vi(S) — T/JA,{mi,s} > Z?:l ZSQM z;5 - vi(S)
- >oimy VilAi) = YA e, s) - >oic1 vi(4s)

and the right hand side is obviously at least the integrality gap.

However, as we will see in the paper, the integrality gap is usually strictly larger than the
endowment gap. We now show that this is generically true for every instance with subadditive
valuations with an integrality gap bigger than 1.

Claim 3.9 Consider an instance with two subadditive valuations. Suppose that the integrality gap

of this instance is y > 1. Then, for every small enough 6 > 0 there is an instance with integrality

gap =1y - ((11:6(2) in which the endowment gap is strictly bigger than x.

Proof:  Let (v],v}) be two subadditive valuations. Denote by OPT" the welfare of an optimal
integral solution and by OPT"* the welfare of an optimal fractional solution {z; ¢} with respect to
(v, vh) (so % = y). For each bidder i, consider the valuation v;(S) = v}(S) + |S| - €, where
€ = %. Note that v; is still a subadditive function. For the instance (vq,vs3), let OPT be the
welfare of the optimal integral solution and OPT™ be the welfare of the optimal fractional solution.
Observe that the welfare of any allocation S with respect to (v1,v2) is larger than the welfare of that
allocation with respect to (v}, v}) by exactly e times the number of allocated items in S. Thus, an
optimal allocation (fractional or integral) in the instance (v}, v4) in which all items are allocated is also
optimal for (v, v2) and the difference in the welfare is exactly m -e. Therefore, OPT = OPT'+m ¢
and OPT* = OPT™ + m - e. Let = denote the integrality gap of the instance (v, v3), we have that

_OPT*  OPT"+m-c _ (1+0)0OPT"*  (1+05)0PT*  (1+50)
T OPT ~ OPT' +m-c  OPT +60PT* _ (1+06)0PT {1+ dy)

X

Let (Aj, A2) be some allocation that can be supported by « in the instance (v1,v2). We claim
that A1 U Ay = M. Else, there is some item j that is not allocated and thus its price is 0. Observe
that given any bundle, item j has a positive marginal value of at least ¢ = 5'0% > 0 for player

11



1. Therefore, the bundle A; U {j} has a strictly larger profit than his equilibrium allocation A;, a
contradiction.

We will show that in the instance (vi,v2), for any integral solution A = (Aj, A3) such that
AU Ay = M, Yaqq, sy = (@ —1)- OPT. We can then apply Claim B.8 which says that the
endowment gap is at least:

OPT* — Y4 (4, 5} L2 OPT—(z-1) OPT 1
OPT—T;Z)A,{SUi,s} - OPT—(x—-1)-OPT 22—z

This completes the proof since ﬁ >r=y- %, where we use the fact that for any instance with
two subaddititve players the integrality gap is strictly smaller than 2 (see Appendix [C]).

We next show that in the instance (vy,v3), for any integral solution A = (Aj, Ag) such that
A1UAy = M, Y (4, 53 = (#—1)-OPT. Observe that by subadditivity v;(SNA4;) > v;(S) —vi(S— A;),

thus:

2 2 2
Vafosy =D D Tis vi(SNA) =D Y i 90i(S) =D > wig-vi(S — Ay)

i=1 SCM i=1 SCM i=1 SCM

OPT*=x-OPT

To complete the proof, we show that 7 Yo sca %i,s - vi(S — A;) < OPT. Observe that since
At UAy = M, in Z?:l Y g Tis - vi(S — A;) we only assign player 1 subsets of Ay and player 2
subsets of A;. Taking into account that for each player i, ) ¢ x; 5 < 1, we get that Z?Zl Y oscam TiS e
UZ(S — Al) < ’U1(A2) +'U2(A1) < OPT. - [l

The claim provides a generic way of proving lower bounds on the endowment gap of subclasses
of subadditive valuations: start with an instance with the maximal integrality gap in the subclass.
The claim guarantees that there is an instance with an endowment gap that is strictly higher than
the maximal integrality gap. A more careful look at the proof shows that the new instance belongs
to the subclass as long as the subclass is closed under sum, like submodular and XOS valuations (a
class of valuations V is closed under sum if for each v,u € V we also have that v + u € V). We note
that although the claim guarantees a generic method of proving lower bounds on the endowment
gap, in the specific settings we study in this paper we are able to beat these bounds by introducing
specific instances with stronger guarantees.

4 The Main Result: The Endowment Gap of Submodular Valua-
tions is at Most 2

In this section we prove our main positive result: the endowment gap for submodular valuations is
at most 2. We prove this by showing that any allocation that is a ”local optimum” of the social
welfare function can be supported for @ = 2 with prices that are equal to the marginal value of the
items for the player that receives each item. We start by defining the notion of local optimum.

Definition 4.1 An allocation (Oq,...,0Oy) is a local optimum if U ;O; = M, and for every pair
of players i and i' and item j € O; we have that v;(0;) + vy (Oy) > v;(O; — {j}) + vir(Oy U {j}).

In other words, in a local optimum every item is allocated to some player, and reallocating any single

item does not improve the welfare. Note that any welfare maximizing allocation is in particular a
local optimum. We are now ready to state our main positive result.

12



Theorem 4.2 Let vy,...,v, be submodular valuations. Let O = (O1,...,0,) be a local optimum.
Then O is supported by any o > 2. As an immediate corollary, the endowment gap of every instance
with submodular valuations is at most 2.

Proof: We explicitly construct prices that show that O is supported by 2. For each item j € O;
we define its price to be p; = v;(j|O; — j). Using the following two claims we show that for o > 2 the
prices (p1,...,pm) and the allocation (Oq,...,0,) form an a-endowed equilibrium. Later we will
observe that our proofs hold even for lower prices.

We start by showing that with these prices and o« > 2, no player can gain by discarding items
from his endowment.

Claim 4.3 Consider player i that is allocated bundle S;. Suppose that the price of each item j € S;
is pj = vi(j|Si —{4}). Then, if a > 2 the profit of player i from every bundle S is at most the profit

of S;US". Le., v (8') = Yseq i S0P (SiUS) = 3 icqus Pi-

Proof: We compare the profit of player i from bundle S’:

—ij:vi(S/)+(oz—1) v;(S; NS Zp]

jes’ jes’

to his profit from the bundle S’ U S;:

SGUS) = Y pi=u(SUS) A+ (a—1)- - > p

jesus; jesus;

Using the fact that v;(S;) = v;(S; — S'|S; NS") + v;(S" U S;) and rearranging the last expression, we
get that the profit of bundle S’ U S; equals:

vi(S'US)+ (@ —1) v(SiNS) =Y pi+(a—1)-v(S -850~ > p;.

jes’ JjeES; =S’

S;,a ..
>v; """ (S’) by monotonicity

Thus, in order to show that vfi’a(Si US') = > iesrus Pi = vfi’a(S’) — > es Pj» it suffices to show
that (o — 1) - v;(S; — S'[S; N S") = > eq,_5j = 0. Since a > 2, it holds that @ —1 > 1 and
so to show this it is enough to prove that v;(S; — S’|S; N S’) > Zjesi_s, p; for every submodular
valuation. Towards this end, denote the items in S; — 5" by 1,...,]S; — S’|. With this notation
we have that v;(S; — S'|S; N S') = le S‘Ui(j](Si NSYU{l,...7 —1}). Finally, observe that
by submodularity we have that for every 1 < j < [S; — 5| it holds that p; = v;(j|S;i — j) <
vi(jlSiUS" = {4, 5+ 1., 18 = S} = vi(f[(Si N ) U{L,...j —1}). [

We next show that with these prices, an agent can never gain by adding items to his endowment.
Claim 4.4 Let O = (Oy,...,0,) be a local optimum and suppose that the price of each item j € O;
is pj = vi(j|O; — 7). Then, for any o > 1 and bundle T' the profit from O; is at least the profit from
O;uT.

Proof:  Assume without loss of generality that O; N'T = (). Observe that since the allocation O
is a local optimum we have that for any j € T', v;(j|O;) < pj = vg(j|Or — j) for player k such that
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j € Oy. Denote the items in T by 1,...,|T|. Since the valuations are submodular we have that:

|T|
a-vi(0;) +vi(T — 0;]0;) Z pj = o v;(0;) Zp]—FZUZj\O u{l,. ..,j—l})—ij
jeouT j€0; JET
\Tl
<a- Uz z ij‘i'zvz ]|O ij
JEO; jeT
<a- Uz 2 ij
J€0;

where in the second-to-last inequality we use the submodularity of v; to claim that v;(j]0;) >

Uz(j‘Oz U {1,. ] = 1})
O

We apply claims [4.3] and [4.4] to conclude the proof of the theorem. Let O = (Oy,...,0,) be a
local optimum, recall that in a local optimum we have that U ;O; = M, and suppose that the price
of each item j € O; is p; = v;(j|O; — j). To complete the proof we show that any player ¢ demands
the set O; at the these prices. By Claim [£4] for « > 1 for any bundle T

w0 = Y gy =0, UT) = Y py
JjE€O; JeEO;UT

and by Claim (3] for a > 2 and any bundle T

O”O‘OUT Z p]>v“ )—ij

jeo,uT JjeT

Combining the two inequalities we get that for any o > 2 and any bundle 7"

o700 = Y by 207N T) = Y s

j€0; JeT

as needed. [l

We note that the proof still holds even if we reduce the prices such that the price of item j € O;
is maxy; vy (7|0y) < pj < vi(§|0; — {j}). That is, the price p; can be reduced to the second highest
marginal value for the item. The reason is simple: the profit of player ¢ from the bundle O; has
increased at least as any other bundle in this reduction, so Claim 3] still holds. Claim [44] also
holds, as for the proof to hold we only need the price of each item to be the second highest marginal
value.

4.1 An Implication: The Approximation Ratio of a Local Maximum

One interesting corollary of the algorithm is not directly related to the endowment gap. In previous
work it was implicit that the welfare of any local optimum is at least half of the value of the welfare
maximizing integral solution. By a direct application of Corollary B.7 we are able to strengthen this
result and show that the welfare of any local optimum is at least half of the welfare of the welfare
maximizing fractional solution:

Proposition 4.5 Let (Oq,...,0,) be a local optimum. Let {x;s} be some fractional solution for
the LP presented in Section[31. Then:

2. ZUi(Oi) > Z Z 7.5 vi(S)
=1

i=1 SCM
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4.2 Tightness of Analysis

The following proposition shows that considering local optima (or even global ones) will not help us
prove a better bound than 2 on the endowment gap for submodular valuations:

Proposition 4.6 For any § > 0, there is an instance with submodular valuations in which every
local optimum mazimizes the welfare and these local optima cannot be supported by o < 2 — 9. In
this instance there is another allocation that can be supported by o = 1.5+ 6.

Proof: Consider an instance with four submodular players (a1, ag, by, b2) and 2k + 1 items (k > 2).
Each of the items belongs to one of the following three sets: X,Y,{c}, where X = {z1,...,z} and
Y ={y1,...,yx}. The valuations of the players are as follows:

e a; has a unit demand valuation with value % for each of the items in X (and O for the rest).
® a3 has a unit demand valuation with value % for each of the items in Y (and 0 for the rest).

e The valuations of by, by are defined as follows: given a set T', let vp be the budget additive
valuation with budget 1 that gives value + for every item in T and value of 1 for item {c}.
Then the valuation of by is b1(S) = vx(S) + |S| - € and b2(S) = vy (S) + |S| - €, where € > 0 is
small enough.

Observe that the valuations of b; and by are submodular as they are the sum of two submodular
valuations.

We next show that up to symmetry, there is only one locally optimal allocation. In every local
maximum item ¢ must be allocated to either b; or bs as its marginal value for both is positive given
any bundle, and a1, as have a value of 0 for item c¢. Without loss of generality assume it is allocated
to by. Now, it is not possible that in a local optimum b; is allocated X U {c} as his marginal value
for each item in X is only €, while a; values each item in X at 1/k. Thus, for e < 1/k player ay
must receive an item from X, without loss of generality item 1. Now, given any subset of X — {z1},
by has positive value for any additional item in X — {z1}, and is the only player with such positive
value, so he must get X U{c} — {z1}. Finally, all items in Y must be allocated to by as the marginal
value of any item in Y (given any subset of Y) is larger for by than for any other player, in particular
as.

We conclude that in a local maximum, without loss of generality, ay is allocated {x1}, by is
allocated X U {c} — {z1} and by is allocated Y.

Fix some value of « that supports this allocation. First, we observe that for any j € X — {1},
b1 (j|XU{c}—{z1,j}) = €, thus p; < a-€ (otherwise the profit of b; from the bundle X U{c}—{z1}—{j}
is bigger than the profit of his equilibrium allocation). Similarly, p. < o - (% + €).

Then, it must be that:

1. by prefers his allocation over item c: (1+k-€)-a—3  cypy > 1+€—pc.

2. a9 that has zero profit in equilibrium has a non-positive profit from items in Y: for every y € Y,
0>41_ Dy -
Z % Dy

Summing up all these inequalities with p. < o« (£ +e€), we get that: - (1+k-€) >2+e—a- (3 +e).

. e . . _ 1
That is, a > Tt (159 which approaches 2 for k that approaches oo and a choice of € = .

As for the second part of the proposition, we will now see that the allocation in which aq is
allocated {z1}, by is allocated X — {z1} U {c}, b is allocated Y — {y1} and a9 is allocated {y;}
is supported by 1.5 4+ €. To see this, we simply note that with this value of o the following prices
constitute an equilibrium with respect to this allocation: p. = % + €, pr = € (for each z € X),
py:ﬁ+e(foreachyGY—{yl}),andpyl:%4-6. O
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4.3 The Complexity of Finding a Local Optimum

Our proof that the endowment gap for submodular valuations is at most 2 starts with a local maxi-
mum (local optimum) (O, ...,0,). Can such a local optimum be efficiently found? We next show
that there are both communication and computation hurdles in finding a local optimum: We first
show that finding a local optimum in combinatorial auctions with submodular valuations requires
exponential number of value queries. In addition, we show that there exists some family of succinctly
represented submodular valuations for which finding a local optimum is PLS hard/l Both results
hold even if there are only two players.

In light of the hardness of finding exact local optimum, one might be tempted to use an approx-
imate local optimum instead, as it is computationally feasible to find, and hope it can be supported
by a small . However, it is easy to provide examples in which a (1 — €)-approximate local optimum
cannot be supported by any «. Consider a setting with two additive bidders and two items. The first
additive bidder has a value of 1 — € for item a, and € for item b. The second bidder has a value of 0
for both items. Observe that allocating a to the first bidder and b to the second one is an (1 —e€)-local
optimum. However, this allocation cannot be supported by any «: for the bundle {b} to be in the
demand of the second player, the price of item b must be 0. However, the profit of the bundle {ab}
for player 1 is then strictly bigger than that of {a}. We thus leave as an open question the problem of
efficiently computing an a-endowed equilibrium for combinatorial auctions with submodular bidders
for a small value of « (Proposition [AT] shows that it is possible to efficiently compute an allocation
that is supported by some huge a > 1).

We now turn to proving the hardness results for finding a local optimum:

Proposition 4.7 Finding a local optimum in a combinatorial auction with two submodular valua-
tions requires exponentially many value queries, even with randomized algorithms.

Proof: Let the number of items be m = 2k +1 for some integer k£ > 1. In the proof the valuation of
each player ¢ will belong to the following family of valuations parametrized by ciS satisfying 0 < cg < %
for every set S with |S| =k + 1:

|51, o ISI<k
vi(S) =< k+3+ck, |S]=k+1
k+1, S| >k + 2.

Notice that v; is a monotone submodular valuation.

Given two submodular valuations v; and ve from the family above, what can we say about their
local optimum? Consider an allocation (S, M — S). If the allocation is a local optimum, then clearly
|S| =k or |[M — S| = k as otherwise reallocating a single item from the larger bundle decreases the
value of the large bundle by at most % — ¢g and increases the value of the small bundle by 1, so the
overall welfare has strictly increased. Thus, only allocations (S, M — S) where one of the bundles
has size k can potentially be a local optimum.

Recall that a local maximum of a labeled graph is a vertex whose label is at least as large as
the labels of its neighbors. For our reduction we use odd graphs. An odd graph is constructedd by

"We will not give a precise definition here (see [I8] for a formal definition), but the PLS class intuitively captures
problems which admit a local search algorithm. An example for a PLS complete problem is finding a pure Nash
equilibrium in congestions games [10].

8The textbook definition of an odd graph starts with a set M of size 2k 4+ 1 and associates each of the vertices with
a set S C M of size k. Two vertices vs and vgs are connected if and only if SN S’ = (). The definition we give above is
easier to work with. Note that that this definition and the one we use above are equivalent as can be seen by changing
the label from S in the textbook definition to M — S.
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starting with a set M of size 2k + 1 and associating each of the vertices with a set S C M of size
k + 1. Two vertices vg and vg are connected if and only if |S N S’| = 1.

We will show that finding a local optimum when the valuations belong to the family defined
above is equivalent to finding a local maximum of an odd graph. This is enough to complete the
proof as the results of Santha and Szegedy [32] imply that the number of queries needed to find a
local optimum in an odd graph is exzp(m). This result is also holds for randomized algorithms (and
in fact also for quantum algorithms).

Given a labeled odd graph with M of size 2k + 1, we reduce it to combinatorial auctions with
submodular valuations as follows. Assume without loss of generality that the labels on the odd graph
are less than % (this can be achieved, e.g., by dividing all numbers by a large enough number). We
define identical valuations for the two players to be the above parametrized valuations where the
parameter cg = cls = C% is equal to the label of the unique vertex in the odd graph that is associated
with S, for each bundle S with |S| = k + 1. We next show that local maxima in this combinatorial
auction correspond to local maxima in the odd graph.

Consider an allocation (S, M — S) with |S| = k4 1. The welfare of this allocation is v;(S) +
va(M—S) = k‘—l—%—l—cis—l—k‘ = 2k’—|—%—|—63. Similarly, if |[M —S| = k+1 then the welfare is 2](3—1—%4—61\/[_5.
Recall that an allocation is a local maximum if and only if moving item j to the other player does
not improve the welfare. Thus, 2k + %—l—Cs > 2k + %—FC(M_S)U{]-} for every j € S. In other words,
cs > cr-syuyyy for every j € S. Recall that in the odd graph the vertex that corresponds to S is
connected exactly to all vertices which correspond to (M —S)U{j} for every j € S. This immediately
implies that an allocation (S, M — S) (|S| = k+ 1) in the combinatorial auction is a local maximum
if and only if the vertex that corresponds to S is a local maximum in the odd graph. The proof for
allocations (S, M — S) where |M — S| = k + 1 is symmetric. L

The proposition proves that finding a local maximum requires exponentially many value queries.
The other common model for accessing the valuations is the more general communication model.
That is, how many bits do the players need to exchange in order to compute a local optimum? One
obstacle in proving hardness in the communication model is that the proof of Proposition 4.7 is
based on the result of [32] which proves the hardness of finding a local maximum on the odd graph
using value queries. An analogous result for the communication model was not known when the first
version of the paper was written.

However, inspired by our work, the paper [4] studies a communication variant of local search on
the odd graph. Using this result and a very similar reduction to that of Proposition [£7], we show:

Proposition 4.8 The communication complezity of finding a local optimum in a combinatorial auc-
tion with two submodular valuations is exp(m). This results holds even for randomized protocols.

We give a sketch of the proof in Appendix [Dl

Proposition 4.9 There exists a family of succinctly described submodular functions for which com-
puting a value query can be done in polynomial time but finding a local optimum in a combinatorial
auction with two valuations that belong to this family is PLS-hard.

Proof: We reduce from the PLS complete problem of finding a locally optimal cut in a graph G.
In this problem, we are given an edge-weighted graph G = (V, F), and we are looking for a partition
of the vertices (S,V — S) such that the (weighted) cut cannot be improved by moving any single
vertex from one side of the cut to the other.

We now reduce this problem to a combinatorial auction with two identical submodular valuations.
The items in the combinatorial auction are the vertices of the graph. For each set of vertices S, we
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set v(S) to be the sum of the weights of all edges that touch at least one vertex in S. It is not hard
to see that this valuation is monotone and submodular.

Consider an allocation (S, M — S). Observe that the welfare of (S, M — 5) is exactly the sum of
the weights of all edges in the graph plus the sum of edges in the cut: the weight of an edge e = (v, u)
is counted once if and only if both are in S or if both are in M — S. It is counted twice if and only if
veSorue M—SorueSorveM—S. This implies that (S, M — S) is a local optimum in the
combinatorial auction if and only if (S,V — S) is a locally optimal cut in the graph, as needed. [J

5 Lower Bounds on the Endowment Gap

We now prove some lower bounds on the endowment gap. In Section ] we have shown that the
endowment gap for submodular valuations is at most 2. What about larger classes of valuations,
such as XOS or subadditive valuations? In sharp contrast to the case of submodular valuations, we
show that with the larger classes, the endowment gap cannot be bounded uniformly for the entire
class, even if there are only two players. Note that this does not contradict our claim (Proposition
[A.1) that for any instance, there exists an allocation that is supported by some «, as we now only
show that for every fized « there is some instance such that no allocation is supported by that value
of a.

Proposition 5.1 Fix a > 1. There exists an instance that consists of only three identical items and
two players with identical XOS valuations such that no allocation is supported by .

Proof: Consider an instance with two bidders and three identical items 1, z2, z3. The valuations
of the bidders are identical (since the items are identical we slightly abuse notation and use v(x) to
specify the value of every bundle S such that |S| = z): v(1) =1,v(2) =1+ ﬁ, v(3) =1+ 3% We
prove that this is indeed an XOS valuation by providing an explicit construction of the clauses of v:
a clause (z; = 1) for every item z;, a clause (z; = % + ﬁ, Tj = % + ﬁ), for every pair of ; and
zj, 7 # j, and a clause (z1 = %,azg = %,azg = 3%)

Note that in every equilibrium allocation all items must be allocated: if item x; is unallocated,
then its price is 0. However, since the valuations of the players are strictly increasing, the profit of
his equilibrium allocation with z; is strictly bigger than his profit from his equilibrium allocation.

Thus, from now on we only consider allocations that allocate all items. There are two possible
allocations that allocate all items (up to symmetry). We will show that both allocations are not
supported by «. In the first allocation, one player, say player 1, gets all three items. The marginal
value of an item for player 1 is % — ﬁ < % Thus the price of every item in equilibrium is at
most « - 3% = % (if there is an item with a higher price, the profit for player 1 of the bundle that
contains the other two items is higher than the profit of the grand bundle). In this case the profit
of player 2 from taking one item is positive: 1 — % = % A contradiction to the assumption that the
empty bundle maximizes the profit of player 2.

The other allocation is when one player, say player 1, is allocated two items and player 2 receives
only one item. This allocation is not supported by « as well: since v(1) =1 and v(2) = 1+ ﬁ, the
marginal value of player 1 for any item is ﬁg‘ Thus, taking the endowment effect into account, the
price of each item that is allocated to player 1 cannot exceed ﬁ But now the profit of the grand
bundle for player 2 is strictly higher than its current single item allocation: the marginal value of
player 2 for the two items that were allocated to player 1 is 3%, while the sum of prices of these items

is at most %. We have reached a contradiction once again. L]

For submodular valuations we can prove that the endowment gap is at least % This leaves us
with a small gap to the upper bound of 2.
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Proposition 5.2 There exists an instance of two players with submodular valuations where the en-
dowment gap is at least %

Proof: Feige and Vondrak [I1] show that the integrality gap of two players with submodular
valuations is at least g. We now show that this example shows that the endowment gap is at least %

As mentioned, we have two players, call them Alice and Bob. There are 4 items, the value of
each singleton is 1 the value of each bundle of three or more items is 2. The values of pairs of items

are:
Alice Bob

{ab} 2 4/3

{cd} 2 4/3

{ac} 4/3 2

{bd} 4/3 2

{ad} 5/3 5/3

{bc} 5/3 5/3
There are 4 possible allocations of all items (up to symmetry), and we will see that none of them
is supported by a < % We will use the fact that the value of the optimal fractional solution is
4 (Alice receives 1 of each of the sets {ab},{cd}, Bob receives I of each of the sets {ac}, {bd}:

TAfab} = TA {ed) = TB fac) = TB.{bd) = 3):
1. ({abcd},): The value of this allocation is 2, and since there is a fractional solution with value
4, by Claim B.8 this allocation requires o > 2 to support it.

2. ({abc},{d}): Suppose that there is an equilibrium with some o > 1 and prices pq, Py, Pe;s Dd-
va(c|/{ab}) = 0, hence p. = 0 (as if p. > 0 the profit of Alice from the bundle {ab} is strictly
bigger than that of {abc}.) However, this means that vg(c[{d}) — p. = %, thus

a-vp({d}) —pa < a-vp({d}) — pa + ve(c[{d}) — pc

Le., the profit of Bob from the bundle {cd} is strictly bigger than that of {d}. A contradiction
to the assumption that there is an equilibrium.

3. ({ab},{cd}): Denote this allocation by A and note that its welfare is 10/3. Observe that:

Vafes) = 30 3 wis u(S0 A = seal{ab}) + sop({eh) + yup({dh) =2

i=1 SCM

Thus, by Claim B8] to support A we must have o > -2 = %

3

4. ({ad}, {bc}): Denote this allocation by A and note that its welfare is 10/3. Observe that

Vages) = 30 O s w81 A9 = ua({al) + sua(idh) + 3us({b}) + 3up({c}) = 2.

i=1 SCM

Similarly to before, by Claim B.8] to support A we must have o > i‘i = %

3
Finally, we note that the optimal integral allocation ({ab},{cd}) is indeed supported by o = 3/2 by
using the prices p, = pp = 1, p. = pa = 2/3. ]
The above claim shows that if we have two players with general submodular valuations then the
endowment gap is at least % Next, we consider a more restricted class — budget additive valuations —
and show that even in this much simpler class the endowment gap is essentially the same. However,
we do need more players to show this.
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Proposition 5.3 For every ¢ > 0, there exists an instance of four players with budget additive
valuations in which the endowment gap is at least ﬁ
Proof: We consider a modification of the integrality gap example of Chakrabarty and Goel [6]. We
have 4 players (aj,a2,b1,b2) and 5 items (x1,x2,y1,¥y2,¢). a1,az have budget 1, by, bs have budget
2 + ¢, for some arbitrarily small € > 0.

To complete the definition of the valuations, we only need to specify the values of players for
single items:

e Players a1 and b; have value 1 for items z1, xo.
e Players as and by have value 1 for items y1, ys.
e Players by, by value 2 for item c.

e The rest of the values are 0.

To analyze the endowment gap we provide several lemmas that characterize the allocations that
can be supported in an endowed equilibrium. We then show that each of these allocations can be
3

supported only by a > ez

Lemma 5.4 Without loss of generality, in an endowed equilibrium by is assigned item c.

Proof: We claim that in equilibrium item ¢ must be allocated to one of the players by, bs. If ¢ is
not allocated, then its price must be 0. The same holds if ¢ is allocated to player a; or player as,
the value of both players for ¢ is 0. Now observe that each player b; has three items with positive
value, and that by(c[{z1,22}) = € > 0. Thus, when p. = 0, the profit of player b; from a bundle that
contains c is always strictly bigger than his profit from a bundle without it. The argument for player
bs is identical, and thus without loss of generality in equilibrium b is assigned item c. L]

Lemma 5.5 Without loss of generality, in an endowed equilibrium player bs is assigned at least one
of y1,y2.

Proof:  Observe that if player b; was not assigned any of the items yi,y2 , then his profit is 0,
since he has positive value only for items ¢, 1, y2 and did not get any of them. The only other player
with positive value for y; and yo is as. However, if ay receives the bundle {y1,y2} the marginal
contribution of any of these items is 0, thus the price of both of these two items is 0. In that case,
the profit of player be from the bundle {y;} is strictly positive and is bigger than his 0 profit in
equilibrium, which is a contradiction. ]

Lemma 5.6 Without loss of generality, in an endowed equilibrium ai is assigned item xo.
Proof: We can claim that player ay is allocated at least one of x1,zs: the only other player with
positive value for these items is b1. Now, by is already assigned item ¢, so the marginal contribution

of the item is at most € and thus the price is at most « - €. For € < é, a-€ < 1 and the bundle {z;}
has a positive profit for player a;. This profit is bigger than his 0 profit in equilibrium. ]

Lemma 5.7 Without loss of generality, in equilibrium player by is assigned x1 and py, < o - €.
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Proof: Observe that x; can only contribute positively to players aj,b; and that aq(x1|{z2}) = 0.
Thus, if 2z is allocated to a; then its price must be 0, but then by (x1|{c}) > 0, which implies that
b1 profit increases when he adds x; to his bundle. Similarly to before, this means that this is not an
equilibrium allocation. Also, similarly to the previous lemma, p,, < a - €. L]

This leaves us with the following two allocations that can be supported (up to symmetry):
1. by gets {c,x1}, ba gets {y1,y2}, a1 gets xo: in this case we have:

(a) by prefers his allocation over item c: 2- o — py, — Py, > 2 — pe.

(b) ay prefers his allocation over item z; (recall that p,, < a-€): @ —pg, > 1 —€-au

(c) by prefers his allocation over {z1,z2}: 2-a—p. > 1+a—p,, (by rearranging a—p. > 1—p,, ).

(d) a2 that has zero profit in equilibrium has a non-positive profit from y; and yo2: 0 > 1—py,,
0>1—py,.

Summing these inequalities we get that « - (4 + €) > 6. Le., to support this allocation we need
a> g + T2 As € approaches 0 this ratio approaches %
2. by gets {c,z1}, ba gets y1, ag gets xa, ag gets yo:

(a) by prefers his allocation over item c: o — py; > 2 — pe.

(b) by prefers his allocation over {y1,y2}: o —py, > o+ 1—py, — py,. Hence py, > 1.

(c) a

(d) by prefers his allocation over {z1,z2}: 2-a —pe > 1+ a — pa,.
) a

(e

Summing these inequalities we get that a - (4 + €) > 6. IL.e., to support this allocation we need
a > +E Tz As e approaches 0 this ratio approaches %

1 prefers his allocation over item x; (recall that p,, < a-€): a —py, > 1—€-a.

2 prefers his allocation over item y1: o — py, > 1 — py,.

O
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Existence of Endowed Equilibrium

We now show that for every instance there is some allocation that can be a-supported with some
a > 1. The caveat is that this a might be huge and instance dependent. We will bring two (similar)
proofs for this: one that shows that there is a welfare maximizing allocation that can be supported,
and another proof that shows how to find such allocation in a computationally efficient way.
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The value of a used in Proposition [A1lis instance dependent and can be very large (depends on
the value of OPT, the maximal welfare for the instance) and thus does not provide a uniform upper
bound that hold for all instances. We show (Proposition [5.1)) that an upper bound that holds for all
instances does not exist.

Proposition A.1

1. In every instance there is some welfare mazimizing allocation O = (O, ...,O,,) for which there
exists some o > 1 that supports it.

2. There exists an algorithm that uses poly(m,n) value queries that finds some allocation that is
supported by some o > 1.

Proof: Both proofs rely on applying Proposition B4l For the first part, we show that there exists
a welfare maximizing allocation that is maximal: start with some optimal allocation (Oq,...,0,)
and consider the following process: if there is some player i and item j with v;(j]O;) = 0, remove
item j from O;. Repeat this process until obtaining an allocation (O}, ..., O),) where every allocated
item have a positive marginal value. Note that (O, ..., O}) has the same value as (O;,...,0,) and
thus it is welfare maximizing.

Let Z be the set of unallocated items. Observe that any other item has a posititve marginal
contribution to the allocation. Furthermore, notice that for every i we have that v;(Z|O}) = 0, since
otherwise the welfare of the allocation (O31,...,0;_;,0; + Z,0j_,...,0y,) is strictly larger than
OPT (this is a valid allocation, as items in Z are not allocated at all), which is a contradiction. Now
we can apply Proposition B4 and get that (O,...,0},) can be supported by some a > 1.

For the second part of the proposition, we show how to efficiently find a maximal allocation. Start
with the grand bundle M, and remove from it some item with a zero marginal value for player 1:
v1(j|M —{j}) = 0, if such exists. Then repeat this process for the next item that have a zero marginal
value until obtaining some set S; such that for every j € Si, v1(j§]S1 —{j}) > 0 and v1(S1) = v1(M).
Similarly, starting with the remaining items M — S, obtain a bundle S5 C M — S; such that for
every j € Sz, v1(j]S2 — {j}) > 0 and v1(S2) = v1(M — S1). Repeat similarly with the remaining

items for the next players. Observe that (S1,...,Sy,) is maximal. Hence by the lemma there is some
« > 0 that supports it. Note that the number of value queries that we make during the process is
poly(n, m). O

Not only are there allocations which cannot be supported by any «, even some welfare mazimizing
allocations cannot be supported by any «. Specifically, this is the case for some welfare maximizing
allocations in which items of zero marginal value are allocated to agents. See Example below.
Note that this is very different than in the case of Walrasian equilibrium (when a = 1) in which
allocating item of zero marginal value to the agents, and pricing them at zero, cannot destroy the
equilibrium.

Example A.2 Consider a setting with three items and two players, where the value of the players
for a bundle is only a function of its size: for player 1, the value of any pair of items (and by
monotonicity also of the grand bundle) is 1, and for player 2 the value of any pair of items is €
satisfying 1 > € > 0. An optimal allocation is to allocate all three items to player 1. In this case,
the marginal value of each of the items is 0 = v1(1|2). Thus the price of each of the items must be
0 since if it is positive the profit of player 1 for a bundle that contains two items is bigger than the
profit of his equilibrium allocation. However, for a price of O for each item, any pair of items give a
positive profit for player 2, which is bigger than his O profit from the empty bundle.

Note that in this example the welfare maximizing allocation that allocates items {a,b} to player
1 and leaves item ¢ unallocated is supported by, e.qg., po = 1,pp = 1,p. =0 and a = 2.
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B a-Endowed Equilibrium for a < 1

In this section we discuss the case of a < 1. We show that if an a-endowed equilibrium exists then
its allocation must maximize the welfare with respect to the original valuations. This implies that to
be able to present such an equilibrium, we must be able to compute a welfare maximizing allocation.
Additionally, we show that even for unit-demand valuations, an a-endowed equilibrium might fail to
exist for any 0 < o < 1, establishing that for gross-substitutes valuations the minimal o needed to
always support an a-endowed equilibrium is indeed 1.

B.1 Any a-Endowed Equilibrium for 0 < a < 1 is Welfare Maximizing
We first show that for 0 < o < 1 any a-supported allocation is socially efficient.

Theorem B.1 For any 0 < a < 1, if an a-endowed equilibrium exists then its allocation is welfare
mazximizing with respect to the original valuations.

Proof: Consider an endowed equilibrium with allocation (Si,...,S,) with prices pi,...,pmn. Let
(O1,...,0,) be a welfare maximizing allocation. For each player ¢ we have:

- UZ(SZ) —p(Si) Z - ’UZ(SZ N OZ) + UZ(OZ — SZ|SZ M OZ) — Z pj

j€0;
= v;(8; N 0;) +vi(0;) —vi(S; N O;) = > p;
JEO;
=v;(0;) — (1 — a)v;(S; N O;) Zp]
JjE€O;
Zvi(Oz) (1_a Uz z ij = Q- Uz z Zp]
J€O0; JEO;

Where the last inequality is due to the fact that for all ¢ it holds that v;(O;) > v;(S; N O;), and since
1 —a > 0. Taking a sum over all the players and using > _; Z]ESZ_ Pi=> Zjeoi p;j we get that:

e Z 0;(S;) > « Z v;(0;)
We conclude that >, v;(S;) > >, vi(O0;), so (S1,...,Sy) is socially efficient. 0

B.2 Any a-Endowed Equilibrium for a = 0 is Welfare Maximizing

We next show that for a = 0 any a-supported allocation is socially efficient.

Observation B.2 For o = 0, the allocation of any a-endowed equilibrium is welfare mazimizing
with respect to the original valuations.

Proof: Fix some a-endowed equilibrium S = (Si,...,S5,) for @« = 0. Since o = 0, each player
7 has no endowed value for the items he gets, so he must be paying 0 for each of the items in S;
(otherwise he prefers dropping all items with positive price). Thus the price of all items must be 0
and the endowed profit is zero: vfi’a(Si) —Yjes,pj = 0-v;(S;) —0=0. As i prefers S; to M it holds
that ’U;-Si’a(si) — EjESipj =0>0- UZ(SZ) —i—UZ(M’SZ) — ZjEij = UZ(M‘SZ) —0= UZ(M) — ’UZ(SZ) >0,
and thus v;(M) = v;(.S;).
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We get that (S1,...,5,) is an 0-endowed equilibrium if and only if v;(M) = v;(S;) for player i.
We next show that this implies that S is welfare maximizing. Assume that it is not, and there is an
allocation (O1,Oa,...,0,) such that ), v;(O;) > >, v;(S;). For this to be possible, it must be the
case that for at least one player ¢ it holds that v;(O;) > v;(S;). But this yields a contradiction as
vi(M) > v;(0;) > v;(S;) = v;(M). We conclude that if (Si,...,S,) is the allocation of an a-endowed
equilibrium for « = 0 then it is welfare maximizing with respect to the original valuations. ]

B.3 Unit-demand Valuations are not a-supported for 0 < o < 1

Recall that an a-endowed equilibrium for o = 1 is simply a Walrasian equilibrium. When valuations
are gross-substitutes (e.g. unit demand) then it is well known that a Walrasian equilibrium exists.
We next show that even for unit-demand valuations, an a-endowed equilibrium does not exist for
a < 1, and thus for unit-demand valuations it is indeed required that o > 1 to ensure the existence
of an a-endowed equilibrium.

When o < 1 each player discounts the value of the items that he receives. Here is a very simple
instances with unit-demand valuations that does not admit any a-endowed equilibrium for o < 1:
consider n identical players and n identical items. Each player is unit demand and wants any single
item for a value of 1. Observe that if there is an a-endowed equilibrium, then by individual rationality
the price of each item is be at most «. Let player ¢ be the player that is allocated the item j with
the highest price p; (if there are several such players, choose one arbitrarily). Observe that player 4
prefers any other item j': a - v;({j}) —p; < v({j'}) —p;s. This is because o < 1 and since p; > pj.
Thus, no a-endowed equilibrium exists in this instance.

C The Integrality gap of 2-Player Instances with Subaddititve Val-
uations

We now show that the integrality gap of instances with two players, both with subadditive valuations
is strictly less than 2. We consider some fractional solution {z; g} of the LP and show how to round
it to an integral solution that provides an approximation ratio better than 2. We will prove the
that there is an integral allocation (Si, 92) such that v1(S1) +v2(S2) > (3 + 2-)E2_ Sga; g0 (), as
needed.

Suppose, without loss of generality, that Y gz sv1(S) > Xgxa sv2(S). Sample a bundle S; by the
distribution that assigned probability x; g to each bundle S. Allocate S; to bidder 1 and M — S5 to
bidder 2. The expected value of this rounded solution is exactly Ygz1 g - (v1(S) + v2(M — S)). It is
therefore enough to prove that X gz g - vo(M — S) > Esm+v2(s) This is so as this implies that the
value of the solution is at least X gz gv1(S) + Esm+vz(s) and X g1 ,501(5) > Xgaa gv2(S) so overall
the expected value is at least (3 + 55-)%2_ S, gv;(S), as needed.

Given player i and item j, let ¢; = Yg;jeswis. In particular, for any item j we have that
qjl- + q]2- < 1. Observe that the probability that player 2 receives item j is 1 — qjl- > qu-. That is,
let D be the distribution in which player 2 receives bundle S with probability z2 ¢ and D’ be the
distribution where player 2 receives bundle M — S with probability x; . The marginal distribution
of player 2 receiving item j in D’ is at least the marginal distribution of player 2 receiving item j in
D. We have that:

Esp [Sjesva({})] _ Ei(1 = g¢j) - va({5})

Esp[v2(S)] > - = p-

> 2]"132"”2({j}) > Ygwa 5v2(S) _ Egplva(95)]
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where in the first and last inequalities we use the subadditivity of vs.

D The Communication Complexity of Finding a Local Maximum

The paper [4] studies the following communication variant of local search: let G = (V, E) be a known
graph. Alice holds a function f4 : V — R and Bob holds a function fp: V — R. The goal is to find
a local maximum of the graph: a vertex v such that fa(v)+ fg(v) > fa(u)+ fp(u) for any neighbor
u of v. In particular, it is shown in [4] that if G is the odd graph then finding a local maximum
requires |V|¢ bits of communication, for some constant c. This results holds even for randomized
protocols.

We utilize this communication hardness result to prove that the communication complexity of
finding a local maximum in combinatorial auctions is exp(m). The proof is similar to the proof of
Claim 7] Again, let the number of items be m = 2k + 1 for some integer k > 1. The valuation of
each player i belongs to the following family:

|51, , S| <k—1
k’—1+é+c7j\4_s, |S|:k7
k—1+41+cs, S| =k+1

k, IS| >k + 2.

It is not hard to see that if for every S it holds that ciS < % then the valuations are monotone and
submodular. Also, similarly to before, an allocation (S, M — S) can be a local maximum if either
|S| =k or |[M— S| =k.

In our reduction from the communication hardness of local search on the k’th odd graph, we
have m = 2k + 1 items. We let the valuation of Alice belong to the family above with ¢4 = f4(S).
Bob’s valuation is similarly defined with cg = fB(S). The proof that every local maximum of the
odd graph is a local maximum of the combinatorial auction is very similar to the corresponding part
of the proof of Claim [1.71 We proceed similarly as in the proof of Claim H.7], except that we use the
fact that by construction of our valuations v (S) + ve(M — S) = v1(M — S) + v2(S). That is, the
value of every allocation (S, M — ) (|S| = k) is 2k — 2+ 3 + 3 + ¢§ + c§ and the value of every
allocation (M —S,5) (|S| = k) is also 2k —2+ £ + 2 + ¢4 +cB. Moving a single item j increases the
welfare if and only if cé + cg > cf‘M_ supt T C(BM_ SUL}

This establishes that [V|¢ = exp(m) bits of communication are needed to find a local maximum
in a combinatorial auction with submodular bidders.
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