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Abstract

This paper proposes a new method for isotropic remeshing of triangulated sur-
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rameter space, where the specified density function is used for weighting. We finally
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from parameter space. A precise control over the sampling is obtained through a
flexible design of the density function, the latter being possibly low-pass filtered
to obtain a smoother gradation. We demonstrate the versatility of our approach
through various remeshing examples.
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1 Introduction

Many applications in simulation, visualization, or computer graphics require a
model of 3D surface geometry. The most commonly used representation is the
triangle mesh. Such meshes can be the result of careful design using modeling
software, or may come as an output of a scanning device, associated with
reconstruction or computer vision algorithms.

In this paper, we make the assumption that geometric details are captured
accurately in the given model. The original mesh can be seen as one partic-
ular instance of the surface geometry of interest. We aim at generating new
instances (e.g., new triangle meshes) of this surface geometry that better fit
user-specified demands on complexity, sampling, regularity, connectivity, gra-
dation, and quality. For example, a laser scanner often performs a uniform
sample acquisition while sweeping a line or point-based beam, without any a
priori knowledge of the surface geometry. This may lead to under-sampling or
oversampling of certain regions, mainly depending on the angle between the
laser beam and the surface normal. Such drawbacks are often alleviated by
tuning the sampling rate sufficiently high. Note that the same problems arise
for surface extraction from volume data using marching cubes algorithms,
where choosing a sufficiently fine grid may lead to overly complex models. In
general, simplification techniques are then applied to reduce the complexity
and better adapt the sampling to geometry. The lack of flexibility found in
the (re-)sampling strategies of most simplification algorithms motivates this
work.

Our goal is to provide a flexible technique to remesh triangulated surfaces so
that the remeshed models are better suited to a subsequent process, e.g. vi-
sualization, finite element simulation, storage, transmission, or any mesh pro-
cessing technique. See Figure 1 for example results of the proposed remeshing
technique.

1.1 Related Work

Mesh generation received much attention from various interest groups ranging
from Computer Graphics over Numerical Analysis to Computational Geome-
try. Finite element mesh generation usually amounts to finding a partition of
a given domain that is optimal according to some criteria related to shape of
elements, angles, sizes or complexity (see [2,3]). In most cases only the frontier
of the domain has to be given, the goal being to discretize this domain in ac-
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1.1.2  Meshes for Graphics

Computer graphists mainly focus on remeshing for efficient visualization or
geometry processing [28,55]. In an early work, Turk [58] proposed a re-tiling
technique that resamples an input mesh by applying a relaxation method
to a set of points initially placed at random on the mesh: after this oper-
ation, the distribution of the points is correct and the original vertices can
be removed. We should also mention mesh simplification [25,42,31,62] and re-
finement [4] methods, which also generate a new mesh starting from a given
one. Such schemes primarily aim at adapting the complexity of the mesh to
an acceptable level for graphics visualization hardware or simulation algo-
rithms. For efficient mesh processing, most previous works have focused on
semi-regular remeshing [40,38,29,37,32], the latter techniques often requiring
a first simplification stage. Kobbelt et al. focus on feature-sensitive remeshing
techniques [60,10,11] to reduce the artifacts produced when converting a given
geometry into a triangle mesh.

More recently, Gu et al. [27] proposed a technique for regular remeshing of
surface meshes. Surfaces of arbitrary genus are first cut into patches, then
parameterized using a signal-adapted technique [53], and finally represented
as a set of images that store the geometry, the normals and any attributes used
for visualization purpose. Such a storage is compact and drastically simplifies
the rendering pipeline since all cache indirections found in usual irregular
mesh rendering are simply removed. In a recent work, we have proposed an
interactive sampling technique [1]. A mesh is decomposed into a set of disk-like
patches, and each patch is parameterized. We then measure some geometric
and differential quantities and generate a set of maps inserted in a pipeline
of signal processing algorithms. The output of this pipeline is a density map,
interactively resampled using an error diffusion technique commonly used for
gray level image halftoning. Although the technique described in [1] offers
a fairly good level of flexibility, its main drawback is the pixel grid layout
constraint that turns out to be memory consuming for complex models with
a high range of area distortion.

1.2 Goals and Contributions

Based on the above observations, the goal of this paper is to remove the con-
straint coming from the regular and uniform structure of images for both
sampling and optimization. This led us to extend the concept of direct er-
ror diffusion onto triangle meshes for sampling. The motivation of this paper
being also to formulate the issue of surface sampling with a larger set of Com-
putational Geometry tools at hand, we demonstrate the relevance of building
a weighted centroidal Voronoi diagram for distributing a set of samples in
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Fig. 2. Remeshing pipeline.

accordance with a specified density function. Another motivation of this pa-
per is to move from the unit length paradigm used for numerical analysis [26]
to the unit cell tiling, well suited for targeted application, i.e., surface shape
modeling. The first technique aim at generating meshes with unit edge length
measured in a control space metric, while our algorithm tends to partition
the surface with unit density integrated over the cells of a centroidal Voronoi
diagram. The latter property is indeed intricately related to the notion of
1sotropic sampling.

1.3 Owerview of the Algorithm

The first stage of our algorithm provides an initial geometry resampling by per-
forming an error diffusion process directly over the original triangle mesh (see
Section 3). The second stage computes a conformal parameterization of the
original model over a planar domain, connects the samples using a constrained
Delaunay triangulation built in parameter space, then optimizes the sampling
by building a weighted centroidal Voronoi diagram in parameter space (see
Section 4). Figure 2 shows the tasks requiring a parameter space.

2 Preliminaries

All meshes considered in this paper are presumed to be oriented manifolds of
arbitrary genus and possibly with boundary. They are seen as an approxima-
tion of a underlying piecewise smooth surface. The input of the algorithm is a
set (M, F,ds,dy), where M is a triangular mesh, F is a set of feature edges
(defined below), ds : M — R is an importance function that specifies the ideal
sampling density for every surface point, and d;y : 7 — R is an importance
function that specifies the density for every point located on a feature edge.

We assume the density functions d, and df to be specified by the user or
deduced from differential quantities estimated on the input mesh. In our ex-



Fig. 3. Two models and their feature skeleton, made of both open and closed back-
bones.

periments, we use discrete differential geometry techniques [46] to approximate
the curvature on every vertex or on the wedges surrounding a corner or a crease
vertex. We also provide some options for the user to specify a transfer function
(typically a gamma function as described in [1]) and the amount of low-pass
filtering over the density functions to control the final mesh gradation. Before
diffusing the error using the resulting density function, we extract a set of
features edges from the original mesh, which receive special treatment during
processing. Feature edges are of three types:

e the sharp edges represent the main features of the object; they are classified
using simple dihedral angle thresholding in our implementation, yet a more
sophisticated approach could be used (see e.g. [33,61] to cite a few);

e the boundary edges are incident to exactly one face;

e the cut edges are additional edges which we also need to consider separately
for parameterization of closed or genus > 0 models (see Section 4.1).

Similarly to Botsch and Kobbelt [10], we then chain the set of incident feature
edges as a set of backbones. The resulting feature skeleton will be resampled
as a set of curves (see Figure 3).

3 Error Diffusion

Because of its simplicity and efficiency, the error diffusion algorithm received
much attention [59,47] since its introduction in 1976 by Floyd and Stein-
berg [22]. Before describing our algorithm, we review the concept of error
diffusion when used for grey level halftoning of images.



3.1  Concept

The core principle of error diffusion in image halftoning consists of processing
each pixel of an input signal image according to a path: every pixel is binary
quantized according to a given threshold. The signed quantization error is
then distributed to its unprocessed neighbors according to error distribution
coefficients. Elaborating an error diffusion algorithm consists of finding the
best processing path and choosing the best distribution coefficients so that the
sampling spectrum exhibits a so-called blue noise profile (see [47,34] for more
details). One of the most appealing property of this concept for our application
lies into the global preservation of density offered by error diffusion. Such a
property means that the average grey level of the discretized image is closely
equal to the one of the original image. As shown in [1], this guarantees an
exact vertex budget for any specified sampling.

In our context, the task of sampling consists of distributing a set of samples
on the original mesh triangles or feature edges so that they locally match the
specified density. If one looks at the density as an input signal to discretize,
this task is not far from the issue of image halftoning. As shown in [1], recent
error diffusion techniques [47] work fairly well for a limited class of models. In
this paper we remove the discrete constraints of the image pixel grid layout
by generalizing the concept of error diffusion directly over the original mesh
triangles. This task is achieved by organizing a fluency over the mesh triangles
for the smooth parts (i.e., 2D error diffusion) and along the backbones of the
feature skeleton (i.e., 1D error diffusion).

Before performing error diffusion, the user specifies a number of vertices V' to
distribute on the original mesh. The integral of the density functions, defined
both on smooth parts and on the feature skeleton, represents the amount of
density to equally distribute among the V' samples. To fit the exact budget
we first need to calibrate the sampler.

3.2 Sampling Calibration

Recall that we have a density function dy; and dy over the surface and the
features, respectively, which specify what would be the local ideal distribution
of the samples. By summing the density function over the surface and the
features, we obtain some quantities with different unit. This requires to de-
fine two distinct sampling rates: Ry, expressed in #samples per unit amount
of surface density and Ry, in #samples per unit amount of feature density.
For uniform sample distribution, the density functions d, and dy simplify to
equally constants. Uniform sampling means that every surface sample ideally



covers the same amount of area and that every feature sample covers the same
length of feature curve. Since we seek isotropic sampling, the triangles can be
considered as being ideally equilateral, allowing to deduce the local ideal edge
length once each triangle area is known, and therefore link the sampling rates
R, and Ry.

Fig. 4. Uniform plane tiling with triangles.

Let us consider a perfect uniform isotropic tiling of the plane with a triangle
mesh (Figure 4). By Euler’s formula, the number of triangles 7" per area unit
is equal to twice the number of samples per area unit, namely 7' = 2- R,. The
ideal area of every triangle is therefore equal to A = 1/(2R;). From geometry
of equilateral triangle we know:

2

a
A=—
4\/3

where a is the triangle edge length. From the relation Ry = 1/a we deduce:

2
R, = B
V3

We now write the repartition of resources between smooth parts, features and
corners to be preserved:

R, - / d,(u,v) dudv + R; - / di(u)du+C =V (1)

sur face features

where C' denotes the total number of corners and V' denotes the global vertex
budget. Practically, the density functions dy and dy are linearly interpolated
over the mesh triangles and the feature edges. The number of corners being
known, as well as the triangle areas and the feature edges lengths, we deduce
Rs and Ry required for the uniform sampling process. The same formula is
performed for the non-uniform case after suited conversion.

3.3  Diffusion over Triangles

We replace the pixels of a standard error diffusion technique by the mesh tri-
angles, and organize upon them a fluency that goes through their edges (see
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Fig. 5. A fluency is organized over the mesh triangles. Each triangle is classified
according to its number of input and output edges during the error diffusion process.

Figure 5). The next task is to find a processing path or tree over the triangles
so that any residual error teleport is minimized, and to build a set of distri-
bution coefficients.

For a given processing path, the diffusion algorithm then proceeds as follows
for every current face f:

(1) read the total amount of density on f;

(2) deduce the number of samples to distribute on the current face. In the
uniform case they are randomly sampled in the current triangle using
Turk’s technique [57], combined with a low-discrepancy Sobol sequence
for efficiency. The non uniform case is correctly handled using an adap-
tation of Rocchini et al. technique [52] after suited discretization of the
density function. This number is rounded to the nearest integer value,
such a rounding generating a signed quantization error e, translated in
amount of density, to diffuse on incident unprocessed faces;

(3) the error e is diffused to the unprocessed faces incident to f through the
corresponding edges and proportionally to their length. This heuristic
mimics the notion of “geometric aperture” for diffusion;

(4) flag f as processed,;

(5) pick the next face to proceed and restart from step 1 if any, stop otherwise.

Finding a processing path is at the heart of any error diffusion sampling al-
gorithm. We now describe three different approaches depending on the genus
and number of boundaries of the original triangle mesh to be sampled.

3.3.1 Region Growing Diffusion

This first approach is suited to genus 0 models with at most one boundary.
The algorithm picks an arbitrary seed face (on the boundary if there is) and
processes by extending a region triangle by triangle without generating any
split on its edge boundary. The unprocessed region being topologically equiva-
lent to a disk, it is considered as a triangulated, simple polygon. If this polygon



contains no interior vertex, then it has at least two so-called ear-triangles [45]
that we used to expand the processed region. If this polygon contains some
interior vertices, then we search for ear-triangles and use one of those if exist.
If there is no, we deduce that there exists at least one triangle with exactly
one edge incident to the boundary and one interior vertex, used to expand the
processed region.

3.8.2  Single-Strip Diffusion

This second approach is suited to arbitrary models with at most one boundary.
In a recent work, Eppstein and Gopi [19] describe a way to efficiently compute
a strip of an arbitrary triangulated surface without boundary. In other words,
the surface is cut along some of its edges such that the resulting mesh is a
strip. In the dual graph of the surface, this corresponds to a path which covers
all triangles exactly once. Such a path does not exist in all cases; therefore,
some triangles have to be split into two triangles. Eppstein and Gopi prove,
however, that the increase in the number of triangles in their algorithm is at
most 50%, and, in practice less than 2%. The algorithm relies on finding cycles
in the dual graph, where each vertex has degree three, using first a perfect
matching on this dual graph. It has a running time of O(nlog®nloglogn),
where n is the number of triangles.

Although more involved, this elegant result can be directly applied to our
problem: the error is simply diffused to the next triangle on the strip. Hence,
the fluency starts at the first triangle of the strip, diffuses the error over the
strip, and ends on the last triangle with zero quantization error. The splitting
of triangles in two halves does not harm: the ideal number of samples to
distribute in the two subtriangles is defined to be half of the ideal number of
samples in the original triangle. This technique has the interesting property
that each triangle receives, by diffusion, a quantization error from (at most)
one triangle.

3.3.83  Spanning-Tree Diffusion

This third approach is suited to arbitrary surface with or without boundary.
By dualization, we look at the triangles as the vertices of a graph. First,
we compute a spanning tree of this connected graph, rooted at an arbitrary
triangle. Then we sample the triangles by diffusing the errors from the end
leafs to the root. More precisely, assume that each unprocessed triangle ¢ has
received a signed error e(t) in the previous part of the algorithm; to sample a
given triangle t:

e recursively sample the children of t;
e compute the ideal (float) number of samples to distribute on ¢, and round it.

10



The ideal number of samples is computed by summing up the ideal density
of t and the result of up to two errors distributed upon it at distinct moments
in time during the error diffusion process;

e transmit the excess or loss of samples obtained with the rounding to the
father f of ¢, by increasing or decreasing e(f) accordingly.

We run this process from the root to the leafs of the tree. All unprocessed
triangles will be sampled recursively; at the end, the root is sampled and no
error has been teleported nor dropped, matching thus the exact vertex bud-
get. Once the smooth parts are sampled, the algorithm moves to the feature
skeleton for sampling along its backbones.

3.4 Diffusion over Feature Edges

As for the triangles of surface parts, we design an error diffusion algorithm
that distributes some samples along every backbone, the processing path being
deduced from the ordering over its halfedges [36]. The diffusion process starts
by picking the first edge of a feature backbone and does the following for every
current edge:

(1) read the total amount of density on the edge;

(2) from the sampling rate described in Section 3.2, deduce the number of
samples to distribute on the current edge. This number is rounded to the
nearest integer value, such a rounding generating a signed quantization
error e, translated in amount of density, to diffuse on the next unprocessed
edge sitting on the current backbone. If the current sampled edge is the
last of the processed backbone then we count the number of unprocessed
feature edges connected to its end vertex (the latter may be a corner for
an open backbone), and distribute the error to each of them with equal
repartition. If there is no unprocessed edge connected to the end vertex,
we teleport the error to the first edge of the next backbone picked for
sampling;

(3) pick the next edge in the current backbone to proceed if any, else move to
the next unprocessed backbone while giving priority to any of a backbone
connected to the end vertex of the current edge. When possible, the latter
heuristic reduces the error teleport;

(4) restart from step 1 if next feature edge exists.

The feature skeleton being possibly not connected, the error diffusion algo-
rithm jumps from one feature backbone to the other and teleports the very
last error on another. In a sense this is not consistent with the first goal of
diffusing only on nearby areas, yet such a teleport allows to match the exact
vertex budget and provides a way to repartition the samples between fea-
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tures, corners and surface parts of the original model to remesh since no error
is dropped during the process.

Notice that such a diffusion technique offers one direct way to interleave bound-
ary filtering with the sampling process. If one considers a smooth model with
B boundaries, the feature skeleton is composed of B closed backbones. Each
backbone corresponds to a certain amount of density, i.e., a floating point
number of samples once converted by the calibration process. After complete
diffusion over the backbone, the total number of vertices sampled may be lower
than 3, which leads to a closure of the boundary. In other terms, reducing the
vertex budget may filter some boundaries in a consistent manner with respect
to the sampling process. The latter is an appealing feature for applications,
similar in spirit to topology filtering as described in [30].

3.5 Discussion

The samples are sitting on the triangles of the original mesh for the smooth
parts of the surface, and on the edges of the feature skeleton. The present
generalization of direct error diffusion over a triangle mesh does not provide a
sampling with a blue-noise profile spectrum such as e.g. [47]. This is due to the
uniform sampling performed inside each triangle with no dependent probabil-
ity nor any other sophistication (i.e., white-noise profile), and to the heuristic
chosen for distributing the error through the edges. Nevertheless, and thanks
to the core principle of error diffusion the resulting sampling is consistent with
respect to the specified density function since any error teleport is minimized.
The error diffusion thus provides a simple way to distribute the samples be-
tween boundary loops, features, and connected components of smooth areas.
It also serves as the initial guess for building a weighted centroidal Voronoi
diagram, which is the mechanism we use to place the samples.

4 Centroidal Voronoi Diagram

Before improving the sampling by building a (weighted) centroidal Voronoi
diagram, we first need to mesh the samples so that it generates an oriented
manifold. The meshing is performed by parameterizing the original mesh onto
a planar domain (possibly with holes), then applying 2D constrained Delaunay
triangulation over the newly sampled vertices. If the mesh is closed or of genus
> (, such a correspondence between the surface and a planar domain does not
exist, and we need to cut the surface first.

12



Fig. 6. Left: the cut graph of the torus is composed of two pairs of twin backbones
{a;a'} and {b;b'}, intentionally separated for better visualization purpose. Middle:
closeup on the branching node of the cut graph. Vertices are labeled according to
their multiplicity. Right: the torus has been parameterized on a disk-like domain,
4 instances of the branching node have been generated and will later be merged
during the stitching.

4.1 Clutting

We discuss below several ways to cut the original surface into a genus 0 surface.
Note that, although the cutting is necessary only at this point of the remeshing
process, the edges which have to be cut are computed in the first stage of the
algorithm, even before the error diffusion process, since they have to be marked
as feature edges as described in Section 2. Since all cut edges are considered as
features and need to be sampled separately, like the sharp and boundary edges,
our goal is to minimize the total length of the cut and to snap corresponding
cut graph onto the feature skeleton as much as possible. We first describe our
current implementation, then explain how recent theoretical results may help
us to improve our cutting algorithm.

4.1.1  Our Current Implementation

In [27], the authors use a simple algorithm to cut the surface into a genus
zero surface; after that, they describe a way to improve the cut graph. We
implemented a retraction technique similar in spirit to the first part of their
method. Note that cutting a mesh along a seaming backbone generates two
instances of it in parametric space and one or more instances of the branching
nodes encountered in the cut graph (Figure 6). To guarantee a perfect stitch-
ing, we temporary split the feature or branching samples into a number of
samples equivalent to their multiplicity, during the error diffusion process and
the univariate Lloyd relaxation along the seaming backbones.

We note that other approaches have been considered to compute a topolog-
ical decomposition of surfaces with handles. In the special case of the torus
embedded in the standard way in R? (i.e., without knot), an algorithm is
given [24] to compute “longitudinal” and “meridianal” loops splitting the sur-

13



Fig. 7. From an orientable surface to a polygonal schema: the torus.

face of the torus into a disk. When dealing with a surface of this special type,
the resulting loops can indeed be used for our purposes.

In the more general setting of volumic objects homeomorphic to the three-
dimensional ball with solid handles, there is an algorithm [35] to cut the (vo-
lumic) object, obtaining thus a topological ball. This provides a nice way to
parameterize solids over a domain of R?, and in particular decomposes the sur-
face of the solid into a genus zero surface with boundaries, which can further
be split easily into a topological disk, thus achieving our goal.

All these results can be used to parameterize our mesh into a planar domain.
But no control is possible on the quality of the cut (which should be as short
as possible, and should match the feature skeleton whenever possible). The
next section aims at explaining how some recent techniques enable to cut the
surface with theoretical guarantees.

4.1.2  Promising Approaches

Some recent work in Computational Geometry express interest in the problem
of cutting a surface along a set of curves to obtain a topological disk. The latter
is called a polygonal schema, because the edges on its boundary can be pairwise
identified to re-obtain the surface; see Figure 7. Such a polygonal schema is
reduced if the curves are simple loops, meeting at a common vertex vg, and
pairwise disjoint except at this vertex. Note that, for our cutting stage, we can
simulate that we work on a surface without boundaries: fill its holes, cut this
surface (without entering the filled holes) with any cutting algorithm, then
re-open the holes.

Erickson and Har-Peled [20] have focused on finding the shortest polygonal
schema of a surface (possibly non-oriented and with boundary). They have
proved that this problem is NP-hard, yet they describe a greedy algorithm that
outputs a O(log? g)-approximation of the minimum schema. To our knowledge,
no experiment has been done to see whether it yields a visually acceptable re-
sult, and it would be worth implementing it (though it is not so easy) for

14



our purposes. Because it is desirable to cut the surface along sharp edges, we
advise to simulate that these edges are considered shorter.

In contrast to the NP-hardness of the above problem, Colin de Verdiere and
Lazarus [13] give a polynomial algorithm which computes the shortest reduced
polygonal schema homotopic to a given reduced polygonal schema (computed
e.g. with the help of [39]). The algorithm described in [13] consists of iterating
elementary optimization steps, each of them optimizing the current schema by
shortening one loop while maintaining the other ones fixed; stability is reached
after a finite number of steps. The loops drawn on the edges of the manifold can
partly overlap, yet they are considered as disjoint if we imagine that they are
spread apart with a thin space. We believe this algorithm is better suited to our
purposes. In particular, in our context, it may be desirable to further generate
overlappings of loops on edges, because this decreases the number of distinct
cut edges. This can be easily achieved by artificially decreasing the lengths
of the edges that contain loops at elementary steps. It remains to describe
how we deal with multiple loops on an edge during the parameterization and
sampling processes. If several loops go along a given edge, this creates strips of
infinitely small area, and no sample should go inside them. In order to achieve
this goal, these strips are given a density of zero in parameter space. Moreover,
in this case, a given edge of the original mesh can correspond to an arbitrary
large (even) number of boundary edges in parameter space, all these edges
being sampled consistently before stitching.

4.2 Parameterization

The goal of surface parameterization is to remove the embedding by flatten-
ing the original mesh on a plane. Our goal being to build an isotropic sam-
pling technique, we advocate for using a conformal parameterization [49,18]
with free boundaries since it is known to be both angle-preserving and locally
isotropic (see [41,15] for more details on the technique). Those two properties
are of crucial importance for the meshing and optimization stages since the
latter operations are performed only from parameter space. This way every
decision on parameter space makes sense with respect to the original mesh, at
least for the two preserved properties. Intuitively, locally isotropic and angle-
preserving means that a small circle mapped on the surface will be transformed
into a circle in parameter space (see Figure 8). Hence a well-shaped triangle
in parameter space will not be deformed too much once lifted back into R3,
except for its size. One distortion remains: the area-stretching. This one be-
ing isotropic, it can easily be compensated by modifying the density function
expressed in parameter space for the optimization stage, as explained in Sec-
tion 4.4, contrary to a shearing deformation that would be much more difficult
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The two textures mapped onto the model illustrates the two main properties of
conformal parameterization: preservation of angles and local isotropy.

to compensate for.

4.8  Meshing

Every sample now lives in parameter space, be it on a corner, on a feature
edge or on a face of the original mesh. We perform a 2D constrained Delau-
nay triangulation [21] in parameter space so that every segment joining two
consecutive vertices sampled along a feature backbone is added to the list of
constrained edges (see Figure 9).
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4.4 Construction

With a Delaunay triangulation, we can already deduce an initial Voronoi
Diagram [6]. From this, we aim at building a weighted centroidal Voronoi
diagram [17] to improve the initial sampling obtained by error diffusion. A
weighted centroidal Voronoi diagram is a Voronoi diagram such that the as-
sociated sites coincide with the center of mass of the corresponding Voronoi
cells. In the current state of the algorithm, we know the density function and
the position of the samples in parameter space. The goal is to determine the
final locations of the samples so that they coincide with the centroids of the
corresponding Voronoi regions; the centroids have to be evaluated over the
density function expressed in parameter space rather than on the surface.

Similarly in spirit to [1], we compute a stretching factor for every vertex as a
weighted averaging over the stretching factors of its incident faces. The weight
being equal to the area of every face measured in parameter space, the stretch-
ing factor s of a vertex v is equal to: s(v) = X area(f;)/ > areay,(f;), where
the sums iterate over its incident faces and any subscript uv denotes a quantity
measured in parameter space. The corrected density expressed on a vertex in
parameter space is now the product of its stretching factor by its density ex-
pressed on the surface: dy,(v) = s(v) - d(v). Such a density function is linearly

interpolated over the vertices in parameter space and used for weighting the
centroidal Voronoi diagram.
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Fig. 10. Left: the Voronoi cell surrounding a sample overlaps the original mesh.
Right: closeup on the intersection computed between a Voronoi cell and the original
mesh. The new centroid (filled) of the cell is computed as a weighted contribution
of the centroids computed on the linearly interpolated polygons.

4.4.1 2D Lloyd Relaxation

One way to build such a diagram is to use Lloyd’s relaxation method [17]. The
Lloyd algorithm is a deterministic, fixed point iteration [44]. Given a density
function and an initial set of n sites, it consists of the following steps:

(1) build the Voronoi diagram corresponding to the n sites;

(2) compute the centroids of the n Voronoi regions with respect to the density
function expressed in parameter space, and move the n sites onto their
respective centroid;

(3) repeat steps 1 and 2 until satisfactory convergence is achieved.

Computing the centroid (i.e., center of mass) of every cell is the most delicate
part of the algorithm. Let us recall that the original mesh is now parameter-
ized and that a density function lives in parameter space. The new mesh has
been created using constrained Delaunay triangulation over the new samples
obtained by error diffusion. The Voronoi regions are computed over the new
samples and we aim at computing their centroids evaluated over the density
function sitting over the original mesh. This requires to compute the intersec-
tion between each cell and the set of overlapped triangles, then compute the
center of mass of the set of resulting polygons on which the corrected density
function is piecewise linear (see Figure 10). Figure 11 illustrates several iter-
ations of the Lloyd algorithm over the mushroom model uniformly sampled
with 3k vertices. The variable density compensates for any area distortion due
to parameterization, and the final tiling tends to make each cell cover the same
amount of density. Notice how the main improvement is already achieved after
10 iterations of Lloyd algorithm, the sampling being then polished with addi-
tional iterations. As described in Section 6, the temporal coherence of Lloyd’s
algorithm is exploited for speed improvement.

Clipping the Voronoi cells with constrained edges [43] allows to disconnect two

smooth regions separated by a backbone during the computation of the cen-
troid. This leads to a nice quality of the sampling in the vicinity of the features.

18
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constrained edges

centroid

without clipping clipping

Fig. 12. Left: a Voronoi diagram in parameter space with a feature skeleton. All
the cells are drawn according to the circumcircle property. Computing the centroid
without clipping by the constraints makes the sampling inconsistent, while the effect
of clipping is to repulse the samples from the boundary or sharp edges, the centroid
being computed on the truncated cell. A constrained edge separating two samples
thus acts as a barrier [43] annihilating their mutual influence as expected.

The latter is obtained through a non-symmetric behavior of the algorithm in
the sense that the boundary and the feature backbones influence the surface
samples but the inverse is not true. Intuitively, two samples incident in the
Voronoi diagram but separated by a feature are not influencing each other
anymore, and the samples closed to a boundary or from a feature backbone
are rather repulsed by the constraints (see Figure 12). Indeed, clipping a cell
by the set of constraints may remove some regions from the computation of
the centroid, making the Lloyd relaxation consistent with respect to the con-
straints.

4.4.2 1D Lloyd Relazation

The goal is to distribute on each feature backbone a number of samples so that
each of them covers the same amount of density. To proceed, we parameterize
each backbone independently on a segment without any length distortion, then
apply univariate Lloyd relaxation on the density function sitting on every pa-
rameterized feature backbone. A special care is taken for seaming backbones,
the twin samples being reflected on opposite halfedges to guarantee a perfect
stitching during the lifting. For the sake of consistency with the asymmetric
influence between feature and surface samples, the univariate relaxation de-
scribed here is applied first, then the feature samples are not moved any more
during the 2D Lloyd relaxation process previously described.
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4.5 Lifting and Stitching

The lifting stage restores back the embedding by locating every vertex in its
associated triangle in parameter space and computing its barycentric coor-
dinates. We then project back every ordinary sample onto its corresponding
triangle in R® and every feature sample onto its corresponding feature edge
or corner. For closed or genus > 0 objects, a stitching stage is required. It
amounts to merging each set of twin vertices with a multiplicity > 1 gen-
erated for meshing in parameter space. This welds the model and wraps up
the complete remeshing pipeline. For the sake of clarity we postponed the
implementation details to Section 6.

5 Results

Figure 13 and 14 illustrate a uniform remeshing of the Michelangelo David
head model. The model considered for remeshing has a complexity of 25k
vertices, and the new remeshed model has 50k vertices. After 100 iterations
of Lloyd relaxation performed in parameter space, the weighted centroidal
Voronoi diagram provides a satisfactory uniform sampling after lifting. Run-
ning times are the following on a PIIT 1GHz: 7 s for the mesh parameterization,
400 ms for differential geometry analysis, 850 ms for sampler calibration, 2.8
s for error diffusion, and 26 minutes for polishing the sampling using 100 it-
erations of Lloyd algorithm. Note that starting from iteration 20 the result is
already very similar to the present one. As shown by Figure 11, our technique
is in a sense progressive in terms of sampling quality since the Lloyd algo-
rithm progressively improves the repartition of the density function among all
Voronoi cells. Figure 15 illustrates three curvature-adapted remeshings of the
David head using 30k vertices. The curvature-adapted behavior is obtained
by specifying a variable v > 0 to the transfer function 27 applied over the ini-
tial density function, related to absolute mean discrete curvature. Increasing
v from 0 (Figure 14) to 2.5 on our examples allows us to vary continuously
from uniform to curvated-adapted remeshing, while matching the exact de-
sired vertex budget.

Figure 16 illustrates uniform remeshing of the bottomless fandisk model with
10k vertices. The Lloyd algorithm optimizes the sample positions both along
backbones (univariate relaxation) and on the surface. The repartition of sam-
ples between corners, backbones and smooth parts exactly matches the vertex
budget thanks to the sampler calibration described in Section 3.2. A few close-
ups nearby the features show the consistent behavior due to cell clipping with
the constrained edges.

21



)
20

%

{]

O
=

L
O

0
Seaces

Qﬂ O¢.°¢.
ustees B
G S ST
CRARE e
(LS n%’a' ,g‘g:%ggu 5

06009

.a“

Saes!

O
9

O

O
-

SIS
0
ga

)
()
o“:ﬂg
o5
'..

6909

5
%a‘n’%
%

LY

5

88000;
50a0n!

o,
1020

ol
950

S
o

%0

dﬂg

0

2g0;
RS
5255000,

o
X
{
a0

9089

al

0!

£
o8t

()
%."9""‘.

O

05
o
g

o]

099
55
990!

1O
)
5K
2
%
Je L
.

0,
ot

990

O

09,

X 080
90!

0°
B

S
i
080

o5

S

I
o!

LXNLY
1
%3”,%:'0‘9
900000 Sk
SR
FEENS
LS

010, [
“Q‘
{3
{2

L

O AnaaD,

onanee
R ceans

o
51

I
O
0| X
0, 4‘0:
5885
8o
%

D
Y
0

[2
LT85
00505000
'O
080095053
555
Jacel
ob!

&L
=

R
0205008 002 0Bes
Srrtesans

%
o

%

K
SRR
s aBane5 35

LA
29S0,
5oag!

990, 0
029 99Sa
e
Q0%
CL G -
“%“‘D’.’o‘: ey
BP80goas
R L
ggbquuu . o
B SRR S00ec
901 Q:cn
5 S L
09! oo TEE
& S St
CrXx B
R el
LTy
D L]
A 0

Fig. 13. Weighted centroidal Voronoi diagram built with 100 iterations of Lloyd

relaxation.
Figure 17 illustrates uniform remeshing of the genus-1 rotor model with 10k

vertices. The initial mesh is cut and parameterized on a disk-like domain. The
cut graph (highlighted) is composed of several seaming backbones on which
curve sampling technique is applied, as done for ordinary features. Although
the pairing of seaming backbones and samples allow a perfect stitching of the
remeshed model, we believe that the seams generated by univariate sampling
of the cut graph limit the proposed remeshing technique to the class of low-

genus surfaces.
Figure 18 illustrates uniform remeshing of the pig model with 15k vertices.

This model has 7 boundaries and generates an extreme range of area distortion

in parameter space. Notice that the longest boundary has been automatically
chosen for parameterization (foot boundary is highlighted). Due to cell clip-
ping using constrained edges, the Lloyd relaxation is guaranteed to correctly
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Fig. 14. Uniform remeshing with 50k vertices.

handle models with several boundaries. The density function computed in
parameter space correctly compensates the area distortion due to flattening.
Figure 19 illustrates four curvature-adapted remeshings of the pig model with
exactly 30k vertices and v = 3 set in the transfer function. The only difference
between the models lies into the mesh gradation progressively smoothed with
respectively 0, 3, 10, and 100 iterations of low-pass filtering over the density
function. A few closeups of the ear shows the effect of smoothing the density
function over the final mesh gradation. This result illustrates the key concept
demonstrated in this paper, i.e., the user can act on some parameters until the
density function fits his desire in terms of sampling distribution and gradation
on the surface and the features.
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Fig. 15. Curvature-adapted remeshing using 30k vertices with v = 1, v = 2 and
v = 2.5 respectively.

Fig. 16. Uniform remeshing of the fandisk model with 10k vertices. Top row: Ini-
tial sampling computed by direct error diffusion, and sampling obtained after 20
iterations of Lloyd relaxation. Bottom row: closeup over the Voronoi diagram after
Lloyd convergence, global view of the remeshed model, and several closeups nearby
the features.

6 Implementation Details

Special care has been taken to obtain a robust triangulation algorithm along
with an efficient implementation of Lloyd’s algorithm. This requires a few
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Fig. 17. Uniform remeshing of the genus-1 rotor model with 10k vertices. From left
to the right: cut graph (colored) and feature skeleton (light grey); mesh param-
eterization on a disk-like domain, and associated parameterized feature skeleton
(boundary backbones with identical colors are associated pairwise). Far right, top
to bottom: original, and remeshed model. Two closeups over the cut graph illustrate
the univariate sampling performed along seaming backbones.

implementation details to be described separately for the sake of clarity.

To prevent any robustness issue for meshing, we parameterize the constrained
Delaunay triangulation of CGAL [5] with a filtered kernel so that all the
predicates use exact arithmetic when required, and ordinary double floating
point numbers otherwise.

We wanted the Lloyd algorithm to be output-sensitive, which is not the case if
one computes the centroid of every cell from the set of intersected faces of the
original model. Therefore we propose the following heuristic for a major speed
improvement: the corrected density function is only evaluated over the new
samples and linearly interpolated on the new triangles in parameter space.
Surprisingly, and despite the drastic simplification performed, it turns out to
behave extremely well on all our experiments if some special care is taken. In
case of re-sampling or over-sampling there is no significant change with the
input-sensitive version of the algorithm. In the case of under-sampling there
are two main drawbacks: some details in the density function may be missed
in-between two samples distributed on the model, and the Lloyd algorithm
would badly converge if the density function is varying too rapidly on pa-
rameter space, since the corrected density function is reevaluated after each
sample displacement due to Lloyd relaxation. To alleviate those drawbacks,
we advocate for correlating the level of under-sampling with the low-pass fil-
tering applied over the density function. This has the effect to diffuse the
details described by the density function, making the influence of a curved
detail wider on parameter space and therefore harder to miss. Note that this
is in essence similar to some multiresolution methods where it makes no sense
to try approximating some very fine details when the mesh complexity (i.e.,
the vertex budget) is low. Such a simplification requires fast face localization
by walking [16] on the original mesh and computation of corrected density
from barycentric coordinates. For additional speed improvement, we also ex-
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Fig. 18. Uniform remeshing of the pig model with 15k vertices. The model has
been parameterized from the longest boundary and undergoes a high range of area
distortion due to flattening.

ploit the temporal coherence of the Lloyd algorithm by keeping track of the
last localized face as a seed for the localization performed during the next
Lloyd iteration. As a last significant speed improvement, we also exploit the
fact that the compacity of the cells improves while Lloyd algorithm converges
by tagging some samples if all their incident Delaunay edges are so-called “de
Gabriel” (see [50], page 255). In the latter case the intersection between the
Voronoi cells and the density function reduces to a set of quadrilaterals on
which computing the centroid becomes trivial. In our experiments the propor-
tion of tagged samples quickly increases from 6% to more than 80% for meshes
with sufficiently smooth gradation. The speed improvements described above
play a crucial role for the optimization process, since it makes the algorithm
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Fig. 19. Bottom: curvature-adapted remeshing with 30k vertices. The gradation is
more and more smoothed by specifying 0, 3, 10 and 100 iterations for low-pass
filtering the density function.

output-sensitive and globally divides the running time in our experiments by
two orders of magnitude.

7 Conclusions and Future Work

We have presented a new technique for isotropic remeshing of triangle meshes.
Our approach consists of specifying a density function over the surface to be

27



Fig. 20. Left: ordinary cell. Right: all the edges are “de Gabriel”, greatly simplifying
the computation of the centroid since each intersected polygon is a quadrilateral.

repartitioned between a set of samples so that each of them covers the same
amount of density on a neighborhood as compact as possible. This task is per-
formed using two algorithms: the first one performs a fast mesh resampling by
generalizing the core principle of error diffusion over the original mesh trian-
gles. The second tool is a Lloyd relaxation used to build a weighted centroidal
Voronoi diagram in a conformal parameter space. The latter, commonly used
for optimal clustering [17], tends to optimally distribute the density function
between all the samples both on the feature skeleton and on smooth parts of
the models. The weak part of the algorithm is the need for cutting closed or
genus > 0 surfaces. Such a cut generates a seaming backbone on which curve
sampling is applied instead of surface sampling, which is not consistent if the
cut graph does not coincide with a set of feature edges. Such an approximation
becomes unacceptable for high genus surfaces, which would require a complex
cut graph. Some recent works [54] remove the need for global parameterization
and hence simply remove the cutting stage from the algorithm.

As future work we plan to investigate the conditions over the density function
to guarantee the convergence of Lloyd’s algorithm. Being able to remesh vol-
ume meshes with error diffusion and 3D centroidal Voronoi diagram is also of
some interest.
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