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Abstract. This article presents a method to obtain a polygonal mesh representing the ramified 

structure of a tree. We use a method based on L-systems to model the tree. A refining process is 

applied once the model of the tree is obtained. Soft transitions are achieved in the areas of the 

tree where there are divisions. In this way, we avoid the possible superimposition and 

discontinuity problems in geometry. As a result of this process, a continuous polygonal mesh is 

obtained. This mesh represents all the branches of the tree, allowing the homogeneous 

application of textures and algorithms to simplify meshes. 

Keywords: Computer graphics, polygonal mesh, modelling of natural phenomena, modelling of 

vegetable species. 



 

1 Introduction 

The synthetic creation of plants represents a great challenge for people working in computer graphics. 

Plants that are seen at a close distance have to display soft transitions in the branches and a high level of 

detail at any scale. As a result of this, all plant models are bound to be characterised by being very 

complicated and having a non-continuous representation. 

In this article a method which permits modelling of a tree or plant, or any kind of branched structure, is 

presented. It uses a single polygonal mesh that can be easily simplified. However, the application of this 

kind of technique presents difficulties storing different levels of detail and the transition among them. 

This is why a soft transition multiresolution model suitable for branched structures should be developed. 

In the following section, the main current methods for tree modelling are analysed, together with the kind 

of geometry used to describe them. In addition, the visualization acceleration techniques used by different 

authors are studied. The third section explains the algorithm of mesh production, which is divided into 

three parts: tree representation, node refining, and obtaining the polygonal model. In the fourth section, 

we present our results. Finally, in the last section we present our conclusions and future enhancements of 

our method. 

2 Background 

Modelling vegetal elements is a field inside computer graphics, which has been the object of study by 

many authors. Among the different approaches, we highlight two: modelling based on botanical 

principles; and modelling that searches for realism without necessarily copying natural phenomena. It 

may also be observed from the study of different models that they are either defined through formal 

methods to describe the branches of the structure; or through techniques obtained from the observation of 

different elements. 

Initially, the main motive for modelling vegetal elements was biological. The first steps in this field were 

taken by the biologist Aristid Lindenmayer, who developed the L-system [1] for its application in cell 

interaction. The first application of L-system to tree modelling in computer graphics can be found in [2]. 

This simple model was later developed by Prusinkiewicz [3][4] for its application to vegetal elements. 

The model is based on the concepts of database amplification and rewriting rules. Starting from an initial 



 

module called axiom, and applying the rules in a parallel and consecutive way, a chain of symbols is 

obtained which can be interpreted graphically. The symbols making up the language can have some 

associated parameters. The model incorporates context-sensitive L-systems, which permits the simulation 

of endogenous phenomena in individuals, and the possibility of applying the rules randomly to create 

different individuals of the same species. This model has been one of the most commonly used and it has 

been extended for the simulation of different phenomena, such as pruning (topiary and obstacles) [5], or 

the interactivity of plant development with its environment (competition for light, space, or resources) [6]. 

Additionally, particle systems have also been used to model trees and improve their rendering. The 

method by Reeves [7] models a tree by starting from the trunk and creating the branches recursively. The 

process output is a tree data structure where each node defines one segment of a branch. 

Bloomenthal [8] introduces a method that represents trees using points and connections. This method uses 

generalized cylinders to represent the branches. It supports connecting branching limbs with a free-form 

surface. Although this method solves branch connection in a nice way, it is a particular and reduced 

model because it can only pass information by lineage. The resulting tree is not a homogeneous polygonal 

mesh.   

Oppenheimer [9] uses fractals for tree modelling. There is a parameterisation to regulate the relation 

between the nodes, the angle between the trunk and the branches, and the size of the branches and the 

trunk, how the branches are narrowed, or the number of ramifications per branch. These parameters may 

have random variations to avoid fractal auto-similarity. 

De Reffye et al. [10] present a model entirely based on botanical principles taking into account the 

following information: the way the trees grow, how they occupy the space, or where and how the leaves, 

flowers and fruits are located. This method models the bud activity, which at any given moment may: 

blossom, stop its growth, become an internode, or die. These events happen according to stochastic laws 

that characterise each variety or each species. The procedure output is a set of elements (internodes, 

flowers, leaves, and fruits) which make up the structure of the tree. 

Weber and Penn [11] put forward a method based on the parameterisation of certain features of trees 

obtained after observing different species. The model is similar to that of Oppenheimer, although it avoids 

auto-similarity so as not to limit the representation potential of the method. Children branches inherit 

some features from their ancestors but others may be completely different. 



 

Lintermann and Deussen [12] propose a mixture of geometrical modelling techniques and rule 

applications. The tree is represented by a graph. Each graph component includes data and algorithms for 

development. There are three kinds of components: graphic models, multiplication of other components, 

and global modelling techniques. 

The model used in this paper to create trees is based on parametric L-systems [13]. The main differences 

lie in the use of random variables in the system and the creation of special modules to permit the control 

of chain derivation. 

2.1 Resulting Geometry 

There is a wide range of models to generate trees. However none creates a homogeneous geometrical 

structure to describe the generated objects. The results of the studied methods are combinations of 

different geometrical models. Every model represents a branch or a branch segment. The most commonly 

used primitives are: truncated cones, generalised cylinders or polygon meshes for each branch. 

 

Figure 1. Visibility and continuity problems in junctions where primitives meet 

The use of some methods (truncated cones, cylinders, mesh per each branch) to obtain curved branches 

may provoke some discontinuities. Problems may also arise when representing junctions, since some 

polygons of different branches may superimpose, with the consequent visibility problems (see Figure 1). 

For this reason, we propose the generation of a single mesh to represent the structure of a tree. 

2.2 Acceleration of Visualization 

The large amount of geometry necessary to model natural environments causes a number of problems at 

rendering time. Not even the most powerful graphic accelerators are able to generate high enough frame 



 

rates for the interactive rendering of a scene showing a few trees, if a brute-force algorithm is used. That 

is why it is necessary to use techniques to accelerate the visualisation of this kind of scene. 

Nowadays, one of the most important applications of tree modelling is the rendering of ecosystems. To 

achieve this, it is necessary to represent simultaneously a large number of trees. In this kind of 

application, the rapid visualisation of each model is very important. There are many different methods for 

the rendering acceleration: 

• Weber and Penn [11] put forward the reinterpretation of geometry depending on the distance to the 

observer, drawing branches as lines — or not drawing them — as the distance increases. 

• House et al. [14] use techniques of level of detail as an acceleration method. 

• Max [15] uses textures to replace geometry. 

Obtaining of a single mesh will allow the use of a multiresolution structure. It can be adapted to the 

branch structure of the model. 

3 Materials and Methods 

The construction of a tree made from a single triangle mesh by interpreting a chain resulting from the 

derivation of an L-system undergoes three different phases: 

• The phase of modeling the tree. 

• The phase of obtaining the polygonal model. 

• The phase of refining the tree nodes. 

The result of this last phase is a single 3D triangular mesh describing the tree built with the RL-system. 

3.1 Representation of the Tree 

The interpretation of the chain is based on the ‘turtle’ metaphor normally used when developing graphic 

applications in the programming language LOGO [4]. A position, an orientation, and a stack to store 

previous positions and orientations characterise this turtle.  

The turtle orientation can be varied by means of rotation movements on each of the 3D orthogonal axes 

associated with the turtle, whereas the movement is always generated in the direction marked by the H 



 

axis (heading). In each displacement, the turtle creates a contour (either elliptical or circular) in the initial 

position and another in the final position. The size of that contour will depend on the thickness and 

inclination of the current branch. Contours are later used to produce the geometry of the tree. 

To store the contours generated by the turtle, a hierarchical tree structure is created. Each node of the tree 

consists of: the contour generated by the turtle, a transformation matrix, a pointer to the next sibling node, 

a pointer to the first child node and a pointer to the parent node (see Figure 2). The matrix contains the 

rotation and translation operations to enable the turtle to go from the previous node (parent node) to the 

current one. The parent node is the one from which the turtle started (start movement point) before 

reaching the current node (final movement point). All the children nodes from the same parent are linked 

through a list which is joined according to the order in which they were generated. A parent node has 

direct access only to the first child node. 

     

Figure 2. Content of a node 

Starting from this hierarchical structure that has been obtained from the interpretation of the chain of 

symbols produced by the L-system, a triangular mesh is generated which respects the contour shapes and 

the topology established by the structure obtained in this phase. The mesh is generated by joining the 

vertices of the two contours associated to each branch. 

3.2   Obtaining the Polygonal Model 

We have developed a software library for the construction of the polygonal model. It enables the creation 

of a triangular mesh from a sequence of contours. Attempts have been made since 1970s to reconstruct 

volumes from a group of flat contours. The importance of this algorithm is a consequence of applications 

in both engineering (Computer Aided Design) and medicine. It is in the latter where development has 

root 

node1 

node12 node11



 

been fostered with the appearance in the early seventies of examination instruments such as nuclear 

magnetic resonance (NMR) or computerised axial tomography (CAT). 

The library developed in [13] solves the problems identified by Meyers and Skinner [16], and improves 

the efficiency of other reconstruction methods. The reconstruction library is applied when generating 

triangle meshes between pairs of consecutive sections. In the case of the algorithm presented in this 

paper, the lower section is made up of one contour from the father node. All the children nodes of the 

current father node make up the upper section. The section construction and the mesh result are shown on 

Figure 3.  

 

Figure 3. Generation of  the triangular mesh between two adjacent sections 

As Figure 3 shows, the direct application of the reconstruction algorithm for generating a triangular mesh 

from the structure generated in the phase of the representation of the tree shows a geometry that is 

visually erroneous at the meeting point with the father node. To avoid this problem, we propose a refining 

algorithm. 

3.3 Refining the Junctions 

An algorithm called “refining by intervals” has been developed to correct the geometrical errors produced 

at the junctions of the branches (tree nodes). This method enables the addition of a group of new 

contours, equi-spaced in height, to the structure between the parent node and its children. These contours 

are added from the meeting point of the ramifications until they are completely separated (see Figure 4). 

The height of the first contour is computed by adding a constant amount to the height of the parent 

contour. The heights of subsequent contours are computed adding the same constant increment. The 

conturs thus generated are equally spaced in height. 

To achieve the refining by intervals, the tree branches are asssumed to be represented through contours 

defining cylinders or truncated cones with equal height and width to the length and thickness of the real 

branch. Following this assumption, the generation of intermediate contours follows a three-step sequence: 



 

 

 

Figure 4. Contour insertion made by the method of refining at intervals. At each height the cylinders are 

intersected by a horizontal cutting plane that moves upwards at equi-spaced intervals. 

• Calculation of the parameters of the ellipses obtained by sectioning the cylinders at the specified 

height (minor radius re, major radius Re, centre C and rotation δ). 

 

Figure 5. Front orthographic views of the cylinders (a,b,c) and up view of the ellipse obtained (d). This figure 

shows the data needed to obtain the parameters of the ellipse. 



 

First, the ellipse radii are calculated (1) (see Figure 5, pictures a and b), where v  is the vector 

along the axis of one of the branch cylinders, p  is the vector perpendicular to v  from the 

center of the cylinder to the cylinder’s edge, uvp  is the unit vector on the direction of the 

projection of v onto the base of the other cylinder, λ is the size of this projection and α is the 

angle between v and uvp   : 

ce rr = , ( )αsin
e

e
rR =      (1) 

To obtain p coordinates, we know vp ⊥   (see Figure 5, pictures b and c): 

(2) 

 

 

Then, the ellipse centre is calculated, from the height h (Figure 5b) where it must be moved to, 

and the angle of rotation necessary to rotate it to its final position (Figure 5d), for simplicity we 

suppose that S is at the origin: 
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• Generation of a single contour, from the ellipses obtained, for each of the interval sets from the 

parent node to the point at which all the ramifications separate (see Figure 6): 

First, the ellipses are approximated by polygons and the vertices of all ellipses are sorted in 

counterclockwise order. The number of vertices is selected depending on the size of the branch 

and the visual accuracy needed at the branches connections 

Starting at a point belonging to an ellipse and external to others we follow the edges of the 

current ellipse until we find an intersection with another ellipse 

Then, we create a new edge from the first vertex of the current edge to the last vertex of the edge 

intersected of the other ellipse. Then we follow the edges of the new ellipse (see Figure 6 a) 
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If the new edge created intersects with other edge, we have to create another edge until it does 

not intersect with other edge. In figure 6b the new edge (dotted line) intersects with an edge of 

ellipse 3, and then we create a valid edge from ellipse 1 to ellipse 3. 

When this process is made for all contours, we obtain a structure like the one shown in figure 6c. 

• Finally, a node is constructed with every contour generated in the previous step. This is added to the 

tree structure generated by the interpretation of the entry chain to the current algorithm. The addition 

of this node is made with respect to its structure (see figure 7). 

The number of inserted nodes will depend exclusively on the inclination of the cylinders. If their 

inclination is small, with respect to the plane defined by the contour of the parent node, the lack of 

intersections between the ellipses will be detected by the method in a few iterations. Subsequently, the 

number of nodes to insert will be smaller. On the contrary, if the cylinders show a large inclination angle, 

the separation point will be quite far from their base. Therefore, a lot of intermediate nodes will have to 

be inserted for the same interval value. 

 Direction in which 
the ellipses points 

are ordered 

Next point Current point Starting point 

(a) 
 

Ellipse 2 

Ellipse 1 Ellipse 3 

(b) 

 

 

Figure 6. Generation of a single contour from the detection of intersections between edges 



 

 

Figure 7. Insertion of the contour joined  to the tree structure. 

4   Results 

The result of the algorithm described in this article is a single triangle mesh representing in three 

dimensions the tree described by the chain of symbols taken as input. This mesh avoids visibility and 

continuity problems as shown in Figure 8 compared to Figure 1. The result of applying the reconstruction 

algorithm developed is shown in Figure 9. These results are shown both with, and without, application of 

the refining method. The result of the reconstruction with refining is visually better than the one without. 

Table 1 shows a comparison of the number of triangles generated with the method of refining at intervals 

compared to the direct method. This table shows that the visual improvement obtained by the method of 

refining at intervals is made by increasing the spatial cost by three times. Contour resolution refers to the 

number of vertices generated for each contour. 

 

Figure 8. The single mesh gives solutions to the visibility and continuity problems from previous pictures. 

This increase in the spatial cost suggests the use of a simplification algorithm to reduce the amount of 

geometry generated for the above meshes. For the reconstructions obtained with the algorithm described 



 

in this article, a decimation algorithm [17] can be applied that achieves up to an 80% reduction in the 

number of triangles representing the mesh without affecting the visual improvement obtained with the 

method of refining at intervals. This process is possible thanks to the creation of a single mesh to 

represent the whole tree. We have designed a VRML world with four levels of detail of the tree (fig 10a). 

We apply force effects to the tree obtaining good visual results because there is no discontinuity over the 

branches (fig 10b). 

 

 

Polygons generated 
Contour 

resolution 
Original tree Interval refining

5   4998 9708 

9 5028 10142 

12 5343 13762 

15 8435 24482 

Table 1. Comparison of the spatial cost of the reconstructed tree with the direct method and with refining at intervals 

for different contour resolutions 

 



 

 

Figure 9. Result of applying the developed algorithm to a chain generated by a RL-system. Shown on the left is 

the resulting 3D tree without the application of the method of refinement at intervals. On the right, the same 

tree with refined nodes is shown 

 

Figure 10. Result of applying a decimation algorithm (a) and forces effects over the tree (b) 

5   Conclusions and Future Work 

This article describes a new method to represent homogeneously a branched structure, for example a plant 

or tree. The representation of the model using a single polygonal mesh has the following advantages: 

• It is easier to apply continuous textures over the whole model because we have a continuous mesh 

instead of a heterogeneous group of primitives. 

• The problems of discontinuities and geometry superimposing are correctly solved. 

• We can implement dynamic models on the mesh: force effects. 



 

• It is possible to apply polygonal mesh simplification algorithms. 

This method has been tested with trees and plants, and it can be applied to other branched structures like 

blood vessels and pipes. 

The use of levels of detail through the application of simplification methods has the drawbacks of an 

increase in spatial costs and the appearance of discontinuities between the different LODs. It may produce 

undesirable visual effects when making the transition between two levels. Therefore, we propose as future 

work the implementation of a multiresolution model to support smooth transitions between LODs at a 

reasonable spatial cost. This model must take into account the branched nature of the objects represented. 

The decimation of the mesh must begin on the thinner branches. And the trunk must be decimated at the 

end of the process. It must avoid polygonal simplifications between disjoint branches. To improve the 

descriptive power of the method, the use of parametric curves is proposed to represent the contours and 

trajectories of the branches. 
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