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Abstract. Theorem 1 in Alger and Weibull (Games and Economic

Behavior, 2016) consists of two statements. The first establishes that Homo

moralis with the right degree of morality is evolutionarily stable. The second

statement is a claim about sufficient conditions for other goal functions to be

evolutionarily unstable. However, the proof given for that claim presumes that

all relevant sets are non-empty, while the hypothesis of the theorem does not

guarantee that. We here prove instability under a stronger hypothesis that

guarantees existence, and we also establish a new and closely related result. As

a by-product, we also obtain an extension of Theorem 1 in Alger and Weibull

(Econometrica, 2013).
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Theorem 1 in Alger and Weibull (2016), henceforth AW, consists of two state-

ments. The first establishes thatHomo moralis with the right morality profile is evolu-

tionarily stable. The second statement is a claim about sufficient conditions for other

goal functions to be evolutionarily unstable: “Any  ∈  with  () ∩ (∗) = ∅
is evolutionarily unstable”. Here ∗ is the goal function of Homo moralis with the
right morality profile (that is, identical with the assortativity profile of the matching

process),  () (resp. (∗)) is the set of strategies  ∈  that are best replies to

themselves with respect to goal function  (resp. ∗), and a goal function  ∈  is

evolutionarily unstable if there exists another goal function  ∈  such that there

for every ̄  0 exists a smaller but positive mutant population share  and at least

one associated Nash equilibrium in which the mutants earn a higher material payoff

than the residents. However, the proof given for the second claim presumes that all

relevant sets are non-empty and that  () is a singleton set, while the hypothesis of
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the theorem does not guarantee this. Here, we provide new sufficient conditions for

a goal function  to be evolutionarily unstable. As a by-product, we also obtain an

extension of Theorem 1 in Alger and Weibull (2013).

Since the definition of instability in AW requires equilibrium existence, we first

ensure this in order to prove instability. Throughout, we therefore make the following

assumption:1

Assumption: The material-payoff function  is such that ∗ ( ) is con-
cave in  ∈ , the own (potentially multi-dimensional) strategy, for any

strategy  ∈  used by an opponent.

Let   ⊂  denote the subset of goal functions that are concave with respect to

their first argument,  ∈ .

Lemma 1. If  ∈  , then

1.  () is non-empty,

2. ( ∗ ) 6= ∅ for all  ∈ (0 1),
3. the correspondence ( ∗ ·) : (0 1)⇒  is u.h.c. and compact-valued.

Proof: The first two claims follow from the Kakutani-Glicksberg-Fan fixed-point

theorem, since ∗ and  are continuous and concave in their first argument, and  is

a nonempty, convex and compact set in a normed vector space (see Corollary 17.55

in Aliprantis and Border, 2006). The third statement follows from Berge’s maximum

theorem (see Theorem 17.31, op. cit.). Q.E.D.

We are now in a position to provide the new sufficient conditions for evolutionary

instability of goal functions:

Proposition 1. Any goal function  ∈   for which  () ∩  (∗) = ∅ is evolu-

tionarily unstable.

Proof : Consider any  ∈  . The non-emptiness of () implies that( ∗ 0)
is non-empty too, since (∗ ∗) ∈ ( ∗ 0) if and only if ∗ ∈  () and

∗ ∈ argmax
∈

∗ ( (∗  ∗)) 

1Proposition 4 in Bomze et al. (2021) provides necessary and sufficient conditions for the re-

quired concavity property of the Homo moralis goal function ∗ when applied to the mixed-strategy
extension of finite two-player games in material payoffs.
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where the latter set is non-empty byWeierstrass’ maximum theorem (∗ is continuous
and  is non-empty and compact). Hence, the domain of the u.h.c. correspondence

( ∗ ·) can be extended to include  = 0.
Let (∗ ∗) ∈ ( ∗ 0). Then ∗ ∈ argmax∈ ∗ ( (∗  ∗)), since oth-

erwise ∗ ∈  (∗), contradicting the hypothesis  () ∩ (∗) = ∅. Thus

Π (
∗ ∗ 0) = ∗(∗ (∗  ∗))  ∗(∗ (∗  ∗)) = Π (

∗ ∗ 0) 

Let the function  : 2 × [0 1] → R be defined by  (  ) = Π (  ) −
Π (  ). Then (  )  0 for all ( ) ∈ ( ∗ 0). Since∅ 6= ( ∗ 0) ⊆
2 is compact and the function  is continuous, there exists, by Weierstrass’ max-

imum theorem, a   0 such that  (  0) ≥  for all ( ) ∈ ( ∗ 0).
Again by continuity of , there exists an ̄  0 such that  (  ) ≥ 2 for

all (  ) ∈  × [0 ̄] where  ⊂ 2 is the ̄-neighborhood of the compact set

( ∗ 0) ⊂ 2. Since ( ∗ ·) : [0 1]→  is u.h.c., ∅ 6= ( ∗ ) ⊆
 for all  ∈ [0 ̄ ] sufficiently small. In sum: for all small   0 there exist equilibria
( ) ∈ ( ∗ ), and in all those equilibria Π (  )  Π (  ). Q.E.D.

This proof in fact establishes a “strong” form of evolutionary instability of goal

functions  ∈   for which  ()∩ (∗) = ∅, in the sense that residents with such
a goal function earn a strictly lower material payoff in all Nash equilibria for   0

small. (We did not impose such a stringent condition in the definition of instability in

AW; it only required that there exist at least one equilibrium for   0 small enough

in which residents earn a strictly lower material payoff than mutants.)

An interesting novelty compared to our previous analyses is that in the new proof

the mutant is Homo moralis, and not a mutant always using the same strategy,

that can invade a population where the resident type is some  ∈   for which

 () ∩ (∗) = ∅.

Remark 1. In Alger and Weibull (2013) we required for a goal function to be unsta-

ble that residents with this goal function earn a lower material payoff against some

mutant goal function in all Nash equilibria for   0 small, without requiring ex-

istence of such Nash equilibria. Proposition 1 also establishes an extension of the

second claim in Theorem 1 in that paper, by way of (a) dispensing with the hypothe-

sis that the set  () (there denoted ) is a singleton, (b) replacing the hypothesis

that the type set (there denoted Θ) is “rich” by the hypothesis that this set contains

Homo moralis with degree of morality equal to the index of assortativity (these are

defined for two-player games), (c) requiring a concavity property of the material pay-

off function and the goal function under examination, and (d) establishing existence

of Nash equilibria between residents and the mutant.



Evolution and Kantian morality: a correction and addendum 4

The proof of Proposition 1 can be adapted to obtain a result that does not re-

quire concavity of the resident type. For this result, recall the definition in AW of

a behavioral alike to Homo moralis. This is a preference type which for at least one

strategy ̂ belonging to the set (∗) of symmetric equilibrium strategies for the

game between Homo moralis, has a best response ̂ to x̂ = (̂ ̂  ̂) ∈ −1 that
is also a best response for Homo moralis.

Proposition 2. Consider a goal function  ∈  that is not a behavioral alike to

Homo moralis, for which () 6= ∅ and for which there exists some ̄  0 such that
( ∗ ) 6= ∅ for all  ∈ (0 ̄). Then  is evolutionarily unstable.

Proof : Consider a goal function  with the assumed properties. The non-

emptiness of  () implies that ( ∗ 0) is non-empty too, since (∗ ∗) ∈
( ∗ 0) if and only if ∗ ∈  () and

∗ ∈ argmax
∈

∗ ( (∗  ∗)) 

where the latter set is non-empty byWeierstrass’ maximum theorem (∗ is continuous
and  is non-empty and compact). Hence, the domain of the u.h.c. correspondence

( ∗ ·) can be extended to include  = 0.
Consider any (∗ ∗) ∈ ( ∗ 0). Then ∗ ∈ argmax∈ ∗ ( (∗  ∗)),

since otherwise ∗ would also belong to  (∗), and  would then be a behavioral

alike to ∗. Thus, for all (∗ ∗) ∈ ( ∗ 0),

Π (
∗ ∗ 0) = ∗(∗ (∗  ∗))  ∗(∗ (∗  ∗)) = Π (

∗ ∗ 0) 

Since there exists some ̄ such that ( ∗ ) 6= ∅ for all  ∈ (0 ̄) (by assump-
tion), and noting that the correspondence ( ∗ ) : (0 1) ⇒  is u.h.c. and

compact-valued (by Berge’s maximum theorem), the arguments given in the proof of

Proposition 1 apply here as well. Q.E.D.

We end by briefly considering a counter-example to the instability claim in The-

orem 1 of AW. This example builds upon Example 3 in Bomze et al. (2020).

Example 1. Let  be the mixed-strategy payoff function for the generalized Rock-

Paper-Scissors game with material-payoff matrix (for the row player)

 () =
³

1 2− 0
0 1 2−
2− 0 1

´
for some   1. With mixed strategies represented as column vectors, the goal

function ∗ for Homo moralis with degree of morality  ∈ [0 1] is defined by
∗ ( ) = (1− )  ()  +  () ∀  ∈ ∆
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where ∆ is the unit simplex in R3. As shown in Bomze et al. (2020), ∗ is strictly
convex in  for all  ∈ (0 1) and  ∈ (0 1), and then  (∗) = ∅. Hence, if

 ∈ (0 1) is the index of assortativity in the matching process, then ∗ , for  = , is

evolutionarily stable according to the first claim in Theorem 1 in AW, and yet  = ∗
meets the hypothesis for instability in the second claim in the same theorem, “ ∈ 

with ()∩ (∗) = ∅”. By definition, an evolutionarily stable goal function cannot
be evolutionarily unstable.
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