Comparison of metadata quality in open data portals using the Analytic Hierarchy Process Sylvain Kubler, Jérémy Robert, Sebastian Neumaier, Jürgen Umbrich, Yves Le Traon # ▶ To cite this version: Sylvain Kubler, Jérémy Robert, Sebastian Neumaier, Jürgen Umbrich, Yves Le Traon. Comparison of metadata quality in open data portals using the Analytic Hierarchy Process. Government Information Quarterly, 2018, 35 (1), pp.13-29. 10.1016/j.giq.2017.11.003 . hal-01672652 HAL Id: hal-01672652 https://hal.science/hal-01672652 Submitted on 26 Dec 2017 **HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. # Comparison of metadata quality in open data portals using the Analytic Hierarchy Process Sylvain Kubler^{a,b,*}, Jérérmy Robert^c, Sebastian Neumaier^d, Jürgen Umbrich^d, Yves Le Traon^c ^aUniversité de Lorraine, CRAN, UMR 7039, Campus Sciences, BP 70239, Vanduvre-lès-Nancy F-54506, France ^bCNRS, CRAN, UMR 7039, France ^cUniversity of Luxembourg, Interdisciplinary Centre for Security, Reliability & Trust ⁴ rue Alphonse Weicker L-2721 Luxembourg ^dVienna University of Economics and Business, Institute for Information Business Welthandelsplatz 1 1020 Vienna, Austria #### **Abstract** The quality of metadata in open data portals plays a crucial role for the success of open data. E-government, for example, have to manage accurate and complete metadata information to guarantee the reliability and foster the reputation of e-government to the public. Measuring and comparing the quality of open data is not a straightforward process because it implies to take into consideration multiple quality dimensions whose quality may vary from one another, as well as various open data stakeholders who – *depending on their role/needs* – may have different preferences regarding the dimensions' importance. To address this Multi-Criteria Decision Making (MCDM) problem, and since data quality is hardly considered in existing e-government models, this paper develops an Open Data Portal Quality (ODPQ) framework that enables end-users to easily and in real-time assess/rank open data portals. From a theoretical standpoint, the Analytic Hierarchy Process (AHP) is used to integrate various data quality dimensions and end-user preferences. From a practical standpoint, the proposed framework is used to compare over 250 open data portals, powered by organizations across 43 different countries. The findings of our study reveals that today's organizations do not pay sufficient heed to the management of datasets, resources and associated metadata that they are currently publishing on their portal. Keywords: Open Data, e-government, Data Quality, Analytic Hierarchy Process, Multi-Criteria Decision Making, Decision Support System #### 1. Introduction Open data is gaining importance in the context of a growing demand for openness of public and private organizations. Organizations from all over the world are under increasing pressure to release their data to a variety of users (citizens, businesses, academics, civil servants...), leading to increased public transparency (Attard et al., 2015) and allowing for enhanced data-enriched public engagement in policy and other analysis (Gurstein, 2011). Data openness is expected to open up opportunities for new and disruptive digital services that potentially benefit the whole society, e.g. making specific databases easily accessible through mobile apps (Janssen et al., 2012; Kučera et al., 2013; Conradie and Choenni, 2015; Cegarra-Navarro et al., 2014). Although opportunities are wide and worth exploring, data quality issues in open data are a crucial factor for the open data project in the long term (Zuiderwijk et al., 2012a; Kučera et al., 2013; Reiche et al., 2014). Missing metadata directly affects search and discovery services to locate relevant datasets for particular consumer needs, adding that incorrect descriptions of the datasets pose several challenges for their processing and integration with other datasets (Neumaier et al., 2016). The quality of the data and its description has a non-negligible impact on the reputation of the (governmental) organization publishing the data, but also on decision-making and business revenues that can be generated from open data. For example, looking at e-government benchmark frameworks, the quality of the published data is one of the key factors to be taken into consideration in the e-government assessment process (Veljković et al., 2014; Janssen et al., 2012), including the validation process of whether e-government ^{*}Corresponding author Email addresses: s.kubler@univ-lorraine.fr (Sylvain Kubler), jeremy.robert@uni.lu (Jérérmy Robert), sebastian.neumaier@wu.ac.at (Sebastian Neumaier), juergen.umbrich@wu.ac.at (Jürgen Umbrich), yves.letraon@uni.lu (Yves Le Traon) Table 1: List of acronyms used throughout the article | (RESTful) API | (REpresentational State Transfer) Application Programming Interface | AHP | Analytic Hierarchy Process | |---------------|---|------|--------------------------------| | ` / | , 11 | | 3 | | CKAN | Comprehensive Knowledge Archive Network | CSV | Comma Separated Value | | CI, CR | Consistency Index, Consistency Ratio | DCAT | Data Catalog Vocabulary | | IANA | Internet Assigned Numbers Authority | LOD | Linking Open Data | | MCDM | Multi-Criteria Decision Making | ODPQ | Open Data Portal Quality | | SME | Small and Medium-sized Enterprises | PDF | Portable Document Format | | PROMETHEE | Preference Ranking Organization Method for Enrichment Evaluations | RDF | Resource Description Framework | | TOPSIS | Technique for Order of Preference by Similarity to Ideal Solution | OKF | Open Knowledge Foundation | | W3C | World Wide Web Consortium | | | goals are or not satisfied (Jarrar et al., 2007; Hernandez-Perez et al., 2009). High-quality data is the holy grail of any kind of policy making action as it is the sole prerequisite that can support decision making, regardless of the completeness and architectural excellence of the employed model (Ouzzani et al., 2013). Indeed, good models perform well as long as the data they are fed with is of sufficient quality (Koussouris et al., 2015). Organizations and governments are well aware of the quality problems, even publishing guidelines and bestpractices to improve the quality of their (meta) data. For instance, the Australian government provides a set of data quality guidelines to guarantee a certain level of quality at their portal (Waugh, 2015). At the same time, various efforts emerge to assess and monitor the quality of data portals, which supports the providers to identify and address quality issues. A good overview is presented in a white paper of the Open Data Institute (Open Data Institute, 2016). In addition, we also contribute to this development with our Open Data Portal Watch framework, which makes it possible the monitoring and assessment of the quality of over 250 open data portals (Neumaier et al., 2016). Consequently, the data of such quality assessment initiatives can be used to compare portals with each other and report/justify on the effectiveness of certain quality improvement efforts. However, one of the challenges to properly compare/rank data portals lies in the task of processing multiple quality indicators, all of which may address different aspects of open data in e-government, adding that open data stakeholders may have completely different needs/preferences regarding the indicators' importance. Given the MCDM nature of the problem and evidences that there is a lack of frameworks and tools to dynamically assess the data quality in place (Veljković et al., 2014; Zuiderwijk et al., 2014b), this paper presents an ODPQ web dashboard that acts as a decision support tool for open data stakeholders to assess, and most importantly compare, a set of open data portals. Governmental organizations, for example, can benefit from the ODPQ dashboard to rate each other based on a common set of open data quality indicators which may, in turn, help them to perform part of the quality and quantity assessment process in e-government benchmarking exercises (Veljković et al., 2014), as will be discussed in this paper. In the same vein, the dashboard can foster collabration between organizations (e.g., to identify one or more organizations that are good, or experienced, in managing quality of open data), but also as a means to stimulate sustained efforts towards the continuous improvement of data quality (Zuiderwijk et al., 2014a). The summary of the paper is as follows: Section 2 discusses how open data stands in relation to e-government and existing quality indicators. Section 3 provides insight into the research methodology underlying the ODPQ framework development. Section 4 shows how the ODPQ dashboard can be used by open data stakeholders to monitor, assess and rank active open data portals (over 250 in this showhcase) according to personal needs and preferences. Conclusions, implications, limitations and future research are discussed in Section 5. All acronyms used in this article are summarized in Table 1. # 2. Open Data and e-Government In recent years, a number of open data movements sprung up around the world, with transparency and data reuse as two of the major aims (Attard et al., 2015). To mention a few, there is the Public Sector Information Directive in 2003 in Europe, U.S. President's Obama open data initiative in 2009, and
the G8 Open Data Charter in 2013. Open government data portals resulting from such movements provide means for citizens and stakeholders to obtain government information about the locality or country in question. In this context, open data is an integral part of open and e-government (Kučera et al., 2013), as will be discussed in section 2.1. Section 2.2 provides a more representative picture of an open e-government model, along with literature-based evidences that open data is one of the most, if not the most, important pillars of such models. In view of our research focus, section 2.3 discusses criteria for metadata quality assessment of open data portals in relation to the existing literature. ¹http://mcdm.jeremy-robert.fr, accessed on Nov., 2017. Figure 1: Details on the e-Government Openness Index (eGovOI) model proposed by Veljković et al. (2014). # 2.1. Relationship between Open, Government & Linked Data Open data has truly defined an open government concept where governmental data of public interest is available without any restriction, being easily found and accessed, thus contributing to enhance public trust and confidence in governments (Tolbert and Mossberger, 2006). As discussed in (Attard et al., 2015), open government data is a subset of open data and is simply government-related data that is made open to the public using an appropriated data license. Government data might contain multiple datasets, including budget and spending, population, census, geographical, parliament minutes, and so on. It also includes data that is indirectly 'owned' by public administration such as data related to climate/pollution, public transportation, congestion/traffic (Veljković et al., 2014). Several countries have already demonstrated their commitment to opening government data by joining the Open Government Partnership (Open Knowledge International, 2017). Some open data is also "linked data", which relies on the idea that the mechanisms used nowadays to share and interlink documents on the Web can be applied to share and interlink data and metadata about these documents, as well as concepts and entities they relate to (Bizer et al., 2009). The most visible example of adoption and application of the linked data principles is the Linking Open Data (LOD) initative (Attard et al., 2015). The ODPQ framework proposed in this paper falls within the scope of (linked) open government data, whose main pillars and concepts are more thoroughly discussed in the next section based on a referenced e-government benchmark model. # 2.2. Open e-government benchmark model Various e-government benchmarks have been developed and confirmed in practice over the past decade, spanning from e-government 1.0 and 2.0 models (Baum and Di Maio, 2000; Eggers, 2007) to open government models (Parycek and Sachs, 2010; Lee and Kwak, 2012). Nonetheless, in a recent paper, Veljković et al. (2014) argued that there was no suitable open government benchmark and, accordingly, proposed a five-indicator model: - 1. *Basic data set indicator:* determines the presence of a predefined set of high-value open data based on nine categories: Finance & Economy, Environment, Health, Energy, Education, Transportation, Employment, Infrastructure, Population; - 2. Data openness indicator: focuses on evaluating the degree of openness of the published data based upon eight criteria that are consistent with the Open Government WG (2007)'s list of preferable characteristics for open data; - 3. *Transparency indicator:* consists of two indicators (i) Government Transparency, which is observed as a measure of insight into government tasks, processes and operations; and (ii) Data Transparency, which is calculated as an average of the Authenticity, Understandability and Data Reusability values; - 4. & 5. Participation & Collaboration indicators: user involvement is used as a source for participation and collaboration indicators. The authors use these five indicators and underlying criteria to compute an overall index, referred to as eGovOI (e-Government Openness Index, *cf.* Figure 1), which makes it possible to monitor the progress of governments over time. Figure 1 also emphazises to what extent each of the five indicators contributes to the overall eGovOI index (e.g., Data Openness indicator has an importance of 33% with respect to the other indicators). Our research work | Table 2: Quality dimensions derived from DCAT and used in the ODPO assessment & comparison process, see (Neumaier et al., 201) | |--| |--| | Dimensions | Sub-dimer | nsions | Description | Metric | |-----------------------------|--------------|----------------------|---|--------| | | Access | $Q_{e(acc)}$ | The extent to which access information for resources is provided | % | | | Discovery | $Q_{e(dis)}$ | The extent to which information helping to discover/search datasets is provided | % | | | Contact | $Q_{e(con)}$ | The extent to which information helping to contact the dataset owner is provided | % | | Existence (Q _e) | Rights | $Q_{e(rig)}$ | The extent to which information about the dataset's or resource's license is provided | % | | Existence (Q_{ℓ}) | Preservation | $Q_{e(pre)}$ | The extent to which information about the resource's format, size or update fre- | % | | | | _ | quency is provided | | | | Date | $Q_{e(dat)}$ | The extent to which information about the creation and modification dates of meta- | % | | | | | data and resources is provided | | | | Temporal | $Q_{e(tem)}$ | The extent to which temporal information is provided | % | | | Spatial | $Q_{e(spa)}$ | The extent to which spatial information is provided | % | | | AccessURL | $Q_{c(acc)}$ | The extent to which the values of access properties (HTTP, URLs) are valid | % | | | ContactEmai | C(Cilia) | The extent to which the email contact properties are valid | % | | Conformance (Q_c) | ContactURL | $Q_{c(ext)}$ | The extent to which the URL/HTTP contact properties are valid | % | | comormance (Q_C) | DateFormat | $Q_{c(dat)}$ | The extent to which the date information is specified using a valid date format | % | | | License | $Q_{c(lic)}$ | The extent to which the license maps to the list of licenses given at (Open Knowledge | % | | | | | International, 2017) | | | | FileFormat | $Q_{c(fil)}$ | The extent to which the file format or media type is registered by (IANA, 1988) | % | | Retrievability (Q_r) | Dataset | $Q_{r(dat)}$ | The extent to which the described dataset can be retrieved by an agent | % | | Retrievability (Q_r) | Resource | $Q_{r(res)}$ | The extent to which the described resource can be retrieved by an agent | % | | Accuracy (Q _a) | FormatAccr | $Q_{a(for)}$ | The extent to which the specified file format is accurate | % | | Accuracy (Q_a) | SizeAccr | $Q_{a(siz)}$ | The extent to which the specified file size is accurate | % | | | OpenFormat | O _o (for) | The extent to which the file format relies on an open standard | % | | Open Data (Q_o) | MachineRead | $Q_{o(mac)}$ | The extent to which the file format can be considered as machine readable | % | | | OpenLicense | $Q_{o(lic)}$ | The extent to which the used license complies with the open definition | % | -i.e., the proposed ODPQ framework – focuses on assessing the quality of metadata of open data portals over time, thus covering a substantial part of e-government benchmark models such as eGovOI (59% = 33% + 26%). The next section discusses in more detail the set of criteria underlying the second and third indicators in relation to the existing literature and to the quality metrics considered in the ODPQ framework. # 2.3. Data Openness & Transparency indicators Evaluating openness and transparency in e-government depends on multiple dimensions (Veljković et al., 2014; Janssen et al., 2012; Bertot et al., 2012; Huijboom and Van den Broek, 2011), the main ones being summarized by the eGovOI model (cf. Figure 1). Metadata of open data sets provides a useful basis for evaluating various aspects of such dimensions. For example, high-quality metadata is key for documenting results, so that they can be interpreted appropriately, searched based on what processes were used to generate them, and so that they can be understood and used by other investigators (Sugimoto, 2014; Gil et al., 2011). Unfortunately, in practice, assessing the quality of metadata information is not an easy and straightforward process; one of the major challenges lies in the lack of commonly agreed metadata representations (Zuiderwijk et al., 2012a). To overcome this challenge, we proposed in previous research (Neumaier et al., 2016) to perform a mapping for metadata vocabulary schemas observed on different portal software (e.g., CKAN, Socrata, OpenDataSoft) to a generic scheme, which is intended as a homogenization of different metadata sources. The quality metrics derived from this generic scheme are listed and described in Table 2. These metrics are classified into five main categories: (i) Existence (i.e., existence of important metadata keys); (ii) Conformance (i.e., does the metadata information adhere to a certain format, if existing?); (iii) Retrievability (i.e., availability and retrievability of the metadata and data); (iv) Accuracy (i.e., does the information accurately describe the underlying resources?); and (iii) Open Data (i.e., is the specified format and license information suitable to classify a dataset as open?). All metrics listed in Table 2 focus only on metadata and shall enable an automated and scalable assessment. To put it another way, our research work does not yet include metrics that require to inspect the
content of a dataset, and metrics that require a manual assessment are currently out of scope of the study. In the following, we discuss in greater detail how the proposed categories and associated metrics align with the eGovOI's openness and transparency criteria. Such an alignment is discussed based on Table 3, where rows correspond to the eGovOI criteria and columns to our quality metrics. A two-level scale (+, ++) is used to highlight whether our metrics slightly or strongly contribute to cover the eGovOI criteria. #### 2.3.1. Complete The completeness is calculated according to five features in eGovOI: "the presence of a data meta description, the possibility of data downloading, whether the data are machine readable and whether the data are linked Table 3: Summary of (i) key criteria underlying Data Openness & Transparency in e-government benchmark models, and (ii) the extent to which the quality metrics underlying ODPQ meets these criteria | | Key criteria | Associated with (similar references considered) | | |] | Exister | ice (Q | _e) | | | | Con | formar | ice (Q | c) | | Retr. | (Q_r) | Accu. | (Q_a) | Ope | n data (| (Q_a) | |--------------|----------------|--|--------------|--------------|--------|---------|---------------------|----------------|--------------|---------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------| | | • | | $Q_{e(acc)}$ | $Q_{e(dis)}$ | Qe(con | Qe(rig) | Q _{e(nre)} | $Q_{e(dat)}$ | $Q_{e(tem)}$ | Q _{e(sna)} | $Q_{c(acc)}$ | $Q_{c(ema)}$ | $Q_{c(ext)}$ | $Q_{c(dat)}$ | $Q_{c(lic)}$ | $Q_{c(fil)}$ | $Q_{r(dat)}$ | $Q_{r(res)}$ | $Q_{a(for)}$ | $Q_{a(siz)}$ | $Q_{o(for)}$ | $Q_{a(mac)}$ | $Q_{o(lic)}$ | | | Complete | "all public data is made available. Public data is data that is not subject to valid privacy, security or privilege limitations." (Open Government WG, 2007) | | | | | | | ++ | | ve (ucc) | ve(ema) | ve(ext) | ve (uur) | c(iic) | ve(iii) | | ++ | + | + | 40(101) | ++ | ζυ(iic) | | | | "all the information required to have the ideal data representation" (Veljković et al., 2014) | Primary | "data is as collected at the source, with the highest possible level of granularity, not in | | | | | | 1.1 | | | | | | | | - | | | - | | | | | | | , | aggregate or modified forms." (Open Government WG, 2007) | | | | | | ++ | | | | | | ++ | | + | | | + | | ++ | ++ | ++ | | | | "with the finest possible level of granularity, not in aggregate forms" (Lourenço, 2015) | Timely | "data is made available as quickly as necessary to preserve the value of the data" (Open | Government WG, 2007) | | | | | ++ | ++ | ++ | | | | | | | | | | | + | | | | | | | "transparency in real time" (Heald, 2012) | "timely and accurate decisions requires reliable and relevant information" (Rojas et al., | 2014) | Accessible | "data is available to the widest range of users for the widest range of purposes." (Open | | | | | | | | | ++ | | | | | | ++ | + | + | | + | + | + | | | | Government WG, 2007) | | ++ | | + | | | | | '' | | | | | | ' ' | ' ' | ' | | ' | | ' | | | | "discoverability of open data is bound to the quality of the metadata describing the data | SS | | itself" (Attard et al., 2015) | Openness | | "easiness [access, navigation]" (Lourenço, 2015) | per | Machine pro- | "data is reasonably structured to allow automated processing." (Open Government WG, | | | | | + | | | | | | | | | + | | | + | + | ++ | ++ | | | 0 | cessable | 2007) | | | | | | | | | | | | | | - | | | - | - | | | | | Data | Non- | "three star openness level requires the use of non-proprietary format" (Martin et al., 2013) "the re-use of public sector documents have to be non-discriminatory for comparable cate- | discriminatory | gories of re-use (e.g., for commercial and non-commercial re-use)" (Janssen, 2011) | | | | ++ | | | | | | | | | ++ | | | | | | | | ++ | | | discriminatory | "data is available for all to use, without requiring any registration" (Attard et al., 2015) | Non- | "data is available in a format over which no entity has exclusive control" (Open Govern- | proprietary | ment WG, 2007) | | | | | + | | | | | | | | | + | | | + | + | ++ | ++ | | | | proprietary | "non-proprietary is a characteristic that open data needs to have (e.g. CSV instead of | Microsoft Excel)" (Dong et al., 2016) | License free | "data is not subject to any copyright, patent, trademark or trade secret regulation. Reason- | able restrictions may be allowed." (Open Government WG, 2007) | | | | ++ | | | | | | | | | ++ | | | | | | | | ++ | | | | "unclear license conditions and high up-front fees may form a barrier for potential users" | (Welle Donker and van Loenen, 2017) | Reusability | "5 Star Open data scale is widely used to evaluate data reusability" (Berners-Lee, 2010) | | | | | + | | | | | | | | | + | | | + | + | ++ | ++ | | | | | "government should focus less on the portal development and more on open data reusabil- | | | | | + | | | | | | | | | _ | | | + | + | ++ | ++ | _ | | | | ity" (Sieber and Johnson, 2015) | Understan- | "existence of textual description, searchable tags and links for a dataset" (Veljković et al., | | ++ | Ś | dability | 2014) | en | | "data must be easily comprehended" (Ren and Glissmann, 2012) | Transparency | | "first step to improve data understandability is to provide metadata" (Vetrò et al., 2016) | aus | Authenticity | "use of a URIs aids to improve metadata and ensure authenticity" (Attard et al., 2015) | | | ۱ | Ţ | | "government should publish information about data sources on portal, and provides possi- | | | ++ | | | | | | | ++ | ++ | | | | | | | | | | | | 1 | | bility of reviewing datasets published by a specific data source" (Veljković et al., 2014) | I | | "should guard the principles of authenticity and non-repudiation of data" (Zissis and | 1 | | Lekkas, 2011) | 1 | | | 1 | I | | 1 | I | I | | | | | | | | | | | | | (meaning that a data link is available), to ease data accessibility (e.g., embed data in a custom web application, link to other data)". In this regard, all quality metrics that fall under the existence category (Q_e) can be used to assess whether all metadata descriptions are available. $Q_{o(mac)}$ (openness) can also help to assess whether the format is considered as machine readable, along with the accuracy dimension that checks whether the specified file format and size are correct. However, assessing whether "links to other data" exist is currently not supported, which would require to parse the content for links. #### 2.3.2. *Primary* The primary criterion is partially covered by the open data-related metrics (Q_o) , i.e. if the file format is conform with an open or machine readable format $(Q_{c(fil)})$. If so, we can consider that the data is published in a raw format. Nonetheless, we cannot assess whether the data is published in the original format or whether a transformation or aggregation operations have been performed prior to the publishing. Indeed, this would require to have knowledge about the publishing process of the data provider. #### 2.3.3. Timely This criterion is partially covered by $Q_{e(pre)}$ and $Q_{e(dat)}$, the former checking whether there exists any update frequency information within the metadata, the latter checking whether any creation or modification date about the metadata and underlying datasets is provided. $Q_{e(tem)}$ assesses whether there is any information about the time dimension of the data itself, which can also be used as an indicator about the data freshness (i.e., is it a current or historical data?). To achieve a very accurate assessment of dataset timeliness, a resource consuming data monitoring and content inspection process would need to be set up, as discussed in (Neumaier and Umbrich, 2016). # 2.3.4. Accessible $Q_{c(acc)}$ reports whether the dataset can be directly downloaded by a client without any authentication. However, this metric does not cover scenarios in which a data consumer would need to manually invoke a download link. #### 2.3.5. Machine processable & non-proprietary The machine readable metric $(Q_{o(mac)})$ and open format one $(Q_{o(for)})$ assess whether the provided data formats can be considered as non-proprietary and machine processable (e.g., using JSON or CSV rather than an unstructured text file), along with $Q_{c(fil)}$ that checks whether the file format or media type is registered by the IANA (1988). #### 2.3.6. Non discriminatory & License free Providing third parties with data in a usable form, without any restriction and for free, is
assessed through $Q_{o(lic)}$ that checks whether the provided data license is considered to be an open license according to the opendefintion.org. To cope with specific licensing situations (e.g., a license specific to a country policy), $Q_{e(rig)}$ complements $Q_{o(lic)}$ by identifying whether any licensing information has been provided within the metadata. #### 2.3.7. Reusability The reusability criterion is partially covered by our metrics. However, we do not inspect the content of the published data, thus making it impossible to assess whether a dataset has been published following the 5 star Linked Data principles (Bizer et al., 2009). This would indeed require to inspect the content for links and verify that these links point to existing data, which would result in thousands of HTTP lookups. Nevertheless, by assessing the machine readability of the published data formats ($Q_{o(mac)}$), we do already cover the first 3 principles of the 5 star model. Furthermore, an in-depth look at existing open data portals shows that only a small portion of the total amount of datasets – only 10K datasets over a total of 10TB (from over 259 portals) – are currently published as RDF (the 4th star), most of them being published as CSV and JSON². ²JSON is also the exchange formats for many web applications and software libraries, and some guidelines (e.g., from European Data Portal even recommend to use CSV as publishing format for open data rather than JSON or RDF. #### 2.3.8. Understandability The understandability criteria is hard to assess in an automated manner and, as such, is not covered by our metrics. Nevertheless, since the discovery metric ($Q_{e(dis)}$) assesses the existence of keywords, titles and descriptions within the metadata, it can serve as an indication whether the content of a dataset is or not described, thus making it easier to understand. However, only a manual assessment can clearly determine for whom and to what extent the description of a dataset is understandable. For example, a dataset published and described by an expert might be easy to understand by another expert, but not by a non-expert. #### 2.3.9. Authenticity The existence metric of contact information $Q_{e(ema)}$, along with the conformance of the provided contact URL and email addresses ($Q_{c(ext)}$, $Q_{c(ema)}$) partly cover how authentic the data publisher is, and whether there is any means to contact the publisher (e.g., for feedback or question purposes). Another option would be to check whether the portal provides a direct feedback mechanism (e.g., in the form of comment fields), but unfortunately most of today's portal software frameworks do not provide such information in their API. # 3. Research methodology underlying ODPQ The research methodology underlying the ODPQ dashboard is described in this section: section 3.1 discusses the mapping process to transform platform-specific metadata information onto a generic scheme (based on which the quality metrics listed in Table 2 were derived; section 3.2 details the approach used to aggregate such metrics as well as end-user preferences in order to obtain the final ranking of the monitored open data portals. # 3.1. Open data concepts & practices Most of the current "open" data form part of a dataset that is published in open data portals, which are basically catalogues similar to digital libraries. In such catalogues, a dataset aggregates a group of data files (referred to as resources or distributions) that are available for access or download in one or more formats (e.g., CSV, PDF, Excel). To accelerate the usage of open data by citizens and developers, it is necessary to adopt an effective open data program including API interfaces with online mapping and visualization, among other features. There exist three prominent software for publishing open data: (i) the open source framework CKAN³ developed by OKF; (ii) the commercial Socrata open data portal⁴; and (iii) the recent data publishing platform OpenDataSoft⁵. These software provide ecosystems to describe, publish and consume datasets (i.e., metadata descriptions along with pointers to data resources). Such portal frameworks typically consist of a content management system, some query and search features, as well as RESTful APIs to allow agents to interact with the platform and automatically retrieve metadata and data from portals. To overcome the lack of generic, automated and scalable frameworks for assessing the quality of open data portals over time, we proposed in previous research work a mapping from vocabulary schemas observed on data portals using the three above-mentioned software onto a generic model, intended as a homogenization of different metadata sources. This mapping relies on the W3C's DCAT metadata standard (W3C, 2016), which is an RDF vocabulary including four main classes, namely dcat:Catalog, dcat:CatalogRecord, dcat:Dataset, and dcat:Distribution. Figure 2 (cf., Stage 1) provides an overview of what the W3C's DCAT metadata model looks like when mapping two distinct portals with this model. The reader can also refer to (Neumaier et al., 2016) to obtain further details about the DCAT model and associated mapping. Based on the available metadata keys in the DCAT specification, the five open data quality dimensions and underlying metrics have been proposed and introduced in previous research (Neumaier et al., 2016), as summarized in Table 2, helping to measure the quality of open data portals in a generic and scalable manner. However, the aggregation of the various quality metrics, taking into consideration both the category to which they belong to and possible end-user preferences regarding those categories/metrics, leads to a MCDM problem, as will discussed in the next section. # 3.2. AHP-based comparison framework A simplistic view of the portal quality assessment and comparison process is depicted in Figure 2, which starts by crawling, collecting and mapping datasets from distinct active open data portals to the DCAT metadata standard (cf., Stage 1). Stage 2 assesses each dataset based on the quality metrics listed in Table 2, which are expressed ³http://ckan.org, accessed on Nov., 2017. ⁴https://www.socrata.com, accessed on Nov., 2017. ⁵https://www.opendatasoft.fr, accessed on Nov., 2017. Figure 2: Overall quality assessment process: from the metadata collection to the ranking of the open data portals using a MCDM technique as a percentage value (the higher the metric score, the higher the metadata quality). Finally, Stage 3 aggregates all the quality results and associated end-user preferences (e.g., prioritization of one or more quality dimensions) in order to obtain the final ranking of the monitored portals. So far, our research work dealt with Stages 1 and 2 (Neumaier et al., 2016). As an illustrative example, two portal datasets are considered (see Portals 1 and 2 in Figure 2). Portal 1 obtains a "good" evaluation score with respect to $Q_{e(con)}$ (cf, \bigcirc in Figure 2) since the dct:publisher property holds some contact information (i.e., "OpenDataSoft"), while Portal 2 does not (see and \bigcirc). Portal 2 is nonetheless assessed positively with respect to $Q_{o(mac)}$ and $Q_{c(fil)}$ because (i) "CSV" is considered as a machine readable format, and (ii) both dct:mediaType ("text/CSV") and dct:format ("CSV") are registered by the IANA. Regarding Portal 1, "PDF" is not a machine readable format ($Q_{o(mac)}$ evaluates to 0 for the respective dataset), however the dataset is evaluated to 0.5 with respect to $Q_{c(fil)}$ (see "Neutral" smiley) because "PDF" is not a valid media type (dct:mediaType) but a valid format description (dct:format). The dataset of Portal 2 is assessed positively with respect to $Q_{o(lic)}$ since CC-BY-SA is considered as open according to opendefinition.org, while Portal 1 is assessed negatively due to the lack of licensing information. Although not detailed here, similar examples could be elaborated regarding all the other quality metrics for which a question mark appears in Figure 2. The MCDM nature of the problem (i.e., Stage 3), and particularly the possibility for end-users to specify their preferences about the metric priorities to obtain the final ranking of portals has not been addressed yet. There are various types of MCDM techniques in the litereture such as AHP, TOPSIS, PROMETHEE or still Fuzzy MCDM, some of them having been applied to handle e-government problems (Kubler et al., 2016a; Mardani et al., 2015). In this study, we decided to apply the AHP technique for a twofold reason: *i*) our problem deals only with linear preferences, and *ii*) AHP is an efficient and well-established technique to integrate expert knowledge, as well as tangible system properties. It should be added that AHP is, according to a recent survey (Mardani et al., 2015), the second most used MCDM technique with a frequency of application of 15.82%. AHP, originally introduced by Saaty (1977, 1980), has the advantage of organizing critical aspects of the problem in a manner similar to that used by the human brain in structuring the knowledge (i.e., in a hierarchical structure of different levels including the overall goal, the set of criteria, sub-criteria, and alternatives). The MCDM ranking problem of our study is broken down into a hierarchical structure consisting of four distinct levels: - Goal level: to assess and rank the monitored open data portals in terms of published metadata quality; - Criteria & Sub-criteria levels: respectively correspond to the quality dimensions and sub-dimensions given | Table 4: Tabular overview of the use case data | (i.e., crawled portals and associated datasets | s/resources) | |--|--|--------------| | | | | | | | CKAN | OpenDataSoft | Socrata | |--|---------------------------|--------
--------------|---------| | Number of monitored Portals | | 148 | 11 | 100 | | | East Asia & Pacific | 10 | 0 | 0 | | | Europe & Central Asia | 86 | 9 | 8 | | Number of Dortols non Continent | Latin America & Caribbean | 12 | 0 | 0 | | Number of Portals per Continent | North America | 27 | 2 | 90 | | | South Asia | 9 | 0 | 1 | | | Sub-Saharan Africa | 4 | 0 | 1 | | | min | 0 | 0 | 0 | | Number of Datasets | avg | 4781 | 160 | 799 | | | max | 194851 | 1905 | 10686 | | | min | 0 | 0 | 0 | | Number of Resources | avg | 15801 | 743 | 884 | | | max | 498390 | 7304 | 28404 | | Number of unreachable portals per week | | 19.1 | 2.4 | 7.47 | in Table 2. It should be noted that the hierarchical model is not perfectly balanced in our study (e.g., 7 Q_e sub-criteria $vs.\ 2\ Q_a$ sub-criteria), when one knows that unbalanced models may sometimes lead to biased results. However, we stick with this choice to fully match with the set of metrics derived from the DCAT mapping. The impact of a non-perfectly balanced model should nonetheless be evaluated and tackled in future work (e.g., re-designing the hierarchical structure or using structural adjustment techniques); • Alternative level: the alternatives correspond to the set of monitored portals. Given the AHP structure, several computational steps are performed to obtain the final ranking of alternatives with respect to the overall goal. Nonetheless, in view of the journal's scope and audience, we decided not to detail such computational steps in this paper, but the reader can refer to (Kubler et al., 2016b) to obtain more details. Indeed, even though the referenced paper focuses only on metrics specific to the CKAN software, the computational steps related to AHP remain unchanged. In the end, after applying AHP, each portal is ranked amongst the set of portals/alternatives in a relative way. Various rankings can be generated depending on the granularity of the analysis, e.g. one ranking with respect to each quality dimension or one unique ranking with respect to the overall goal, as will be detailed through the showcase presented in the following section. # 4. ODPQ dashboard implementation & Results This section presents how the ODPQ framework and associated web dashboard can be used by open data portal stakeholders (including governments, municipalities, or entrepreneurs) when performing quality and quantity assessment in e-government benchmarking exercises, or when developing innovative open-data based applications. Figure 3 presents the overall architecture, including the "Backend systems", "Web/User Interfaces", as well as the set of interactions between the different system components (databases, portals, end-users...). The architecture differentiates the "Open Data Portal Watch" components developed in our previous work (Neumaier et al., 2016) (allowing for the collection, storage, DCAT mapping, and assessment of the portal metadata quality, *cf.* ① to ④ in Figure 3) and the ODPQ dashboard when an end-user requests for the open data portal quality comparison service (*cf.* ⑤ to ⑨). A RESTful API⁶, denoted by API1 in Figure 3, makes it possible to retrieve various types of information about the monitored portals (e.g., stats including quality scores of one or more portals over a period of time). From a chronological standpoint, the ODPQ backend system retrieves – *through API1* – the computed data quality metrics in order to start the AHP-based comparison process (see ⑦). Since such comparisons are carried out at different intervals of time (e.g., on a weekly or monthly basis), we also compute the ranking and quality evolution of the portals over time (see ⑧). Similarly to API1, a second RESTful API (denoted by API2 in Figure 3) enables end-users to retrieve ranking results over specific periods of time and depending on their preferences. The following sections focus on stages ® to ®, having 259 open data portals monitored over 47 weeks (from week 27 2016 to week 20 2017). Table 4 summarizes the showcase data, namely (i) the distribution of the CKAN, Socrata and Opendatasoft software frameworks on the basis of the 259 monitored portals; (ii) the distribution of software per continent; (iii) the minimal, average, and maximal number of datasets and resources (per software) held by the 259 portals; as well as (iv) the average number of portals (per software framework) that were unreachable per week. One interesting finding is that CKAN is predominantly used in Europe & Central Asia (86 open ⁶http://data.wu.ac.at/portalwatch/api, accessed on Nov., 2017. data portals), while Socrata is mostly used in the North America (90 portals). Another finding of our study is that only 12.7% of the 259 monitored portals were (in average) unreachable during the weekly crawling process, which makes us confident about the relevance of our results/findings. It should nonetheless be noted that, for practical reasons, we decided not to take into account yet the Accuracy (Q_a) and Retrievability (Q_r) dimensions in the AHP analysis because: (i) accuracy metrics require to inspect the data content to verify that the specified file format and file size in the metadata is accurate. However, due to limited resources for downloading and parsing the files, we are not performing the accuracy assessment over all portals, which prevents us from performing a fair comparison between the 259 portals; (ii) retrievability metrics require to perform HTTP lookups to check whether the content can be downloaded. The main challenge here is to perform these lookups in a reasonable amount of time. Even though a straightforward solution would be to perform HTTP Head lookups, many portals such as Socrata do not support such a protocol, preventing us once more from having a fair comparison between all portals. Such issues should be tackled in future implementation of ODPQ in order to include these quality metrics in the implemented comparison process. The summary of the section is as follows: Section 4.1 presents the comparison results for a specific week (week 1, 2017), assuming that all criteria are of equal importance. Considering the selected week, section 4.2 shows how end-user preferences can lead to radically different rankings, which may affect subsequent decision-making. Section 4.3 gives insight into the evolution – *over almost one year (47 weeks)* – of the portal rankings and resource availability. In an effort of clarity, we use portal indexes (from 1 to 259) rather than exact names, but the reader can refer to Table A.6 to identify the matching: $Index \leftrightarrow Portal name$. # 4.1. Portal ranking (Week 1, 2017): Equivalence between criteria The ODPQ dashboard provides end-users with a set of functionalities, enabling them to: - vizualize the AHP hierarchy considered in the study, as shown in the dashboard screenshot annotated by in Figure 4; - vizualize the relative quality score obtained by each open data portal for a specific week, as shown with the screenshot annotated by ② in Figure 4; - vizualize the ranking of one or more portals with regard to one or more quality dimensions, making it possible to more thoroughly analyze how a portal behaves regarding the selected dimensions. This view corresponds to the screenshot annotated by **3**; - modify his/her preferences regarding the criteria importance, e.g. if the end-user wants to give at a specific point in time and for specific reasons more importance to one dimension (e.g., Openness Q_o over Conformance Q_c) or sub-dimension (e.g., to focus more on the Format openness $Q_{o(F)}$ than on the License openness $Q_{o(L)}$). This view corresponds to the screenshot annotated by \bullet in Figure 4 (sliders corresponding to the pairwise comparisons performed at the criteria level in AHP). In the first scenario, the end-user wants to analyze the portal rankings without prioritizing any quality dimension. Figure 5 gives insight – *in the form of a histogram* – into the quality comparison results, where the *x*-axis refers to the 259 portal indexes and the *y*-axis to the relative quality score obtained after applying AHP. It can be observed that portals 67 and 107 have the highest scores when having all criteria equal in importance. Besides this observation, we now assume that the end-user is particularly interested in portals located in Brazil since she/he is carrying out a study on the quality of open data portals managed by brasilian institutions/organizations. As a first observation, the histogram seems to highlight that portal 22 (i.e., $dados_recife_pe_gov_br$) has the best quality among the five brazilian portals. To study more throroughtly the reason behind such a ranking/finding, the end-user uses the dashboard view 6 (cf., Figure 4), where she selects the five brazilian portals and vizualizes how they behave with respect to the three quality dimensions Q_e , Q_c , Q_o . The comparison results are given in the form of a polar chart in Figure 6 (the larger the surface area, the better the portal ranking, and consequently the metadata quality). It can be observed that the five portals are ranked among the top 100 with regard to each quality dimension, except portals 20 and 24 (i.e., $dados_al_gov_br$ and $dadosabertos_senado_gov_br$) that have a poor ranking respectively regarding the open data dimension for portal 20 (ranked 191 st) and the Conformance dimension for portal 24 (ranked 13 th). The point of all this is to show that the ODPQ dashboard provides advanced features/views to help end-users to navigate through the different views and better understand why a portal has a poor (or high) ranking/quality. Figure 3: Overall infrastructure underlying the ODPQ web dashboard Figure 4: Screenshots of the ODPQ dashboard and associated views/functionalities Figure 5: Final AHP scores (y-axis) obtained by the 259 open data portals (y-axis) for Week 1 (2017) - Criteria of equal importance Figure 6: Brazilian open
data portal comparison (Week 1, 2017) # 4.2. Portal ranking (Week 1, 2017): End-user preference changes & resulting impact The end-user now wants to give a higher priority to the "Open Data" dimension (e.g., extreme importance over the other dimensions at level 2). To do so, the end-user uses the dashboard view **4** presented in Figure 4. To bring to light how the final portal ranking can be affected by end-user preferences, we propose to compare the first and second scenarios (i.e., equivalence between criteria vs. prioritization of open data-related metrics) taking a slightly different view in Figure 7. Each bubble refers to one specific portal (the bubble's color having been chosen according to the continent where the city portal is located/hosted), the x-axis refers to the portal indexes (from 1 to 259), the y-axis to the number of datasets held by each portal for the selected week, and the bubble size to the number of resources (the bigger the bubble, the higher the number of resources). An interesting finding is that, for equivalent preferences (see Figure 7(a)), data portals located in North America occupy the bottom of the rankings (most of them being ranked between 130-220), while the same set of portals won ≈ 50 positions when prioritizing the open data dimensions (see Figure 7(b)). Even though it appears that most of the portals from the other continents remain better, this shows that the licensing on portals that have slipped down the overall rankings is less well managed than the ones located in North America. Overall, the results/rankings must be carefully studied and interpreted depending on the specified preferences. # 4.3. Portal evolution over one year The previous two sections mainly discussed the features and widgets offered by the ODPQ dashboard, and how open data stakeholders can benefit from them to make better decisions (i.e., easily adjusting the criteria importance as they see fit). However, the focus was on the comparison of open data portals for a specific week (week 53 to be precise), and not on how these portals evolve over time. This section discusses such an evolution both regarding the portal rankings (a portal can win or lose positions from week to week) and the resources held by each portal (datasets and/or resources can be deleted or added on portals). Figure 8 provides an overview of the ranking evolution in the form of a decile boxplot (the 1^{st} and 9^{th} decile being displayed). The x-axis still refers to the portal indexes (1 to 259), while the y-axis refers to the number Figure 7: Evolution of ranking vs. datasets at Week 1 (2017) having different user preferences about the importance of criteria Figure 8: Overview of the deviation of portals' ranking from one week to another of ranks that each open data portal won or lost on a weekly basis. For example, looking at portal 17, in 80% of the cases (i.e., during 37 weeks out of 47) it lost from 1 to 61 positions (see 1st decile's value) and won up to 4 positions (see 3st decile's value). As a result, the portal lost more than 61 positions during 5 weeks and, similarly, won more than 4 positions during 5 weeks. Although we implemented a mitigation strategy⁷ to avoid a "yo-yo" effect when portals become inaccessible from one week to another (i.e., winning and loosing a high number of ranks), we observe that a few portals such as portals 39, 56, and 179 (cf., Figure 8) are nonetheless affected by this effect. This is due to the fact that these portals are accessible but no datasets are available for the monitored week (may be due to maintenance operations), thus impacting on the other dimensions and leading to their downgrading in the final ranking. However, this effect is observed only for 6 portals out of the 259, which does not call into question the findings of our study. After investigation, the deviation of portals 17 and 100 is due to the addition or deletion of datasets/resources. Looking at such deviation patterns can help us to better understand the reasons of an upgrade or downgrade of a portal. Overall, and as a general comment, it can be stated that the ranking of the vast majority of portals does not evolve much (between 1 to 10 positions), which reflects to some extent the fact that governmental organizations do not pay sufficient heed in upgrading their portal's datasets. To bring further evidence to support this statement, let us look at the resource deviation in Table 5, which provides the list of data portals that lost or won a significant number of resources from week to week (somehow reflecting the portal activity over time). Four ranges have been reported, namely portals that lost or won between [0; 10.000[, [10.000; 25.000[, [25.000; 100.000[and [100.000; 500.000[resources. Even though a few portals such as *data_gov* and *www_data_gc_ca* lost a significant number of resources ([100.000; 500.000[), we can observe that there is, in general, little activity as most of them lost/won less than 10.000 resources. To be more precise, 83% of these portals lost less than 1.000 resources, while 98% won less than 1.000 resources. This finding (i.e., little portal activity) is not a revelation for open data scholars and practitioners. Indeed, the intended positive effects and ⁷The plan consists to take the last available values related to all criteria, while downgrading the portal's accessibility dimension $(Q_{e(acc)})$. Table 5: Overview of the deviation (from week to week) of resources held by portals | | Max. lost resources | Max. gained resources | |--------------------|---|---| | [100.000; 500.000[| data_noaa_gov_dataset; data_gov; www_data_gc_ca; trans- | transparenz_hamburg_de | | | parenz_hamburg_de | | | [25.000; 100.000[| data_gov_au; data_gov_uk; open-data_europa_eu; | data_gov; geothermaldata_org; data_gov_au | | | geothermaldata_org; datameti_go_jp_data_; datahub_io | | | [10.000; 25.000[| opendata_socrata_com; datamx_io; | edx_netl_doe_gov; data_overheid_nl; dados_rs_gov_br | | | datos_codeandomexico_org; edx_netl_doe_gov; | | | | data_overheid_nl; dati_trentino_it; data_hdx_rwlabs_org | | | [0; 10.000[| All other portals | All other portals | creating value from using open data on a large scale is easier said than done, and using open data still encounters various socio-technical impediments (Janssen et al., 2012; Zuiderwijk et al., 2012a). Although most countries legitimise their open data study based on general and macro-economic studies (e.g., Gartner, Acil Tasman...), many policy makers recognize that the precise economic impact of open data for their country remains largely unclear (Huijboom and Van den Broek, 2011). This is, from our perspective, an understandable reason why governments and other organizations do not pay sufficient heed to (i) the management of their open data portal, thus hampering the continuous feeding of portals with up-to-date datasets/resources, and (ii) the implementation of strategies to assess and compare the quality of their portal with other peer portals/organizations. ODPQ-like dashboards can be beneficial for (governmental) organizations to help them designing/building up such strategies, and stimulate them to continously improve the quality of the data they are exposing/publishing. Before concluding this section, it is important to realise that AHP enables the comparison of alternatives, leading to a "relative" ranking of alternatives. To put it simply, it is not because a portal is ranked 1st that it necessarily has a good quality; it only means that all the other alternatives/portals have a lower quality than this portal. As will be more thoroughly discussed in the conclusion section, the "absolute" measurement (Saaty, 1986) could better suit the ODPQ problem, as this approach considers a standard with which to compare elements. However, to the best of our knowledge, such a standard does not exist to date. So far, to determine whether a portal has or not a good quality, it is necessary to look at the "raw" quality metric values (expressed as a percentage in Table 2). In an effort to provide an at a glance and overall view of the "raw" quality of the 259 monitored portals, we have computed and displayed in Figure 9 the average quality score of all portals, over all weeks, with respect to each quality metric. First, it seems that the vast majority of portals obtained a very good quality score (i.e., \geq 75%) regarding (i) two of the Conformance metrics, namely $Q_{c(acc)}$ and $Q_{c(dat)}$ respectively having valid access properties and date formats, and (ii) one of the Existence metrics, namely $Q_{e(con)}$ having contact information about the dataset owner. On the opposite, the monitored portals completely failed over the year to include spatial and temporal information in the metadata (see $Q_{e(tem)}$ and $Q_{e(spa)}$), but also to have valid URL/HTTP contact properties (see $Q_{c(ext)}$). We can also add that, even though file formats appear to comply with open and machine readable formats $(Q_{c(fil)}, Q_{o(for)})$ and $Q_{o(mac)}$ having an average quality score between 50% and 75%), much more remains to be done to make licenses compliant with open license formats⁸ ($Q_{o(lic)}$ having an average quality score of $\simeq 25\%$). # 5. Conclusion, implication and future research # 5.1. Conclusion Ever more governments around the world are defining and implementing "open data" strategies in order to increase transparency, participation and/or government efficiency. The commonly accepted premise underlying these strategies is that the publishing of government data in a reusable format can strengthen citizen engagement and yield new innovative businesses. Not only should data be published, but they should actively be sought for knowledge on how to improve the government. The publication of data could have far-reaching effects
both on *e*-government implementation strategies and on the public sector. In this respect, tools for monitoring and assessing the quality in the metadata and data source of open data portals are required. This is all the more true as poor data quality can hinder business decisions and government oversight efforts. The literature review carried out in this paper brings to light the fact that there is still research to be done in the e-government domain to enable automated and scalable assessment as well as comparison of open data portal quality. This is all the more challenging because there exist several portal software frameworks on the market, leading to a 'non-uniform' publication of open data sets. To address this lack of solution, we present ⁸Based on the Open Definition: http://licenses.opendefinition.org/licenses/groups/all.json, accessed on Nov., 2017. Figure 9: Average - not "Relative" - data quality of all open data portals with respect to each quality sub-dimension (cf., Table 2) in this paper an Open Data Portal Quality (ODPQ) dashboard, which is dynamic and enables any open data end-user/stakeholder to easily assess/rank open data portals based on multiple quality dimensions and personal preferences. Our research work purely analyzes the state and quality of the metadata, providing useful quality indicators for applications that use the metadata such as in (Tygel et al., 2016; Zuiderwijk et al., 2016, 2012b). From a theoretical standpoint, AHP is used to properly deal with such multiple indicators, while enabling endusers to adjust their preferences regarding the one or more of these indicators. This is key considering the wide range of open data stakeholders, which include: - *upstream groups:* who supply data to the industry such as data generators and publishers (typically governments or government agencies); - *midstream groups:* including platform developers, governments representatives involved in the role of creating an enabling environment for the practice of open data, as well as the promoters of open data; - downstream groups: including data analysts, researchers, data journalists or App developers. The proposed ODPQ framework is currently applied to assess and compare over 250 open data portals, powered by organizations across 43 different countries. A showcase is provided in this paper, which is intended to be both (i) descriptive: to show how easy and flexible the ODPQ dashboard can act as a decision support tool; and (ii) analytical: to analyze and discuss the quality of the monitored open data portals over around one year. This analysis reveals that today's organizations do not pay sufficient heed to the management of their dataset and resource descriptions. In this respect, the proposed ODPQ dashboard may prove to be of great support for organizations and policy makers to enable them to assess their portal in terms of quality, while positioning themselves with respect to peer organizations based on personal preferences. For example, a government portal typically has a strong focus on "openness" and "discoverability", while "conformance" might be of less importance. In contrast, portals hosting datasets from non-governmental organizations (e.g., the Humanitarian Data eXchange portal⁹) rather focus on the "discoverability" and "existence" dimensions. Overall, and as already discussed in this paper, the ODPQ dashboard can be of particular benefit for such organizations when performing quality and quantity assessment in benchmarking exercises, or when adopting cognitive orientation methodologies as the one recently proposed by (Moreno-Jiménez et al., 2014) for public administrations. ⁹See portal 72: https://data.humdata.org/, accessed on Nov., 2017. #### 5.2. Implication The quality assessment and comparison process allows portal providers such as governmental organizations to get an overview about their data and especially to which extent their datasets are described. This directly helps to identify potential problems for the adoption and use of their data. For instance, the "existence" dimension helps to identify important missing metadata such as the license or content format. The "conformance" metrics help to identify how homogeneous the datasets are described with respect to standard formats. Overall, the primary focus of this work is on providing a metric tailored comparison of open data portals using AHP. Nevertheless, our study also reveals some global trends for the various quality aspects of portal metadata/descriptions of datasets, as well as some limitations of our framework with regard to the data openness and transparency dimensions in e-government benchmark models. Indeed, systems such as the Open Data Barometer¹⁰ and Open Data Portal Watch (ODPQ) can assess certain quality aspects of portals and allow to compare them, but they either use quality metrics that can be manually computed or metrics that make the assessment automatic and scalable. Both approaches have their advantages and disadvantages. The automatic approach provides frequent quality reports (e.g., on a weekly basis) but cannot easily integrate human knowledge about a specific portal. Also the inspection of the data content is very resource consuming, considering that 2 million resources are today available over the 250 monitored portals. The manual approach makes it possible to incorporate human background knowledge to in-depth analyze metrics such as "Understandability" (cf., section 2.3), but unfortunately this is a time consuming process and is typically done on a yearly basis. #### 5.3. Recommendations From a recommendation viewpoint, we would advise portal providers to establish their own set of tailored quality metrics (e.g., using the AHP-enabled preference specification feature). One the one hand, this would allow them to react effectively and preemptively to potential quality issues in the creation process of datasets (e.g., making metadata keys mandatory or suggesting values for empty ones), but also to put in place a monitoring system to gain immediate insights about the overall quality of their metadata. In addition, portal providers could also establish and assess metrics about the content of their data, potentially incorporating background knowledge about the publishing process. On the other hand, data consumers can use the quality metrics as filters in their search and discovery process, or react to quality changes of a dataset (e.g. if the quality falls below a specified threshold, they might want to discard the dataset). We observe in our framework that the heterogeneity of the metadata description is one of the main challenges to provide general quality metrics. As such, we compute our metrics over the mapping of the metadata to DCAT. Doing so, we observe that many datasets do not provide standardized description fields for geospatial and temporal properties about the datasets' content. Also, many portals have free form fields to specify the format and license, often resulting in only partially machine understandable descriptions. Similarly, keywords and descriptions are again provided as free form fields, leading again to the challenge of mapping the terms to known concept hierarchies such as DBpedia, Yago or WikiData. Overall, our recommendations for portal providers is to interfere more in the creation process of datasets at their portal, by: - providing a schema/ontology/model for their metadata that maps to standards such as DCAT or DCAT-AP (DCAT Application Profile for data portals in Europe); - deriving metadata values directly from the data in an automated way (e.g., file size, format, availability); - restricting certain metadata values to a predefined list of options (e.g., for license descriptions, field formats); - checking/validating the conformance of certain metadata values (e.g., URLs, emails). By doing so, the portal can guarantee a certain quality level and also the compatibility with standards, which, in return, tremendously increase the reusability and discoverability of the data. As discussed in section 2.3, there are also many papers referring to the 5 star Linked Data principles. However, we observe from the data, as well as from recommendations about data formats of portals, that open data is mainly published as 3 star data (being open machine readable formats such as CSV or JSON). The reasons for this is that there exists many tools and interfaces to publish data in such formats (e.g., Excel exports, JSON data structures) and also many data processing libraries natively supporting JSON, CSV or XML rather than RDF. Understanding ¹⁰http://opendatabarometer.org/, accessed on Nov., 2017. the RDF data model and Linked Data in itself is fairly straightforward but the creation of Linked Data is quite challenging: (i) one has to firstly model the data in form of a graph, (ii) next search and ideally use existing vocabularies or create a new ontology for the data modelling, and (iii) one may eventually need to discover URIs in external datasets, but this typically requires the knowledge about third-party Linked Data datasets. # 5.4. Limitations of the study & Research perspectives The set of quality indicators considered in our study are applied to enable large scale and periodic monitoring tasks over multi-lingual data. That being said, these indicators are not yet sufficient to display a complete picture of a dataset's quality and usage (e.g., a data publisher and/or consumer might be interested to know to what extent a dataset is used by third parties). This relates to "reputation" metrics, or "Participation & Collaboration" metrics from the eGovOI model perspective (cf., Figure 1). Reporting such information, however, requires logs and download statistics that are in general not accessible or considered in our framework. Another aspect that our metrics do not fully capture is whether key government datasets are or not published as open data (e.g., government
expenditures or online access to national laws and statues). From the eGovOI perspective, this corresponds to the "Basic Dat Set" indicator. Although existing initiatives such as the Open Data Barometer and Open Data Index 11 are an attempt to assess – on a yearly-basis – to what extent open data is published and used for accountability, innovation or social impact, such efforts still rely on metrics that require manual assessment (e.g., call for reports, providing survey forms, etc.). This way of proceeding (i.e., manual assessment and additional background knowledge) inevitably leads to more subjective quality scores, adding that it prevents from carrying out large scale assessment analyses, as targeted by our ODPQ framework. Given this situation, we believe that there is still research to be done to solve this dilemma, i.e. making it possible to perform automated/large scale assessment tasks considering the whole e-government lifecycle, including "Participation & Collaboration"- and "Basic Dat Set"-like indicators. A second research perspective is to tackle the problem of unbalanced hierarchical model (as discussed in section 3.2), but also to handle vagueness in decision maker judgments and above all uncertainties in the computed quality metrics. Indeed, most of the quality metrics can be modeled under uncertainty because they are computed over datasets for which the relevant information is available. For example, a license is considered as open, nonopen or unknown according to opendefinition.org. Such an unknown situation could be modeled under a certain level of uncertainty using Fuzzy AHP-like methods (Kubler et al., 2016a). Another improvement of our approach would be to investigate the use of the "absolute" measurement methodology in AHP instead of the "relative" one (Saaty, 1986), the reason being twofold: (i) it is best suited to MCDM problems with a high number of alternatives; (ii) it implies to compare AHP elements with a "standard", which is more stable compared with the relative measurement methodology. However, to the best of our knowledge, such a standard has not been proposed yet in the literature, even though this would be a great contribution to the field. Finally, as previously discussed, one interesting research topic can be how to develop automatic and scalable e-government benchmark frameworks that are able to integrate human background knowledge in the computation of metrics requiring manual inputs (e.g., 'Understandability" like metrics). The automatic computation of such metrics could eventually rely on – *and combine* – techniques such as natural language processing and ontology-based knowledge representations. To this end, open data published as RDF would make such research developments easier, but paradoxically is currently not the ideal way to go as most of today's open data is published following the 3 star data. # 6. Acknowlegement The research leading to this publication is supported by the EU's H2020 Programme for research, technological development and demonstration (grant 688203), as well as the Austrian Research Promotion Agency (grant 849982). Appendix A. Matching of open data portal indexes and respective name/URL Table A.6: Open data portal: indexes ↔ name/URL ¹¹global.survey.okfn.org, accessed on Nov., 2017. | africaopendata_org belohorizonte_azure-eastus-prod_socrata_com bistrotdepays_opendatasoft_com bistrotdepays_opendatasoft_com by bristotdepays_opendatasoft_com catalogue_datalocale_fr 14 | N° | Portal name/URL | | | |--|-----|---|-----|---------------------------| | bermuda_io bistrotdepays_opendatasoft_com bistrotdepays_opendatasoft_com bythenumbers_sco.cn_gov ckan_gsi_go_ip ckan_gsi_go_ip ckan_gsi_go_ip ckan_okfn.gr la data_akfn.gov la data_akfn.gov la data_akfn.gov la data_akfn.gov lata_akfn.gr la data_scov.fr lata_akfn.gr lata_ | 1 | africaopendata_org | 2 | annuario_comune_fi_it | | 7 bistrotdepays_opendatasoft_com 8 bistrotdepays_opendatasoft_com 8 bistrotdepays_opendatasoft_com 11 bythenumbers_sco_ca_gov 12 catalogue_datalocale_fr 14 cdph_data_ca_gov 13 catalogue_datalocale_fr 14 cdph_data_ca_gov 15 ckan_okfn_gr 18 ckanau_org 17 ckan_okfn_gr 18 ckanau_org 18 ckanau_org 20 dados_al_gov_br 21 dados_gov_br 22 dados_al_gov_br 23 data_ballinyorg 24 dadosabertos_senado_gov_br 24 data_algov_org 28 data_act_gov_au 27 data_algov_org 28 data_act_gov_au 31 data_banyny_gov 30 data_atr_gov 32 data_balimorecity_gov 30 data_atr_gov 33 data_balimorecity_gov 32 data_balimorecity_gov 34 data_burlingtonvt_gov 36 data_cityofchorgov 35 data_cityofobero_gov 38 data_cityofchorgoo.org 41 data_cityofnewyork_us 42 data_cityoffewyork_us 42 data_cityoffewyork_us 42 data_cityoffewyork_us 43 data_cityofnewyork_us 42 data_cityoffewyork_us 44 data_cityofnewyork_us 42 data_cityoffewyork_us 45 data_cityoffewyork_us 42 data_cityoffewyork_us <t< td=""><td></td><td>belohorizonte_azure-eastus-prod_socrata_com</td><td></td><td>berkeley_demo_socrata_com</td></t<> | | belohorizonte_azure-eastus-prod_socrata_com | | berkeley_demo_socrata_com | | | | | | | | 13 | | | | C | | 13 catalogue_datalocale_fr 14 cdph_data_ca_gov 15 ckan_okfn_gr 18 ckanau.org 19 controllerdata_lacity_org 20 dados_al_gov_br 21 dados_gov_br 22 dados_recife_pe_gov_br 23 dados_rs_gov_br 24 dadosabertos_senado_gov_br 25 danepubliczne_gov_pl 26 dartportal_leeds_ac_uk 27 data_accgov_org 28 data_act_gov_au 29 data_abbunyn_gov 30 data_atf_gov 31 data_abbunyn_gov 30 data_atf_gov 33 data_bris_ac_uk_data | | | | | | 15 ckan_gsi_go_jp | | | | | | 17 ckan_okfn_gr | | | | | | controllerdata_lacity_org | | | | | | 21 | | | | | | 23 dados_xrs_gov_br 24 dadosabertos_senado_gov_br 25 data_aclegov_org 28 data_acl_eds_ac_uk 27 data_aclsonyorg 28 data_acl_gov_au 29 data_albanyny_gov 30 data_albalimorecity_gov 31 data_austintexas_gov 32 data_balimorecity_gov 33 data_burlingtont_gov 36 data_balimorecity_gov 34 data_cityofhoston_gov 36 data_cityofhoston_gov 37 data_cityofhoston_gov 38 data_cityofradison_com 41 data_cityofhoston_gov 40 data_cityofradison_com 41 data_cityofhoston_gov 46 data_cityofradison_com 43 data_cityofradison_com 44 data_cityofradison_com 44 data_cityofradison_com 44 data_cityofradison_com 45 data_cityofradison_com 44 data_cityofradison_com 45 data_colorado_gov 46 data_cityofradison_com 45 data_colorado_gov 46 data_cityofradison_com | | | | dados recife ne gov hr | | 25 | | | | | | 27 data_act_gov_org 28 data_act_gov_au 29 data_abbanyny_gov 30 data_atf_gov 31 data_bushinexas_gov 32 data_baltimorcity_gov 33 data_bris_ac_ukk_data_ 34 data_bushinexas_gov_at 37 data_cityofhoston_gov 36 data_cityofhoston_org 41 data_cityofhoston_gov 40 data_cityofmadison_com 43 data_cityofhoston_gov 42 data_cityofmadison_com 44 data_cityofhoston_gov 46 data_cityofmadison_com 45 data_colorado_gov 46 data_cityofmadison_com 47 data_colveriv,org 48 data_cityofmadison_com 49 data_colorado_gov 46 data_cityofmadison_com 49 data_colorado_gov 46 data_cityofmadison_com 49 data_colorado_gov 46 data_cityofmadison_com 49 data_calledostac_gov_org 50 data_colorado_gov 51 data_calledostac_gov_org 52 data_colorado_gov 52 <td></td> <td></td> <td></td> <td></td> | | | | | | 29 data_albanyny_gov 30 data_atf_gov 31 data_britimorecity_gov 32 data_britimorecity_gov 32 data_britimorecity_gov 33 data_britimorecity_gov 36 data_britimorecity_gov 36 data_britimorecity_gov 36 data_britimorecity_gov 37 data_cityofdeleon.org 40 data_cityofchicago_org 40 data_cityofshicago_org 41 data_cityofshicago_org 42 data_cityofshicago_org 43 data_cityofshicago_org 44 data_cms_hhs_gov 45 data_cclivoftacoma_org 44 data_cms_hhs_gov 45 data_cdorsho_pov 46 data_ctlyoftacoma_org 48 data_datamontana_us data_cdlyesb_org 50 data_admonton_ca data_edorsho_org 50 data_admonton_ca data_gov_and 46 data_gov_britimorecity_gov 54 data_gov_gov_uk data_gov_down_down_down_down_down_down_down_down | 27 | data_acgov_org | 28 | | | 31 data_busintexas_gov 32
data_bis_ac_uk_data_ 33 data_bris_ac_uk_data_ 34 data_buenosaires_gob_ar 35 data_burlingtonty_gov 36 data_cityofchicago_org 37 data_cityofoboston_gov 38 data_cityoffehicago_org 39 data_cityofacoma_org 41 data_cityofacoma_org 42 data_cityofacoma_org 43 data_cityofacoma_org 44 data_cityofacoma_org 45 data_colorado_gov 46 data_cit_gov 47 data_culvercity_org 48 data_datamontana_us 49 data_deps_org 50 data_edmonton_ca 51 data_edostate_gov_ng 52 data_eindhoven_nl 53 data_energystar_gov 54 data_gov_gov_uk 55 data_gov_au 58 data_gov_bf 61 data_gov_au 58 data_gov_ib 61 data_gov_ib 63 data_gov_ib 64 data_gov_ic 65 data_gov_ic 66 data_gov_ic 67 data_gov_at 68 data_gov_ic 69 data_hawaii_gov 70 data_hardrord_gov 71 data_hawaii_gov 72 data_hawaii_gov 73 data_hawaii_gov 74 data_lilinois_gov champaign 75 data_lilinois_gov_champaign 76 data_lilinois_gov_champaign 77 data_lilinois_gov_odata_ein 78 data_medicare_gov 80 data_medicare_gov 81 data_medicare_gov 81 data_medicare_gov 82 data_medicare_gov 83 data_medicare_gov 84 data_medicare_gov 85 data_medicare_gov 86 data_medicare_gov 87 data_inp_ord 87 data_inp_ord 88 data_medicare_gov 89 data_nmedicare_gov 90 data_nmedicare_gov 91 data_nmedicare_gov 91 data_nmedicare_gov 92 data_nmedicare_gov 93 data_nmedicare_gov 94 data_nmedicare_gov 95 data_nmedicare_gov 96 data_nmedicare_gov 97 data_nmedicare_gov 98 data_nmedicare_gov 99 data_oblander_com 100 data_openolore_ru 101 data_ock_gov 102 data_openolore_ru 103 data_openolore_ru 104 data_openolore_ru 105 data_openolore_ru 106 data_openolore_ru 107 data_overheid_nl 108 data_seattle_gov 110 data_seattle_gov 111 data_seattle_gov 112 data_seattle_gov 113 data_seattle_gov 114 data_seattle_gov 115 data_seattle_gov 116 data_seattle_gov 117 data_southendin_gov 118 data_seatule_gov 119 data_stadt-zuerich_ch 120 data_stata_stata_tuerich_ch 120 data_stata_tuerich_ch 120 data_tata_tuerich_ch 120 data_tata_tuerich_ch 120 data_tata_tuerich_ch 120 data_tata_tuerich_ch 120 data_tata_tuerich_ch 120 data_tata_tuerich_ch 120 data | 29 | | 30 | | | 35 data_burlingtonvt_gov 36 data_cityofboston_gov 37 data_cityofboston_gov 38 data_cityofboston_gov 38 data_cityofboston_gov 40 data_cityoffacoma_com 41 data_cityoffacoma_org 42 data_cityofsantacruz_com 43 data_cityofacoma_org 44 data_colorado_gov 45 data_colorado_gov 46 data_ct_gov 47 data_culvercity_org 48 data_datamontana_us 49 data_depsteb_org 50 data_edmonton_ca 51 data_edostate_gov_ng 53 data_edostate_gov_ng 54 data_gov_ov_tuk 55 data_gov_id 56 data_gov_bf 57 data_gov_au 58 data_gov_bf 61 data_gov_br 62 data_gov_ie 63 data_gov_ie 64 data_gov_ie 65 data_gov_ie 65 data_gov_ie 66 data_gov_ie 67 data_graz_gv_at 68 data_graz_gv_at 68 data_graz_gv_at 69 data_hanolulu_gov 71 data_hawaii_gov 72 data_hillinois_gov_rockford 73 data_illinois_gov_champaign 74 data_lillinois_gov_bov_uk 85 data_lillinois_gov_bov_uk 86 data_lillinois_gov_ata 87 data_medicare_gov 89 data_molodo_gov_dataset 89 data_molodo_gov_dataset 90 data_nbrolouty_gov 91 data_nbrolouty_gov 91 data_nbrolouty_gov 92 data_nbrolouty_gov 93 data_lillinois_gov_champaign 94 data_lillinois_gov_dataset 95 data_lillinois_gov_dataset 96 data_gov_at 97 data_nbrolouty_gov 98 data_molon_gov 99 data_mologov 90 data_mologov_gov 90 data_mologov 91 data_murlybtyt_org 92 data_nbrolouty_gov 93 data_nbrolouty_gov 94 data_nbrolouty_gov 95 data_nbrolouty_gov 96 data_mologov_gov 97 data_nbrolouty_gov 98 data_nbrolouty_gov 99 data_nbrolouty_gov 90 data_nbrolouty_gov 91 data_nbrolouty_gov 92 data_nbrolouty_gov 93 data_nbrolouty_gov 94 data_nbrolouty_gov 95 data_nbrolouty_gov 96 data_nbrolouty_gov 97 data_nbrolouty_gov 98 data_nbrolouty_gov 99 data_nbrolouty_gov 90 data_nbrolouty_gov 91 data_nbrolouty_gov 91 data_nbrolouty_gov 92 data_nbrolouty_gov 93 data_nbrolouty_gov 94 data_nbrolouty_gov 95 data_nbrolouty_gov 96 data_nbrolouty_gov 97 data_nbrolouty_gov 98 data_nbrolouty_gov 99 data_nbrolouty_gov 90 data_nbrolouty_gov 91 data_nbrolouty_gov 91 data_nbrolouty_gov 92 data_nbrolouty_gov 93 data_nbrolouty_gov 94 data_nbrolouty_gov 95 data_nbrolouty_gov 96 data_nbrolouty_gov 97 da | 31 | | 32 | data_baltimorecity_gov | | 37 data_cityofboston_gov 38 data_cityoffehicago_org 39 data_cityoffedeon_org 40 data_cityofmadison_com 41 data_cityoffeuorma_org 42 data_cityofmadison_com 43 data_colorado_gov 46 data_ct_gov 45 data_colorado_gov 46 data_ct_gov 47 data_colvercity_org 48 data_admontana_us 49 data_colorado_gov 50 data_admonton_ca 49 data_colorado_gov_ng 52 data_eindhoven_nl 49 data_colorado_gov_ng 52 data_eindhoven_nl 40 data_cov_logov_nd 56 data_gov_boy_ov_uk 41 data_gov_au 58 data_gov_hf 59 data_gov_pr 60 data_gov_hk_en_ 61 data_gov_hf 62 data_gov_hf 65 data_gov_hf 64 data_gov_hf 65 data_gov_hf 64 data_gov_hf 65 data_gov_uat 68 data_gov_uat | 33 | data_bris_ac_uk_data_ | 34 | data_buenosaires_gob_ar | | data_cityofdeleon_org data_cityofnewyork_us data_cityofnewyork_us data_cityofnewyork_us data_cityofneword_com data_colorado_gov data_colorado_gov data_cityofneword_com data_cityofneword_com data_colorado_gov data_cityofneword data_colorado_gov data_cityofneword data_colorado_gov data_cityofneword data_colorado_gov data_cityofneword data_cityofsantacruz_com data_com data_com data_com data_com data_com data_com data_com data_com data_com data_gov_ind data_hawaii_gov data_hawaii_gov data_hawaii_gov data_hawaii_gov data_hawaii_gov data_honolulu_gov data_honolulu_gov data_illinois_gov_rokford data_illinois_gov_rokford data_illinois_gov_rokford data_illinois_gov_rokford data_illinois_gov_rokford data_lexingtonky_gov data_lexingtonky_gov data_lexingtonky_gov data_lexingtonky_gov data_mongov_uk 86 data_maryland_gov data_mongov_op data_mongov_op data_mongov_op data_nona_gov_dataset 96 data_nona_gov data_nona_gov_dataset 96 data_nona_gov data_nona_gov_dataset 96 data_nona_gov data_nona_gov data_nona_gov data_nona_gov data_openpolice_ru ind data_openpolice_ru ind data_openpolice_ru ind data_openpolice_ru ind data_opencolorado_org data_openpolice_ru ind data_openva_com data_openva_com data_acom data_somervillema_gov ind data_southbendin_gov ind data_southbendin_gov ind data_st | 35 | | 36 | | | 41 data_cityofnewyork_us 42 data_cityofsacoma_org 43 data_colorado_gov 44 data_ccloor 45 data_colorado_gov 46 data_ccloor 47 data_culvercity_org 48 data_datamontana_us 49 data_cdostate_gov_ng 50 data_emonton_ca 51 data_edostate_gov_ng 52 data_eindhoven_nl 53 data_energystar_gov 54 data_gov_d 55 data_go_id 56 data_gov_b 57 data_gov_au 58 data_gov_b 60 data_gov_le 61 data_gov_nr 62 data_gov_le 63 data_gov_md 64 data_gov_nc 65 data_gov_nc 66 data_gov_nc 67 data_gov_au 68 data_gov_le 69 data_a_gov_au 69 data_hardirord_gov 70 data_hardirord_gov 71 data_hawaii_gov 72 data_hardirord_gov 73 data_lilinois_gov_champaign 79 data_kcmo_org 80 data_ktm_gv_at 83 data_lexingtonky_gov 84 data_lexingtonky_gov 85 data_morgy_ov 96 data_morgy_ov 97 data_mmrphytx_org 97 data_nba_ov 98 data_morgov 99 data_nova_gov_dataset 96 data_nova_gov 90 data_nova_gov 90 data_nova_gov 91 data_openpolice_ru 101 data_openpolice_ru 102 data_sexire_gov 103 data_sexire_gov 104 data_sexire_gov 105 data_openpolice_ru 106 data_sexire_gov 107 data_sexire_gov 108 data_sexire_gov 109 data_openpolice_ru 100 data_sexire_gov 110 data_sexire_gov 111 data_sexire_gov 112 data_sexire_gov 113 data_sexire_gov 114 data_sexire_gov 115 data_sexire_gov 116 data_sexire_gov 117 data_openpolice_ru 110 data_openpolice_ru 1110 data_sexire_gov 1111 data_sexire_gov 1112 data_sexire_gov 1121 data_sexire_gov 1122 data_taxpayer_net | | | 38 | | | 43 data_cityoftacoma_org 44 data_ccl_gov 45 data_colorado_gov 46 data_ct_gov 47 data_culvercity_org 48 data_datamontana_us 49 data_cdopesb_org 50 data_cdmonton_ca 51 data_cdostate_gov_ng 52 data_clindhoven_nl 53 data_gov_id 56 data_gov_bf 55 data_gov_au 58 data_gov_bf 59 data_gov_ar 60 data_gov_hk_en_ 61 data_gov_md 64 data_gov_ro 63 data_gov_sk 66 data_gov_ro 65 data_gov_sk 66 data_gov_to 67 data_graz_gv_at 68 data_grcity_us 69 data_gov_at 70 data_hartford_gov 71 data_hawaii_gov 72 data_hdx_rwlabs_org 73 data_honolulu_gov 74 data_lilinois_gov_belleville 75 data_illinois_gov_champaign 78 data_illinois_gov_belleville 76 | | | | | | 45 data_culvercity_org 46 data_culvercity_org 47 data_culvercity_org 48 data_datamontana_us 49 data_deposb_org 50 data_eindhoven_nl 51 data_colostate_gov_ng 52 data_eindhoven_nl 53 data_go_id 56 data_gov_bf 55 data_gov_au 58 data_gov_bf 59 data_gov_pr 60 data_gov_bf 61 data_gov_br 62 data_gov_be 63 data_gov_br 62 data_gov_ul 65 data_gov_sk 66 data_gov_ul 67 data_gv_at 68 data_gov_ul 67 data_honolulu_gov 72 data_hartford_gov 71 data_hardilinois_gov_champaign 73 data_illinois_gov_belleville 75 data_illinois_gov_champaign 74 data_illinois_gov_belleville 76 data_illinois_gov_belleville data_krm_gv_at 81 data_lexingtonky_gov 84 data_lexingtonky_gov | | | | | | 47 data_culvercity_org 48 data_datamontana_us 49 data_deposb_org 50 data_edmonton_ca 51 data_edostate_gov_ng 52 data_eindhoven_nl 53 data_energystar_gov 54 data_gov_br 55 data_go_oid 56 data_gov_br 57 data_go_oid 56 data_gov_br 61 data_gov_hr 62 data_gov_hr 63 data_gov_nd 64 data_gov_uk 65 data_gov_sk 66 data_gov_uk 67 data_graz_gv_at 68 data_grity_us 69 data_boulu_gov 72 data_lhartford_gov 71 data_honolulu_gov 74 data_ild_nois_gov_belleville 75 data_illinois_gov_champaign 78 data_illinois_gov_rockford 76 data_illinois_gov_belleville data_kir_gv_at 81 data_kcmo_org 80 data_ind_injan_gov 82 data_illinois_gov_rockford data_kir_gv_at 83 data_l | | , . | | \mathcal{E} | | data_depcsb_org 10 data_edostate_gov_ng 11 data_edostate_gov_ng 12 data_eindhoven_nl 13 data_energystar_gov 14 data_gov_ord 15 data_gov_dr 15 data_gov_au 15 data_gov_bf 16 data_gov_hr 16 data_gov_hr 16 data_gov_ind 16 data_gov_nd 16 data_gov_no 16 data_gov_nd 16 data_gov_uk 16 data_gov_ind 16 data_gov_uk 16 data_gov_no 17 data_dat_graz_gv_at 18 data_dat_graz_gv_at 19 data_hawaii_gov 10 data_hawaii_gov 10 data_hawaii_gov 11 data_hawaii_gov 12 data_hbx_rwlabs_org 13 data_honolulu_gov 14
data_illinois_gov_champaign 15 data_illinois_gov_belleville 16 data_krmo_org 17 data_krmo_org 18 data_krmo_org 18 data_krmo_gov 19 data_krmo_gov 19 data_hawaii_gov 18 data_lexingtonky_gov 18 data_lexingtonky_gov 18 data_lexingtonky_gov 18 data_lexingtonky_gov 18 data_lexingtonky_gov 19 data_murphytx_org 19 data_murphytx_org 10 data_murphytx_org 10 data_noa_gov_dataset 10 data_noa_gov_dataset 10 data_openpolice_ru data_ | | | | | | 51 data_energystar_gov 52 data_energystar_gov 53 data_energystar_gov 54 data_gov_dov_dov_data_gov_br 55 data_gov_au 58 data_gov_br 60 data_gov_br 61 data_gov_hr 62 data_gov_uc 63 data_gov_sk 66 data_gov_uc 66 data_gov_uc 67 data_gov_sk 66 data_gov_uc 69 data_gv_at 69 data_gv_at 70 data_harvford_gov 71 data_havaii_gov 72 data_hlx_rwlabs_org 73 data_honolulu_gov 74 data_illinois_gov data_lillinois_gov_belleville 77 data_illinois_gov 78 data_lexingtonky_gov 81 data_lexingtonky_gov 82 data_lexingtonky_gov 83 data_lexingtonky_gov 84 data_london_gov_uk 85 data_london_gov_uk 86 data_maryland_gov 87 data_modicare_gov 88 data_modicare_gov 89 data_modicare_gov 90 data_montgomerycountymd_gov 91 data_nmac_uk 94 data_nola_gov 95 data_nola_gov_dataset 96 data_openpolice_ru 107 data_overheid_nl 108 data_overpelled 109 data_redicare_gov 110 data_overheid_nl 109 data_london_gov_au 111 data_redimond_gov 112 data_redicare_gov 113 data_seattle_gov 114 data_seattle_gov 115 data_seattle_gov 116 data_overheid_nl 107 data_seattle_gov 117 data_sourtheenlangov 118 data_surrey_ca 120 data_surrey_ca 121 data_taxpayer_net | | , , | | | | data_energystar_gov 54 data_glasgow_gov_uk 55 data_gov_au 58 data_gov_bf 59 data_gov_au 58 data_gov_bf 60 data_gov_ic 61 data_gov_ic 63 data_gov_mc 64 data_gov_ic 65 data_gov_ic 65 data_gov_sk 66 data_gov_uk 67 data_gov_sk 68 data_gov_uk 69 data_gov_at 70 data_hartford_gov 71 data_hawaii.gov 72 data_illinois_gov 73 data_illinois_gov 74 data_illinois_gov_cokford 75 data_illinois_gov_champaign 78 data_illinois_gov_rockford 79 data_kcmo_org 80 data_kcmo_org 81 data_lexingtonky_gov 82 data_linz_gv_at 83 data_lexingtonky_gov 84 data_linz_gv_at 85 data_mola_gov 86 data_mongov 87 data_mongov 88 data_mola_gov 89 data_mola_gov 90 data_mongorerycountymd_gov data_nbn_ac_uk 94 data_npl_gov data_nbn_ac_uk 95 data_noaa_gov_dataset 96 data_noa_gov data_oklandnet_com 100 data_oklandnet_com 101 data_ok_gov 102 data_openpolice_ru 103 data_openpolice_ru 104 data_openpolice_ru 105 data_openpolice_ru 106 data_openpolice_ru 107 data_openpolice_ru 108 data_openpolice_ru 109 data_overheid_nl 108 data_providenceri_gov 110 data_seattle_gov 111 data_seattle_gov 112 data_surrey_ca 122 data_txpayer_net | | | | | | 55 data_go_id 56 data_gov_bf 57 data_gov_gr 60 data_gov_hk_en_ 61 data_gov_hr 62 data_gov_ro 63 data_gov_md 64 data_gov_uk 65 data_gov_sk 66 data_gov_uk 67 data_gov_at 70 data_hartford_gov 71 data_hawaii.gov 72 data_hatrord_gov 73 data_honolulu_gov 74 data_illinois_gov_belleville 75 data_illinois_gov_champaign 78 data_illinois_gov_rockford 76 data_kkmo.org 80 data_kingcounty_gov 81 data_kcmo.org 80 data_kingcounty_gov 81 data_kcmo.org 80 data_michigan_gov_rockford 82 data_london_gov_uk 82 data_maryland_gov 83 data_lexingtonky_gov 84 data_maryland_gov 84 data_mola_gov 88 data_mola_gov 85 data_mola_gov 88 data_michigan_gov 86 | | | | | | 57 data_gov_au 58 data_gov_bf 59 data_gov_fr 60 data_gov_ik 61 data_gov_hk 62 data_gov_ie 63 data_gov_sk 66 data_gov_uk 67 data_gov_at 68 data_gov_uk 69 data_pawaii_gov 72 data_hdx_rwlabs_org 71 data_honolulu_gov 74 data_illinois_gov_belleville 73 data_illinois_gov_champaign 78 data_illinois_gov_rockford 75 data_illinois_gov_champaign 78 data_illinois_gov_rockford 79 data_kcmo_org 80 data_kingcounty_gov 81 data_kk.dk 82 data_kingcounty_gov 81 data_kcmo_org 84 data_millinois_gov_rockford 83 data_lexingtonky_gov 84 data_millinois_gov_rockford 84 data_lexingtonky_gov 84 data_mal_illinois_gov_rockford 85 data_lexingtonky_gov 84 data_mal_illinois_gov_rockford 86 data_mal_illinois_gov | | | | | | data_gov_gr 61 data_gov_hr 62 data_gov_ie 63 data_gov_md 64 data_gov_ue 65 data_gov_sk 66 data_gov_uk 67 data_graz_gv_at 68 data_grity_us 69 data_gv_at 70 data_hartford_gov 71 data_hawaii_gov 72 data_hawaii_gov 73 data_honolulu_gov 74 data_illinois_gov_belleville 75 data_illinois_gov_champaign 78 data_illinois_gov_lockford 79 data_kcmo_org 80 data_ktingcounty_gov 81 data_lexingtonky_gov 82 data_london_gov_uk 83 data_lexingtonky_gov 84 data_illinois_gov 85 data_modicare_gov 86 data_morigonerycountymd_gov 87 data_modicare_gov 88 data_montgomerycountymd_gov 90 data_montgomerycountymd_gov 91 data_nma_cuk 92 data_nloa_gov_dataset 93 data_noa_gov_dataset 94 data_noa_gov 95 data_noa_gov_dataset 96 data_noy_gov 97 data_nsw_gov_au 98 data_openolice_ru 100 data_openolorado_org 101 data_openolice_ru 102 data_openolorado_org 103 data_openolorado_org 104 data_raled_gov 105 data_and_gov_au 106 data_seattle_gov 117 data_seattle_gov 118 data_seattle_gov 119 data_stadt-zuerich_ch 120 data_surrey_ca 121 data_tanan_gov_tw 122 data_tanan_en 122 data_tanpa, or 123 data_tanpa, or 124 data_tanpa, or 125 data_tanpa, or 126 data_surrey_ca 127 data_tanpa, or 128 data_tanpa, or 129 data_tanpa, or 120 data_tanpa, or 122 1222 data_tanpa, or 1223 data_tanpa, or | | | | | | 61 data_gov_hr 63 data_gov_md 64 data_gov_ie 65 data_gov_sk 66 data_gov_uk 66 data_gov_uk 67 data_graz_gv_at 68 data_griy_us 69 data_praz_gv_at 70 data_hartford_gov 71 data_hawaii_gov 72 data_hav_rwlabs_org 73 data_honolulu_gov 74 data_illinois_gov_belleville 75 data_illinois_gov_champaign 78 data_illinois_gov_belleville 79 data_kemo_org 80 data_kingcounty_gov 81 data_kk_dk 82 data_ktn_gv_at 83 data_lexingtonky_gov 84 data_illinois_gov 85 data_london_gov_uk 86 data_maryland_gov 87 data_modicare_gov 88 data_modicare_gov 89 data_modicare_gov 90 data_montgomerycountymd_gov 91 data_nma_cuk 94 data_nj_gov 95 data_noaa_gov_dataset 96 data_noa_gov 97 data_nsw_gov_au 98 data_oaklandnet_com 100 data_openpolice_ru 101 data_openpolice_ru 102 data_openpolice_ru 103 data_openpolice_ru 104 data_openv_gov 105 data_openv_gov 106 data_openv_gov 117 data_somervillema_gov 118 data_sutery_ca 119 data_stadt-zuerich_ch 120 data_surrey_ca 121 data_starpy_cnet | | | | • | | data_gov_md 65 data_gov_sk 66 data_gov_uk 67 data_grz_gv_at 68 data_grz_gv_at 69 data_gv_at 70 data_hartford_gov 69 data_hawaii.gov 71 data_hawaii.gov 72 data_hatx_wlabs_org 73 data_honolulu_gov 74 data_illinois_gov_belleville 75 data_illinois_gov_champaign 78 data_illinois_gov_belleville 79 data_kcmo_org 80 data_kingcounty_gov 81 data_kki_dk 82 data_kin_gov_at 83 data_lexingtonky_gov 84 data_linz_gv_at 85 data_london_gov_uk 86 data_maryland_gov 87 data_medicare_gov 88 data_michigan_gov 89 data_mo_gov 90 data_morg 91 data_nhm_ac_uk 94 data_nj_gov 95 data_noa_gov_dataset 96 data_nola_gov 97 data_osa_gov_dataset 98 data_openpolice_ru 101 data_openpolice_ru 105 data_oregon_gov 106 data_opencolorado_org 107 data_redmond_gov 118 data_seattle_gov 119 data_seattle_gov 110 data_seattle_gov 111 data_seattle_gov 112 data_surrey_ca 111 data_surrey_ca 112 data_taxpayer_net | | | | | | 65 data_gov_sk 67 data_graz_gv_at 68 data_grcity_us 69 data_gv_at 70 data_hartford_gov 71 data_havaii_gov 72 data_hdx_rwlabs_org 73 data_honolulu_gov 74 data_illinois_gov_belleville 75 data_illinois_gov_champaign 76 data_illinois_gov_rockford 77 data_kk_dk 82 data_ktn_gv_at 83 data_lexingtonky_gov 84 data_linz_gv_at 85 data_london_gov_uk 86 data_maryland_gov 87 data_medicare_gov 88 data_michigan_gov 89 data_nog_gov 90 data_montgomerycountymd_gov 91 data_nwr_gov_au 92 data_npla_gov 93 data_noa_gov_dataset 96 data_nola_gov 97 data_oaklandnet_com 100 data_ohouston_org 101 data_overheid_nl 108 data_openvolored 109 data_raleignnc_gov 110 data_raleignnc_gov 111 data_raleignnc_gov 112 data_raleignnc_gov 115 data_seattle_gov 116 data_surrey_ca 117 data_somervillema_gov 118 data_surrey_ca 120 data_taxpayer_net | | | | | | 67 data_graz_gv_at 69 data_gv_at 70 data_hartford_gov 71 data_hawaii_gov 72 data_hdx_rwlabs_org 73 data_honolulu_gov 74 data_illinois_gov_belleville 75 data_illinois_gov_champaign 78 data_illinois_gov_rockford 79 data_kcmo_org 80 data_kingcounty_gov 81 data_kk_dk 82 data_kingcounty_gov 83 data_lexingtonky_gov 84 data_linz_gv_at 85 data_london_gov_uk 86 data_maryland_gov 87 data_medicare_gov 88 data_michigan_gov 89 data_montgomerycountymd_gov 90 data_montgomerycountymd_gov 91 data_nurphytx_org 92 data_nfpa_org 93 data_nhm_ac_uk 94 data_nola_gov 95 data_noaa_gov_dataset 96 data_nola_gov 97 data_nosw_gov_au 98 data_nola_gov 99 data_oaklandnet_com 100 data_ohouston_org 101 data_obe_noplice_ru 105 data_oregon_gov 106 data_openolorado_org 107 data_overheid_nl 108 data_providenceri_gov 119 data_rsa_gov_au 110 data_salzburgerland_com 110 data_salzburgerland_com 111 data_rsa_gov_au 112 data_salzburgerland_com 115 data_seattle_gov 116 data_surrey_ca 117 data_stadt-zuerich_ch 120 data_surrey_ca 121 data_tana_gov_lw 122 data_taxpayer_net | | | 66 | | | 69 data_gv_at 70 data_hartford_gov 71 data_hawaii_gov 72 data_hdx_rwlabs_org 73 data_honolulu_gov 74 data_illedefrance_fr 75 data_illinois_gov_belleville 76 data_illinois_gov_champaign 77 data_illinois_gov_rockford 78 data_kingcounty_gov 80 data_kingcounty_gov 81 data_kk_dk 82 data_ktn_gv_at 83 data_lexingtonky_gov 84 data_linz_gv_at 85 data_london_gov_uk 86 data_maryland_gov 87 data_medicare_gov 88 data_michigan_gov 89 data_mo_gov 90 data_montgomerycountymd_gov 91 data_nmac_uk 94 data_nj_gov 95 data_noa_gov_dataset 96 data_nola_gov 97 data_nsw_gov_au 98 data_ny_gov 99 data_oaklandnet_com 100 data_obcuston_org 101 data_openpolice_ru 105 data_openpolice_ru 106 data_openpolice_ru 107 data_overheid_nl 108 data_providenceri_gov 110 data_redmond_gov 111 data_redmond_gov 112 data_rio_rj_gov_br 113 data_sa_gov_au 114 data_salzburgerland_com 115 data_stadt-zuerich_ch 110 data_start_py_ca 121 data_tanan_gov_tw 122 data_taxpayer_net | 67 | | 68 | | |
73data_honolulu_gov74data_illefefrance_fr75data_illinois_gov76data_illinois_gov_belleville77data_illinois_gov_champaign78data_illinois_gov_rockford79data_kcmo_org80data_kingcounty_gov81data_kk_dk82data_ktn_gv_at83data_lexingtonky_gov84data_linz_gv_at85data_london_gov_uk86data_maryland_gov87data_melcicare_gov88data_michigan_gov89data_mo_gov90data_montgomerycountymd_gov91data_non_gov90data_nontgomerycountymd_gov91data_noa_gov_dataset94data_nj_gov95data_noaa_gov_dataset96data_nola_gov97data_oaklandnet_com100data_opencolorado_org101data_oblandnet_com100data_opencolorado_org103data_openpolice_ru104data_openva_com105data_openpolice_ru104data_openva_com106data_ottawa_ca107data_ottend_ogov110data_raleighnc_gov111data_redmond_gov112data_rio_rj_gov_br113data_seattle_gov116data_sizburgerland_com115data_seattle_gov116data_sizburgerland_com115data_stadt-zuerich_ch120data_taxpayer_net | 69 | | 70 | data_hartford_gov | | 75 data_illinois_gov_champaign 76 data_illinois_gov_belleville 77 data_illinois_gov_champaign 78 data_illinois_gov_rockford 79 data_kcmo_org 80 data_kingcounty_gov 81 data_kk_dk 82 data_ktn_gv_at 83 data_lexingtonky_gov 84 data_linz_gv_at 85 data_london_gov_uk 86 data_maryland_gov 87 data_medicare_gov 88 data_michigan_gov 90 data_mottgomerycountymd_gov 91 data_murphytx_org 92 data_nfpa_org 93 data_nhm_ac_uk 94 data_nj_gov 95 data_noa_gov_dataset 96 data_nola_gov 97 data_now_gov_au 98 data_ny_gov 99 data_oaklandnet_com 100 data_obuston_org 101 data_ok_gov 102 data_opencolorado_org 103 data_openpolice_ru 104 data_openva_com 105 data_oregon_gov 106 data_ottawa_ca 107 data_overheid_nl 108 data_ottawa_ca 109 data_qld_gov_au 110 data_raleighnc_gov 111 data_redmond_gov 112 data_rio_rj_gov_br 113 data_sa_gov_au 114 data_salzburgerland_com 115 data_seattle_gov 116 data_seattle_gov 117 data_somervillema_gov 118 data_southbendin_gov 119 data_stadt_zuerich_ch 120 data_surrey_ca 121 data_tainan_gov_tw 122 data_taxpayer_net | 71 | data_hawaii_gov | 72 | data_hdx_rwlabs_org | | 77 data_illinois_gov_champaign 78 data_illinois_gov_rockford 79 data_kcmo_org 80 data_kingcounty_gov 81 data_kk_dk 82 data_ktn_gv_at 83 data_lexingtonky_gov 84 data_linz_gv_at 85 data_london_gov_uk 86 data_maryland_gov 87 data_medicare_gov 88 data_michigan_gov 89 data_mo_gov 90 data_montgomerycountymd_gov 91 data_murphytx_org 92 data_nfpa_org 93 data_nhm_ac_uk 94 data_nj_gov 95 data_noa_gov_dataset 96 data_nola_gov 97 data_nsw_gov_au 98 data_ny_gov 99 data_oaklandnet_com 100 data_ohouston_org 101 data_obe_gov 102 data_opencolorado_org 103 data_openpolice_ru 104 data_openva_com 105 data_oregon_gov 106 data_ottawa_ca 107 data_overheid_nl 108 data_rolegov_gov 110 data_relemond_gov 111 data_redmond_gov 112 data_rio_rj_gov_br 113 data_sa_gov_au 114 data_salzburgerland_com 115 data_seattle_gov 116 data_seattle_gov 117 data_somervillema_gov 118 data_southbendin_gov 119 data_tainan_gov_tw 120 data_taxpayer_net | | | 74 | | | 79 data_kcmo_org 80 data_kingcounty_gov 81 data_kk_dk 82 data_ktn_gv_at 83 data_lexingtonky_gov 84 data_linz_gv_at 85 data_london_gov_uk 86 data_maryland_gov 87 data_medicare_gov 88 data_michigan_gov 89 data_mo_gov 90 data_montgomerycountymd_gov 91 data_murphytx_org 92 data_nfpa_org 93 data_nhm_ac_uk 94 data_nj_gov 95 data_noa_gov_dataset 96 data_nola_gov 97 data_nsw_gov_au 98 data_ny_gov 99 data_oaklandnet_com 100 data_ohouston_org 101 data_ok_gov 102 data_opencolorado_org 103 data_openpolice_ru 104 data_openva_com 105 data_oregon_gov 106 data_ottawa_ca 107 data_overheid_nl 108 data_raleighnc_gov 110 data_raleighnc_gov 111 data_redmond_gov 112 data_rio_rj_gov_br 113 data_sa_gov_au 114 data_salzburgerland_com 115 data_seattle_gov 116 data_staus_org 117 data_somervillema_gov 118 data_southbendin_gov 119 data_stadt_zuerich_ch 120 data_surrey_ca 121 data_tainan_gov_tw 122 data_taxpayer_net | | | | | | 81 data_kk_dk 82 data_ktn_gv_at 83 data_lexingtonky_gov 84 data_linz_gv_at 85 data_london_gov_uk 86 data_maryland_gov 87 data_medicare_gov 88 data_michigan_gov 89 data_mo_gov 90 data_montgomerycountymd_gov 91 data_murphytx_org 92 data_nfpa_org 93 data_nhm_ac_uk 94 data_nj_gov 95 data_noaa_gov_dataset 96 data_nola_gov 97 data_nsw_gov_au 98 data_nola_gov 99 data_oaklandnet_com 100 data_ohouston_org 101 data_ok_gov 102 data_opencolorado_org 103 data_openpolice_ru 104 data_openva_com 105 data_oregon_gov 106 data_ottawa_ca 107 data_overheid_nl 108 data_providenceri_gov 109 data_qld_gov_au 110 data_raleighnc_gov 111 data_redmond_gov 112 data_rio_rj_gov_br 113 data_sa_gov_au 114 data_salzburgerland_com 115 data_seattle_gov 116 data_stgov_org 117 data_somervillema_gov 118 data_southbendin_gov 119 data_stadt_zuerich_ch 120 data_surrey_ca 121 data_tainan_gov_tw 122 data_taxpayer_net | | | | | | 83 data_lexingtonky_gov 84 data_linz_gv_at 85 data_london_gov_uk 86 data_maryland_gov 87 data_medicare_gov 88 data_michigan_gov 89 data_mo_gov 90 data_montgomerycountymd_gov 91 data_murphytx_org 92 data_nfpa_org 93 data_nhm_ac_uk 94 data_nj_gov 95 data_noaa_gov_dataset 96 data_nola_gov 97 data_nsw_gov_au 98 data_nola_gov 99 data_oaklandnet_com 100 data_ohouston_org 101 data_ok_gov 102 data_opencolorado_org 103 data_openpolice_ru 104 data_openva_com 105 data_oregon_gov 106 data_ottawa_ca 107 data_overheid_nl 108 data_providenceri_gov 109 data_qld_gov_au 110 data_raleighnc_gov 111 data_redmond_gov 112 data_rio_rj_gov_br 113 data_sa_gov_au 114 data_salzburgerland_com 115 data_seattle_gov 116 data_sfgov_org 117 data_somervillema_gov 118 data_southbendin_gov 119 data_stadt_zuerich_ch 120 data_taxpayer_net | | 2 | | | | 85 data_london_gov_uk 87 data_medicare_gov 88 data_michigan_gov 89 data_mo_gov 90 data_montgomerycountymd_gov 91 data_murphytx_org 92 data_nfpa_org 93 data_nhm_ac_uk 94 data_nj_gov 95 data_noaa_gov_dataset 96 data_nola_gov 97 data_nsw_gov_au 98 data_ny_gov 99 data_oaklandnet_com 100 data_ohouston_org 101 data_ok_gov 102 data_opencolorado_org 103 data_openpolice_ru 104 data_openva_com 105 data_oregon_gov 106 data_ottawa_ca 107 data_overheid_nl 108 data_providenceri_gov 109 data_qld_gov_au 110 data_relemond_gov 111 data_redmond_gov 112 data_rio_rj_gov_br 113 data_sa_gov_au 114 data_salzburgerland_com 115 data_seattle_gov 116 data_seattle_gov 117 data_somervillema_gov 118 data_southbendin_gov 119 data_stadt-zuerich_ch 120 data_taxpayer_net | | | | | | 87 data_medicare_gov 88 data_michigan_gov 89 data_mo_gov 90 data_montgomerycountymd_gov 91 data_murphytx_org 92 data_nfpa_org 93 data_nhm_ac_uk 94 data_nj_gov 95 data_noaa_gov_dataset 96 data_nola_gov 97 data_nsw_gov_au 98 data_nola_gov 99 data_oaklandnet_com 100 data_ohouston_org 101 data_ok_gov 102 data_opencolorado_org 103 data_openpolice_ru 104 data_openva_com 105 data_oregon_gov 106 data_ottawa_ca 107 data_overheid_nl 108 data_providenceri_gov 109 data_qld_gov_au 110 data_raleighnc_gov 111 data_redmond_gov 112 data_rio_rj_gov_br 113 data_sa_gov_au 114 data_salzburgerland_com 115 data_seattle_gov 116 data_seattle_gov 116 data_seattle_gov 117 data_somervillema_gov 118 data_southbendin_gov 119 data_stadt_zuerich_ch 120 data_surrey_ca 121 data_tainan_gov_tw 122 data_taxpayer_net | | | | | | 89 data_mo_gov 90 data_montgomerycountymd_gov 91 data_murphytx_org 92 data_nfpa_org 93 data_nhm_ac_uk 94 data_nj_gov 95 data_noaa_gov_dataset 96 data_nola_gov 97 data_nsw_gov_au 98 data_ny_gov 99 data_oaklandnet_com 100 data_ohouston_org 101 data_ok_gov 102 data_opencolorado_org 103 data_openpolice_ru 104 data_openva_com 105 data_oregon_gov 106 data_ottawa_ca 107 data_overheid_nl 108 data_providenceri_gov 109 data_qld_gov_au 110 data_raleighnc_gov 111 data_redmond_gov 112 data_rio_rj_gov_br 113 data_sa_gov_au 114 data_salzburgerland_com 115 data_seattle_gov 116 data_sfgov_org 117 data_somervillema_gov 118 data_southbendin_gov 119 data_stadt-zuerich_ch 120 data_surrey_ca 121 data_tainan_gov_tw 122 data_taxpayer_net | | | | | | 91 data_murphytx_org 93 data_nhm_ac_uk 94 data_nj_gov 95 data_noaa_gov_dataset 96 data_nola_gov 97 data_nsw_gov_au 98 data_ny_gov 99 data_oaklandnet_com 100 data_obouston_org 101 data_ok_gov 102 data_opencolorado_org 103 data_openpolice_ru 104 data_openva_com 105 data_oregon_gov 106 data_ottawa_ca 107 data_overheid_nl 108 data_providenceri_gov 109 data_qld_gov_au 110 data_raleighnc_gov 111 data_redmond_gov 112 data_rio_rj_gov_br 113 data_sa_gov_au 114 data_salzburgerland_com 115 data_seattle_gov 116 data_seouthbendin_gov 117 data_somervillema_gov 118 data_southbendin_gov 119 data_tainan_gov_tw 120 data_taxpayer_net | | • | | | | 93 data_nhm_ac_uk 95 data_noaa_gov_dataset 96 data_nola_gov 97 data_nsw_gov_au 98 data_ny_gov 99 data_oaklandnet_com 100 data_ohouston_org 101 data_ok_gov 102 data_opencolorado_org 103 data_openpolice_ru 105 data_oregon_gov 106 data_ottawa_ca 107 data_overheid_nl 108 data_providenceri_gov 109 data_qld_gov_au 110 data_raleighnc_gov 111 data_redmond_gov 112 data_rio_rj_gov_br 113 data_sagov_au 114 data_salzburgerland_com 115 data_seattle_gov 116 data_segov_org 117 data_somervillema_gov 118 data_southbendin_gov 119 data_tainan_gov_tw 120 data_taxpayer_net | | _ | | | | 95 data_noaa_gov_dataset 96 data_nola_gov 97 data_nsw_gov_au 98 data_ny_gov 99 data_oaklandnet_com 100 data_ohouston_org 101 data_ok_gov 102 data_opencolorado_org 103 data_openpolice_ru 104 data_openva_com 105 data_oregon_gov 106 data_ottawa_ca 107 data_overheid_nl 108 data_providenceri_gov 109 data_qld_gov_au 110 data_raleighnc_gov 111 data_redmond_gov 112 data_rio_rj_gov_br 113 data_sagov_au 114 data_salzburgerland_com 115 data_seattle_gov 116 data_sfgov_org 117 data_somervillema_gov 118 data_southbendin_gov 119 data_stadt_zuerich_ch 120 data_surrey_ca 121 data_tainan_gov_tw 122 data_taxpayer_net | | | | | | 97 data_nsw_gov_au 98 data_ny_gov 99 data_oaklandnet_com 100 data_ohouston_org 101 data_ok_gov 102 data_opencolorado_org 103 data_openpolice_ru 104 data_openva_com 105 data_oregon_gov 106 data_ottawa_ca 107 data_overheid_nl 108 data_providenceri_gov 109 data_qld_gov_au 110 data_raleighnc_gov 111
data_redmond_gov 112 data_rio_rj_gov_br 113 data_sa_gov_au 114 data_salzburgerland_com 115 data_seattle_gov 116 data_sfgov_org 117 data_somervillema_gov 118 data_southbendin_gov 119 data_stadt_zuerich_ch 120 data_surrey_ca 121 data_tainan_gov_tw 122 data_taxpayer_net | | | | | | 99 data_oaklandnet_com 100 data_ohouston_org 101 data_ok_gov 102 data_opencolorado_org 103 data_openpolice_ru 104 data_openva_com 105 data_oregon_gov 106 data_ottawa_ca 107 data_overheid_nl 108 data_providenceri_gov 109 data_qld_gov_au 110 data_raleighnc_gov 111 data_redmond_gov 112 data_rio_rj_gov_br 113 data_sa_gov_au 114 data_salzburgerland_com 115 data_seattle_gov 116 data_segov_org 117 data_somervillema_gov 118 data_southbendin_gov 119 data_stadt_zuerich_ch 120 data_taxpayer_net | | | | | | 101data_ok_gov102data_opencolorado_org103data_openpolice_ru104data_openva_com105data_oregon_gov106data_ottawa_ca107data_overheid_nl108data_providenceri_gov109data_qld_gov_au110data_raleighnc_gov111data_redmond_gov112data_rio_rj_gov_br113data_sa_gov_au114data_salzburgerland_com115data_seattle_gov116data_sfgov_org117data_somervillema_gov118data_southbendin_gov119data_stadt-zuerich_ch120data_surrey_ca121data_tainan_gov_tw122data_taxpayer_net | | E . | | , , | | 103data_openpolice_ru104data_openva_com105data_oregon_gov106data_ottawa_ca107data_overheid_nl108data_providenceri_gov109data_qld_gov_au110data_raleighnc_gov111data_redmond_gov112data_rio_rj_gov_br113data_sa_gov_au114data_salzburgerland_com115data_seattle_gov116data_sfgov_org117data_somervillema_gov118data_southbendin_gov119data_stadt-zuerich_ch120data_surrey_ca121data_tainan_gov_tw122data_taxpayer_net | 101 | | | | | 105 data_oregon_gov 106 data_ottawa_ca 107 data_overheid_nl 108 data_providenceri_gov 109 data_qld_gov_au 110 data_raleighnc_gov 111 data_redmond_gov 112 data_rio_rj_gov_br 113 data_sa_gov_au 114 data_salzburgerland_com 115 data_seattle_gov 116 data_sfgov_org 117 data_somervillema_gov 118 data_southbendin_gov 119 data_stadt-zuerich_ch 120 data_surrey_ca 121 data_tainan_gov_tw 122 data_taxpayer_net | 103 | data_openpolice_ru | 104 | data_openva_com | | 109 data_qld_gov_au 110 data_raleighnc_gov 111 data_redmond_gov 112 data_rio_rj_gov_br 113 data_sa_gov_au 114 data_salzburgerland_com 115 data_seattle_gov 116 data_sfgov_org 117 data_somervillema_gov 118 data_southbendin_gov 119 data_stadt-zuerich_ch 120 data_surrey_ca 121 data_tainan_gov_tw 122 data_taxpayer_net | | | | | | 111data_redmond_gov112data_rio_rj_gov_br113data_sal_gov_au114data_salzburgerland_com115data_seattle_gov116data_sfgov_org117data_somervillema_gov118data_southbendin_gov119data_stadt-zuerich_ch120data_surrey_ca121data_tainan_gov_tw122data_taxpayer_net | | | | | | 113data_sa_gov_au114data_salzburgerland_com115data_seattle_gov116data_sfgov_org117data_somervillema_gov118data_southbendin_gov119data_stadt-zuerich_ch120data_surrey_ca121data_tainan_gov_tw122data_taxpayer_net | | 1 6 | | | | 115data_seattle_gov116data_sfgov_org117data_somervillema_gov118data_southbendin_gov119data_stadt-zuerich_ch120data_surrey_ca121data_tainan_gov_tw122data_taxpayer_net | | e | | 3 6 | | 117data_somervillema_gov118data_southbendin_gov119data_stadt-zuerich_ch120data_surrey_ca121data_tainan_gov_tw122data_taxpayer_net | | | | | | 119data_stadt-zuerich_ch120data_surrey_ca121data_tainan_gov_tw122data_taxpayer_net | | e | | | | 121 data_tainan_gov_tw 122 data_taxpayer_net | | ē | | 2 | | | | | | | | | 121 | | 122 | uata_taxpayci_nct | Continued on next column # Continued from previous column | | Continued from previous column | | | |------------|--|-----|---| | N° | Portal name/URL | N° | Portal name/URL | | 123 | data_ug | 124 | data_undp_org | | 125 | data_upf_edu_en_main | 126 | data_vermont_gov | | 127 | data_wa_gov | 128 | data_weatherfordtx_gov | | 129 | data_wellingtonfl_gov | 130 | data_winnipeg_ca | | 131 | data_wokingham_gov_uk | 132 | data_wu_ac_at | | 133 | data_zagreb_hr | 134 | datacatalog_cookcountyil_gov | | 135 | dataforjapan_org | 136 | datagm_org_uk | | 137 | datahub_io | 138 | datameti_go_jp_data_ | | 139 | datamx_io | 140 | datapilot_american_edu | | 141 | dataratp_opendatasoft_com | 142 | daten_rlp_de | | 143 | dati_lazio_it | 144 | dati_lombardia_it | | 145 | dati_toscana_it | 146 | dati_trentino_it | | 147 | dati_veneto_it | 148 | datos_alcobendas_org | | 149 | datos_argentina_gob_ar | 150 | datos_codeandomexico_org | | 151 | datos_gob_mx | 152 | datosabiertos_ec | | 153 | datosabiertos_malaga_eu | 154 | datospublicos_org | | 155 | donnees_ville_montreal_qc_ca | 156 | donnees_ville_sherbrooke_qc_ca | | 157 | dot_demo_socrata_com | 158 | drdsi_jrc_ec_europa_eu | | 159 | edx_netl_doe_gov | 160 | exploredata_gov_ro | | 161 | finances_worldbank_org | 162 | gavaobert_gavaciutat_cat | | 163 | geothermaldata_org | 164 | | | | · · | | gisdata_mn_gov | | 165 | govdata_de | 166 | hampton_demo_socrata_com | | 167 | health_data_ny_gov | 168 | healthdata_nj_gov | | 169 | healthmeasures_aspe_hhs_gov | 170 | hubofdata_ru | | 171 | iatiregistry_org | 172 | inforegio_azure-westeurope-prod_socrata_con | | 173 | irs_demo_socrata_com | 174 | leedsdatamill_org | | 175 | linkeddatacatalog_dws_informatik_uni-mannheim_de | 176 | nats_demo_socrata_com_login | | 177 | nycopendata_socrata_com | 178 | offenedaten_de | | 179 | open-data_europa_eu | 180 | open_nrw | | 181 | open_whitehouse_gov | 182 | opencolorado_org | | 183 | opendata_aberdeencity_gov_uk | 184 | opendata_admin_ch | | 185 | opendata_aragon_es | 186 | opendata_awt_be | | 187 | opendata_ayto-caceres_es | 188 | opendata_bayern_de | | 189 | opendata_brussels_be | 190 | opendata_caceres_es | | 191 | opendata_cnmc_es | 192 | opendata_comune_bari_it | | 193 | opendata_go_ke | 194 | opendata_go_tz | | 195 | opendata_government_bg | 196 | opendata_hu | | 197 | opendata_lasvegasnevada_gov | 198 | opendata_lisra_jp | | 199 | opendata_opennorth_se | 200 | opendata_paris_fr_opendatasoft_com | | 201 | opendata_rubi_cat | 202 | opendata_socrata_com | | 203 | opendata_swiss | 204 | opendatacanarias_es | | 205 | opendatadc_org | 206 | opendatagortynia_gr | | 207 | opendatahub_gr | 208 | opendatareno_org | | 209 | opengov_es | 210 | openresearchdata_ch | | 211 | opingogn_is | 212 | oppnadata_se | | 213 | parisdata_opendatasoft_com | 214 | performance_chattanooga_gov | | 215 | performance_smcgov_org | 216 | performance_westsussex_gov_uk | | 217 | pod_opendatasoft_com | 218 | portal_openbelgium_be | | 219 | public_opendatasoft_com | 220 | publicdata_eu | | 221 | rdw_azure-westeurope-prod_socrata_com | 222 | reportcard_santamonicayouth_net | | 223 | rs_ckan_net | 224 | scisf_opendatasoft_com | | 225
225 | stat_cityofgainesville_org | 226 | tourisme04_opendatasoft_com | | 223
227 | tourisme62_opendatasoft_com | 228 | transparenz_hamburg_de | | | 1 | | • | | 229 | udct-data_aigid_jp | 230 | westsacramento_demo_socrata_com | | 231 | wfp_demo_socrata_com_login | 232 | www_amsterdamopendata_nl | | 233 | www_civicdata_io | 234 | www_criminalytics_org | | 235 | www_dallasopendata_com | 236 | www_data_gc_ca | | 237 | www_data_go_jp | 238 | www_data_vic_gov_au | | 239 | www_datagm_org_uk | 240 | www_daten_rlp_de | | 241 | www_dati_friuliveneziagiulia_it | 242 | www_datos_misiones_gov_ar | | 243 | www_edinburghopendata_info | 244 | www_europeandataportal_eu | | 245 | www_hri_fi | 246 | www_metrochicagodata_com | Continued on next column #### Continued from previous column | N° | Portal name/URL | N° | Portal name/URL | |--|--|--|--| | 247
249
251
253
255
257 | www_nosdonnees_fr
www_offene-daten_me
www_opendata_provincia_roma_it
www_opendatamalta_org
www_opendataphilly_org
www_opengov-muenchen_de | 248
250
252
254
256
258 | www_odaa_dk
www_opendata-hro_de
www_opendataforum_info
www_opendatanyc_com
www_opendataportal_at
www_rotterdamopendata_nl | | 259 | www_yorkopendata_org | | | #### References Attard, J., Orlandi, F., Scerri, S., & Auer, S. (2015). A systematic review of open government data initiatives. *Government Information Quarterly*, 32(4), 399–418. Baum, C. and Di Maio, A. (2000). Gartner's four phases of e-government model. Gartner Group, 12. Berners-Lee, 5-Star Open Data. (2010). Retrieve from http://5stardata.info/en/ (accessed on Nov. 2017). Bertot, J. C., McDermott, P., & Smith, T. (2012). Measurement of open government: Metrics and process. 45th Hawaii International Conference on System Science, Hawaii (USA) (pp. 2491–2499). Bizer, C., Heath, T., & Berners-Lee, T. (2009). Linked data-the story so far. *International Journal on Semantic Web and Information Systems*, 5(3), 1–22. Cegarra-Navarro, J.-G., Garcia-Perez, A., & Moreno-Cegarra, J. L. (2014). Technology knowledge and governance: Empowering citizen engagement and participation. *Government Information Quarterly*, 31(4), 660–668. Conradie, P., & Choenni, S. (2014). On the barriers for local government releasing open data. *Government Information Quarterly*, 31, S10–S17. Dong, H., Singh, G., Attri, A., & El Saddik, A. (2016). Open Data-Set of Seven Canadian Cities. *IEEE Access*, 5, 529–543. Eggers, W. D. (2007). Government 2.0: Using technology to improve education, cut red tape, reduce gridlock, and enhance democracy. Rowman & Littlefield. Främling, K., Kubler, S., & Buda, A. (2014). Universal Messaging Standards for the IoT from a Lifecycle Management Perspective. *IEEE Internet of Things Journal*, 1(4), 319–327. Gil, Y., Szekely, P., Villamizar, S., Harmon, T., Ratnakar, V., Gupta, S., Muslea, M., Silva, F., & Knoblock, C.
(2011). Mind your metadata: Exploiting semantics for configuration, adaptation, and provenance in scientific workflows. *10th International Semantic Web Conference*, Bonn (Germany) (pp. 65–80). Gurstein, M. B. (2011). Open data: Empowering the empowered or effective data use for everyone?. First Monday, 16(2). Heald, D. (2012). Why is transparency about public expenditure so elusive?. International Review of Administrative Sciences, 1, 30-49. Hernandez-Perez, T., Rodriguez-Mateos, D., Martin-Galan, B, & Antonia Garcia-Moreno, M. (2009). Use of metadata in Spanish electronic e-government: the challenges of interoperability. *Revista Española de Documentacion Cientifica*, 32(4), 64–91. Huijboom, N., & Van den Broek, T. (2011). Open data: an international comparison of strategies. *European journal of ePractice*, 12(1), 4–16. *IANA*. (1988). Retrieve from http://iana.org (accessed on Nov. 2017). Janssen, K. (2011). The influence of the PSI directive on open government data: An overview of recent developments. Government Information Quarterly, 28(4), 446–456. Janssen, M., Charalabidis, Y., & Zuiderwijk, A.(2012). Benefits, adoption barriers and myths of open data and open government. Information Systems Management, 29(4), 258–268. Jarrar, Y., Schiuma, G., & Salem, F. (2007). Benchmarking the e-government bulldozer: Beyond measuring the tread marks. *Measuring business excellence*, 11(4), 9–22. Koussouris, S., Lampathaki, F., Kokkinakos, P., Askounis, D., & Misuraca, G. (2015). Accelerating Policy Making 2.0: Innovation directions and research perspectives as distilled from four standout cases. *Government Information Quarterly*, 32(2), 142–153. Kubler, S., Robert, J., Derigent, W., Voisin, A., & Le Traon, Y. (2016a). A state-of the-art survey & testbed of Fuzzy AHP (FAHP) applications. Expert Systems with Applications, 65, 398–422. Kubler, S., Robert, J., Le Traon, Y., Umbrich, J., & Neumaier, S. (2016b). Open Data Portal Quality Comparison Using AHP. 17th International Digital Government Research Conference on Digital Government Research, Shanghai (China) (pp. 397–407). Kučera, J., Chlapek, D., & Nečaskỳ, M. (2013). Open Government Data Catalogs: Current Approaches and Quality Perspective. *International Conference on Electronic Government and the Information Systems Perspective*, Prague (Czech Republic) (pp. 152–166). van Laarhoven, P.J.M., & Pedrycz, W. (1983). A fuzzy extension of Saaty's priority theory. Fuzzy Sets and Systems, 11(1), 199-227. Lee, G., & Kwak, Y. H. (2012). An open government maturity model for social media-based public engagement. *Government Information Quarterly*, 29(4), 492–503. Lourenço, R. P. (2015). An analysis of open government portals: A perspective of transparency for accountability. *Government Information Quarterly*, 32(3), 323–332. Mardani, A., Jusoh, A., & Zavadskas, E. K. (2015). Fuzzy multiple criteria decision-making techniques and applications – Two decades review from 1994 to 2014. Expert Systems with Applications, 42(8), 4126–4148. Martin, S., Foulonneau, M., & Turki, S. (2013). 1-5 stars: Metadata on the openness level of open data sets in Europe. *Research Conference on Metadata and Semantic Research*, Karlsruhe (Germany) (pp. 234–245). Moreno-Jiménez, J. M., Pérez-Espés, C. & Velázquez, M. (2014). e-Cognocracy and the design of public policies. *Government Information Quarterly*, 31(1), 185–194. Neumaier, S., & Umbrich, J. (2016). Measures for assessing the data freshness in Open Data portals. *International Conference on Open and Big Data*, Vienna (Austria), (pp. 17–24). Neumaier, S., Umbrich, J., & Polleres, A. (2016). Automated Quality Assessment of Metadata across Open Data Portals. *Journal of Data and Information quality*, 8(1), 2:1–2:29. Open Data Institute. Benchmarking open data automatically. (2015). Retrieve from https://theodi.org/guides/benchmarking-data-automatically (accessed on Nov. 2017). Open Government Partnership. (2011). Retrieve from https://www.opengovpartnership.org (accessed on Nov. 2017). - Open Government Working Group. 8 Principles of Open Government Data. (2007). Retrieve from https://public.resource.org/8_principles.html (accessed on Nov. 2017). - Open Knowledge International. Open Definition 2.1. (2017). Retrieve from http://opendefinition.org/od/ (accessed on Nov. 2017). - Ouzzani, M., Papotti, P., & Rahm, E. (2013). Introduction to the special issue on data quality. Information Systems, 38(6), 885-886. - Parycek, P., & Sachs, M. (2010). Open government-information flow in Web 2.0. European Journal of ePractice, 9(1), 1-70. - Reiche, K. J., Höfig, E., & Schieferdecker, I. (2014). Assessment and Visualization of Metadata Quality for Open Government Data. *Conference for E-Democracy and Open Government*, Krems an der Donau (Austria) (335). - Ren, G.-J., & Glissmann, S (2012). Identifying information assets for open data: the role of business architecture and information quality. *IEEE 14th International Conference on Commerce and Enterprise Computing*, Hangzhou (China) (pp. 94–100). - Rojas, L. A. R., Bermdez, G. M. T., & Lovelle, J. M. C. (2014). Open Data and Big Data: A Perspective from Colombia. In Uden, L., Fuenzaliza Oshee, D., Ting, I.-H., & Liberona, D. (Eds.) *The 8th International Conference on Knowledge Management in Organizations* (pp. 35–41). Springer International Publishing. - Saaty, T. L. (1986). Absolute and relative measurement with the AHP. The most livable cities in the United States. *Socio-Economic Planning Sciences*, 20(6), 327–331. - Saaty, T. L. (1977). A scaling method for priorities in hierarchical structures. Journal of mathematical psychology, 15(3), 234-281. - Saaty, T. L. (1980). The Analytic Hierarchy Process. New York: McGraw-Hill. - Sieber, R. E., & Johnson, P. A. (2015). Civic open data at a crossroads: Dominant models and current challenges. *Government Information Quarterly*, 32(3), 308–315. - Sugimoto, S. (2014). Digital archives and metadata as critical infrastructure to keep community memory safe for the future–lessons from Japanese activities. *Archives and Manuscripts*, 42(1), 61–72. - Tolbert, C. and Mossberger, K. (2006). The effects of e-government on trust and confidence in government. *Public Administration Review*, 66(3), 354–369. - Tygel, A., Auer, S., Debattista, J., Orlandi, F., & Campos, M. L. M. (2016). Towards Cleaning-up Open Data Portals: A Metadata Reconciliation Approach. *IEEE 10th International Conference on Semantic Computing*, Laguna Hills (USA) (pp. 71–78). - Veljković, N., Bogdanović-Dinić, S., & Stoimenov, L. (2014). Benchmarking open government: An open data perspective. *Government Information Quarterly*, 31(2), 278–290. - Vetrò, A., Canova, L., Torchiano, M., Minotas, C. O., Iemma, R., & Morando, F. (2016). Open data quality measurement framework: Definition and application to Open Government Data. *Government Information Quarterly*, 33(2), 325–337. - W3C, Data Catalog Vocabulary (DCAT). (2014). Retrieve from http://www.w3.org/TR/vocab-dcat/ (accessed on Nov. 2017). - Waugh, P. Improving data quality on data.gov.au. (2015). Retrieve from https://blog.data.gov.au/news-media/blog/improving-data-quality-datagovau (accessed on Nov. 2017). - Welle Donker, F., & van Loenen, B. (2017). How to assess the success of the open data ecosystem?. *International Journal of Digital Earth*, 10(3), 284–306. - Zissis, D., & Lekkas, D. (2011). Securing e-Government and e-Voting with an open cloud computing architecture. *Government Information Quarterly*, 28(2), 239–251. - Zuiderwijk, A., Janssen, M., Choenni, S., Meijer, R., & Alibaks, R. S. (2012). Socio-technical impediments of open data. *Electronic Journal of eGovernment*, 10(2), 156–172. - Zuiderwijk, A., Jeffery, K., & Janssen, M. (2012). The potential of metadata for linked open data and its value for users and publishers. JeDEM-eJournal of eDemocracy and Open Government, 4(2), 222–244. - Zuiderwijk, A., & Janssen, M. (2014). Open data policies, their implementation and impact: A framework for comparison. *Government Information Quarterly*, 31(1), 17–29. - Zuiderwijk, A., & Janssen, M. (2014). The negative effects of open government data investigating the dark side of open data. *15th Annual International Conference on Digital Government Research*, Phoenix (USA) (pp. 147–152). - Zuiderwijk, A., Janssen, M., Susha, I. (2016). Improving the speed and ease of open data use through metadata, interaction mechanisms, and quality indicators. *Journal of Organizational Computing and Electronic Commerce*, 26(1-2), 116–146.