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Abstract

We introduce and study a large family of rules for many-to-one matching

problems, the Preference Rank Partitioned (PRP) rules. PRP rules are student-

proposing Deferred Acceptance rules, where the schools select among applicants

in each round taking into account both the students’ preferences and the schools’

priorities. In a PRP rule each school first seeks to select students based on

priority rank classes, and subsequently based on preference rank classes. PRP

rules include many well-known matching rules, such as the standard Deferred

Acceptance rule, the Boston rule, the Chinese Application-Rejection rules of Chen

and Kesten (2017), the Taiwan Deduction rules of Dur et al. (2018), and the

French Priority rules of Bonkoungou (2019), in addition to matching rules that

have not been studied yet. We analyze the stability, efficiency and incentive

properties of PRP matching rules in this unified framework.

Keywords: matching; school choice; Deferred Acceptance; Boston rule; stability

1 Introduction

We study a large family of matching rules, which includes many already well-known

rules, for many-to-one matching problems that assign heterogeneous indivisible objects
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to agents, where objects have strict priorities over agents and several agents may be

assigned to the same object. Since this model is known as the school choice model due to

Abdulkadiroǧlu and Sönmez (2003), we call the objects schools and refer to the agents

as students. However, the theoretical approach and results pertain to a broad range of

applications, not just to school choice, such as centralized university admissions, refugee

resettlement, and dormitory room assignments, among others. Balinski and Sönmez

(1999) introduced this model first, which only differs from the college admissions model

of Gale and Shapley (1962) in that school priorities are mandated by policies or by the

law and thus school seats can be viewed as objects to be allocated, while in college

admissions schools have preferences and are considered to be strategic agents. This has

implications for the efficiency and incentive axioms used in the two models. In the school

choice model, only the students’ welfare and incentives are considered. Stability, on the

other hand, translates into fairness in the school choice model, since the exogeneously

given school priorities are taken into account from the students’ perspective.

We call the large family of rules that we introduce and study Preference Rank

Partitioned (PRP) rules, since these matching rules are student-proposing Deferred

Acceptance (DA) rules (Gale and Shapley, 1962) in which schools use a choice function

to select among applicants that rely not only on the school priorities, but also on

a partitioning of student preferences. Choice-based DA mechanisms are studied and

characterized by Kojima and Manea (2010) and Ehlers and Klaus (2016). Choice

functions are employed in matching with diversity constraints (e.g., Ehlers et al., 2014),

matching with distributional constraints (e.g., Kamada and Kojima, 2018), or more

generally by numerous papers in matching with contracts. None of these papers consider

choice functions which depend on preferences.

PRP rules are determined by a partition of each school’s priority ordering of students

and by a partition of each student’s preference ranking over schools, which lead to

priority and preference rank classes respectively. Students who are in a higher priority

rank class are selected by the school’s choice function first, followed by a comparison of

the preference rank classes in which applying students place the school in question, in

order to make further selections. If ties remain then the school-specific strict priorities

over students are used for tie-breaking. Since the given priorities are assumed to be

strict, a PRP matching rule specifies, as the first selection criterion, priority rank classes

which lead to coarse priorities that are consistent with the given strict priorities. As the
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second selection criterion, a PRP rule bases the selection of students on their preference

rank classes in the instances where some students applying to the school are in the

same priority rank class and selecting all of them would result in exceeding the school’s

capacity. The strict priorities within the priority rank classes specified by the PRP rule

are used only for tie-breaking, as a last resort, when neither the priority rank classes

nor the preference rank classes can determine the selection of students by a school in a

particular round of the iterated Deferred Acceptance procedure. Thus, these matching

rules can be interpreted as rules that first coarsen the given strict priorities and then

refine them using preference rank classes. An alternative interpretation is that they

start from given coarse priorities and use the preferences rank classes to refine the

priorities. In the latter interpretation the tie-breaking, when necessary, can be done

randomly.

The set of PRP rules includes many well-known matching rules, such as the De-

ferred Acceptance (Gale and Shapley, 1962) and Boston (Immediate Acceptance) rules

(Abdulkadiroǧlu and Sönmez, 2003), as well as the family of Application-Rejection

mechanisms of Chen and Kesten (2017), the French Priority mechanisms of Bonkoun-

gou (2019), the Taiwan Deduction mechanisms of Dur et al. (2018) and the Secure

Boston mechanism introduced by Dur et al. (2019), among others. We analyze the

family of PRP matching rules, and also study a subfamily of PRP rules, the Equitable

PRP rules, which treat students symmetrically. For matching rules in this subfamily

the preference rank classes are homogeneous across students. All previously studied

rules and families of rules that are PRP rules are Equitable PRP rules. We specify new

PRP rules which are not Equitable PRP rules, namely, the class of Favored Students

rules, which treat students in one of two ways: each student has either the coarsest or

the finest preference rank partition. We also identify some further classes of PRP rules

which are Equitable PRP rules and include the Deferred Acceptance and Boston rules,

but are distinct from such families of rules already studied in the literature, such as

the Application-Rejection rules, the Taiwan Deduction rules, and the generalized class

of Secure Boston rules, proposed by Dur et al. (2019). One such class is what we call

the Deferred Boston rules, which are PRP rules that have homogeneous priority rank

partitions combined with the finest preference rank partitions. We also identify the

class of Homogeneous PRP rules, characterized by having both homogeneous priority

and preference partitions, which makes Homogeneous PRP rules a superset of almost
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all previously studied PRP rules (except for some French Priority rules such as First

Preference First and Secure Boston rules) and a subset of Equitable PRP rules.

Several PRP rules have been used worldwide in school choice, university admissions,

and hospital-intern matching. Apart from the widely used Deferred Acceptance rule,

which was adopted (with some variations) by the school boards of several large US

cities such as New York City, Boston, and New Orleans, and is being used extensively

in hospital-intern matching in North-America, the Boston rule was in use in Boston for

school choice until 2005 and is still a popular procedure for student placement.1 The

Boston rule is a special case of the priority matching mechanisms of Roth (1991), which

were used in several UK cities starting in the 1960s for allocating hospital positions to

graduating medical students and were subsequently abandoned, since these mechanisms

have poor stability and incentive properties. Priority matching mechanisms rely both

on the exact preference ranks of hospitals by students and the exact priority ranks of

students by hospitals to determine the matching, and use a formula which orders the

pairs of ranks starting with (1, 1) to make matches. The only priority matching rule

that is a PRP rule is the Boston rule. The First Preference First rule used in England

for school choice was banned in 2007 (Pathak and Sönmez, 2013). The French Priority

rules are employed in centralized university admissions in France (Bonkoungou, 2019).

The Parallel Mechanisms (more generally, Application-Rejection rules) are in use in

China (Chen and Kesten, 2017). The Taiwan Deduction rules of Dur et al. (2018) have

been used for high school assignment in Taiwan since 2014. Hence, PRP rules and their

properties are not just of theoretical interest, but also have practical relevance.

Our results pertain to the stability, efficiency, and incentive properties of PRP rules.

We first demonstrate that PRP rules choose the optimal matching that is consistent

with the specific school choice functions at each preference profile (Proposition 1). We

also characterize the subclass of PRP rules which treat students symmetrically, the

Equitable PRP rules, by applying a natural weak stability property that relies on pref-

erences in addition to the priorities to justify assignments (Proposition 2). This charac-

terization generalizes to the larger class of rules which are not necessarily optimal but

share the choice-function-specific stability properties of PRP rules (Theorem 1). We

also show that the only Pareto-efficient PRP rules (Pareto efficient for the students’

side of the market) are what we call the Near-Boston rules, and this result also holds

1See Pathak (2017) for the literature on the practical aspects of school choice design.
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for the larger set of rules mentioned above, which form a superset of PRP rules (Theo-

rem 2). Surprisingly, the set of Near-Boston rules includes some PRP rules other than

the Boston rule, which itself is well-known to be efficient (Abdulkadiroǧlu and Sönmez,

2003; Kojima and Ünver, 2014). However, the class of Pareto-efficient PRP rules is still

quite restricted, since for these matching rules only one student’s preference rank par-

tition may differ from that of the Boston rule, which itself calls for the finest preference

partition for each student. A serious issue with the efficiency of the Near-Boston rules

is that these rules are not strategyproof (note that in this context for strategyproofness

we only take into account the students’ incentives, as the schools are not considered

strategic agents). In fact, the Boston rule is well-known to be highly manipulable.

Thus, since many students (or their parents, in the case of school choice) misrepresent

their true preferences, the matching outcome is unlikely to be Pareto-efficient, and in

fact the welfare loss can be significant (Ergin and Sönmez, 2006; Pathak and Sönmez,

2008). These concerns also carry over to the other Near-Boston rules.

We also prove that the only strategyproof PRP rule is the Deferred Acceptance

rule (Theorem 3). Hirata and Kasuya (2017) study stability and strategyproofness

in a general matching market with contracts, and find that the number of stable and

strategy-proof rules is at most one. They also show that if the student-optimal stable

rule exists then it is the only candidate for a stable and strategyproof rule. These

results, nonetheless, don’t imply ours, since in their setup the choice function selects

a feasible set of contracts from each set of contracts independently of the preferences.

Alva and Manjunath (2019) also study related topics.

While PRP rules are not strategyproof except for the DA, they can be shown to

be less manipulable than their non-optimal counterparts, using the criterion of Pathak

and Sönmez (2013) for comparing manipulability. This follows from the general results

of Pathak and Sönmez (2013) and Chen et al. (2016). Our main result on incentives is

that students cannot manipulate PRP rules to obtain a school that was unattainable

when reporting their preferences truthfully by placing this school in the same preference

rank class or in a lower one when reporting untruthfully (Theorem 4). This theorem

sheds new light on the incentive properties of well-known PRP rules and offers insight

into their manipulability properties in general.

The closest papers to ours are Bonkoungou (2019), who studies an important sub-

class of PRP rules, the French Priority rules, in a somewhat different approach, and
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Chen and Kesten (2017) and Dur et al. (2018), both of which study a class of PRP

rules which is distinct from the French Priority rules and only have two members in

common: the DA and the Boston rule. Bonkoungou (2019) has coarse priorities as

primitives of his model, thus the French Priority rules, which always have the finest

preference partition for students (as in the Boston rule), collapse to one single rule in

his paper. He explores the incentive properties of the French Priority rule from both

an ex-ante and an ex-post perspective. Bonkoungou also introduces a notion called

strategic accessibility, which serves as a basis for further manipulability comparisons

(see also Bonkoungou and Nesterov, 2019). Our analysis is from the ex-post perspec-

tive, and our results complement the ex-post perspective results of Bonkoungou (2019).

Specifically, Bonkongou (2019) makes comparisons based on how fine the given coarse

priorities are, while our main theorem on incentives pertains to the preference rank

classes. Chen and Kesten (2017) study a subclass of PRP rules in which the preference

rank classes are homogeneous but the priority rank classes are the coarsest. The Tai-

wan Deduction rules of Dur et al. (2018) translate into the same class of PRP rules

in our framework as the Application-Rejection rules of Chen and Kesten (2017). We

generalize the findings of Chen and Kesten (2017) about the extreme members of the

class of Application-Rejection rules (Theorem 2 and Theorem 3). The results of Chen

and Kesten (2017) and Dur et al. (2018) on manipulability comparisons of different

matching rules are independent of our main result on incentives (Theorem 4).

Although we assume that there are exogenously determined strict priorities, PRP

matching rules are also useful to study situations where only coarse (weak) priorities

are given, as would be typical for public schools that cannot strictly order the students

based on a few criteria only, or for countries which cannot distinguish among all refugee

families but wish to prioritize refugees with certain skills and attributes. In Bonkoun-

gou’s (2019) approach the exogenously given priorities are coarse, following the practice

of universities in France, and consequently the use of preference rankings is viewed as

breaking the ties in the given coarse priorities. In cases like this, when priorities are

weak, the DA and most other prominent matching rules that rely on priorities are not

well-defined, and the ties need to be resolved. Abdulkadiroǧlu et al. (2009) propose

to use a single tie-breaking procedure in the DA, which is a tie-breaking lottery that

applies to each school, and show this tie-breaking method to be superior to the multiple

tie-breaking procedure, which means separate tie-breaking lotteries for schools. Erdil
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and Ergin (2008) introduce stable improvement cycles, which is essentially a different

tie-breaking procedure at different preference profiles with the aim of improving student

welfare while preserving stability with respect to the coarse priorities. Further inter-

esting papers on tie-breaking are Ehlers and Erdil (2010) and Ehlers and Westkamp

(2018).

2 Model

Let S be the set of n students and C the set of m ≥ 3 schools. Each school c has

capacity qc ≥ 1. In order to simplify the exposition, we assume that m ≥ 3 and that

there exist schools a, b, c ∈M such that qa+ qb+ qc < n. The latter assumption ensures

that there is scarcity for at least the three schools with the least capacity, so we don’t

need to take care of special cases where this minimum condition doesn’t hold.

Each student s ∈ S has a preference relation Ps, a strict ordering over C ∪ {0},
where assigning 0 to student s represents staying unmatched (or being matched to an

outside option). If 0Psc then school c is unacceptable to student s, and otherwise the

school is acceptable to s. For c, c′ ∈ C we write cPsc
′ if student s strictly prefers school

c to school c′, and cRsc
′ if either cPsc

′ or c = c′. Let Ps ∈ (c) denote that student

s has one acceptable school only, namely c, and let Ps ∈ (0) denote that s has no

acceptable schools. More generally, we will write Ps ∈ (a, b, c), for example, to indicate

that student s ranks school a first, b second, and c third, and that these are the only

acceptable schools to s. We will also use the notation rs(c) for student s’s ranking of

school c for each acceptable school c. For example, rs(c) = k indicates that c is ranked

in the kth position by s. Note that if rs(c) < rŝ(c) then s ranks school c higher than

ŝ, in the sense that a lower rank number indicates higher preference. Let Ps denote

the set of all preference relations for student s ∈ S and let P = Ps1 × . . . × Psn . A

preference profile is P = (Ps1 , . . . , Psn), where P ∈ P .

Each school c ∈ C has a strict priority ordering �c of students in S. Let π be the

set of all priority orderings (i.e., permutations) of students. Then for all c ∈ C, �c∈ π.

Let Π = π × . . . × π be the m-fold Cartesian product of π. A priority profile is

�= (�c1 , . . . ,�cm), where �∈ Π. We assume that a fixed strict priority profile �∈ Π is

a primitive of the model. We will discuss in Section 9 how we can relax this assumption

and give a different interpretation to Preference Rank Partitioned matching rules when
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coarse priorities are the primitives instead of strict priorities.

The outcome of a matching problem is an assignment of students to schools, which

we refer to as a matching. Formally, a matching is a function µ : S → C, where

µ(s) ∈ C indicates the school to which student s is matched. If a student s is unassigned

in matching µ, we will write µ(s) = s. For ease of notation we let µs denote µ(s) and

µc denote µ−1(c), the set of students assigned to c. For all c ∈ C, |µc| ≤ qc, that is,

the school capacity qc cannot be exceeded. Let the set of matchings be denoted by M .

A matching rule ϕ assigns a matching to each priority and preference profile pair

(�, P ), or a profile for short. Thus, ϕ : P × Π→M .

A matching µ is blocked by student s ∈ S at P ∈ P if s prefers being single to

being matched to µs, that is, sPsµs. A matching is individually rational at P if it

is not blocked by any student at P . A matching µ is non-wasteful at P if no student

s prefers a school to µs which has empty seats at µ, that is, for all s ∈ S and c ∈ C, if

cPsµs then |µc| = qc.

Student s has justified envy at µ, given a profile (�, P ), if there exist school c and

student ŝ such that cPsµs, s �c ŝ and µŝ = c. That is, student s has justified envy for

c, given that ŝ is matched to c and ŝ has lower priority for c than s. A matching µ is

stable at (�, P ) if it is individually rational, non-wasteful, and there is no student who

has justified envy at µ, given (�, P ). A matching rule is stable if it assigns a stable

matching to each profile (�, P ).

A matching µ is Pareto-efficient if there is no η ∈ M which Pareto-dominates µ,

considering the student’s preferences. A matching η ∈ M Pareto-dominates µ if for

all s ∈ S, ηsRsµs and, for some ŝ ∈ S, ηŝPŝµŝ. A matching rule is Pareto-efficient if

it assigns a Pareto-efficient matching to each preference profile (�, P ). A matching is

optimal if it is stable and Pareto-dominates all other stable matchings for the set of

students. By Gale and Shapley (1962), there is a unique optimal stable matching for

students at each profile. A matching rule is optimal if it assigns the optimal matching

for students to each preference profile.

3 Preference Rank Partitioned Matching Rules

We now describe the family of matching rules that we study in this paper, called

Preference Rank Partitioned (PRP) matching rules. Each PRP rule is determined by
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a profile of ”partitions” of both the priority rankings of schools and the preference

rankings of students. Each school’s priority rankings are partitioned by specifying the

number of consecutively ranked students in each member of the partition, starting

from the top of the rankings.2 Each student’s preference rankings are also partitioned

similarly by specifying the number of consecutively ranked schools in each member of

the partition.

PRP rules are choice-based Deferred Acceptance rules, that is, each school uses a

choice function to select among applicants in each round of the DA procedure. For each

school c ∈ C, we define a choice function Chc such that for all S ′ ⊆ S, Chc(S
′) ⊆ S ′ with

the following properties. If |S ′| ≤ qc then Chc = S ′ and if |S ′| ≥ qc then |Chc(S ′)| = qc.

We may also write Chc(S
′, (�, P )), if we want to indicate explicitly that Chc depends

not just on S ′ but also on the profile (�, P ).

Choice-Based Deferred Acceptance rules:

• Round 1:

Each student applies to her highest-ranked school (assuming that the highest-

ranked school is acceptable to the student). Each school tentatively assigns its

seats according to its choice function. Any remaining applicants are rejected.

• Round k :

Each student who was rejected in round k− 1 applies to her next highest-ranked

acceptable school (if any remains). Each school considers the students who are

tentatively assigned to the school, if any, together with its new applicants (hence-

forth the applicant pool), and tentatively assigns its seats according to its choice

function. Any remaining applicants are rejected.

The algorithm terminates when each student is either tentatively assigned to some

school or has been rejected by each school that is acceptable to the student, in which

case the student remains unassigned.

A PRP rule is a choice-based DA rule with a choice function Chc for each school

c ∈ C which selects among students as a function of the given partitions of priorities and

2A partition of priority rankings may arise naturally when priorities are coarse, as is often the case

in school choice, but here we treat the partitions as part of the matching rule, given the strict priorities

for each school. We will discuss how to start from naturally arising coarse priorities in Section 9.
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preferences. Given a partition of the priority rankings for school c, the priority (rank)

classes, and given a partition of the preferences for each student, the preference

(rank) classes, school c first selects students from its applicant pool in its highest

priority class(es). If this does not determine the selected set of students, where the

selected number of students is up to the fixed capacity qc of the school, given that

priority classes are not necessarily singletons, the choice function then considers the

partitioned preferences, and selects students who have school c in their highest possible

preference class(es) relative to each other. If the preference partitions still do not

determine the selected set of students for school c, then the choice is resolved based on

the strict priority ordering �c. This last round based on the strict priority orderings

can be seen as tie-breaking. This defines a choice function for each school c ∈ S, that

is, it determines unambiguously the set of selected students up to the school capacity

from any given applicant pool S ′ ⊆ S for each �c and preference profile P . This, in

turn, defines a PRP matching rule.

In sum, the school choice functions select students from the applicant pool lexico-

graphically in the following order:

1. based on the priority classes;

2. based on the preference classes;

3. based on the tie-breaker given by the strict priority ordering.

Given their central role in the definition of PRP rules, we now define priority and

preference rank classes formally. For all c ∈ C, let the cardinalities of the priority

rank classes be denoted by v1
c , v

2
c , . . . , starting with the top-ranked students, such that∑

t v
t
c = n. The coarsest priority rank partition is when v1

c = n includes all students

and the partition has one member only, and the finest priority rank partition is

given by (v1
c , . . . , v

n
c ) = (1, . . . , 1) with n classes, where each class contains one student.

More generally, the rank partition is the finest or coarsest, respectively, whenever the

resulting matching rule is outcome equivalent with the above. Given that a school

capacity may be greater than one, this implies that a priority rank partition for school

c is the finest if the students in priority ranks qc + 1, qc + 2, . . . , n are in their own

singleton priority classes, and the priority classes of ranks 1 to qc are irrelevant (may

or may not consist of singletons).

Given a priority profile �, for all c ∈ C, let �1
c be the set of students ranked by �c

between 1 and v1
c and, for all t ≥ 2, let �tc be the set of students ranked by �c between

10



∑t−1
l=1 v

l
c + 1 and vtc. Note that for all t ≥ 1, | �tc | = vtc. Let vc = (v1

c , . . .) denote the

priority rank class list for school c ∈ C, and let v = (vc)c∈C be the priority rank class

profile.

For all s ∈ S, let the cardinalities of the preference rank classes be denoted by

p1
s, p

2
s, . . ., starting with the top-ranked schools, such that

∑
t p

t
s = m. The coarsest

preference rank partition is when p1
s = m includes all schools and the partition has

one member only, and the finest preference rank partition is given by (p1
s, . . . , p

m
s ) =

(1, . . . , 1) with m classes, where each class contains one school. Given our general

remark above, technically the preference rank partition is also coarsest if having more

than one preference class always leads to the same matching as having just one. For

example, if n ≤
∑

c∈C qc then no student is rejected by her mth-ranked school, and thus

p1
i = m− 1 also yields a coarsest partition.

Given a preference profile P , for all s ∈ S, let P 1
s be the set of acceptable schools

ranked by Ps between 1 and p1
s and, for all t ≥ 2, let P t

s be the set of acceptable schools

ranked by Ps between
∑t−1

l=1 p
l
s + 1 and pts. Note that for all t ≥ 1, either |P t

s | = pts, if all

schools are acceptable to student s, or if some schools are unacceptable then there exists

t̂ such that for all l = 1, . . . , t̂−1, |P l
s| = pls and |P t̂

s | < pt̂s, and for all l > t̂, P l
s = ∅. Let

ps = (p1
s, . . .) denote the preference rank class list for student s ∈ S, and let p = (ps)s∈S

be the preference rank class profile.

Using the above notation, each PRP matching rule is determined by a priority and

a preference rank class profile (v, p). This is not to be confused with the profile (�, P ),

a pair of a strict priority profile and a strict preference profile, which determines a

specific problem and is a primitive of our model, while (v, p) is part of the matching

rule. We will indicate explicitly the priority and preference rank class profiles for a

PRP matching rule and denote it by f v,p. Thus, f v,p(�, P ) = µ indicates that the PRP

rule f v,p assigns matching µ to profile (�, P ).

We can now formally define the choice function Chc for each school c ∈ C for a

PRP rule f v,p. Fix c ∈ C and let S ′ ⊆ S. As already stated, the set of students T ⊆ S ′

is selected from applicant pool S ′ based on priority rank classes first, then based on

preference rank classes, and finally based on the tie-breaker given by strict priorities.

Formally, if |S ′| > qc then Chc(S
′) = T if the following are satisfied:

• T ⊂ S ′, |T | = qc
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• there exists k ≥ 1 such that for all s ∈ T , s ∈
⋃k
t=1 �tc;

• for all ŝ ∈ S ′ \ T , if ŝ ∈
⋃k
t=1 �tc then ŝ ∈�kc ;

• for all s ∈ T and ŝ ∈ S ′ \ T such that s, ŝ ∈�kc , if there is no k′ ≥ 1 such that

c ∈
⋃k′

t=1 P
t
s and c /∈

⋃k′

t=1 P
t
ŝ , then s �c ŝ.

Example 1 (PRP choice functions). Consider the following matching problem with

four students and four schools (n = m = 4). The preferences are given in the table

below, in which the bars indicate the preference rank classes for the PRP rule. That

is, p1 = (1, 2, 1), p2 = (1, 3), p3 = (3, 1), p4 = (1, 3).

P1 P2 P3 P4

b b d b

c a b a

a d a d

d 0 c c

Let �a= (1, 2, 3, 4) indicate the strict priorities in descending order for school a, and

let va = (3, 1). Assume that school a has capacity 1. Let the applicant pool for school

a be {1, 3, 4}. Student 4 is eliminated based on the priority rank classes of school a,

since 1, 3 ∈�1
a and 4 ∈�2

a. This leaves students 1 and 3. Student 3 is selected based on

the preference rank classes, since 1 ranks a in the second highest preference class and

3 ranks a in the highest preference class: a ∈ P 2
1 and a ∈ P 1

3 .

Now consider the same problem with a slightly different PRP rule, where student

3’s preference rank classes are different: p3 = (2, 1, 1). Given applicant pool {1, 3, 4} for

school a, student 4 is eliminated based on the priority rank classes of school a, as before,

and given the new preference rank classes for student 3, now the selection cannot be

made between 1 and 3 based on the preference rank classes, since both rank a in their

second highest preference class: a ∈ P 2
1 and a ∈ P 2

3 . Thus, we apply the tie-breaker

strict priority order �a and student 1 is selected, since 1 �a 3.

PRP choice functions satisfy standard properties of choice functions that are asso-

ciated with choice-based DA rules, such as Acceptance, Monotonicity, Substitutability

and Consistency (Ehlers and Klaus, 2016), but these properties only hold when the
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preference profile is fixed. This is in contrast to typical choice functions used in con-

junction with the DA, such as when quotas are specified for different types of agents,

and the choice function is not a function of the preferences. This is the most salient

feature of PRP rules, namely, that the choice functions of the schools depend on the

students’ preferences, and specifically on the students’ preference rank classes, which is

why we call these matching rules Preference Rank Partitioned rules. Thus, in contrast

to choice-based DA rules which use choice functions that are independent of the stu-

dents’ preferences, this feature of PRP rules accounts for the loss of strategyproofness

(see Theorem 3 in Section 8).

If both the priority rank partition for each school and the preference rank partition

for each student are the coarsest, then the PRP rule relies only on the strict priorities

as tie-breakers, and therefore this rule is the standard Deferred Acceptance rule, which

simply selects the top priority students from each applicant pool. Equivalently, we can

let the priority rank partition be arbitrary. As long as the preference rank partition is

the coarsest, the PRP rule is the DA. Hence, as there may be multiple representations

(v, p) of the same PRP rule, we will use the convention that the role of the tie-breaker

should be minimized as much as possible by making the priority partition finer. As

a consequence, given a finer priority partition, the preference partition should be left

as coarse as possible, which clarifies the impact of the preferences. This specification

of a PRP rule delineates which information is used by the choice function, whether it

is the priority partition or the preference partition, and specifically which rank classes

may play a role in any particular selection. In the case of the standard DA rule, this

means that we let the priority partition be the finest for each school, so as to entirely

eliminate tie-breaking, which then clarifies that the preference partitions don’t play

any role in the choice function, since all selections can be made based on the priority

partitions, and therefore we can let each student’s preference partition be the coarsest.

Consequently, this convention not only lets us have a unique representation of each

PRP rule, but it also provides an intuitive representation.

Formally, we can find the unique representation of a PRP rule f based on this

convention as follows. Fix the priority profile �∈ Π. Let c ∈ C and s, ŝ ∈ N such

that ŝ �c s. If there exists a preference profile P ∈ P such that fs(�, P ) = c and

cPŝfŝ(�, P ) then let s and ŝ be in the same priority class, and let all students s̃ such

that s �c s̃ �c ŝ be also in the same priority class, and otherwise let each student for
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school c be in a separate priority class. This determines the priority rank partition

profile v which satisfies the convention that vc is as fine as possible for each school c.

Note that since f is a PRP rule, we would get the same v using any priority profile

�∈ Π.

In order to determine the preference rank partition profile p, let c ∈ C such that

there is at least one priority class according to vc with a minimal size of 2, that is,

the priority class in vc contains at least two ranks: vkc ≥ 2 for some k ≥ 1. If there is

no such a school then all school priority partitions vc are the finest and all preference

partitions ps are the coarsest, and f is the DA. Let students s, ŝ ∈ S occupy these two

ranks in the same priority class of vc : s, ŝ ∈�kc . Then, from the construction of v, there

exists a priority profile �∈ Π with ŝ �c s and a preference profile P ∈ P such that

fs(�, P ) = c and cPŝfŝ(�, P ). Find such a profile (�, P ) which maximizes rs(c) and

minimizes rŝ(c). Let rs(c) ∈ pts and rŝ(c) ∈ pt̂ŝ, where t + 1 = t̂. If we repeat the same

exercise for pairs of students s, ŝ with an arbitrary school c for different profiles (�, P )

that meet the above specifications in terms of vc then we can trace out the preference

rank classes for each student and get a unique preference rank class profile p for the

fixed PRP rule f such that p satisfies the convention that ps is as coarse as possible for

each student s, given the uniquely specified priority rank class profile v which is as fine

as possible.

4 Special Subclasses of PRP Matching Rules

As already noted, the standard DA rule is a PRP rule, which is described by the

finest priority partition profile and the coarsest preference partition profile. Another

well-studied PRP rule besides the DA rule is the Boston (Immediate Acceptance) rule

(Abdulkadiroǧlu and Sönmez, 2003). The Boston rule is a PRP rule with the coarsest

priority rank partition and selects among students based on the finest preference rank

partition, hence tie-breaking is only necessary when students have the same ranking

for a school: if students s and ŝ are competing for school c then s is chosen over ŝ if s

ranks a better than ŝ (i.e., rs(c) < rŝ(c)) or if s and ŝ rank c equally (i.e., rs(c) = rŝ(c))

and s �c ŝ.
Previously studied classes of matching rules that belong to the set of PRP rules

include the Application-Rejection rules (Chen and Kesten, 2017) used in China, the
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Table 1: Special members and subclasses of PRP matching rules

PRP Matching Rules Priority Partition Preference Partition

Deferred Acceptance (DA) Finest Coarsest

Boston Coarsest Finest

Deferred Boston Homogeneous Finest

First Preference First Equal-preference schools: finest Finest

Preference-first schools: coarsest

Secure Boston For each school c: Finest

finest for top qc, then coarsest

French Priority Arbitrary Finest

Application-Rejection Coarsest Homogeneous

Taiwan Deduction Coarsest Homogeneous

Homogeneous PRP Homogeneous Homogeneous

Equitable PRP Arbitrary Homogeneous

Favored Students Coarsest Favored students: coarsest

Non-favored students: finest
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First Preference First rules (Pathak and Sönmez, 2013) that were banned in England,

the Secure Boston rules and their generalizations proposed by Dur et al. (2019) to

replace the Boston rule, and a special member of the French Priority rule introduced

by Bonkoungou (2019), which corresponds to a broad class of PRP rules in our setting

and includes all the previously mentioned rules (see more on this in Section 9), while

in Bonkoungou’s setup it is a single rule, based on the given coarse priorities.

We list some further notable subfamilies of PRP rules in Table 1 which have not

been studied before. The Deferred Boston rules include both the standard DA and the

Boston rules and allow for any homogeneous priority partition profile (i.e., the same

priority partition for each school), while the preference partitions are the finest. If

both the preference and priority partition profiles are homogeneous then we have a

Homogeneous PRP rule. All Deferred Boston rules are Homogeneous PRP rules, but

the French Priority rules in general are not Homogeneous PRP rules, and specifically the

First Preference First and the Secure Boston rules are not Homogeneous PRP rules. On

the other hand, the Application-Rejection rules are Homogeneous PRP rules. The class

of Equitable PRP rules, characterized by a homogeneous preference partition profile,

is even larger than the class of Homogeneous PRP rules, and contains all of the above

mentioned rules and families of PRP rules. Lastly, to identify a specific class of PRP

rules which does not belong to the class of Equitable PRP rules, we included in the table

the family of Favored Students rules, which allow for different treatments of students.

Specifically, Favored Students rules have the coarsest priority partition profile, and each

student is either favored or not. Favored students have the coarsest preference partition,

while not favored students have the finest. Favored Students and similar rules, which

distinguish among students, may be desirable if one of the objectives of the matching

is to prioritize certain classes of students, for example when affirmative action or equal

opportunity policies are employed.

Although we defined PRP matching rules by using first the priority rank partition

when selecting students, note that for the PRP matching rules that have the coarsest

priority partition the priority rankings do not play any role in the selection of students

up front (such as the Boston rule and more generally the Application-Rejection rules),

and we understand intuitively that these rules make selections based on the preference

rank partitions primarily, and the strict priorities are used for tie-breaking only when

needed. In general, the PRP rules which don’t have the coarsest priority partition
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profile, such as the Deferred Boston rules (excluding the Boston rule) or the First

Preference First rules, the priority rank partitions play a role in student selection.

5 Stability and Optimality of PRP Matching Rules

The dependence of PRP choice functions on student preferences, which is the most

notable general feature of PRP rules, accounts for violating typical stability conditions

that are independent of the preferences. Given that when preference partitions are the

coarsest the preferences play no role in choosing among applying students, and given

that the only such PRP rule is the standard DA, this is the only rule which satisfies

the standard stability axiom in the class of PRP matching rules.

We will now consider a stability concept inspired by PRP rules, which we call rank-

partition stability. Given the rank partition profiles (v, p), for each profile (�, P ) we

construct a strict priority profile �̄ as follows. For each school c the orderings of students

across priority rank classes based on �c and vc remain the same in �̄c((�, P ), (v, p)),

and within priority rank classes we order students according to the preference rank

partition of P based on p. If ties remain, then we use the strict priority ordering �c as

a tie-breaker. More formally, let s, ŝ ∈ S, let k, k′ ≥ 1 such that s ∈�kc , ŝ ∈�k
′
c , and let

t, t′ ≥ 1 such that c ∈ P t
s and c ∈ P t′

ŝ . If k 6= k′ then s and ŝ are in different priority

rank classes and s�̃cŝ if and only if s �c ŝ. If k = k′ then s and ŝ are in the same

priority rank class. Then, if t 6= t′ then if t < t′ then s�̄cŝ, and if t > t′ then ŝ�̄cs.
Finally, if k = k′ and t = t′ then s�̄cŝ if and only if s �c ŝ. Note that the priority

profile �̄ is a function of the preference profile P and thus it can change as preferences

vary. From now on we will refer to �̄(�, P (v, p)) as the constructed priority profile.

A matching rule ϕ is rank-partition stable if there exists a pair of rank partitions

(v, p) such that ϕ(�, P ) is stable with respect to the constructed priority profile

�̄((�, P ), (v, p)) at each profile (�, P ) and, for all �,�′∈ Π, if �̄((�, P ), (v, p)) =

�̄((�′, P ), (v, p)) then ϕ(�, P ) = ϕ(�′, P ). We will also say that a matching rule ϕ is

rank-partition stable with respect to (v, p). If a matching rule assigns a matching to

each pair of priority and preference profiles (�, P ) which is stable with respect to the

constructed priority profile �̄((�, P ), (v, p)), and if the selection of a stable matching

only depends on this constructed priority profile at each preference profile then the

matching rule is rank-partition stable.

17



We provide an example below to illustrate the construction of the preference-profile-

specific constructed priority profile �̄(�, P (v, p)).

Example 2 (A constructed priority profile for rank-partition stability). Con-

sider the following matching problem with five students and four schools (n = 5,m = 4).

The preference profile P and the priority profile � are given below, and the rank par-

titions (v, p) are specified by the bars in the two tables.

Student preferences School priorities

P1 P2 P3 P4 P5 �a �b �c �d
b b b b d 4 3 4 4

c c a a b 1 1 1 5

a a d c a 2 4 5 3

d d c d c 3 2 2 1

5 5 3 2

Constructed priority profile �̄
�̄a �̄b �̄c �̄d
1 3 1 5

2 1 4 4

4 4 5 3

5 2 2 1

3 5 3 2

It is easy to see that each PRP rule is rank-partition stable. Moreover, it is straight-

forward to verify that each PRP rule is optimal within the set of rules that are rank-

partition stable with respect to a given (v, p) due to a classic result by Gale and Shapley

(1962), which implies in our setting that for each pair of priority and preference rank

partition profiles (v, p) and for each profile (�, P ) there exists a rank-partition stable

matching which is stable with respect to the priorities in the constructed priority profile

�̄(�, P (v, p)) for (v, p) at (�, P ), and each student weakly prefers this matching to any

other matching which is stable with respect to �̄(�, P (v, p)) at preference profile P .

We call this matching the (v,p)-optimal matching at (�, P ). On can easily verify

that the PRP rule f v,p is rank-partition stable with respect to (v, p) and f v,p(�, P ) is

the (v, p)-optimal matching at each profile (�, P ). We summarize these findings below.
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Proposition 1. Each PRP rule f v,p is rank-partition stable and selects the unique

(v, p)-optimal rank-partition stable matching at each profile (�, P ).

Rank-partition stability can be seen as a straightforward stability property of PRP

rules, based on stability with respect to the appropriately constructed priority profile

at each preference profile. A similar property is used by Bonkongou (2019) for French

Priority rules. This representation of PRP rules and the underlying stability concept

serve as a foundation for later results, as they highlight the parallel features between

PRP rules and the standard DA rule, and allow us to see the PRP rules as optimal rules

within the set of rank-partition stable rules, which are stable with respect to the mod-

ified priority profile at each preference profile, where the modifications of the priorities

correspond to the selections made by PRP choice functions. Essentially, Proposition 1

tells us that a PRP rule f v,p can be seen as a DA rule with preference-profile-specific

(v, p)-modified responsive priorities. Note also that the proposition implies that PRP

rules are individually rational and non-wasteful.

6 Equitable PRP Matching Rules

Not all PRP matching rules treat students symmetrically with respect to their pref-

erences. We call the subfamily of PRP rules which treat students symmetrically in

terms of their preference partitions Equitable PRP rules, which can be described

in terms of a homogeneous partition of preferences across students (i.e., the preference

partition for each student is the same). We call these rules equitable since, for example,

if student s has a coarser preference partition than student ŝ then s gets a preferential

treatment compared to student ŝ, given a fixed priority profile �. Although a PRP

rule with the same preference partition for each student treats students equitably in

terms of their preference rankings, we note that these rules only treat the preferences

of students equally, but students may still be treated differently based on the school

priority partition profile v.

Formally, a preference rank partition profile p is homogeneous if for all s, s′ ∈ S, ps =

ps′ . Since the priority and preference rank partitions that describe a PRP rule are not

always unique, as already discussed, we can follow the specified convention to determine

if a PRP rule is an Equitable PRP rule. More generally, the requirement is that there

exists at least one homogeneous preference rank partition (along with a priority rank
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partition) which yields the PRP rule. In other words, no matter which homogeneous

preference rank partition profile and which arbitrary priority rank partition profile are

used, for at least one pair of preference and priority rank partition profile (v, p) the

outcome does not correspond to the outcome prescribed by the PRP rule.

To aid our analysis, we propose a general stability property of matching rules, called

PP-stability, which weakens the standard stability axiom by basing the matching on a

comparison of students’ preference ranks of a school that they compete for, in addition

to the students’ priority rankings by this school. Characterizations of the Boston rule,

such as the ones given by Kojima and Ünver (2014) and Doǧan and Klaus (2018), rely

on axioms comparing the preference ranking of alternatives, which are similar to the

idea for this stability concept, since the Boston rule makes matches primarily based on

the preference rankings. Our concept combines a priority-based and a preference-based

justification for students to have justified envy, and this stronger justified envy is ruled

out by our new stability concept. We can readily see that this is a stronger justified envy

concept, since it is justified on the grounds that neither the priorities nor the preference

rankings can explain the selection of one student over another at a school to which both

students have applied. Afacan (2013) uses a similar property combining priority and

preference rankings, but his axiom makes explicit use of the school capacity.

Preference and Priority Rank Stability (PP-Stability): Student s has PP-

justified envy at µ, given (�, P ), if there exist school c and student ŝ such that cPsµs,

s �c ŝ, rs(c) ≤ rŝ(c), and µŝ = c. Student s has PP-justified envy for c, given that ŝ is

matched to c and ŝ has both lower priority for c than s and ranks c the same or higher

than ŝ. A matching µ is PP-stable at (�, P ) if it is individually rational, non-wasteful,

and there is no student who has PP-justified envy at µ, given P . A matching rule is

PP-stable if it assigns a PP-stable matching to each profile (�, P ).

It may appear at first that all PRP rules are PP-stable, but this is not the case.

The following example shows a Favored Students PRP rule which is not PP-stable.

Example 3 (A Favored Students PRP rule which is not PP-stable). Consider

the following matching problem with five students and four schools (n = 5,m = 4).

Schools a, b, c have a capacity of one, and school d has a capacity of two. The preferences

and priorities are below, with bars indicating the preference partitions in the preference

profile.
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Student preferences School priorities

P1 P2 P3 P4 P5 �a �b �c �d
b b b b d 4 3 1 4

c c a a b 1 1 2 1

a a d c a 2 4 3 5

d d c d c 3 2 4 2

5 5 5 3

In this example students 1 and 2 are so-called favored students, which means that

there is only one preference rank class for these students, which includes all the schools

(the coarsest preference rank partition), while the non-favored students, 3, 4, and 5, have

the finest preference rank partition: p1
1 = p1

2 = 4, and ps = (1, 1, 1, 1) for s ∈ {3, 4, 5}.
The rounds of the specified Favored Students rule at the given profile are summarized

in the table below, with the selected students in each round underlined.

Round a b c d

1 1, 2, 3, 4 5

2 4 3 1, 2 5

3 2, 4 3 1 5

4 2 3 1, 4 5

4 2 3 1 4, 5

In this example r4(a) = 2 < 3 = r2(a) and 4 �a 2. Since aP4d and µ2 = a, this rule is

not PP-stable.

First we verify that PP-stability is independent of rank-partition stability. This is

not surprising, but since both concepts weaken the standard stability axiom, it is in

order. The Favored Students rules are rank-partition stable PRP rules by Proposition 1,

but are not PP-stable, as seen in Example 3. A matching rule which assigns a non-

PRP matching (e.g., the outcome of the Top Trading Cycles rule) at each profile (�, P )

where this matching is PP-stable and otherwise assigns the DA outcome is PP-stable

but not rank-partition stable.

We remark that both the DA and Boston rules are PP-stable. Since stability implies

PP-stability, the DA is clearly PP-stable. The Boston rule is also PP-stable, since if

either rs(c) < rŝ(c) or if rs(c) = rŝ(c) and s �c ŝ, in both cases ŝ cannot be assigned
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to c unless s is also assigned to school c̃, whenever c̃Rsc. Indeed, the Boston rule is

preference-rank stable in the sense that whenever rs(c) < rŝ(c), s does not envy ŝ when

ŝ is assigned c. PRP rules in general are not preference-rank stable in this stronger

sense. In fact, it is easy to check that the Boston rule is the only such preference-rank

stable rule within the class of PRP rules. On the other hand, the DA rule is the only

priority-rank stable (i.e., stable) rule in the class of PRP rules.

While not all PRP rules satisfy PP-stability, as demonstrated by Example 3, the

subfamily of PRP rules which satisfy PP-stability is much larger than just the DA and

Boston rules, and we will show in the next proposition that it exactly corresponds to the

Equitable PRP rules. We remark that all previously studied PRP rules are Equitable

PRP rules. Proposition 2 below provides an explanation for this, since it demonstrates

that all the studied rules are PP-stable, which is an intuitive feature of matching rules

and an attractive attribute in school choice.

Proposition 2. A PRP rule is PP-stable if and only if it is an Equitable PRP rule.

Proof.

Claim 1: An Equitable PRP matching rule is PP-stable.

Let f v,p be an Equitable PRP rule. That is, f v,p is a PRP rule and p is homogeneous

across students. Suppose that there exists a profile (�, P ) such that f v,p(�, P ) is not

PP-stable. Then there exist s, ŝ ∈ S and c ∈ C such that rs(c) ≤ rŝ(c) at P , s �c ŝ, and

s envies ŝ at (�, P ) for being assigned to c. That is, f v,pŝ (�, P ) = c and cPsf
v,p
s (�, P ).

Let t, t′ ≥ 1 such that c ∈ P t
s and c ∈ P t′

ŝ . Then, given rs(c) ≤ rŝ(c), since p is

homogeneous across agents, t ≤ t′. Let k, k′ > 0 such that s ∈�kc and ŝ ∈�k′c . Then

s �c ŝ implies that k ≤ k′. Given that f v,pŝ (�, P ) = c and cPsf
v,p
s (�, P ), k ≤ k′ implies

that k = k′. Then t ≤ t′ implies that t = t′. Hence, the tie-breaker �c would be used

by f v,p to select between s and ŝ at school c, but s �c ŝ implies that f v,pŝ (�, P ) 6= c

when cPsf
v,p
s (�, P ), which is a contradiction.

Claim 2: A PP-stable PRP rule is an Equitable PRP rule.

Let f v,p be a PP-stable PRP rule. Suppose that f v,p is not an Equitable PRP rule, that

is, p is not homogeneous across students. Then there exist (�, P ) ∈ P , c ∈ C, s, ŝ ∈ S
and t, t′ ≥ 1 such that

1. f v,pŝ = c and cPsf
v,p
s (�, P )
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2. rs(c) ≤ rŝ(c) at P

3. t > t̂, where c ∈ P t
s and c ∈ P t̂

ŝ

4. s and ŝ are in the same priority rank class for c, given �c and vc : there exists

k ≥ 1 such that s, ŝ ∈�kc .

Since f v,p is PP-stable , ŝ �c s. Note that f v,p selects ŝ over s for school c based on

the preference rank classes, since t > t̂, not based on priority rank classes, given that

s and ŝ are in the same priority rank class for c. The fact that ŝ �c s is irrelevant,

since the choice is not based in the tie-breaking. Let �̄c be the same as �c except for

the position of student ŝ: place student s directly above ŝ in �̄c, and leave all other

orderings in �̄c the same as in �c.
Let �̄′ ≡ (�̄c,�−c). Then f v,p(�′, P ) = f v,p(�, P ), as we will show. Note first

that only �c is changed to �̄c, so the only difference can be in the selections made

by school c. Note that since s and ŝ were in the same priority class at �c and since

vc remains the same, the students in the priority rank classes of c have not changed.

Specifically, s and ŝ are still in the same priority class at �̄c, and so are all s̄ ∈ S such

that ŝ �c s̄ �s s. Thus, �kc= �̄kc , and for all k′, �k′c = �̄k′c . Therefore, all selections of

school c based on the priority rank classes are the same, and subsequently all selections

based on preference rank classes are the same at (�′, P ) and at (�, P ). Thus, Chc

makes the same selections at �̄c as at �c, and f v,p(�̄, P ) = f v,p(�, P ), as desired.

Therefore, f v,p(�̄, P ) = c and cPsf
v,p(�′, P ). Since rs(c) ≤ rŝ(c) at P and s�̄cŝ, f v,p

is not PP-stable. This is a contradiction, which implies that f v,p is an Equitable PRP

rule.

We will say that a matching rule is equitable-rank-partition stable if the defi-

nition of rank-partition stability for this rule is satisfied based on (v, p), where p is ho-

mogeneous. Equivalently, if there is a homogeneous preference rank partition p across

students, that can be used in the construction of the priority table �̃((�, P ), (v, p)) at

each profile (�, P ). Then the matching rule equitable-rank-partition stable. Clearly,

equitable-rank-partition stability implies rank-partition stability of a matching rule.

The next result clarifies the relationship between rank-partition stability and equitable-

rank-partition stability. The proof of this theorem and all subsequent omitted proofs

are in the appendix.
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Theorem 1. A rank-partition stable matching rule is PP-stable if and only if it is

equitable-rank-partition stable.

It is not difficult to see that each Equitable PRP rule is equitable-rank-partition

stable. As in the case of PRP rules, we can easily verify that the Equitable PRP

rule f v,p is equitable-rank-partition stable, that is, rank-partition stable with respect to

(v, p) where p is a homogeneous preference rank partition profile, and f v,p(�, P ) is the

(v, p)-optimal matching at each profile (�, P ). Thus, we can state a similar result to

Proposition 1 for Equitable PRP rules: each Equitable PRP rule f v,p is equitable-rank-

partition stable and selects the (v, p)-optimal rank-partition stable matching at each

profile (�, P ). Therefore, Theorem 1 is a generalization of Proposition 2. We provided

a separate proof of Proposition 2 to give some intuition for the result which cannot

easily be gleaned from the proof of Theorem 1.

7 Efficiency of PRP Matching Rules

PRP rules select the optimal rank-partition stable matching at each profile, as seen in

Section 5. This implies that if the selected matching is not Pareto-efficient, it can only

be Pareto-dominated by a matching that is not rank-partition stable. We know that

the DA matching is in general not Pareto-efficient (Gale and Shapley, 1962; Balinski

and Sönmez, 1999) so PRP rules, which choose the DA matching for the constructed

priority profile, as stated by Proposition 1, are generally not Pareto-efficient. One

notable exception is the Boston rule, which is Pareto-efficient (Abdulkadiroǧlu and

Sönmez, 2003), due to the fact that it assigns the school seats based primarily on

the student preferences, and uses the school priorities only for tie-breaking, and thus

cannot be Pareto-dominated by a matching which is not rank-partition stable. One

may therefore conjecture that the only Pareto-efficient PRP rule is the Boston rule,

but it turns out that a somewhat larger set of PRP rules is Pareto-efficient. Namely,

there may be one student whose preference rank partition is not necessarily the finest,

and may be chosen arbitrarily, but all other students’ preference partitions have to be

the finest. We call this class of rules, including the Boston rule, Near-Boston rules.

Near-Boston rules are PRP rules such that:

1. each school has the coarsest priority partition;
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2. there exists sj ∈ S such that each student s ∈ S \ {sj} has the finest preference

partition (and student sj has an arbitrary preference partition).

Theorem 2. A rank-partition stable rule is Pareto-efficient if and only if it is a Near-

Boston rule.

Corollary to Theorem 2. An equitable-rank-partition stable rule is Pareto-efficient

if and only if it is the Boston rule.

This is an immediate corollary to Theorem 2, since if the rule is equitable-rank-

partition stable then the rule uses a homogeneous preference rank partition profile p,

and thus Theorem 2 implies that all students have the finest preference rank partition.

This corollary generalizes the result of Chen and Kesten (2017) which shows that only

the Boston rule is Pareto-efficient within the class of Application-Rejection rules.

8 Incentive Properties of PRP Matching Rules

Since PRP rules are generally not strategyproof, it is important to study their incentive

properties.

For matching rule ϕ, given a profile (�, P ), if there is a student s ∈ S and an

alternative preference ranking P ′s ∈ Ps such that ϕs(�, (P ′s, P−s))Ps ϕs(�, P ) then s

can manipulate ϕ at P via P ′s, and rule ϕ is manipulable at P . We will also say

that s can manipulate at P to obtain school ϕs(�, (P ′s, P−s)). If a rule is not manipulable

at any preference profile then the rule is strategyproof.

The standard Deferred Acceptance rule is well-known to be strategyproof when only

the students’ incentives are taken into account (Dubins and Freedman, 1981; Roth,

1982). However, we can find examples of preference profiles where a PRP rule (other

than the DA) is manipulable, and we prove a negative result for all PRP rules excluding

the DA rule. This makes sense intuitively: the DA is the only strategyproof rule in the

class of PRP matching rules, since it is the only PRP rule for which the school choice

functions are independent of the preferences. This result extends a similar result by

Chen and Kesten (2017) for Application-Rejection rules.

Theorem 3. A rank-partition stable rule is strategyproof if and only if it is the Deferred

Acceptance rule.
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Although PRP rules are not strategyproof in general, we can compare them based

on their manipulability, using a simple comparison criterion that was first put forward

by Pathak and Sönmez (2013) and subsequently studied by Chen et al. (2016).

Given a matching rule ϕ, for all students s ∈ S and all profiles (�, P ), let

I(s, ϕ, (�, P )) = {ϕs(�, (P ′s, P−s)) : P ′s ∈ Ps, ϕs(�, (P ′s, P−s))Psϕs(�, P )}. A matching

rule ϕ is less manipulable than matching rule ψ if for all s ∈ S and all profiles (�, P ),

I(s, ϕ, (�, P )) ⊆ I(s, ψ, (�, P )) and there exists a profile (�̄, P̄ ) for which I(s, ϕ, (�̄, P̄ ))

⊂ I(s, ψ, (�̄, P̄ )).

A PRP rule and all other rules which satisfy rank-partition stability with respect

to the same (v, p) are comparable in terms of how vulnerable to manipulability they

are according to the above definition, and the PRP rule stands out as the least ma-

nipulable in this class of rules. Formally, each PRP rule f v,p is less manipulable than

any other matching rule which is rank-partition stable with respect to (v, p). A similar

result has been obtained by Bonkoungou (2019) for the French Priority rules. These

results follow from a general relationship between weak Pareto-domination and relative

manipulability, as shown by Chen et al. (2016). According to their results, if a rule ϕ

weakly Pareto-dominates another one rule ψ, then ϕ is less manipulable than ψ. Thus,

the result follows from the optimality of PRP rules.

The following theorem is our main theorem on the incentive properties of PRP rules.

The theorem says that when a PRP matching rule is used, a student cannot manipulate

to obtain a seat at school c by placing c in the same or a lower preference rank class than

the preference rank class where c belongs truthfully. This theorem has some interesting

and wide-ranging implications for PRP rules, as we will explain below.

Theorem 4. Let f v,p be a PRP rule and fix a profile (�, P ). Let s ∈ S and c ∈ C such

that cPsf
v,p
s (�, P ). Let P ′s ∈ Ps such that c is in the same or lower preference rank

class in P ′s than in Ps, given p. Then f v,ps (�, (P ′s, P−s)) 6= c.

By this theorem, a seat at a school can only be obtained by manipulation when

reporting the school to be in a higher preference class than it truthfully is, regardless of

what the reported preferences are otherwise. This gives a good idea about how the PRP

rules are manipulable in general. The theorem also offers an intuitive explanation for

two well-known results: why the DA rule is not manipulable, and why the Boston rule is

so markedly manipulable (see, for example, Troyan and Morrill (2019)). Notably, given
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that the standard DA rule is the PRP rule with the coarsest preference partition for each

student, this theorem implies that the Deferred Acceptance rule is strategyproof, since

there is only one preference class for each student, and thus no school can be obtained

by manipulation at any profile. At the other extreme, the Boston rule is the PRP

rule with the finest preference partition for each student combined with the coarsest

priority partition for each school (so priorities are only used to break ties), and thus

the theorem sheds light on why the Boston rule is so manipulable: each change in the

reported preferences results in placing at least one school in a higher preference class,

and the top-ranked school is the only one which can never be obtained by manipulation

when the Boston rule is used.

PRP rules between the DA and Boston rules are moderately manipulable, and the

extent of manipulability depends on how coarse their preference partitions are. For

example, the Application-Rejection rules have homogeneous preference rank classes,

and larger preference rank classes would imply, based on the theorem, that there is

generally less room for manipulation. Indeed, this result is shown by Chen and Kesten

(2017), although this is not a direct implication of Theorem 4. When the preference

rank partition is not homogeneous, that is, the PRP rule is not an Equitable PRP

rule, the extent to which the PPR rule is vulnerable to manipulation varies with the

student. In the extreme case of Favored Students rules, where each student has either

the coarsest or the finest preference rank partition, it follows from the theorem that

the favored students with the coarsest preference partitions cannot manipulate at all.

However, the non-favored students, having the finest preference partitions, have lots of

room to manipulate.

The following two results are implied directly by Theorem 4.

Corollary to Theorem 4. Let f v,p be a PRP rule.

1. For all s ∈ S, if some school c is ranked in s’s top preference rank class at some

preference profile P , given p, then s cannot manipulate to obtain school c at P

when using rule f v,p.

2. For all students s ∈ S, if ps = (n) then student s cannot manipulate f v,p at any

profile (�, P ).

The first result in the corollary says that a school which is ranked in the top prefer-

ence class of a student cannot be obtained as a result of successful manipulation by this
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student. This implies that a student cannot obtain his first-ranked school by manipu-

lating any French Priority rule, and specifically the Boston rule. Our corollary is more

general, since it allows for coarse preference partitions and thus for multiple schools in

the top preference class that cannot be profitably obtained by misreporting the prefer-

ences. This, in turn, is further generalized by Theorem 4, since it also shows that trying

to manipulate by ranking a school in a preference class that is either the same or below

the preference class of the school to which a student would be matched otherwise is fu-

tile. Note that Theorem 4 is unrelated to the incentive analysis of Bonkoungou (2019),

since he studies the given coarse priorities of French Priority rules, and compares the

matching rules using a new criterion based on how fine the priority partitions are, while

our results concern the preference partitions.

The second result in the corollary states that if a student has the coarsest preference

partition then this student cannot manipulate any PRP rule. This is because in this

case the student has every school in her top preference class. This is the case for all

students in the DA rule, and this also holds for all favored students in Favored Students

rules.

9 Coarse Priorities: An Extension

PRP matching rules can be extended naturally to the case where the given priorities

are coarse (i.e., given by a weak order), as would be typical for New York City high

schools (Abdulkadiroǧlu et al., 2009). Another well-known example is Boston, where

school priorities are set up based on older siblings attending the school and walk-zone

priorities (Abdulkadiroǧlu et al., 2005). In international refugee assignment, countries

may have mandated priorities based on the level of danger faced by refugees, or may wish

to prioritize specific skills or traits, which leads to coarse priorities, given the number

of refugees who are looking for asylum (Jones and Teytelboym, 2017). If priorities are

coarse, a strict priority ordering �c that is consistent with the given coarse priorities

would be determined by a lottery for each school c and used for tie-breaking only if

the choice function cannot make the required selection based on the coarse priorities

and the preference rank partitions. Then the given coarse priorities for schools would

be primitives of the model, not part of the specification of the rule, and the randomly

selected strict priority profile �, which is consistent with the coarse priorities, would
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become part of the matching rule as a tie-breaker. This would imply that each member

of the family of PRP rules is associated with the strict tie-breaker priority profile � and

the preference rank partition profile p. This is the setup of Bonkongou (2019), since

universities in France only have weak priorities over students.

This lends additional applicability to PRP rules and makes the current study rel-

evant to situations where coarse priorities arise naturally. We could further enhance

the applicability of PRP rules by combining the primary and secondary interpretations

(strict versus coarse priorities as primitives) in a natural manner, which would allow

for coarse priorities as primitives but let the matching rule further partition the prior-

ity rankings within the priority rank classes given by the fixed coarse priorities, while

breaking the ties randomly over the remaining weak priorities to create a tie-breaker.

Our results extend to all these “hybrid” cases as well in a natural manner, but in the

interest of a more accessible exposition we omit the formal presentation of this more

general setup.

10 Conclusion

We have explored PRP rules, which are generalized Deferred Acceptance rules that

allow students’ preference rankings to play a role in the schools’ choice functions, that

is, the selection among competing applicants for a school is based partially on how

high students rank the particular school in their preferences, and not only on their

priority rankings by this school. Since we consider a large class of matching rules that

includes many previously known rules, in addition to interesting new rules that are

studied here for the first time, this paper offers a unified approach to these rules and

establishes results that apply to all of them. As a foundation for our analysis that ties

together all PRP rules, we show that all these matching rules can be understood as

the DA matching selected on the basis of an appropriately modified priority profile at

each preference profile, where the modifications of the priorities reflect how PRP school

choice functions select students based on preference ranks (Proposition 1). Thus, each

PRP rule is optimal in this sense, just like the Deferred Acceptance rule.

We have proved that the only Pareto efficient PRP rules are the so-called Near-

Boston rules (Theorem 2), a class of rules which includes the Boston rule and other

similar rules which only differ in the preference rank partition of one student from the
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Boston rule. We have also shown that the only strategyproof PRP rule is the standard

Deferred Acceptance rule (Theorem 3). These two results underline the difficulty of

obtaining matching rules with both good incentives and strong efficiency properties,

when it is desirable to allow the preferences of students to directly affect their chances

of being accepted by the school, but the students’ priorities are also taken into account.

We explore the classic tension among stability, efficiency, and incentive properties in

our setup, which has been studied by a vast array of papers in various matching models

and settings. Our main contribution to this literature is to show the specifics of this

tension within the class of PRP rules, that is, when student selection by schools takes

into account the preference rankings, and Theorems 2 and 3 can be best understood

in terms of trade-offs. Namely, when the school priorities have a small impact (mainly

used for tie-breaking), we get more efficiency, since the matching rule relies primarily on

the preference rankings, as in the Boston rule and similar PRP rules. When the school

priorities have a large impact, preference rankings play only a small role in the schools’

selection, and the incentive properties are improved, but it is only in the extreme case

of the DA rule, when the preferences have no impact on the school choice functions,

that full strategyproofness can be achieved.

The main trade-off is between efficiency and incentives when rank-partition stability

is required, a stability condition which allows matchings to be based on student prefer-

ence rankings in addition to school priorities in a systematic manner. As we have seen,

we get some extreme rules only in the family of PRP rules or, more broadly, among

rank-partition stable rules, that satisfy efficiency (the Near-Boston rules) and, similarly,

only the DA rule satisfies strategyproofness among PRP or rank-partition stable rules.

The Boston and DA rules can be seen as the two extreme members of the family of

PRP rules. The intuition is that as we place more emphasis on the preferences, we

attain more efficiency and get closer to the Boston rule, and as we place more emphasis

on the priorities, we get better incentives and get closer to the DA rule. This already

gives a general idea to the designer about how to select among PRP rules, depending

on the relative importance of the objectives: is efficiency more desirable, or are correct

incentives more preferable? If efficiency comes first, choose coarser priority partitions

and finer preference partitions, and if incentives are more important then choose finer

priority partitions and coarser preference partitions.

One may argue, however, that incentives should always come first, given that if
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preferences are not reported accurately then efficiency cannot be enforced, since any

normative criterion can only be based on the reported preferences, the only input into

the mechanism regarding student welfare. But, especially in light of the substantial

trade-offs, this argument also has some limitations, and thus the extent and specifics of

manipulation are of considerable interest to the designer. Our main result on incentives

(Theorem 4) provides guidance on this, as it sheds light on how students can manipulate

PRP rules: we show that this is only possible by placing a desired but unattainable

school in a higher preference rank class in the reported preferences than it is truthfully.

This theorem also clarifies the different potential extent of manipulation for different

PRP rules, both in terms of how and whether a school can be obtained by manipulation,

depending on its preference rank classes as reported by different students, and also

regarding the scope of manipulation which may differ widely among students, even for

Equitable PRP rules.

Theorem 4 therefore provides insight and contributes to a more sophisticated un-

derstanding of PRP rules than afforded by the rough comparison of the Boston and DA

rules themselves. Between the extremes of the DA and Boston rules, several different

dimensions may be considered when searching for an appropriate matching rule, as

evidenced by the fact that the family of PRP rules encompasses multiple subfamilies

of PRP rules that bridge these same two matching rules, such as the First Preference

First rules (or more generally the generalized Secure Boston rules), the Deferred Boston

rules, the Application-Rejection (or Taiwan Deduction) rules and the Favored Students

rules. Given that quite a few members of the class of PRP rules are used in real-life

school choice and student placement systems, our theoretical analysis provides practi-

cally relevant policy insight. Therefore, our findings should be helpful for the design

of assignment mechanisms that rely on the preference rankings directly when choosing

among competing applicants.

References
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Appendix: Proofs

Proof of Theorem 1

Theorem 1. A rank-partition stable matching rule is PP-stable if and only if it is

equitable-rank-partition stable.

Proof.

Claim 1.1: An equitable-rank-partition stable matching rule is PP-stable.

Proof: Let ϕ be an equitable-rank-partition stable matching rule. Suppose that there

exists a profile (�, P ) such that ϕ(�, P ) is not PP-stable. Then there exist s, ŝ ∈ S and

c ∈ C such that rs(c) ≤ rŝ(c) at P , s �c ŝ, and s envies ŝ at (�, P ) for being assigned

to c. That is, ϕŝ(�, P ) = c and cPsϕs(�, P ). Let ϕ be equitable-rank-partition stable

with respect to (v, p). Then p is homogeneous across students. Given p, let t, t′ ≥ 1
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such that c ∈ P t
s and c ∈ P t′

ŝ . Given v, let k, k′ ≥ 1 such that s ∈�kc and ŝ ∈�k′c . Let �̃
denote the constructed strict priority profile �̃((�, P ), (v, p)). Suppose k < k′. Then

s�̃cŝ and s has justified envy at ϕ(�, P ) based on �̃c. This contradicts the fact that

ϕ is equitable-rank-partition stable. Thus, k ≥ k′. If k > k′ then ŝ �c s would follow,

which is a contradiction. Therefore k = k′.

Now suppose t < t′. Then, since k = k′, s�̃cŝ, and s has justified envy at ϕ(�, P )

based on �̃c. This again contradicts the fact that ϕ is equitable-rank-partition stable,

and thus t ≥ t′. Then, since rs(c) ≤ rŝ(c) and p is homogeneous across students, it must

be the case that t = t′. But then s �c ŝ implies that s�̃cŝ, since the tie-breaker is

applied in the construction of �̃c when determining the relative positions of s and ŝ in

�̃c. This implies that s has justified envy at ϕ(�, P ), based on �̃c, which contradicts

the fact that ϕ is equitable-rank-partition stable. Therefore, ϕ(�, P ) is PP-stable, and

since this holds for all (�, P ), ϕ is PP-stable.

Claim 1.2: If a rank-partition stable matching rule is PP-stable then it is equitable-

rank-partition stable.

Proof: Let ϕ be a rank-partition stable matching rule which is PP-stable. Let ϕ be

rank-partition stable with respect to (v, p). Suppose that p is not homogeneous across

students. Then there exist (�, P ), c ∈ C and s, ŝ ∈ S such that

1. ϕŝ(�, P ) = c and cPsϕs(�, P )

2. rs(c) ≤ rŝ(c) at P

3. t > t′, where c ∈ P t
s and c ∈ P t′

ŝ

4. s and ŝ are in the same priority rank class for c, given �c and vc: there exists

k ≥ 1 such that s, ŝ ∈�kc .

Let �̃ denote the constructed priority profile �̃((�, P ), (v, p)). Since ϕ is PP-stable,

given rs(c) ≤ rŝ(c), we have ŝ �c s. Since s and ŝ are in the same priority rank class for

c, given �c and vc, and since t > t′, ŝ�̃cs. Let �′c be the same as �c, except for the

positions of ŝ, s and students ranked between ŝ and s in �c. Let s �′c ŝ, and for all s̄

such that ŝ �c s̄ �c s, if c ∈ P t′
s̄ , let ŝ �′c s̄, and if c ∈ P t

s̄ , let s̄ �′c s. Leave all other

orderings in �′c as in �c and specifically keep the set of students in the priority class of

s and ŝ the same.
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Let �′≡ (�′c,�−c). Let �̃′ denote the constructed priority profile �̃′((�′, P ), (v, p)).

We will show that �̃′ = �̃. Given that both are a function of (�, P ) and (v, p), and

that only �c has changed, the only possible difference is between �̃′c and �̃c, while

�̃′−c = �̃−c.
We will show that �̃′−c = �̃−c. Given the difference between �̃′c and �̃c, all students

are still in the same priority rank class for school c at �̃′c as at �̃c, and since the

preference profile is unchanged, given t > t′ and ŝ�̃′cs. Note that whenever the selection

is based on the preference rank classes among the students in �′kc , the strict priority

order �′c of the students within this set is irrelevant. Moreover, if the choice is based on

the tie-breaker, the relevant orderings are preserved by construction. Thus, �̃′c = �̃c,
which implies that �̃′ = �̃. Since s �′c ŝ and rs(c) ≤ rŝ(c) at (�, P ), PP-stability

of ϕ implies that ϕ(�′, P ) 6= ϕ(�, P ). However, since �̃′ = �̃, the rank-partition

stability of ϕ implies that ϕ(�′, P ) = ϕ(�, P ), and we have a contradiction. Thus, p is

homogeneous and ϕ is equitable-rank-partition stable.

Proof of Theorem 2

Theorem 2. A rank-partition stable rule is Pareto-efficient if and only if it is a Near-

Boston rule.

Proof.

Claim 2.1: A Near-Boston rule is rank-partition stable and Pareto-efficient.

Proof: A Near-Boston rule is a PRP rule, and thus it is rank-partition stable by Propo-

sition 1. We need to show that Near-Boston rules are Pareto-efficient. Let f v,p be

a Near-Boston rule and fix a profile (�, P ). We will prove that f v,p(�, P ) is Pareto-

efficient.

Let µ ≡ f v,p(�, P ). Note that since f v,p is a Near-Boston rule, all priority partitions

are the coarsest and there exists j ∈ S such that for for all s ∈ S \ {j}, s’s preference

partition is the finest. Choose a permutation σ of the set of students S which follows the

order of when the assignments are made in the f v,p procedure at (�, P ). Formally, for

all s ∈ S, let ts denote the round in the f v,p procedure at (�, P ) in which s is accepted

by µs for the first time, and let σ be such that for all i, l ∈ S, σ(i) ≤ σ(l) if and only if

ti ≤ tl. It is well-known (see, for example, Balinski and Sönmez (1999) and Svensson

(1999)) that if σ is a permutation of S such that if students choose their favorite school
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with remaining seats following the order specified by σ and the resulting matching is µ,

that is, if σ is used as in a Serial Dictatorship fσ, then µ is Pareto-efficient. Clearly, σ

has this property if f v,p is the Boston rule, that is, if j has the finest preference partition

along with all other students, since in this case there are no temporary assignments in

the procedure: once a school accepts a student, the assignment is final. If σ does not

have this property then there exist i, l ∈ S such that σ(i) < σ(l) and µlPiµi. This

implies that student i applied for school µl in some round t < ti and got rejected, which

in turn implies that µl was already filled to capacity in round t. Since t < ti ≤ tl and l is

assigned to µl in round tl, it must be the case that l = j. Let h ∈ S be the student who

is assigned µj in round t, but µh 6= µj. Then h is selected over i in round t by school

µj, but since in round tj student j is assigned to µj, h is only temporarily assigned to

µj and is rejected by µj in round tj, where j is selected by µj over h. Note that h is

unique since only pj is a preference partition which is not the finest, and h 6= i, j.

Suppose, by contradiction, that µ is not Pareto-efficient. Then, given that whenever

i, l ∈ S are such that σ(i) < σ(l) and µlPiµi, we have l = j, as we have shown, there

must be an envy chain from j to such a student i, that is, there exists student î who is

assigned µî in round t̂i, where ti ≤ t̂i ≤ tj and µîPjµj. Note that î 6= j, h but î = i is

possible. Thus, rj(µî) < rj(µj). Moreover, µî ∈ P
t̂i
î

, since î 6= h, given that t < t̂i.

Since pi = ph = (1, . . . , 1), for all c ∈ C, c ∈ P ri(c)
i and c ∈ P rh(c)

h . Moreover, in each

round k where a student gets rejected by a school prior to round tj, the student ranks the

school in the kth position. Since h is selected over i in round t by µj, ri(µj) = t, µj ∈ P t
i

and thus, given that all school priorities are the coarsest, µj ∈ P t′

h , where t′ ≤ t.

Since µj ∈ P t′

h and j is selected over h in round tj by µj, we have µj ∈ P t′′
j

such that t′′ ≤ t′, given that all the priority partitions are the coarsest. Then, since

rj(µî) < rj(µj), µî ∈ P t̄
j such that t̄ ≤ t′′. Observe that t̄ ≤ t′′ ≤ t′ ≤ t < ti ≤ t̂i.

Therefore, t̄ < t̂i. Since µî ∈ P
t̂i
î

and µî ∈ P t̄
j , where t̄ < t̂i, it is not possible that î

is selected over j by µî, and we have a contradiction. Thus, µ is Pareto-efficient and

Claim 2.1 is proved.

Claim 2.2: A rank-partition stable and Pareto-efficient rule is a Near-Boston rule.

Proof: We will show that a Pareto-efficient PRP rule is a Near-Boston rule. Note that

this is sufficient to prove the claim since a PRP rule chooses the optimal rank-partition

stable matching at each profile (�, P ), which Pareto-dominates all other rank-partition

stable matchings at this profile.
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Step A: We show that if f v,p is a Pareto-efficient PRP rule then each school has the

coarsest priority partition.

Let f v,p be a Pareto-efficient PRP rule. Suppose that there exists a ∈M such that

va is not the coarsest. For now we assume that qa = qb = qc = 1 and thus n ≥ 4.

Specify (�, P ) as follows. Let i, j, l, h ∈ N such that

• l has the top-priority for a and j has the lowest priority for a in �a. Note that this

implies that l ∈ v1
a and j /∈ v1

a, given our assumption that va is not the coarsest.

• i has the lowest priority for a in �a, except for j. Thus, i �a j.

• j has the top priority for b and i has the lowest priority for b in �b .

• h has the top priority for c in �c.

All other priorities in � are arbitrary.

Case A.1 : v1
a = n− 1

Let P be given as shown in the table below.

Pi Pj Pl Ph

c a c c

b b b

a 0

Assume that further preferences for i, j, l, h ∈ S are arbitrary at P , and for all students

h′ ∈ S \ {i, j, l, h}, Ph′ ∈ (0) (i.e., they don’t have any acceptable school). Assume

without loss of generality that p1
i ≤ p1

l ≤ p1
j . The rounds of the f v,p procedure at

(�, P ) are displayed below.

Round a b c

1 j i, l, h

2 j i, l h

3 i, j l h

4 i j, l h
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In round 1, h is selected over i and j by c, since either h is in a higher priority class

than i and l for c, or h wins on the tie-breaker, given that ri(l) = rl(c) = rh(c) = 1 and

h �c i, l.
In round 2, l is selected over i by b, since either l is in a higher priority class

than i for b, or l is selected based on preference rank classes, given that p1
i ≤ p1

l and

ri(b) = rl(b) = 2, or if neither the priority classes nor the preference classes provide a

basis for selecting l over i, then l wins on the tie-breaker, given that l �b i.
Note that since v1

a = n− 1, i ∈ v1
a and i ∈ v2

a, given �a. Thus, in round 3 student i

is selected over j by a based on the priority rank classes.

In round 4, j is selected over l by b, since either j is in a higher priority class than

l for b, or j is selected based on the preference rank classes, given that p1
l ≤ p1

j and

rj(b) = rl(b) = 2, or if neither the priority classes nor the preference classes provide a

basis for selecting j over l, then j wins on the tie-breaker, given that j �b l.
Now note that since i is assigned a and j is assigned b, i and j would prefer to trade

their assignments and thus we have a contradiction to Pareto-efficiency.

Case A.2 : v1
a < n− 1

Let P be given as shown in the table below.

Pi Pj Pl Ph

a a c c

b b b

0 a

Assume that further preferences for i, j, l, h ∈ S are arbitrary at P and for all

students h′ ∈ N \ {i, j, l, h}, Ph′ ∈ (0). Assume without loss of generality that p1
l ≤

p1
i ≤ p1

j . The rounds of the f v,p procedure at (�, P ) are displayed below.

Round a b c

1 i, j l, h

2 i j, l h

3 i, l j h

4 l i, j h
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In round 1, i is selected over j by a, since either i is in a higher priority class than

j for a, or i wins on the tie-breaker, given that ri(a) = rj(a) = 1 and i �a j. Similarly,

h is selected by c over l.

In round 2, j is selected over l by b since j has top priority for b, and thus j may be

selected based on the priority classes. If j does not get selected based on the priority

classes, then p1
l ≤ p1

j and rj(b) = rl(b) = 2 imply that j may be selected based on

preference classes. Finally, if j is not selected based on either the priority or preference

classes, then j wins on the tie-breaker, since j �b l.
In round 3, l is selected over i by a based on the priority classes, since l ∈ v1

a and

i /∈ v1
a, given that v1

a < n− 1.

In round 4, j is selected over i by b, since either j is in a higher priority class

than i for b, or j is selected based on the preference classes, given that p1
i ≤ p1

j and

ri(b) = rj(b) = 2, or if neither the priority classes nor the preference classes provide a

basis for selecting j over c, then j wins on the tie-breaker, given that j �b i.
Now note that since l is assigned a and j is assigned b, l and j would prefer to trade

their assignments and thus we have a contradiction to Pareto-efficiency.

In order to relax the assumption that qa = qb = qc = 1 and generalize both Case

A.1 and Case A.2, since there exist a, b, c ∈ C such that qa + qb + qc < n, we can

introduce additional students with the top priorities for the relevant schools such that

each student with the top priority for a relevant school ranks the school first, and this

would allow for getting the same contradiction in both cases as before. Since this is a

straightforward extension, we omit the tedious details. Finally, note that since va is not

the coarsest, Cases A.1 and A.2 cover all possible cases and thus Step A is completed.

Step B: We show that if f v,p is a Pareto-efficient PRP rule then it is a Near-Boston

rule.

Suppose that f v,p is Pareto-efficient but it is not a Near-Boston rule. Then there

exist j, l ∈ N with at least one preference class each which are minimally size 2. Since

the preference classes which are larger than size 1 have to be relevant, that is, there

must exist a profile where these sizes matter, it means that there are enough students

who can have top priorities at relevant schools, and since we can assume that these

students will rank their top-priority schools first, to reduce the technical details we can

assume without loss of generality that the size 2 preference classes are the top preference

classes for students j and l, and by a similar argument we can assume without loss of
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generality that qa = qb = qc = 1 for schools a, b, c ∈ C, where qa + qb + qc < n.

We specify (�, P ) as follows. Let the preferences for i, j, l ∈ S be given as shown in

the table below.

Pi Pj Pl

a a b

b a

Note that student j has both a and b in the top preference class, and so does

student l: a, b ∈ P 1
j and a, b ∈ P 1

l .

Let l �a i �a j and j �b l. Note that all priority partitions are coarse by Step A,

since f v,p is a Pareto-efficient rule. The rounds of the PRP rule applied to (�, P ) are

displayed below, with the selections underlined in each round.

Round a b

1 i, j l

2 i j, l

3 i, l j

Now note that since l is assigned a and j is assigned b, l and j would prefer to trade

their assignments and thus we have a contradiction to Pareto-efficiency.

Proof of Theorem 3

Theorem 3. A rank-partition stable rule is strategyproof if and only if it is the Deferred

Acceptance rule.

Proof.

Step 1: The only strategyproof PRP rule is the DA.

Let f v,p be a PRP rule which is not the DA. Suppose that f v,p is strategyproof.

Since f v,p is not the DA, there exists c1 ∈ C such that vc1 is not the finest, and there

exists s∗ ∈ S such that p∗s is not the coarsest. Then there exists rank r ≥ qc1 , such

that the students ranked in the rth and (r + 1)th positions are in the same priority

rank class according to vc1 . Thus, note that qc1 < n. Let sn ≡ s∗. Fix �c1 with ranks

rc1(s
∗) = r, rc1(s1) = r + 1, and for all i = 2, . . . , qc1 , rc1(si) < r. Let c2, c3, . . . , cm be
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arranged in ascending order of their capacities, that is, qc2 ≤ qc3 ≤ . . . ≤ qcm . Let � be

such that for all t = 2, . . . ,m, �ct ranks s∗ last: rct(s
∗) = n.

Consider each seat of each school as a separate item, denoted by c̄1, . . . , c̄m̄, where

m̄ ≡
∑

c∈C qc. For all t = 1, 2, . . . ,m, let Qt ≡
∑t

l=1 qcl . Moreover, let c̄1, . . . , c̄qc

denote the seats at school c1, and for all t = 2, . . . ,m, let c̄Qt−1+1, . . . , c̄Qt denote the

seats at school ct.

• Case 1: n ≤ m̄

Let m̃ ≥ 2 be such that Qm̃ ≥ n and Qm̃−1 < n. Let Ps∗ ∈ (c2, c3, . . . , cm̃−1, c1, cm̃),

and for all i = 1, . . . , n− 1, let Psi ∈ (c̄i).

The rounds of the PRP procedure at (�, P ) are as follows.

Round 1: The only conflict is for c2, among students sqc1+1, . . . , sqc1+qc2
and s∗.

Based on �c2 , since �c2 ranks s∗ last, either students sqc1+1, . . . , sqc1+qc2
are se-

lected or all students applying to c2 are selected, depending on vc2 . If it is the

latter, then since all students in the applicant pool rank c2 first, regardless of P

the selection is based on the tie-breaker �c2 . Given that �c2 ranks s∗ last, stu-

dents sqc1+1, . . . , sqc1+qc2
are selected by c2 in this case, too. In sum, s∗ is rejected

by c2 and all other applications are accepted in round 1.

Round 2: s∗ applies to c3, and the only conflict is for c3, among students sqc1+qc2+1,

. . . , sqc1+qc2+qc3
and s∗. Here again s∗ is rejected by c3, and all the previous ten-

tative acceptances remain. The arguments are similar to the round 1 arguments,

except that since s∗ ranks c3 second, while all other students in the applicant pool

for c3 rank c3 first, depending on p, s∗ could be rejected based on the preference

rank classes, if s∗ was not rejected already based on the priority rank classes of

c3, given that �c3 ranks s∗ last. Again, if s∗ is not rejected based on priority or

preference rank classes by c3, then s∗ is rejected by c3 based on the tie-breaker

�c3 .

And so on, we can repeat similar arguments for Rounds 3 to m̃− 2 : s∗ applies to

schools c4, ...., cm̃−1 in these rounds, respectively, and gets rejected in each round,

while all other students remain tentatively matched to their first-choice school.

Round m̃ − 1 : s∗ applies to c1, and the only conflict is for c1, among students

s1, . . . , sqc and s∗. Since for all i = 2, . . . , qc1 , rc1(si) < r, rc1(s
∗) = r and rc1(s1) =
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r+ 1, and since according to vc1 students s∗ and s1, are in the same priority rank

class, each student in the applicant pool of c1 is selected, given �c1 . Now note

that, given qc2 ≤ qc3 ≤ . . . ≤ qcm and Qm̃ ≥ n, s∗ is guaranteed to be assigned at

worst the m̃th-ranked school under any reported preferences of s∗. Then, since

ps∗ is not the coarsest, c1 /∈ P 1
s∗ . Since s1, . . . , sqc1 rank c1 first, s∗ is rejected by

c1 based on the preference rank classes. This implies that f v,ps∗ (�, P ) = cm̃ and

c1Ps∗f
v,p
s∗ (�, P ).

Now let P̃s∗ ∈ (c1). In round 1 of the PRP procedure at (�, (P̃s∗ , P−s∗)) based

on the priority rank classes specified by vc, none of the students in the applicant

pool for c1, namely s1, . . . , sqc and s∗ are rejected, as shown before. Since all

students rank c1 first in this applicant pool, none of them are rejected based on

the preference rank classes. Therefore, the selection is based on the tie-breaker

�c1 . Given that for all i = 2, . . . , qc, rc1(si) < r, rc1(s
∗) = r and rc1(s1) = r + 1,

s1 is rejected and all other applying students are tentatively matched to c1. Since

Ps1 ∈ (c1), individual rationality of f v,p implies that the procedure stops after

round 1 at (�, (P̃s∗ , P−s∗)), and thus f v,ps∗ (�, (P̃s∗ , P−s∗)) = c1. This means that s∗

can manipulate at P via P̃s∗ , which contradicts the strategyproofness of f v,p.

• Case 2: n > m̄

Let s∗ ≡ sm̄+1 and let Ps∗ ∈ (c2, c3, . . . , cm−1, cm, c1). For all i = 1, . . . , m̄, let

Psi ∈ (c̄i), and for all i = m̄ + 2, . . . , n, let Psi ∈ (si). For this case we can

use a similar argument as for Case 1, given the above modifications. Since c1 is

ranked last by s∗ and Ps∗ is not the coarsest, c1 /∈ P 1
s∗ . Therefore, we have f v,ps∗ (�

, P ) = 0 and c1Ps f
v,p
s∗ (�, P ). Moreover, we can show similarly to Case 1 that

f v,ps∗ (�, (P̃s∗ , P−s∗)) = c1, where P̃s∗ ∈ (c1). This means that s∗ can manipulate at

P via P̃s∗ , which contradicts the strategyproofness of f v,p.

Step 2: The only strategyproof rank-partition stable rule is the DA.3

Suppose that ϕ is a rank-partition stable rule which is strategyproof, and suppose

that ϕ is not the DA. Let ϕ be rank-partition stable with respect to (v, p). Then, by Step

1, ϕ is not the PRP rule f v,p. Thus, there exists (�, P ) such that ϕ(�, P ) 6= f v,p(�, P ).

Then Proposition 1 implies that f v,p(�, P ) Pareto-dominates ϕ(�, P ).

3Given Step 1, this step also follows from Alva and Manjunath, 2019). We provide a direct proof

of this step for completeness.
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For all s ∈ S, let P̃s be the same as Ps from the first-ranked school to f v,ps (P ), and let

all other schools (schools ranked below f v,ps (�, P ) ) be unacceptable to s at preferences

P̃s. In other words, P̃s is the truncation of Ps directly below f v,ps (�, P ). Let P̄ be any

preference profile in which for all s ∈ S, P̄s ∈ {Ps, P̃s}. Then it easy to see that for all

such P̄ ∈ P , f v,p(�, P̄ ) = f v,p(�, P ).

Let s1 ∈ S such that f v,ps1 (�, P ) 6= ϕs1(�, P ). Then f v,ps1 (�, P )Ps1ϕs1(�, P ). Note

that f v,p(�, P ) = f v,p(�, P̃ 1), where P̃ 1 ≡ (P̃s1 , P−s1). Since ϕ is strategyproof and

individually rational, ϕs1(�, P̃ 1) = 0. Now suppose that, for all s ∈ S \ {s1}, f v,ps (�
, P̃ 1) = ϕs(�, P̃ 1). Then ϕs1(�, P̃ 1) 6= 0, otherwise ϕ would be wasteful, which contra-

dicts our assumption that ϕ is rank-partition stable. Hence, there exists s2 ∈ S \ {s1}
such that f v,ps2 (�, P̃ 1) 6= ϕs2(�, P̃ 1). Then, by Proposition 1, f v,ps2 (�, P̃ 1)Ps2ϕs2(�, P̃ 2).

Note that f v,p(�, P̃ 1) = f v,p(�, P̃ 2), where P̃ 2 = (P̃s1 , P̃s2 , P−s1,s2). Now suppose that

for all s ∈ S \ {s1, s2}, f v,ps (�, P̃ 2) = ϕs(�, P̃ 2). Then

ϕs1(�, P̃ 2) 6= 0 and ϕs2(�, P̃ 2) 6= 0, otherwise ϕ would be wasteful, which contradicts

our assumption that ϕ is rank-partition stable. Hence, there exists s3 ∈ S \ {s1, s2}
such that f v,ps3 (�, P̃ 2) 6= ϕs3(�, P̃ 2). And so on, if we keep iterating the same argument

then, due to the finiteness of S, we run out of students. This is a contradiction, which

shows that if ϕ is rank-partition stable but not the DA then ϕ is not strategyproof.

Proof of Theorem 4

Theorem 4. Let f v,p be a PRP rule and fix a profile (�, P ). Let s ∈ S and c ∈ C such

that cPsf
v,p
s (�, P ). Let P ′s ∈ Ps such that c is in the same or lower preference rank

class in P ′s than in Ps, given p. Then f v,ps (�, (P ′s, P−s)) 6= c.

Substitutability: If student s is chosen from some applicant pool S ′ ⊆ S by a school,

then student s would still be chosen from the applicant pool T by this school where T

is a strict subset of S ′ and s is a member of T . Formally, a choice function Ch satisfies

substitutability if s ∈ T ⊆ S ′ ⊆ S and s ∈ Chc(S
′) then s ∈ Chc(T ). It is easy to

verify that PRP choice functions satisfy substitutability.

Proof. Let f v,p be a PRP rule and fix a profile (�, P ). Let s ∈ S, and c, d ∈ C

such that f v,ps (�, P ) = d and cPsd. Let P ′s ∈ Ps. Let �̄ denote the constructed

priority profile for ((�, P ), (v, p)) and let �̄′ denote the constructed priority profile for

((�, (P ′s, P−s)), (v, p)).
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Case 1: Assume that P ′s is different from Ps only by reshuffling schools within s’s

preference rank classes only. For the constructed priority profile only the set of schools

in each preference class is relevant, while the ordering of the schools within a preference

class is irrelevant. Thus, �̄ = �̄′. By Proposition 1, f v,p(�, P ) = fDA(�̄, P ) and

f v,p(�, (P ′s, P−s)) = fDA(�̄′, (P ′s, P−s)). Then f v,p(�, (P ′s, P−s)) = fDA(�̄, (P ′s, P−s)).
Therefore, given that cPsf

v,p
s (�, P ) and thus cPsf

DA
s (�̄, P ), by the strategyproofness

of the DA, we have fDA (�̄, (P ′s, P−s)) 6= c. This means that f v,p(�, (P ′s, P−s)) 6= c.

Case 2: Assume that P ′s exchanges two schools (a and b) only when compared to Ps

such that a and b are in two adjacent preference rank classes. Specifically, assume that

a is the bottom-ranked school in its preference rank class, and b is the top-ranked school

in the preference rank class just below the one a is in. Otherwise P ′s is the same as Ps,

including the preference rankings within each preference rank class.

First note that only the priority rankings of a and b are different in the constructed

priority profile �̄′ compared to �̄, while the priorities for the remaining schools are the

same. Moreover, only the position of student s may change, as follows: s has the same

or higher ranking in �̄′b compared to �̄b, while s has the same or lower ranking in �̄′a
compared to �̄a. All other students have the same relative rankings in �̄′b versus �̄b,
as well as in �̄′a versus �̄a.

Claim 4.1. Let school e be ranked directly above school a by Ps. Then for all ẽ ∈ C
such that ẽRse, if f v,ps (�, P ) = ẽ then f v,ps (�, (P ′s, P−s)) = ẽ and otherwise

f v,ps (�, (P ′s, P−s)) 6= ẽ.

Proof. Note first that school e is ranked directly above school b by P ′s. Then each

round of the PRP procedure in which student s proposes to school ẽ such that ẽRse

(and consequently also ẽR′se), the PRP rounds at (�, P ) and at (�, (P ′s, P−s)) are

identical, given that ẽPsa, b, ẽP
′
sa, b and only Cha and Chb have changed with respect

to the selection of s only, when the two preference profiles are compared.

Case 2a: dPsa. By Claim 10, f v,ps (�, (P ′s, P−s)) = f v,ps (�, P ) = d.

Case 2b: d = a. Given Claim 10, since cPsd, f v,ps (�, (P ′s, P−s)) 6= c. Claim 10 also

implies that we have one of the following scenarios:

scenario (i): f v,ps (�, (P ′s, P−s)) = d = a

scenario (ii) : f v,ps (�, (P ′s, P−s)) = b (note: b 6= c, since cPsdPsb)
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scenario (iii): dPsf
v,p
s (�, (P ′s, P−s))

Case 2c: d = b. Given Claim 10, for all ẽ ∈ C such that ẽRse, f
v,p
s (P ′s, P−s) 6= ẽ.

Suppose that s is rejected by school d = b in the PRP procedure at profile

(�, (P ′s, P−s)). Then, since the PRP rule is not wasteful, there exists at least

one student ŝ ∈ S such that f v,pŝ (�, (P ′s, P−s)) = b and f v,pŝ (P ) 6= b. Since

f v,pŝ (�, (P ′s, P−s)) = b and bPsf
v,p
s (� (P ′s, P−s)), given that the PRP rule f v,p is

stable with respect to the constructed priority profile at each preference profile

by Proposition 1, ŝ�̄′bs. Since s cannot have a lower position in �̄′b compared to

�̄b, while all other students’ relative positions are unchanged, this implies that

ŝ�̄bs. If bPŝf
v,p
ŝ (�, P ), then since ŝ�̄bs and f(�, P ) is stable with respect to �̄,

we have a contradiction. Thus, since f v,pŝ (�, P ) 6= b, we have f v,pŝ (�, P )Pŝb. Note

that this implies that ŝ does not apply to school b in the f v,p procedure at P .

Assume that s is rejected by e in round k − 1 of the f v,p procedure applied to

both (�, P ) and (�, (P ′s, P−s)). This is without loss of generality due to Claim 10.

Then s applies to school a in Step k at (�, P ), and s applies to school b in round k

at (�, (P ′s, P−s)). Let T ⊂ S be the set of students who apply to b in any round

after round k − 1 in the f v,p procedure at (�, P ), and let T ′ ⊂ S be the set of

students who apply to b in any round after round k − 1 in the f v,p procedure at

(�, (P ′s, P−s)). We will show that T ′ ⊆ T .

It follows from Claim 10 that in round k at (�, P ) each student except s applies

to the same school as in round k at (�, (P ′s, P−s)). If student s gets rejected by

school a at (�, P ) in round k then there is no difference in applicants to b at the

two profiles after round k and T ′ = T , due to the substitutability property of the

school choice functions. If student s gets accepted and some other student gets

rejected by a at (�, P ) who is not rejected by a at (�, (P ′s, P−s)) then this student

applies to her next most-preferred school, which in turn my cause another student

to be rejected by a school at (�, P ) who is not rejected at (�, (P ′s, P−s)), etc.,

creating a rejection chain at (�, P ). Therefore, all students who applied to b at

(�, (P ′s, P−s)), and potentially more students, apply to b at (�, P ) after round k,

since all students involved in this rejection chain get a lower-ranked school at

(�, P ) than at (�, (P ′s, P−s)), given the substitutability property of the school

choice functions. Thus, if t ∈ T ′ then t ∈ T , as claimed. Note, however, that this
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contradicts the existence of student ŝ since, as shown above, ŝ ∈ T ′ \ T .

Case 2d: bPsd. Note that b 6= c, since c is either in the same or a lower preference

rank class in P ′s than in Ps, given the fixed ps. We will show that one of the

following three scenarios holds:

scenario (i): f v,ps (�, (P ′s, P−s)) = d;

scenario (ii): f v,ps (�, (P ′s, P−s)) = b;

scenario (iii): dPsf
v,p
s (�, (P ′s, P−s)).

By Claim 4.1, for all ẽ ∈ C such that ẽRse, f
v,p
s (�, (P ′s, P−s)) 6= ẽ. If

f v,ps (�, (P ′s, P−s)) = b then we are done, as scenario (ii) holds in this case. Thus,

we can assume that f v,ps (�, (P ′s, P−s)) 6= b. Then bPsf
v,p
s (�, (P ′s, P−s)).

First we show that f v,ps (�, (P ′s, P−s)) 6= a. Suppose that f v,ps (�, (P ′s, P−s)) = a.

Then we can show that f v,ps ((�, P )) = a, using a similar argument to the one for

Case 2c. For Case 2c we showed that if f v,ps (�, P ) = b then f v,ps (�, (P ′s, P−s)) = b,

and here we can use a similar argument applied to a instead of b, to show that

f v,ps (�, P ) = a, which contradicts f v,ps (�, P ) = d, since aPsbPsd. Therefore,

f v,ps (�, (P ′s, P−s)) 6= a, and thus we have shown so far that aP ′sf
v,p
s (�, (P ′s, P−s)).

Claim 4.2. Assume that P ′s is different from Ps only by the ordering of schools

within s’s preference rank class which contains the school assigned to s at (�, P ),

say school c, that is, when f v,ps (�, P ) = c. Assume furthermore that the upper

contour set of school c in this preference class is weakly smaller at P ′s than at Ps,

that is, if c′ is in the same preference class in Ps as c, and if c′P ′sc then c′Psc.

Then f v,ps (�, (P ′s, P−s)) = c.

Proof. As noted in the argument for Case 1, for the constructed priority profile

only the set of schools in each preference class is relevant, while the ordering of the

schools within a preference class is irrelevant. Thus �̄ = �̄′. Then f v,p(�, P ) =

fDA(�̄, P ) and f v,p(�, (P ′s, P−s)) = fDA(�̄′, (�, (P ′s, P−s))) = fDA(�̄, (P ′s, P−s)).
Therefore, if f v,ps (�, P ) = c, or equivalently fDAs (�̄, P ) = c, by strategyproofness

of the DA, fDAs (�̄, (P ′s, P−s)) = c or, equivalently, f v,ps (�, (P ′s, P−s)) = c.

Given Claim 4.2, we show next that if f v,ps (�, (P ′s, P−s)) 6= b then dRs

f v,ps (�, (P ′s, P−s)). Since a, bPsf
v,p
s (�, P ), a, bP ′sf

v,p
s (�, (P ′s, P−s)), and only the
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order of a and b has changed between Ps and P ′s, where a and b are adjacent in

the preference ordering, suppose that there exists c ∈ C such that bPscPsd and

f v,ps (�, (P ′s, P−s)) = c. This means that aP ′scP
′
sd.

Consider P ′′s which is the same as P ′s, except that c is lifted to be ranked directly

below a (note: if c was already ranked directly below a by P ′s, then P ′s = P ′′s ).

Since this change only affects the preference class that contains a, c and d, while all

other orderings in P ′s are preserved, Claim 4.2 implies that f v,ps (�, (P ′′s , P−s)) =

c. Consider P̂s which is the same as Ps, except that c is lifted to the top of

the preference class that contains b, c and d, while all other orderings in Ps are

preserved.

Now consider P ′′s versus P̂s. Given that f v,ps (�, (P ′′s , P−s)) = c, Claim 4.1 implies

that for all ẽR′′se, f
v,p
s (�, (P̂s, P−s)) 6= ẽ. Now suppose that f v,ps (�, (P̂s, P−s)) 6= a.

We will show that then f v,ps (�, (P ′′s , P−s)) = c implies that f v,ps (�, (P̂s, P−s)) = c.

Suppose that s is rejected by school c in the f v,p procedure at profile (�, (P̂s, P−s)).
Then, since the PRP rule is not wasteful, there exists at least one student

s̃ ∈ S such that f v,ps̃ (�, (P̂s, P−s)) = c and f v,ps̃ (�, (P ′′s , P−s)) 6= c. Since f v,ps̃ (�
, (P̂s, P−s)) = c and cPsf

v,p
s (�, (P̂s, P−s)), given that the PRP rule f v,p is stable

with respect to the constructed priority profile at each preference profile by Propo-

sition 1, s̃�̂cs, where �̂ is the constructed priority profile at (�, (P̂s, P−s)). Thus,

since c is in the same preference class in P ′′s and in P̂s, we also have s̃ �′′c s, where

�′′ is the constructed priority profile at (�, (P ′′s , P−s)). If cPs̃f
v,p
s̃ (�, (P ′′s , P−s)),

then since s̃ �′′c s and f(�, (P ′′s , P−s)) is stable with respect to �′′, we have a

contradiction. Thus, f v,ps̃ (�, (P ′′s , P−s))Ps̃c, which implies that s̃ does not apply

to school c in the f v,p procedure at (�, (P ′′s , P−s)).

Assume that s is rejected by e in round k − 1 of the f v,p procedure applied

to (�, (P ′′s , P−s)) and to (�, (P̂s, P−s)). Then s applies to school b in round k

at (�, (P ′′s , P−s)) and to school a at (�, (P̂s, P−s)). Let V ⊂ S be the set of

students who apply to c in any round after round k − 1 in the f v,p procedure

at (�, (P ′′s , P−s)) and let V ′ ⊂ S be the set of students who apply to c in any

round after round k−1 in the f v,p procedure at (�, (P̂s, P−s)). We will show that

V ′ ⊆ V .

It follows from Claim 4.1 that in round k at (�, (P ′′s , P−s)) each student except
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s applies to the same school as in round k at (�, (P̂s, P−s)). If student s gets

rejected by school b at (�, (P ′′s , P−s)) in round k then there is no difference in

applicants to a at the two profiles after round k, which implies that V ′ = V ,

due to the substitutability property of the school choice functions. If student s

gets accepted by b at (�, (P ′′s , P−s)) and some other student gets rejected after

round k − 1 who is not rejected by b at (�, (P̂s, P−s)), then this student applies

to her next most-preferred school, which in turn my cause another student to be

rejected by a school at (�, (P ′′s , P−s)) who is not rejected at (�, (P̂s, P−s)), etc.,

creating a rejection chain at (�, (P ′′s , P−s)). Therefore, all students who applied

to c at (�, (P̂s, P−s)), and potentially more students, apply to c at (�, (P ′′s , P−s)),
since all students involved in this rejection chain get a lower-ranked school at

(�, (P ′′s , P−s)) than at (�, (P̂s, P−s)), again due to the substitutability property

of the school choice functions. Thus, if v ∈ V ′ then v ∈ V , as claimed. This,

however, contradicts the existence of student s̃ since, as shown above, s̃ ∈ V ′ \V .

Therefore, f v,ps (�, (P̂s, P−s)) ∈ {a, c}. Finally note that, given Ps, Claim 4.2

implies that f v,ps (�, (P̂s, P−s)) = d. This is a contradiction. Therefore,

f v,ps (�, (P ′s, P−s)) 6= c and it follows that either f v,ps (�, (P ′s, P−s)) = d or

dPsf
v,p
s (�, (P ′s, P−s)), corresponding to scenarios (i) and (iii) respectively.

Conclusion of the proof :

By repeatedly applying the transformation of Ps in Case 1, which allows for the

reshuffling of schools within the preference rank classes of students, as well as the

transformation of Ps in Case 2, which allows for exchanging two adjacent schools in

the ordering which switches the preference rank classes in which these two schools

are, we can transform Ps into an arbitrary P̌s such that c is never moved to a higher

preference rank class in any round of the transformation. Thus, based on the proofs

for the individual cases above, we can conclude that one of the following three cases

holds for f v,ps (�, (P ′s, P−s)) for each intermediate round P ′s when transforming Ps into

an arbitrary P̌s :

1. f v,ps (�, (P ′s, P−s)) is the same as in the previous round, denoted by d, and thus

does not equal c in Case 1, Case 2a, Case 2b scenario (i), Case 2c, and Case 2d

scenario (i).
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2. f v,ps (�, (P ′s, P−s)) becomes the school which moves up to a higher preference rank

class, denoted by b, where b 6= c, since c never moves to a higher preference rank

class in any round of the transformation. This happens in Case 2b scenario (ii),

and Case 2d scenario (ii).

3. f v,ps (�, (P ′s, P−s)) is less preferred than the school assigned in the previous outcome

which is denoted by d: dPsf
v,p
s (�, (P ′s, P−s)), where cPsd. Thus, f v,ps (�, P ′s, P−s) 6=

c. This happens in Case 2b scenario (iii) and in Case 2d scenario (iii).

In sum, for arbitrary P̌s such that c is in the same or lower preference rank class in

P̌s than in Ps, f
v,p
s (�, (P̌s, P−s)) 6= c.
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