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Abstract

Solid textures require large storage and are computationally expensive to synthesize. In this

paper, we propose a novel solid representation called gradient solids to compactly repre-

sent solid textures, including a tricubic interpolation scheme of colors and gradients for

smooth variation and a region-based approach for representing sharp boundaries. We fur-

ther propose a novel approach to directly synthesize gradient solid textures from exemplars.

Compared to existing methods, our approach avoids the expensive step of synthesizing the

complete solid textures at voxel level and produces optimized solid textures using our repre-

sentation. This avoids significant amount of unnecessary computation and storage involved

in the voxel-level synthesis while producing solid textures with comparable quality to the

state of the art. The algorithm is much faster than existing approaches for solid texture

synthesis and makes it feasible to synthesize high-resolution solid textures in full. We also

propose a novel application — instant editing propagation on full solids.

Key words: solid textures, synthesis, vector representation, gradient, vectorization,

distance fields, tricubic interpolation, editing propagation, real-time rendering, 2D

exemplars

1 Introduction

Textures are essentially important for current rendering techniques as they bring in

richness without involving overly complicated geometry. Most previous work on

texture synthesis focuses on synthesizing 2D textures, which require texture map-

ping with almost unavoidable distortions when they are applied to 3D objects. Solid

textures represent color (or other attributes) over 3D space, providing an alternative
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Fig. 1. High-resolution gradient solid texture synthesis and editing. From left to right: the

input exemplar, the synthesized gradient solid texture following a given directional field,

a closeup, internal slices and instant editing (user interaction and the output). Part of the

figure was previously published in [43] and is republished with permission by Springer.

approach to 2D textures that avoids complicated texture mapping and allows real

solid objects to be represented with consistent textures both on the surface and in

the interiors alike.

Due to the extra dimension, solid textures represented as attributes sampled at reg-

ular 3D voxel grids are extremely expensive to synthesize and store. To provide

sufficient resolution in practice, a typical solution is to synthesize only a small

cube (e.g. 1283), and tile the cube to cover the 3D space. However, tiling may cause

visual repetition (see Fig. 8). While repetitions could be alleviated with some ro-

tations, they cannot be eliminated completely when the volumes are sliced with

certain planes. Further it is possible only when the solid textures have no interac-

tion with the underlying objects, and thus cannot respect any model features or user

design intentions. To address this, previous approaches [4,42] synthesize solid tex-

tures on demand; however, handling high-resolution solid textures is still expensive

in both computation and storage.

Inspired by image vectorization, for pixels (or voxels) with dominantly smooth

color variations (within each homogeneous region), vectorized graphics provide

significant advantages such as being compact, resolution independent and easy-

to-edit. The possibility and effectiveness of vectorizing solid textures have been

recently studied in [33]. This work is essentially a 3D generalization of image vec-

torization, which requires voxel-level (raster) solid textures as input and inherits

similar advantages over traditional raster solid textures. It remains computation-

ally costly and involves large intermediate storage for raster solid textures to syn-

thesize high resolution solid textures with a nonhomogeneous spatial distribution

(e.g. [42]).

This paper is an extended version of the conference paper [43] with substantially

extended technical details, experimental results, evaluation and applications includ-

ing solid vectorization and instant editing. In this paper, instead of first synthesizing

the full voxel solid textures before vectorizing them [33], we propose a novel ap-

proach to directly synthesize vectorized solid textures from exemplars. Inspired by

gradient meshes in image vectorization [29], we propose a novel gradient solid

representation that uses a tricubic interpolation scheme for smooth color variations
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within a region, and a region-based approach to represent sharp boundaries with

separated colors. This representation is compact, more regular than Radial Basis

Functions (RBFs) [33] and thus particularly suitable for real-time rendering and

efficient solid texture synthesis. Our approach can be used to vectorize input solids,

which is over 100 times faster than [33] and leads to reduced approximation errors

in most practical cases, as shown later by extensive comparative experiments. As

discussed later in the paper, while the proposed representation is not suitable for

all textures, it is sufficient to represent a variety of practical solid textures in high

quality, in particular those having dominantly smooth color variations within each

homogeneous region.

We further treat solid texture synthesis as an optimization process of control points

of gradient solids to produce synthesized solids with similar sectional images as

given exemplars. Compared with traditional solid texture synthesis, we have far

less control points than voxels, leading to a much more efficient algorithm. While

we solve both bitmap solid synthesis and solid vectorization together and produce

solid textures with comparable quality as the state of the art, it is over 10 times

faster than existing synthesis methods.

The main contributions of this paper are:

• A new gradient solid representation with regular structure that is compact, resolution-

independent and capable of representing smooth solids and solids with separable

regions.

• A novel optimization-based algorithm for direct synthesis of high quality solid

textures vectorizing high resolution solids which is efficient both in computation

and storage.

• We also propose a novel application — instant solid editing, as demonstrated in

the paper.

To the best of our knowledge, this is the first algorithm that synthesizes vector

solid textures directly from exemplars, allowing high resolution, potentially spa-

tially nonhomogeneous solid textures to be synthesized in full. Thanks to the new

compact representation, solid textures can be directly synthesized in this represen-

tation, significantly reducing the computational and memory costs. Our represen-

tation also allows instant editing without resorting to time-consuming conversion

between vector and raster solids. Both of these would be difficult to achieve, if pos-

sible, by previous methods. This addresses major drawbacks of using solid textures

in practical applications, namely large storage requirements and synthesis time.

Various techniques have also been developed to effectively improve the quality or

reduce the computational cost.

A typical example of high-resolution gradient solid texture synthesis and editing is

given in Fig. 1. In Sec. 2, we review prior work in texture synthesis and vectoriza-

tion. Our vector solid representation is described in Sec. 3 and the algorithm details
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given in Sec. 4. Experimental results, applications and discussions are presented in

Sec. 5 and finally concluding remarks are given in Sec. 6.

2 Related Work

Our work is closely related to example based texture synthesis and vector im-

ages/textures.

Solid Texture Synthesis Texture synthesis has been an active research direction

in computer graphics for many years. Please refer to [35] for a comprehensive sur-

vey of example-based 2D texture synthesis and [28] for a recent survey of solid

texture synthesis from 2D exemplars.

Early work on solid texture synthesis focuses on procedural approaches [26,27].

Since rules are used to generate solid textures, very little storage is needed. Pro-

cedural solid textures can be generated in real-time [2]. However, only restricted

classes of textures can be effectively synthesized and it is inconvenient to tune the

parameters. Exemplar-based approaches do not suffer from these problems, and

thus received more attention. 2D exemplar images are popular due to their wide

availability. Wei [34] extends non-parametric 2D texture synthesis algorithms to

synthesize solid textures. An improved algorithm is proposed in [13] to generate

solid textures based on texture optimization [14] and histogram matching [8]. Fur-

ther extended work [3] considers k-coherent search and combined position and

index histograms to improve the results. To synthesize high resolution solid tex-

tures, Dong et al. [4] propose an efficient synthesis-on-demand algorithm based on

deterministic synthesis of certain windows from the whole space [16] necessary for

rendering, based on the fact that only 2D slices are needed at a time for normal dis-

plays. This work is extended in [42] that introduces user-provided tensor fields as

guidance for solid texture synthesis. This approach allows synthesizing solid tex-

tures with nonhomogeneous spatial distributions, thus cannot be achieved by tiling

small fixed cubes.

Alternative approaches for solid texture synthesis exist. Jagnow et al. [10,11] pro-

pose an algorithm based on stereological analysis which provides more precise

modeling of solid textures. Du et al. [5] synthesize solid textures by analyzing the

shapes and colors of particles from 2D exemplars and appropriately placing parti-

cles to form consistent sectional images as the exemplars. This is conceptually sim-

ilar to salient structural element analysis in 2D texture synthesis [24]. The method

is particularly suitable for semi-regular solid texture synthesis. However, these ap-

proaches only work for restricted types of solid textures with well separable pieces.

Lapped textures have been extended to synthesize 3D volumetric textures [30]. 3D

volumetric exemplars instead of 2D image exemplars are needed as input. Solid

texture synthesis has also been used for other applications. Ma et al. [21] use simi-
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lar techniques for motion synthesis.

Unlike previous methods, our approach directly synthesizes gradient solid textures

from 2D exemplars. This provides the benefits from both procedural and exemplar-

based approaches: the representation is more compact and high resolution solid

textures can be synthesized in full efficiently. The algorithm is flexible to synthe-

size various solid textures using 2D exemplars and follow given tensor fields if

specified by the user. The whole solid textures need only to be synthesized once

which reduces overall computation.

Vector Images and Vector Solid Textures Different from raster images, vec-

tor graphics use geometric primitives along with attributes such as colors and their

gradients to represent the images. Due to the advantages of vector graphics, plenty

of work recently focuses on generating vector representations from raster images.

Recent work proposes automatic or semi-automatic approaches to high-quality im-

age vectorization using quadrilateral gradient meshes [29,15] or curvilinear trian-

gle meshes for better feature alignment [37]. Diffusion curves [23] model vector

images as a collection of color diffusion around curves. Some works consider com-

bining raster images with extra geometric primitives [1,32,25] to obtain benefits

such as improved editing and resizing.

Vector graphics have recently been generalized to solid textures [33,31]. Compared

to raster solids, vector solids have the advantages of compact storage and effi-

cient rendering. Wang et al. [33] propose an automatic approach to vectorize given

solid textures using a RBF-based representation. However, this approach relies on

raster solids as input, thus an expensive raster solid texture synthesis algorithm [13]

needs to be performed first if only 2D exemplars are given as input. Diffusion sur-

faces [31], a generalization from diffusion curves [23], was used to represent vector

solids; their focus however is user design of solids rather than automatic generation.

Vector representation is loosely related to volume compression techniques (e.g. [22,41])

as both consider more compact representations than raster solids. The focus of vec-

tor representation however aims at creating compact and resolution-independent

representation suitable for graphics applications that produce visually similar and

pleasing results even when magnified while the purpose of volume compression

techniques is to reconstruct large volumes as close as possible to the original even

under significant compression. Research work on volume compression tends to use

blocks and block-based coding which leads to less smooth reconstruction.

We propose a novel algorithm that synthesizes gradient solids directly from 2D ex-

emplars, bypassing intermediate bitmap solid synthesis and subsequent bitmap-to-

vector conversion, leading to an efficient algorithm in both computation and storage

that produces high quality solid textures. The representation although with a some-

what different aim may be useful for certain volume compression applications.
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3 Gradient Solid Representation

We give details of the gradient solid representation, allowing efficient representa-

tion of smooth regions and regions with boundaries.

3.1 Representing Smooth Regions

We first consider representing regions with smoothly varying colors. We use an

n × n × n grid of control points with axes u, v, w to represent the solid textures.

At each control point (i, j, k), we store a feature vector f including r, g, b color

components and additional feature channels such as the signed distance measuring

the distance as well as inside/outside to some surfaces that separate the volume

into two sides. This is useful for better structure preservation [17] as well as region

separation. The latter use will be detailed in the next subsection. In addition, the

gradients of f , i.e. df
du
, df
dv
, df
dw

are also stored allowing flexible control of variations

in 3D space. 3D tricubic interpolation with gradients [7,18] is used to obtain the

feature vector f̃ for any voxel inside the grid. Similar tricubic interpolation has been

used in isosurface extraction from volumetric data for visualization [12]. Assume

that p = 1, 2, . . . , 8 represents the 8 control points in the cube that covers the

voxel and assume second or higher order derivatives of f to be zero, f̃ at parameter

(u, v, w) (0 ≤ u, v, w ≤ 1) can be evaluated as

f̃(u, v, w) =
3
∑

i,j,k=0

aijku
ivjwk. (1)

The coefficients aijk are determined by setting the interpolated function to give

identical values, gradients and some selected higher order derivatives as stored

values at each corner of the cube. The higher order constraints are selected to be

isotropic (consistent with different axes) and introduced to ensure uniqueness of the

solution. As proved in [18], all the 64 coefficient vectors aijk are weighted sums of

32-dimensional vectors V = (· · · f (p), df (p)
du

, df
(p)

dv
, df

(p)

dw
· · · ) and the interpolation is

C1 continuity not only at cube corners but also over the whole volume.

Initialization

  

Finding Matched
Patches from Exemplars 

Generated
Solid Textures 

Representation
Update 

Iterative

Tensor Field 
(Optional)

Representation
Refinement 

2D Texture 
(Input)

Fig. 2. Algorithm pipeline of gradient solid texture synthesis. The figure was previously

published in [43] and is republished with permission by Springer.

The geometric positions of control points in our representation are fixed, however,

these points still carry other attributes such as color and gradients which control
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the appearance of the solids. Assuming the displacement between adjacent control

points is d, the geometric position of the control point (i, j, k) is (id, jd, kd). The

displacement determines the number of voxels located within each cube of the con-

trol grid. Larger d leads to more compression while smaller d implies better capture

of details. In all of our experiments we use d = 4 which means that the number of

control points is roughly 1
64

= 1.56% of voxels.

This simple representation has several significant advantages. For any fixed point

with known parameter (u, v, w), since uivjwk can be pre-computed, the expensive

evaluation of Eqn. 1 can be reduced to a weighted sum of elements in V . In prac-

tice, we pre-compute these coefficients for a regular grid with 333 samples in each

cube, with interval at 1
8

voxel for accuracy. A fixed look-up table irrelevant to the

input is pre-computed and stored, with 333 × 32 entries (about 4.4MB), and the

interpolated feature at any space position can be computed as a linear combination

of V with these prebuilt weights.

The interpolation is achieved in rendering via GPU acceleration, as detailed in

Sec. 5.3. This allows efficient evaluation, particularly important as solid textures

are computationally intensive. The look-up table does not need to be stored and is

calculated on the fly. It is of fixed size even for very large volumes (equivalent to

e.g. 5123 or 10243) and in such cases becomes negligible. Compared with the RBF-

based representation [33], we have regular structures suitable for texture synthesis.

As demonstrated in Figs. 11 and 12, our local interpolation representation has much

better color reproduction. There is no need to store the positions of control points,

which further saves storage. The regularity also helps efficient direct solid texture

synthesis and supports other applications such as instant editing propagation, as

detailed later.

3.2 Representing Region Boundaries

If the given texture only contains gradual change of colors, the representation de-

scribed in Sec. 3.1 is sufficient (e.g. Fig. 11). If the texture contains sharp bound-

aries that need to be preserved, a feature mask image is often used in texture synthe-

sis as an additional component (other than color) to better preserve structures. Sim-

ilar to previous work both in 2D and 3D textures [17,33], we assume regions can

be separated using a binary mask. To represent the boundary in the solid textures,

we also use a signed distance field stored at the same regular n × n × n grid. We

store both the signed distance D and its gradients dD
du

, dD
dv

and dD
dw

and use the same

tricubic interpolation as in Sec. 3.1 to calculate the interpolated signed distance D̃
at each voxel. The sign of D̃ indicates which side of the regions in the binary mask

this voxel belongs to. Different from [33], gradients are stored in addition to the dis-

tance, and thus we process the distance field consistently with colors and represent

region boundaries with flexibility. For each control point that is adjacent to at least
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one cube with both positive and negative distances, other than the distance com-

ponent where one version is sufficient, two feature vectors fP (positive distance)

and fN (negative distance) and their gradients are stored. Any voxel with positive

(or negative) distance will be evaluated using the same interpolation in Sec. 3.1 but

with fP (or fN ) and their gradients instead. This guarantees C1 smoothness within

each region while also allowing sharp boundaries to be produced between regions.

Our gradient solid representation is easy to evaluate but also sufficient to repre-

sent various solid textures, as demonstrated in Sec. 5. Although the representation

is more restrictive than gradient meshes in that control points are located at fixed

positions, it allows more efficient evaluation and synthesis. The representation still

bears major properties of traditional vector representation such as being resolution

independent and more compact than raster solids.

4 Gradient Solid Texture Synthesis

Our algorithm synthesizes gradient solid textures directly from 2D exemplars, which

may include optional binary masks (if sharp boundaries exist between regions). In

addition, a smooth tensor field may be given to specify the local coordinate sys-

tems the exemplar images align with [42]. We use an optimization based approach

to synthesize gradient solid textures, with local patches aligned to the field if given.

4.1 Algorithm overview

The algorithm pipeline is summarized in Fig. 2, which involves several key steps:

initialization, iterative optimization and final gradient solid refinement. Our gradi-

ent solid representation is first initialized based on the input exemplar. The syn-

thesis is then carried out using a multi-resolution approach from coarse to fine.

At each level, an optimization based approach is used that first identifies similar

patches from the exemplar that best matches the current gradient solid and the gra-

dient solid is then updated based on the samples in the patches. An approximate

but sufficient fast evaluation of the vector solid representation is used in the inter-

mediate stages. In the last stage, accurate evaluation as given in Eqn. 1 is used to

optimize the control points for the best approximation. We will also discuss tech-

niques to ensure efficiency in both computation and storage. If the binary mask is

given, we pre-compute a signed distance field for the image with the absolute value

at each pixel being the distance to the region boundary and different signs (positive

or negative) for different regions. This signed distance is considered as an extra

component in the feature vector f [17].
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Ez

Sx
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Fig. 3. Illustration of crossbars.

4.2 Initialization

We simply start from a randomized initialization. For each control point, we ran-

domly select a pixel from the exemplar image, and assign the feature vector at the

pixel to the control point. All the gradients are initialized to zero.

4.3 Optimization-based Synthesis

Optimization is the key step in our gradient solid texture synthesis pipeline. It in-

volves iterations of two alternating steps, namely choosing optimal patches from

exemplars that best match the current representation and updating the representa-

tion to better approximate the exemplar patches. Unlike traditional texture opti-

mization [14,13], we optimize the feature vectors in the control points of the gradi-

ent solids, a much more compact representation than voxels. New challenges exist

due to the different nature of the representation which we will address with vari-

ous technical solutions. We apply NO iterations for each synthesis level, and use

a modified coarse-to-fine strategy detailed in Sec. 4.3.3. NO = 3 is sufficient and

used for all the experiments in the paper.

4.3.1 Finding matched patches from exemplars

We first identify those local patches from the exemplars that best match the current

gradient solid. These patches will then be used to improve the representation. Since

gradient solids have much sparser control points than voxels, we randomly choose

a small number NC of check points within each cube of the grid (NC = 3 pro-

vides a good balance and is used for all the examples in the paper). At each check

point, we sample three orthogonal planes each with N ×N samples (denoted as sx,

sy and sz respectively) which are evaluated based on our representation (as illus-

trated in Fig. 3). A fast approximate evaluation is used in intermediate synthesis to
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Fig. 4. Results without (left) and with (right) crossbar matching. The figure was previously

published in [43] and is republished with permission by Springer.

significantly improve the performance without visually degrading the quality (see

Sec. 4.3.4).

We then find three local patches from exemplars that best match these sampled

patches. If all the three slices are equally important, we use three independent

searches as [13]. Many practical solid textures are anisotropic and it is not possible

to keep all three slices well matched with a single exemplar image. In such cases,

it is known that matching two slices instead of three may lead to better results [13].

We propose a new approach that takes crossbar consistency into account, which

works best when two slices are matched. Crossbars are those voxels shared by two

or three slices (see Fig. 3) and inconsistent crossbars may result from independent

best searches. For computational efficiency, we first search for the patch Ex from

exemplars that best matches sx, as usual. We then search for the patch Ey that best

matches sy from a set of N1 candidates with the most consistent crossbar voxels as

Ex. If three slices are matched, we similarly search for the best match Ez of sz from

a set of N2 candidates with the most consistent crossbars as Ex and Ey. N1 = 20
and N2 = 50 are used for all the experiments in the paper. This leads to improved

synthesis results with better structure preservation, which shows the importance of

crossbar consistency, as demonstrated in Fig. 4. While crossbar matching has been

used in correction-based synthesis [4], using this in optimization based synthesis is

new.

To speed up the computation, a PCA projection of the matching vectors is used [9],

which effectively reduces dimensions from hundreds to 10-20 while keeping most

of the energy. After this, the searches can be effectively accelerated with ANN

approximate nearest neighbor library.

4.3.2 Representation update

Each matched patch at every check point gives N × N samples, which will be

used to update the gradient solid representation. To efficiently collect samples, we

conceptually build a bucket for each voxel in the grid that holds all the samples

located in the voxel. After considering check points in all the cubes, each bucket

may end up with none or a few samples. For buckets with more than one samples,

in order to determine the feature vector, simply averaging all the samples in the
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open

closed

2N

Fig. 5. Illustration of bucket reuse.

bucket tends to produce blurred voxels. Previous methods [36,13] use mean shift

clustering to avoid blurring, which is expensive as all the samples in the buckets

need to be preserved and clustering algorithms need to be performed many times.

We propose two novel approaches to significantly improve the efficiency.

Quantization. To avoid blurring without storing all the samples in each bucket, we

propose a novel approach based on vector quantization. We preprocess the given

exemplar to quantize colors of all the pixels into NT clusters. A small number of

NT (e.g. 12) is sufficient for practical textures. For the texture with a binary mask,

we start from two clusters for both positive and negative regions, and iteratively

allocate the new cluster to regions with most significant average quantization error,

until all the NT clusters are allocated. We use a two-pass approach in the synthesis.

In the first pass, for every bucket, only the number of samples belonging to each

cluster is recorded. In the second pass, we compute the average feature vector only

for those samples belonging to the two dominant clusters (with maximum counts

in the first pass). Since the dominant clusters are known before the second pass,

whenever a sample is generated we test if it should be included for averaging. Only

the sum and the number of samples need to be kept which significantly saves the

storage. This avoids using the computationally expensive clustering algorithm for

each voxel but also significantly reduces blurring, as demonstrated in various re-

sults in Sec. 5. Using quantization in the finest level is sufficient, according to our

experience.

Bucket reuse. Although conceptually the number of buckets is the same as the

number of voxels, i.e. O(n3), we can significantly reduce the memory requirement

by bucket reuse. We update our representation in the 3D scanline order of control

points. Depending on the template size N , check points more than
√
2
2
N voxels

away will not produce any sample in the current bucket, where N
2

is half the tem-

plate size and
√
2 is introduced due to rotation. As illustrated in Fig. 5 for a 2D
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Fig. 6. Comparison of results using direct upscaling (left) and our algorithm without (mid-

dle) and with (right) region separation.

illustration, we keep track of two references in the dominant dimension (one of the

three dimensions that can be chosen arbitrarily) that mark the boundaries of the

open region (where new samples will be generated) and the closed region (where

no more samples will be produced and we can safely update the gradient solid

representation). In case the two-pass algorithm in quantization is used, this buffer

needs to be doubled i.e. up to 2
√
2N span in the dominant dimension is sufficient,

or the memory cost is O(n2N). This is because either pass has an affected region

as we discussed and the second pass relies on the results collected from the first

pass. The required buffering space does not increase with more synthesis iterations

as buckets are cleared after each synthesis iteration and no further propagation as

in [4] happens. Since N ≪ n and often constant for various examples, this ef-

fectively saves the storage by reducing the complexity from n3 to n2, without any

extra recomputation. This is possible, because after each iteration of optimization,

only a very compact gradient solid representation is kept, while traditional solid

texture synthesis requires the whole dense volume to be accessible. By using this

technique, we can synthesize gradient solid textures corresponding to 10243 voxels

within 2GB memory, even less than storing the voxels alone.

After obtaining the average feature vector for any bucket with at least one sample,

we assign each non-empty bucket to the closest control point. The feature vector as

well as gradients of the control point are updated by minimizing the fitting error in

the least-squares sense. For a particular control point, assume s buckets are related

with relative coordinates dut, dvt, dwt and feature vector ft (1 ≤ t ≤ s), we find fc,
fc
du

, fc
dv

, fc
dw

that minimizes

EC =
s
∑

t=1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

fc +
fc

du
dut +

fc

dv
dvt +

fc

dw
dwt − ft

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

. (2)

This can be considered as a local first-order Taylor expansion of our representation

which can be efficiently solved by small linear systems. This approximation is suf-

ficient for intermediate computation and we optionally use the accurate evaluation

in the final stage.
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4.3.3 Multi-resolution synthesis

To capture features at multiple scales, a multi-resolution approach is also used in

our algorithm. However, since a sparse control grid is used, reducing the resolution

is not feasible as it would be too coarse in low resolutions to effectively capture

details. Instead, inspired by fractional sampling [16], in each successive coarser

level we keep the resolution of the control grid unchanged and double the spacing

between sample pixels in exemplar image and voxels in the 3D space. From coarse

to fine we use three levels of synthesis with N = 9, 11, 21 respectively. The finest

level uses a significantly larger neighborhood in order to cover a few control points

at minimum in our sparse representation.

4.3.4 Fast approximate evaluation

Our gradient solid representation is relatively easy to evaluate; however, in the

solid texture synthesis process, many evaluations are needed. We suggest two ap-

proximations for improved performance. In the intermediate synthesis process,

instead of evaluating the accurate values at each sample point, we use a first-

order Taylor expansion as an approximation. For any point p whose closest con-

trol point is c with feature vector fc and its gradients fc
du

, fc
dv

, fc
dw

, the approximate

feature vector at p with relative coordinates dup, dvp, dwp, can be evaluated as

fp = fc +
fc
du
dup +

fc
dv
dvp +

fc
dw
dwp. This approximation does not ensure smooth-

ness, but only involves 3 multiplications and 3 additions for each component of the

feature vector, thus only takes about 1/10 of the computation of a full evaluation.

In the iterative synthesis, another approximation is to ignore the region-based cal-

culation given in Sec. 3.2 (as if there is no separated region as in the single channel

case such as Fig. 6(middle)). This may mix up voxels in different regions within

the same cube and leads to visual degradation of the final results; the impact on the

intermediate synthesis however is negligible as it is restricted to a couple of voxels

due to the cube size.

4.4 Gradient solid representation refinement

As the final step, we further optimize the gradient solid representation to better

represent the synthesized gradient solids.

Region separation. For solids with smooth variation of colors (e.g. Fig. 11), our

algorithm does not require a binary mask as input and can effectively reproduce

the solids with a single region. For solids with sharp region boundaries that need to

be preserved, we differentiate regions with positive and negative signed distances

for the computation of control point parameters described in Sec. 4.3.2. For each

control point, we compute positive parameters (fP and gradients) using samples

with positive signed distance. Similarly, samples with negative signed distance con-
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Fig. 7. Synthesized object without (a) and with the field (c); the field is given in (b).

tribute to negative parameters (fN and gradients). To improve reliability in the fit-

ting of boundary control points, we propagate boundary samples (with neighboring

samples having different signs of distance) to the near neighboring space, simi-

lar to dilation in mathematical morphology. This mainly ensures cubes near region

boundaries have sufficient samples to make fitting reliable.

Control point optimization. To further improve the quality, instead of fitting with

first order approximation, we can also minimize the fitting error of all the samples

between the sample values and those interpolated using Eqn. 1. For a sample point

with sampled feature vector f̂i located in the cube ci with corner control points

collected as Vi and parameter (ui, vi, wi), the evaluated feature vectors f̃ are linear

functions of Vi, denoted as f(Vi; ui, vi, wi). We minimize the following quadratic

energy

ĒC =
NS
∑

i=1

‖f̃i − f̂i‖2 =
NS
∑

i=1

‖f(Vi; ui, vi, wi)− f̂i‖2, (3)

where NS is the number of sample points. Minimization of ĒC leads to a sparse

linear system. As we have a good estimation from the previous approximation,

the linear system can be effectively solved in a few iterations. As demonstrated in

Table 1, control point optimization reduces the approximation error but also takes

some extra time. Our method without this optimization is sufficiently good in many

cases so it is considered as an option to tradeoff quality with speed.

4.5 Instant solid editing

Editing propagation often takes a sparse set of user input as constraints and ex-

tends this to similar regions to avoid otherwise labor-intensive procedures. Editing

propagation has been studied for image/video processing (e.g. [39,19]), Bidirec-

tional Texture Functions editing (e.g. [40]) etc. Similarly, 3D solids are expen-

sive to store, and also time-consuming to edit. We achieve instant solid editing by

adapting a recent development [19] in images and videos. Alternative approaches

for texture editing may involve texture classification (e.g. [38]) to identify similar

patterns. In this work, we restrict the propagation based on color similarity and lo-

cation closeness, which is much more efficient thus suitable for solid textures, and

more robust as no classification is needed. A typical scenario for this editing is
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Fig. 8. Synthesized solids without fields. First row: tiled low resolution (1283) solids. Sec-

ond row: high resolution (5123) solids.

Fig. 9. Synthesized high-resolution solids (about 512 samples in the longest dimension) fol-

lowing given directional fields with our algorithm: ‘vase’, ‘horse’, ‘tree’ and ‘dinopet’ with

synthesized solids, close-ups and internal slices. ‘Dinopet’ is turned pink with instant edit-

ing. Part of the figure was previously published in [43] and is republished with permission

by Springer.

the user first draws a few strokes with different intensities indicating how strong
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(a) (b) (c) (d)

Fig. 10. Synthesized high-resolution solid texture (1024 samples in the longest dimension)

with a field. (a) input user specified tensor field; (b) synthesized solid texture; (c) close up

(d) internal slices.

the selected voxels will be affected by the editing. The user then selects a refer-

ence color, and voxels will be affected based on similarities in the position and the

appearance (color) to those with user specifications. While the editing in [19] is

generally efficient, dealing with large volumes is still relatively slow. Worse still,

if the volume is in some vector representation, naive application of this method

will involve converting to raster representation before editing and back to vector

representation afterwards. We show as follows that our adaptation of the editing

algorithm is instant with virtually equivalent solution; this cannot be achieved with

Wang’s representation.

For each control point i with color ci = (r, g, b)T and position pi = (x, y, z)T , we

need to know the influence hi. This is effectively modeled as m RBFs, the centers

of which are randomly selected from the stroke voxels

hi =
m
∑

k=1

ωkhi,k =
m
∑

k=1

ωk exp
{

−α(β|pi − p̄k|2 + |ci − c̄k|2)
}

, (4)

where p̄k and c̄k are the position and color of k-th stroke voxel selected as a RBF

center. ωk, restricted to be non-negative, can be obtained by solving a linear pro-

gramming problem that minimizes the strength deviation for user specified vox-

els [19]. Parameters α and β control the propagation and α = 10−4, β = 0.1 work

well in many cases. Assuming the reference color is cref , to compute the edited

gradient solids, ci and dci
dpi

need to be updated for each control point, which can be

effectively calculated as follows. We define c′i = (1− hi)ci + hi · cref , and thus we

have
dc′i
dpi

= (1− hi)
dci
dpi

− (ci − cref )(
dhi

dpi

)T , (5)

where

dhi

dpi

= −
m
∑

k=1

ωk2αhi,k{β(pi − p̄k) +

(

dci
dpi

)T

(ci − c̄k)}. (6)

The editing is demonstrated in Fig. 1 to turn a fish purple instantly. A few strokes

on the fish object are drawn to indicate the effect of change and a purplish color
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sample is chosen (as in the box). Another example is in Fig. 9 where ‘dinopet’ is

turned pink instantly with a few strokes and a pink reference color (as in the box).

The editing algorithm only takes about 0.1 seconds, providing instant feedback on

such large volumes. Comparatively, direct application on raster solid of equivalent

resolution takes about 1 second and naive implementation on vector solids takes a

few minutes.

5 Results and Discussions

Our algorithm is useful for either direct synthesis of solid textures, or vectorizing

input solids. We carried out our experiments on a computer with 2×2.26GHz quad-

core CPU and NVIDIA GTS 450 GPU. Our algorithm involves a few parameters

for various stages of the pipeline. We used the following settings for experiments

in the paper: the grid size d = 4, the number of iterations NO = 3, the number of

checkpoints NC = 3, the number of quantization clusters NT = 12, the number of

crossbar matching candidates N1 = 20, N2 = 50, neighborhood size for different

levels N = 9, 11, 21 and editing propagation parameters α = 10−4, β = 0.1.

5.1 Solid texture synthesis

Our algorithm directly synthesizes more compact and resolution-independent gra-

dient solid textures from 2D exemplars. Solids with comparable quality to the state

of the art can be synthesized, as shown in Figs. 1, 4-8, 10. As for other CPU-based

algorithms that focus on synthesizing full solids of a 1283 cube, the typical reported

times have been tens of minutes, e.g. [13] uses 10-90 minutes (without tensor fields)

and [21] (a CPU-based implementation similar to [4] with direction fields consid-

ered) reported about 30 minutes with a single core. Our results are vector solid tex-

tures which are resolution-independent. For simplicity, we consider solid textures

with equivalent detail resolution to raster solid textures when certain resolution is

referred to in the following discussion. Our current implementation, after about 10
seconds preprocessing of the input exemplar (which is the same for arbitrarily sized

output volumes), takes only 13 seconds. Even counting the different performance

of CPUs, our algorithm is over 10 times faster. Due to the compactness in represen-

tation and the technique for memory reuse, we can synthesize high-resolution solid

textures in full. 5123 solids can be synthesized within 15 minutes (Fig. 8). Other ex-

amples throughout the paper with about 512 samples in the longest dimension take

3-7 minutes, while the example in Fig. 10 at resolution of 1024 takes 35 minutes

and within 900MB memory. Region separation is not needed if the input texture

does not contain sharp boundaries, as the ‘vase’ and ‘tree’ examples in Fig. 9. In

these examples, the binary mask is used only as part of the feature vector, not for

region separation. The ‘tree’ example shows that our synthesis algorithm can be
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example error time

Wang’s ours w/o opt. ours w/ opt. Wang’s ours w/o opt. ours w/ opt.

Fig. 11 (‘caustics’) 6.14 2.62 1.50 8 min 25 sec 1.08 sec 5.10 sec

Fig. 12 (‘balls’) 8.59 5.83 4.21 24 min 21 sec 2.67 sec 11.46 sec

Table 1

Statistics of solid vectorization results.

(a) (b) (c) (d)

Fig. 11. Solid vectorization of the input volume ‘caustic’ without binary mask. (a) input

volume; (b)(c) our results without and with further optimization; (d) result using [33].

generalized to synthesize solids with different exemplars covering different spaces,

mimicking the real structure of a tree.

(a) (b) (c)

(d) (e) (f)

Fig. 12. Solid vectorization results with a binary mask. (a) input volume ‘balls’; (b) input

volume rendered in transparency; (c) input mask; (d) vectorized solid with our algorithm

without optimization; (e) our result with optimization; (f) result using [33].

We demonstrate the effectiveness of our algorithm with various examples. Al-

though our method uses a rather sparse set of control points, they are much more

expressive than voxels at the same resolution. An example is given in Fig. 6. The

left result is synthesized with [42] (using a proportionally downsized exemplar im-

age as input) and looks sensible at original 323 resolution. We use tricubic inter-

polation to upscale the volume to 1283 and clear artifacts appear indicating that

323 volume is not sufficient to capture the structure of the solid. Our results with
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also 323 control points are significantly better and sharp region boundaries can be

recovered with region separation. Tiling small cubes such as of 1283 size to cover

the whole space is commonly used, due to the prohibitively expensive computation

with most previous algorithms. Synthesizing high resolution solids is essential to

avoid visual repetition (as demonstrated by ‘table’, ‘cake’ and ‘statue’ in Fig. 8) or

produce solids following certain direction fields (see Fig. 9). A comparison of re-

sults without or with the field is given in Fig. 7. High resolution solid textures with

512 and 1024 samples in the longest dimension are shown in Figs. 1 and 10, respec-

tively. Note that in all the results we synthesize the full solids rather than only the

visible voxels [4,42]. This is preferred since in many applications objects are syn-

thesized once but rendered many times on lower-end systems. Our representation

makes rendering algorithm both efficient and simple to implement.

(a) (b) (c) (d)

Fig. 13. An example that a single distance field is not sufficient to fully recover sharp

boundaries. (a) input solid; (b) vectorized solid with a single distance field; (c) close-up

of (b); (d) vectorized solid with an additional distance field to recover sharp boundaries

(close-up).

Fig. 14. Vector solid textures without (left) and with added details (right).

5.2 Vectorization of solid textures

Our approach can also be used for solid texture vectorization. In this application, we

take each voxel as a sample and produce gradient solids with the method in Sec. 4.4

if optimization is used or otherwise a first order approximation as in Sec. 4.3.4. We

perform comparative experiments on the same computer, using the code directly

from [33]. 5, 000 RBFs are used to provide sufficient flexibility, more than most

examples in [33], for fair comparison. Although our algorithm is highly parallel,

we only use a single core for fair comparison. Detailed running times and fitting

errors are given in Table 1. Whilst pixel-wise error measurement before and after

vectorization may not be the best criterion perceptually, it is widely used in image
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vectorization. For most solids suitable for vectorization, our method produces re-

sults with lower per-pixel error and avoids the spotty artifacts caused by the use

of RBFs. Although RBFs seem to be more flexible, unless using a (potentially im-

practically) large number of RBFs for relatively complicated input, spotty artifacts

are reasonable reflection of radial bases and large approximation errors result. We

also experimented with varying RBFs from 3, 000 to 5, 000 but the approximation

errors in our experiments only drop marginally. Wang’s algorithm may also get

stuck at suboptimal solutions due to the highly non-linear nature. Our vectorization

does not suffer from these problems and is much simpler to optimize as only sparse

linear systems need to be solved.

Our method without control point optimization is on average 500 times faster and

has much reduced reconstruction error and better color reproduction than [33], as

shown in Figs. 11 and 12 as well as Table 1. If the optional control point optimiza-

tion is used, the error can be further reduced at a small cost. This shows that we

currently achieve interactive performance for vectorization of moderate sized vol-

umes. Direct synthesis of gradient solid textures requires many times of interme-

diate vectorization and evaluation and it would become impractically slow without

the speedup. Since the algorithm is highly parallel, a parallel GPU-based imple-

mentation may further improve the speed.

We use regions to represent sharp boundaries (Fig. 12) but our method can deal with

input solids that cannot be naturally separated into multiple regions (see Fig. 11). In

this case, no binary mask image needs to be provided. A more thorough evaluation

on the whole dataset provided by [13] with 21 solid textures shows that for more

than 75% of the examples, especially those examples more suitable for vectoriza-

tion (with lower approximation for both methods), our method outperforms [33] in

fitting error (see the accompanied supplementary material for detailed statistics).

We quantize each value with 8 bits, and our representation, without further careful

coding, takes only 6.5% (without region separation) or 15% (with region separa-

tion) of the voxel solids, while 17%-26% is reported in [33]. The size of the look-up

table is not considered because it does not depend on input and thus does not need

to be stored in external files and its size is fixed and small enough to be kept in

current graphics card without any problem.

5.3 Rendering

While our current synthesis implementation is CPU-based, gradient solids are ren-

dered efficiently with commodity GPUs. For each visible pixel, we obtain the in-

terpolated texture coordinate using the vertex shader and evaluate the color with

Eqn. 1 using the fragment shader; the colors and gradients at control points are

stored as textures for efficient GPU access. The color at any continuous position is
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calculated by linear interpolation of entries in the look-up table described in Sec. 3

through hardware-supported texture fetches, a commonly used technique for re-

altime rendering. For solid textures with binary masks, the relevant set of feature

vectors is used based on the evaluated signed distance. This is both efficient and

ensures accuracy as accurate values are obtained at 83 times higher resolution than

raster solids. This linear interpolation is accurate at 1
8

voxel resolution and is suffi-

ciently close to the real function such that no visible artifact is produced, even when

extremely magnified. In most practical applications, a precomputed look-up table

with 1
4

voxel resolution is sufficient, which leads to a look-up table with 173 × 32
entries and taking less than 0.6MB storage. To avoid jagged boundaries when gra-

dient solids with two regions are rasterized, we use similar antialiasing technique

as in [33]. The idea is for pixels close to boundaries, colors evaluated with both

positive and negative regions are linearly blended.

Our representation has similar real-time rendering performance as [33]. To make a

fair comparison, in the performance measurement, we have disabled mipmapping

for [33] and enabled antialiasing for both methods. For a 1283 solid with a mesh

containing 70K vertices rendered at 1024× 768 resolution, our average frame rate

is 80 fps and the rendering algorithm from [33] achieves on average 75 fps. High

resolution solid textures in this paper are rendered with 30-60 fps. The slightly

lower frame rates are due to the relatively complicated geometry and large textures

with lower cache performance.

5.4 Discussions and Limitations

Although we can represent sharp boundaries with regions, similar to Wang et al. [33]

using a single distance field we cannot in general recover sharp boundaries if more

than two regions touch. An example is given in Fig. 13. The input solid (a) can be

vectorized with our algorithm producing the reconstructed solid (b) with close-up

(c). Sharp boundaries between triangles cannot be preserved with the single binary

mask. Compared with [33], our blurring effects are much more local. If such blur

is not acceptable, our algorithm needs to be modified to be augmented with another

distance field to separate adjacent triangle pairs, as shown in (d) (a close-up view).

Another limitation is although our fitting error is usually lower than Wang et al. [33]

for typical input, fine details within a region may not be fully reproduced; this

however is a limitation for virtually all the vectorization methods. To simulate fine

details of textures without excessive storage, the approximation error at any po-

sition is modeled as a Gaussian distribution. Assume for each position x, and an

arbitrary channel c (including r, g, b) with a sample pixel value p̂c(x) and cor-

responding reconstructed value from the vector representation p̃c(x), the residual
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rc(x) = p̂c(x)− p̃c(x) is a Gaussian distribution with probability p satisfying

p(rc(x) = y) = G(0, σc(x)) =
1

√

2πσc(x)2
exp{− y2

2σc(x)2
}, (7)

where σc(x) is the standard deviation and y an arbitrary value. We optimize σc(x)
such that p(rc(x) = p̂c(x)− p̃c(x)) is maximized, which is worked out as σc(x) =
|p̂c(x)− p̃c(x)|. For efficiency, σc is also compactly represented using our vector

representation, treating as an additional channel. When rendering at any position,

the residual r is randomly sampled from the distribution. To ensure consistent re-

sult, a position determined hash function as Perlin noise [27] is used. With similar

lookup table based GPU acceleration, extra computation can be efficiently done,

keeping the rendering algorithm realtime (current implementation with 30%−50%
of the original fps). An example is shown in Fig. 14 where richer details are recov-

ered without losing the benefits of vector representation such as resolution inde-

pendence.

As a method to produce vectorized solid textures, our method is not suitable for

all textures. Even with noise modeling, for textures with large amount of high-

frequency details, the method may not reproduce such textures in the synthesized

solids well, as shown in Fig. 15. Nevertheless, we have demonstrated that our

method works well on a variety of textures throughout the paper. Our represen-

tation is particularly suitable for solid textures having dominantly smooth color

variations within each homogeneous region, as assumed by virtually all the vector-

ization methods. This applies also when textures contain textons at varying scales,

reasonable synthesis results can be achieved as long as they don’t have significant

high-frequency details, as demonstrated in Fig. 8 where textures contain elementary

pieces of different sizes. A regular grid is used for simplicity which may not be very

efficient if the level of detail changes dramatically over the volume; alternatively,

adaptive sampling may be used to alleviate this.

The instant editing algorithm in this paper does not consider the texton structures

of the solid textures and thus may not provide semantically coherent editing results.

Based on our general framework, this could be achieved with texton analysis and

this is expected to be explored in the future.

6 Conclusions and Future Work

In this paper, we propose a novel gradient solid representation for compactly rep-

resenting solids. We also propose an efficient algorithm for direct synthesis of gra-

dient solid textures from 2D exemplars. Our algorithm is very efficient in both

computation and storage, compared with previous voxel-level solid texture synthe-

sis methods and thus allows high-resolution solid textures to be synthesized in full.
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Fig. 15. Our method may not perform well on exemplar images with significant high fre-

quency details. Left: input exemplar image; right: synthesized solid textures.

The algorithm can be generalized to take 3D solids as exemplars which will also

benefit from the compactness of our representation. The representation is also po-

tentially useful for accelerating volume processing. We have demonstrated instant

editing of large volumes, and we would like to explore other applications such as

efficient volumetric rendering and manipulation of (solid) textures (e.g. [6,20]) in

the future. Our current implementation of the synthesis algorithm is purely CPU

based. The algorithm is highly parallel and we expect to implement this on the

GPU to further improve the performance. Our rendering implementation can be

further augmented with mipmapping for adaptive scaling especially minification

and texture composition to produce richer fractal-like boundaries, using techniques

similar to those in [33]. The instant solid editing algorithm could be improved for

more semantically meaningful editing by taking into account the texton structures.
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