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Abstract

We present a full pipeline for computing the medial axis transform of an arbitrary 2D shape. The instability of the medial
axis transform is overcome by a pruning algorithm guided by a user-defined Hausdorff distance threshold. The stable
medial axis transform is then approximated by spline curves in 3D to produce a smooth and compact representation.
These spline curves are computed by minimizing the approximation error between the input shape and the shape
represented by the medial axis transform. Our results on various 2D shapes suggest that our method is practical and
effective, and yields faithful and compact representations of medial axis transforms of 2D shapes.
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1. Introduction

The notion of the medial axis transform was first in-
troduced by Blum [1] as an intrinsic shape representation.
The medial axis of an object O is the set of interior points
having at least two closest points on the boundary ∂O
of O. In the 2D space, each point on the medial axis is
the center of a circle, namely a medial circle, which is the
maximal inscribed circle contained in O and tangent to
∂O in at least two points. To encode the complete shape
information of the object, each point on the medial axis is
assigned with the radius, which could be 0, of its associ-
ated medial circle. Therefore, a radius function could be
defined on the medial axis. The medial axis coupled with a
radius function is referred to as the medial axis transform
(MAT). Each point in the MAT, called medial point, has
three dimensions, which indicates its 2D position and the
radius. The MAT is a complete shape representation in
the sense that the object boundary can be reconstructed
exactly from its MAT as the envelope of all the medial
circles.

The MAT encodes rich information of a shape, such as
local thickness, symmetry and its part structure, which is
not possessed by alternative boundary surface representa-
tions. Therefore the MAT has been used extensively in a
wide spectrum of applications, including shape analysis [2],
shape deformation [3] and artistic rendering [4]. Detailed
discussions on properties and applications of the MAT can
be found in the book [5].

The MAT, on the other hand, is well-known suffering
from the instability problem: small variations of the shape
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boundary may yield a large change to its MAT. While
boundary noise is ubiquitous in data acquisition due to er-
rors introduced in scanning, sampling and other numerical
processing, the medial axis thus often has excessive geo-
metric complexity and pathological topology, rendering it
generally useless in practice unless it is cleaned up. A lot
of existing algorithms have been developed to resolve the
instability issue. As a common practice, unstable branches
of the MAT induced by boundary noise are pruned based
on certain measures [6, 7, 8]. Different criteria have been
introduced to characterize the difference between the orig-
inal shape and the reconstructed shape, or describe the
remaining stable MAT with some intrinsic measures [9].
These methods focus on simplifying the topology of the
MAT by pruning unstable branches, producing a topolog-
ically clean MAT which is nevertheless still represented by
a large number of sample medial points. This is partially
due to the prevailing choice taking the union of the sample
medial circles (or medial spheres in 3D) as an approxima-
tion when evaluating the approximation error during both
pruning stage and shape reconstruction stage. As a conse-
quence, a large number of medial circles are often necessary
to attain a good approximation to the MAT [10, 11].

To achieve a smooth representation and further reduce
the geometric complexity of the MAT, we propose to rep-
resent the MAT as spline curves. See Fig. 1 for a compari-
son of the two shape representations. The medial axis also
possesses piecewise C2 continuity in each medial branch.
Although a similar smooth representation of the MAT has
been used for modeling and segmentation purposes [12],
a fully automatic way of obtaining a smooth MAT for an
arbitrary shape is still missing.

In this work, we propose a complete pipeline which au-
tomatically computes a stable and compact medial axis
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(a) (b)

Figure 1: Given a shape swept by a moving circle, its medial
axis transform is approximated as a sample set of 57 medial
circles. (a) The approximate shape is the union of the medial
circles. (b) On the other hand, to achieve the same accuracy
with spline medial axis approximation, we need only 5 control
points. The control polygon of the spline curve is shown in red.

transform which accurately approximates an arbitrary 2D
shape. Given an error threshold ε̂, our algorithm guaran-
tees that the Hausdorff distance between the boundary of
the original shape and the boundary of the reconstructed
shape is at most ε̂. Our method involves the pruning of un-
stable medial branches with an error-driven filtering pro-
cess and the computation of a compact and accurate spline
approximation to the MAT.

Compared to other works on medial axis computation,
our algorithm possesses the following advantages:

• Topological filtering with error control: Our fil-
tering process is guided by a user-defined error thresh-
old ε̂ to ensure approximation accuracy while remov-
ing noisy, unstable branches as much as possible.

• Computing a compact geometric representa-
tion: We use spline curves to approximate the MAT,
resulting in a highly compact representation. An op-
timization process is developed to make sure that
the reconstructed boundary best fits the input shape,
meeting a user specified error tolerance.

This paper is organized as follows. We start with a brief
review of the previous work related to medial axis compu-
tation in Section 2. We then define the piecewise smooth
medial representation in Section 3. In Section 4, we in-
troduce our main algorithm; the implementation details
are then provided in Section 5. We present experimen-
tal results in Section 6 and finally conclude the paper in
Section 7.

2. Related Work

There is a vast amount of research studies about medial
axis computation and representation. Here, we will review
only those which are in close relation to our work.

2.1. Medial axis computation

Exact medial axis computation is possible only for sim-
ple or special shapes, such as polyhedra [13, 14]. For
free-form shapes, medial axis approximations are widely
used in practice. There are several main approaches

to computing the medial axis approximation: pixel or
voxel-based methods that compute the medial axis us-
ing a thinning operation [15]; methods based on distance
transform [16, 17, 18, 19], often performed on a regular
or adaptive grid; the divide-and-conquer methods [20],
performed on spline curve boundaries; the tracing ap-
proaches [21], by tracing along the shape boundary or the
seam curves; and the Voronoi diagram (VD) based meth-
ods [6, 22, 23, 24, 25].

Among these, the VD based approach stands out due to
its theoretical guarantee and efficient computation. As a
preprocessing step, we obtain an initial discrete medial axis
of a shape using the VD based algorithm. The VD based
method assumes that the boundary of an input shape O
is a smooth curve and is sampled by a dense discrete set
P of points (Fig. 2a), with the sampling density deter-
mined by the local feature size [22] in order to capture
the boundary topology correctly. The Voronoi diagram of
P is computed and the Voronoi vertices interior to O are
taken to approximate the medial axis of Voronoi diagram
(Fig. 2b), since a point on the Voronoi diagram is also
characterized by having at least two closest points among
the sample points.

(a) (b)

Figure 2: Obtaining an initial discrete medial axis transform
using the Voronoi diagram based method. (a) Boundary sam-
pling of a 2D shape. (b) The Voronoi diagram of the boundary
of sampling points, with the internal part of the Voronoi dia-
gram (in red) approximating the medial axis.

2.2. Handling instability

Many studies have been conducted to understand and
resolve the instability problem of the MAT. We review here
several typical methods, whereas a survey can be found
in [9]. One general approach is to define certain mea-
sures for the significance of a medial point, and to filter
medial points against a user-defined threshold, thereby re-
moving unstable branches of the medial axis. Examples
include the angle-based methods which consider the sep-
aration angle or the object angle (i.e., the angle spanned
by the closest contacting points) [16, 26, 27] and scaled
axis transform (SAT) which essentially exploits the rate of
change of the radius function as the filtering condition [7].

Another approach of computing a stable MAT is to con-
sider the difference between the initial shape and the re-
constructed shape from the pruned MAT [9]. The filtering
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(a) (b) (c)

Figure 3: Illustration of the medial axis transform. (a) A medial axis consisting of three branches connected at a joint. (b)
The branches are represented by cubic B-spline curves, shown with their control polygons, defined by 17 control points. (b) The
reconstructed shape from the medial axis transform can be obtained from our envelope reconstruction of a densely sampled medial
axis and its associated medial circles.

step in our algorithm resembles this latter approach by
considering the Hausdorff distance between the boundary
of the input and the approximate shape to ensure the ap-
proximation accuracy of the output stable MAT.

2.3. Smooth medial axis representation

Yushkevich et al. [12] propose a continuous medial rep-
resentation by modeling the MAT with cubic B-splines,
as an extension of its discrete counterpart called the m-
rep [28]. The m-rep is built upon a sparse set of medial
atoms, each of which encapsulates the 2D position of a me-
dial point and the corresponding spoke vectors from the
2D medial point to the closest points on the object bound-
ary. The continuous m-rep [12] (cm-rep), on the other
hand, uses control points in cubic B-splines to describe
the MAT, which must meet specific constraints defined on
the implied boundary. In applying cm-reps to object mod-
eling and image segmentation, a template cm-rep model is
first built manually which is then deformed to fit a tar-
get shape. There is currently no method for automatically
computing a smooth curve approximation to the MAT of
a 2D shape.

The smooth medial representation we propose in this
work is inspired by the cm-rep. However, instead of me-
dial atoms, we adopt the simple medial points as our basic
control entities. While the shape boundary is explicitly
given by the trace of the spoke vectors for a cm-rep, the
shape represented by our smooth medial axis transform is
implicitly described by the union of the envelopes of adja-
cent medial circles. Using medial circles not only provides
a more compact representation but also relieves the bur-
den of ensuring the shape boundary as defined by the spoke
vectors is intact and consistent, without compromising the
accuracy in shape approximation.

3. Preliminaries

In this section we will introduce the notation for describ-
ing our method. Refer to Fig. 3 for an illustration of the
medial axis transform of a 2D shape. Consider a 2D shape
O as a compact connected subset of R2 with boundary
∂O (Fig. 3a). The medial axis MA of O is defined as the
set of points inside O with at least two nearest neighbors
on ∂O. Medial circles could be described from points in
MA, associated with the local thickness (radius) values.
The medial axis transform MAT of O is the set of such
medial circles. Each point in MAT , which we call a me-
dial point, is specified by a 3D vector vi = (ui, ri), where
ui = (xi, yi) ∈ R2 denotes the medial position and ri ∈ R
is the distance from ui to the shape boundary ∂O. In
other words, vi describes a 2D medial circle, centered at
ui with radius ri, which is tangent to ∂O in at least two
points. In the extreme case, for example, a sharp corner
of ∂O, the radius is actually 0.

A medial point vi tangent to ∂O at two distinct points
is called a regular medial point. A branch is a maximal
curve segment comprising regular medial points. A joint
is a medial point at which three or more branches meet,
and hence a joint has three or more tangent points with
∂O. An end-point is a medial point corresponding to an
oscillating circle of ∂O.

Given a 2D shape O, we consider an approximation to
its MAT by a piecewise smooth medial axis transform,
denoted M = {Cj} that consists of a set of medial spline
curves connected at the joints ofMAT . Each spline curve
Cj parameterizes both the position and the radius of me-
dial points. Hence, any point on Cj gives a medial point
on M. Similarly, each Cj is a maximal curve segment
comprising regular medial points and it corresponds to a
branch inMAT . An end-point of Cj is either an end-point
ofM, or a joint ofM at which three of more branches meet
(Fig. 3b).

The envelope Ĉj of Cj is specified as the union of all
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medial circles on Cj , noted that Cj is a continuous curve.

Let M̂ be the union of {Ĉj}. Then M̂ represents a shape
approximation to O. Compared with discrete medial axis
representation in which a 2D shape is approximated using
a union of medial circles sampled onMAT , the piecewise
smooth medial axis transform provides a compact yet ac-
curate shape representation. While a set of densely sam-
pled medial circles needs to be sampled on a branch of
MAT to well approximate the shape the branch repre-
sents (Fig. 3c), it takes far fewer control points to define
spline curves to accurately approximate the medial axis
transform.

4. Computational Framework

In this section we shall present a full pipeline for auto-
matically generating a piecewise smooth medial axis trans-
form for an arbitrary 2D geometric shape O with smooth
boundary ∂O. To start, we assume that O is sampled by a
set of dense sample points {pi ∈ R2} on ∂O, meeting the
sampling conditions [22] to faithfully capture the topology
and features of the boundary ∂O.

Our algorithm consists of two main steps: (1) noise fil-
tering for generating a stable medial axis transform Ms,
and (2) geometric simplification for computing a spline-
based medial axis transformM based on the branch struc-
ture ofMs. Our goal is to obtainM, whose reconstructed
shape M̂ well approximates the original shapeO, and both
the above steps are governed by a quantitative measure
ε(O,M̂) of the approximation error of M̂ to O.

While the differences of two shapes are commonly mea-
sured by a Hausdorff distance (by considering the shapes
as point sets), we use instead the one-sided Hausdorff dis-
tance from the original boundary ∂O to the reconstructed
boundary ∂M̂ ofM as the error measure ε(O,M̂), which
is easier to compute. As ∂O is generally more complex
than the simplified ∂M̂, the one-sided Hausdorff distance
is usually a good approximation to the Hausdorff distance
of the boundaries of the two shapes.

Our algorithm is outlined in Algorithm 1. We shall
present the details in subsequent subsections.

4.1. Noise filtering

In this step, we aim at generating a stable medial axis
transformMs for an input 2D shape O. Furthermore, we
ensure that the approximation error of the reconstructed
shape M̂s to O, denoted as ε(O,M̂s), is no larger than
a user specified error threshold ε̂. In our framework,
ε(O,M̂s) is measured by the one-sided Hausdorff distance

from ∂O to the boundary ∂M̂s of M̂s. By noise pruning,
we shall obtain a stable medial axis transformMs that will
be used as an input in the next step for computing M, a
smooth spline representation of the medial axis transform.

Given a dense set of points {pi} sampled on the bound-
ary ∂O of O, we first apply the Voronoi diagram based
method [24] to obtain an initial medial axis transform

Algorithm 1 Spline approximation to the medial
axis transform of a 2D shape

Input: A dense set of sample points {pi} representing the
boundary ∂O of a 2D shape O, an error threshold ε̂.

Output: A piecewise smooth medial axis transform M
such that the approximation error ε(O,M̂) ≤ ε̂.

1: Obtain an initial medial axis transformM0 from {pi}
using the Voronoi-based approach [24].

2: Noise pruning – Compute a stable medial axis trans-
formMs fromM0 guided by the one-sided Hausdorff
distance filtering, with the control of ε̂.

3: Geometric simplification – Obtain an initial piecewise
smooth medial axis transform M by spline fitting to
Ms. Optimize M iteratively by minimizing an objec-
tive function characterizing the approximation error
ε(O,M̂).

4: Output the obtained M.

M0 whose medial axis comprises the internal vertices and
edges of the Voronoi diagram of {pi}. The filtering then
proceeds by considering the approximation error induced
by the removal of medial points on the medial axis trans-
form, as measured by the one-sided Hausdorff distance
from ∂O to ∂M̂s.

The one-sided Hausdorff distance from ∂O to ∂M̂s is
defined as:

ε(O,M̂s) = max
i
{d(pi, ∂M̂s)}, (1)

where d(pi, ∂M̂s) is the Euclidean distance from bound-

ary point pi to ∂M̂s. The reconstructed shape M̂s is
represented as the union of all medial circles inMs. Since
the medial axis of Ms is a subset of the Voronoi diagram
of {pi}, pi always lies on or outside medial circle (uj , rj).

Hence, d(pi, ∂M̂s) equals the distance from pi to its near-
est medial circle (uj , rj):

d(pi, ∂M̂s) = min
j
{d(pi,uj)− rj}. (2)

4.1.1. Filtering strategy

To ensure that Ms has the same homotopy as the ini-
tial medial axis M0, only the end-points of the medial
axis transform might be pruned. The initial M0 gives
the exact reconstruction of the shape with respect to the
sample points {pi} and hence ε(O,M̂0) = 0. At each it-
eration of the filtering process, we check the error induced
by the removal of a medial end-point vj , which equals

δj = ε(O,M̂′s), where M′s = Ms \ {vj}. If the induced
error δj ≥ ε̂, vj will be treated as a feature of the medial
axis and kept inMs. Otherwise, we treat vj as noise and
prune it from Ms. The process is repeated until all end-
points have been checked. Algorithm 2 describes the steps
of our noise pruning algorithm.

The result of the above pruning procedure is in general
not unique, since it might depend on the order of pruning.
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Algorithm 2 Noise pruning algorithm

1: Construct M0 from the Voronoi diagram of {pi}.
2: Set Ms =M0, store all end-points in a queue Q.
3: while Q is not empty do
4: Pop an end-point vj from Q.
5: If δj < ε̂, remove vj , as well as its neighboring seg-

ment from Ms and push the neighbor point of vj

into Q if it becomes an end-point.
6: end while
7: return the stable medial axis transform Ms.

Nevertheless any such result will meet the specified error
tolerance ε̂, and can be used at the next stage of geometric
simplification as an input to further compute a compact
piecewise smooth medial axis transform.

4.2. Geometric simplification

After noise pruning, a stable medial axis transform is
obtained. However, the pruning step removes only noisy
medial points and leaves numerous discrete medial points
on the stable medial branches. While those medial points
are critical to a faithful representation for union of cir-
cles, in the envelope representation which we adopt, most
of them contribute quite little to the shape and are thus
nearly redundant. To get a concise medial axis transform,
we should further reduce the number of medial points by
utilizing a piecewise continuous representation. Such me-
dial point decimation is driven by a user-specified approxi-
mation error threshold ε̂ to ensure the approximation error
is under control.

First, we construct an undirected graph G to repre-
sent the medial points filtered by noise pruning algorithm.
Each medial point corresponds to one vertex in G. Two
vertices in G are connected by an edge if their correspond-
ing medial points are neighbors in the medial axis trans-
form. We then obtain chains from the graph by grouping
all edges which are connected without passing through a
joint. Since each chain Hj is single connected, we fit a
smooth curve Cj for it. By considering the smoothness,
the ease of implementation and the representation ability,
we choose the cubic B-spline to represent the smooth curve
for each chain.

4.2.1. Piecewise cubic B-spline medial axis transformation
initialization

We first sample dense points from the medial axis trans-
form and find an initial cubic B-spline medial axis trans-
form with open-uniform knot vectors to fit these medial
points [29]. The reason that we choose this fitting algo-
rithm is, it could generate good fitting curves only based
on the number of control points; no initial curve is re-
quired. To ensure that the B-spline curve passes through
the end-points, knots of multiplicity four are used at each
end-point.

The fitting error of the Cj curve is measured by the
maximal Euclidean distance from medial points on chain
Hj to their projections on the fitting curve Cj . Let fe
be the maximal fitting error over all spline curves. Jǐŕı
Kosinka and Bert Jüttler [30] proved that, the boundary

approximation error ε(O,M̂), measured by the one-sided
Hausdorff distance from the original boundary ∂O to the
reconstructed boundary ∂M̂ from M, is upper bounded
by
√

2 · fe. Hence, we mark a spline curve Cj as reliable,
if the fitting error of Cj does not exceed ε̂/

√
2. For every

branchHj ofMs, our fitting strategy is to search a reliable
cubic B-spline curve with the minimal number of control
points.

4.2.2. Medial axis transform optimization

Then, the distance between ∂O and ∂M̂ is minimized
by optimizing the coordinates of B-spline control points.
We’ll define an energy function E(X) to formulate this
problem. In the following presentation, the variables, X =
{xi} are control points of {Cj}. Each xi = (ui, ri) ∈ R3,
where ui and ri denote the position and the radius of a
control point.

The distance between the two curves is approximated
by the sum of the squared distances.

E(X) =

n∑
i=1

d2(pi, ∂M̂), (3)

where d2(pi, ∂M̂) is the squared Euclidean distance from

pi to ∂M̂. Since M̂ is the union of all Ĉj , d
2(pi, ∂M̂)

could be computed by the squared distance from pi to the
boundary of its closest envelope Ĉj ,

d2(pi, ∂M̂) = min
j
d2(pi, ∂Ĉj), (4)

where ∂Ĉj represents the boundary of an envelope Ĉj .

As Ĉj is the union of all medial circles it represents, a

bottom-up way to compute d2(pi, ∂Ĉj) is designed in our
algorithm. By evenly and densely sampling in the spline
parameter space, a set of piecewise linear segments are ob-
tained. Let S be a segment sampled on Cj . Then its recon-

struction Ŝ is the envelope of its two medial circles, with
a boundary ∂Ŝ (see Fig. A.11). If the sampling density in

spline parameter space is high enough, Ĉj can be approx-

imated accurately as a union of all such envelopes Ŝ. We
consider the footpoint of pi on one envelope Ŝ as invalid,
if the footpoint lies in the interior of another envelope. In
that case, d2(pi, ∂Ĉj) is the minimal valid d2(pi, ∂Ŝ). We

will provide the details for computing d2(pi, ∂Ŝ) in Ap-
pendix A.

By minimizing E, an optimized M is obtained. Intu-
itively, more control points in M will lead to a smaller E
and a smaller ε(O,M̂). As we know, the energy is defined

in the L2 space, while the approximation error ε(O,M̂)
is defined in the L∞ space. It is possible that even if E
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converges to a minimal value, ε(O,M̂) is still larger than
ε̂. If that happens, our strategy is to insert new control
points in M until ε(O,M̂) is no greater than ε̂.

In our algorithm, ε(O,M̂) is compared with ε̂, at the

end of the optimization process. If ε(O,M̂) > ε̂, our algo-
rithm will pick up the boundary point pk with the largest
distance to ∂M̂, and insert a new control point to the
spline curve whose envelope pk’s footpoint lies on. An-
other round of optimization will be executed, and these
steps are repeated until a medial axis transform with a
satisfactory approximation error is achieved. The steps
are described in Algorithm 3.

Algorithm 3 Geometric simplification algorithm

1: Obtain an initialM by fitting the medial points inMs

with a set of cubic B-spline curves {Cj}.
2: Optimize M by minimizing the energy function E.
3: while ε(O,M̂) > ε̂ do
4: Insert a new control point in M, and minimize E

again.
5: end while
6: return a medial axis transformM with ε(O,M̂) ≤ ε̂.

When inserting a new control point to a spline curve,
the user is not required to specify the location of the new
control point, but the spline curve fitting algorithm will
compute and adjust the location based on the number of
control points, which is similar to the spline curve initial-
ization.

5. Implementation Details

In this section, some implementation details will be
discussed.

Initial sampling. To get a good approximation of the
medial axis transform, the input sample points {pi}
should capture the boundary topology faithfully, as well
as boundary features. The sampling condition we adopt
is the local feature size condition discussed in [22]. The
local feature size at a boundary point pi is the Euclidean
distance from pi to its nearest point on the medial axis.
In our case, if the boundary is r-sampled for r ≤ 0.25, we
consider the set {pi} as a valid input.

Optimization. We apply the L-BFGS method [31], an
iterative quasi-Newton method, to minimize the energy
function E(X). The L-BFGS method takes the control
points X in M as the input, evaluates the objective func-
tion E(X) and its gradient ∇E(X) in the optimization.
Since no Hessian is involved in the computation, the
L-BFGS method is quite efficient in finding the optimized
medial axis transform.

Global check and local check. There’re overlaps among
envelopes. A footpoint is only valid if it is not contained

in any other envelope. To determine the validity of a foot-
point, a global check is required to traverse all envelopes,
which is quite time-consuming as a repeated step in each
iteration. We find that generally the footpoint will move
only marginally after each iteration. The observation
inspires us to adopt a hybrid check strategy, which uses
the local check and calibrates the footpoint projection
with a global check after a certain number of iterations.

Medial axis transform validation. The case where one
medial circle is completely contained by another medial
circle is not allowed in a valid medial axis transform.
Let v1 = (x1, y1, r1),v2 = (x2, y2, r2) be any two differ-
ent medial points in a medial axis transform, and ∆x =
x1 − x2, ∆y = y1 − y2, ∆r = |r1 − r2|. In a valid medial
axis transform, the slope of the two points, defined as

tanα =
∆r√

∆x2 + ∆y2
, (5)

should satisfy ‖ tanα‖ ≤ 1. Although we do not incor-
porate this validity constraint in our optimization for the
sake of simplicity, we have checked our computed examples
and found no violation. However, to guarantee the validity
explicitly, it is an interesting future problem to implement
efficient constrained optimization to include this validity
condition.

6. Experiments and Discussions

In this section, we choose some data sets and show how
our algorithm performs on these shapes. All experiments
are conducted on a Xeon 3.33 GHz PC with 12 GB RAM.
We implement our system in C++ and adopt CGAL [32]
to compute the Delaunay triangulation and generate the
Voronoi diagram of sampling points on the shape bound-
ary. The L∞ approximation error ε and error threshold
ε̂ are normalized by scaling the diagonal of the bounding
box of the input shape to 1.

In all figures presented in this paper, the blue regions
are the reconstructed shapes from medial axis transforms
and the black contours are boundaries of the input shapes.
Black dots in spline medial axis transforms represent the
positions of the B-spline control points. In other discrete
medial axis transforms, black dots are the centers of medial
circles.

6.1. Workflow

The workflow of our algorithm, from the initial medial
axis transform to its piecewise smooth medial axis trans-
form, is shown in Fig. 4. The initial medial axis transform
is computed based on the Voronoi diagram of boundary
points (Fig. 4a). Filtering the noise in Fig. 4a with an error
threshold ε̂ = 0.40%, we obtain a clean but discrete sample
points of the medial axis transform (Fig. 4b), with 357 me-
dial points and approximation error ε = 0.40%. In Fig. 4c,
12 cubic B-spline curves with 46 control points are used
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to fit medial points in the discrete medial axis transform,
and an initial piecewise smooth medial axis transform is
ready. After optimization, a piecewise cubic B-spline me-
dial axis transform, whose approximation error ε = 0.27%,
is shown in Fig. 4d. This example shows that the spline
representation computed by our algorithm not only pro-
vides a smooth and compact representations for medial
axis transforms, but can also improve the approximation
accuracy.

6.2. Experiments on noise pruning

Our experiments demonstrate that the noise filtering al-
gorithm (Algorithm 2) provides a reliable and stable me-
dial axis transform with guaranteed approximation error.
An examples is shown in Fig. 5. In Fig. 5b, the noisy
branches in the initial medial axis have been filtered suc-
cessfully. Meanwhile, the approximation error of the sta-
ble medial axis transform, 0.09%, is less than the specified
error threshold 0.10%.

When handling shapes with perturbations on the bound-
ary, our pruning algorithm also performs well. Although
the initial medial axis in Fig. 6a contains numerous un-
desired branches, the resulting medial axis in Fig. 6b is
topologically clean and stable. More noise pruning results
are displayed in Fig. 10. This fact shows that our noise
pruning algorithm is a convincing method to deal with
noisy branches in the medial axis transform.

The error threshold can be fine-tuned to obtain different
levels of details to be preserved. If the user would like to
preserve more details of the input shape, a smaller error
threshold should be applied, as shown in Fig. 7b. When a
relatively large error threshold is applied, the main skele-
ton of the shape becomes clear, as shown in Fig. 7c.

6.2.1. Comparisons with other pruning strategies

There are existing medial axis pruning methods to filter
noise from the initial medial axis transform. We perform a
comparison of our method with two typical methods – the
angle-based method and the scale axis transform (SAT)
on the butterfly shape in Fig. 8. The medial axis of a
butterfly with a smooth boundary (Fig. 8a) is chosen as
the ground truth. Fig. 8b is generated after adding white
noise on the smooth boundary in Fig. 8a, which results in
a medial axis with many unstable branches. Fig. 8c to 8e
show filtering results on Fig. 8b by angle-based method [8]
with angle threshold 0.81, SAT [7] with scale parameter
1.12 and our method with ε̂ = 0.10%, respectively.

It can be observed that the result of our method is the
most close to the ground truth. The angle-based method
fails to prune the noisy branch in upper right wing, shown
in the red rectangle in Fig. 8c. The SAT method ignores
a small noisy branch in the tail, shown in the zoom-in
view, while a branch of the right wing has been filtered
erroneously as shown in Fig. 8d, highlighted with a red
dash rectangle. Our algorithm keeps the skeleton properly,
as shown in the green rectangle in Fig. 8e. Besides its

power in pruning noisy branches, our result is also most
accurate by achieving an approximation error 0.1%, much
less than 0.34%, the error of the other two methods.

6.3. Advantages of spline representation

As mentioned before, spline curves provide a com-
pact and smooth representation of medial axis transforms.
Meanwhile, the control points of spline curves make the
medial axis transform much easier to manipulate in appli-
cations such as shape editing and deformation.

Fig. 9 shows comparisons between discrete medial axis
transforms and the corresponding piecewise cubic B-spline
medial axis transforms. The number of control points
are largely reduced in the spline representation, compared
with the number of medial points in the discrete me-
dial axis transform, while the approximation error of the
spline representation is comparable with that of the dis-
crete medial axis transform. Table 1 lists the number of
medial/control points and approximation errors in our test
shapes.

Shape O #pi

ε |V |
Compactness

ε(O,M̂s) ε(O,M̂) Ms M

Cat 500 0.28% 0.17% 420 31 92.6%

Rhinoceros 897 0.50% 0.36% 549 81 85.2%

Table 1: Comparisons of discrete medial axis transforms and
spline medial axis transforms (shapes of Fig. 9). #pi is the
number of boundary points. ε is the approximation error of
medial reconstruction to O. Ms represents the discrete me-
dial axis transform, and M is the corresponding spline medial
axis transform. |V | is the number of medial/control points
in Ms/M. Compactness records the medial points reduction
from Ms to M.

6.4. Performances

We tested our algorithm on various 2D shapes. Some
of the results are shown in Fig. 10. In each set of shapes,
three medial axis transforms are displayed: the initialM0

generated from a Voronoi-based approach; a stable medial
axis transform Ms computed by Algorithm 2 and a com-
pact spline-based medial axis transform M optimized by
Algorithm 3.

These examples demonstrate that our algorithm pro-
vides an efficient way to obtain faithful and compact me-
dial axis transforms for different 2D shapes, following the
control of specified error thresholds. The statistical analy-
sis in Table 2 shows that the number of points required to
approximate the medial axis transform is greatly scaled
down with our spline representation of the medial axis
transform. In addition, the L-BFGS method assures the
efficiency of our optimization process.
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(a) (b) (c) (d)

Figure 4: The workflow of our algorithm. (a) The initial medial axis transform, |V | = 445. (b) A stable medial axis transform,
|V | = 357, ε = 0.40%. (c) A piecewise cubic B-spline medial axis transform before optimization. (d) A piecewise cubic B-spline
medial axis transform after optimization, |V | = 46, ε = 0.27%. In (a) and (b), |V | is the number of medial points, while in (c)
and (d), |V | is the number of control points in cubic B-spline curves. The 2D positions of those points are rendered as black dots.

(a) (b)

Figure 5: (a) The initial medial axis transform
of a seahorse. (b) A stable medial axis trans-
form via noise pruning with ε̂ = 0.10%, and its
approximation error ε = 0.09%.

(a) (b)

Figure 6: Perform noise pruning algorithm on a mug with perturbed bound-
ary. (a) The initial medial axis transform which contains numerous noisy
branches. (b) A resulting stable medial axis transform via noise pruning with
ε̂ = 0.07%, and its approximation error ε = 0.07%.

7. Conclusion

We propose a framework for computing an accurate and
compact medial axis transform for an arbitrary 2D shape.
The approximation quality of the medial axis transform
is guaranteed to be less than a user specified threshold.
Moreover, users have the freedom to choose different types
of splines to represent the medial axis transform according
to their requirements and applications. A noise pruning
algorithm for the medial axis transform is also proposed
and integrated in the framework. This noise pruning algo-
rithm filters noise in the medial axis transform robustly,
and provides a good initial medial axis transform for opti-
mization in our framework. Experimental results confirm
the effectiveness of our algorithm. In future, we plan to
study how to apply the new spline-based representation of
the medial axis transform in shape deformation and shape
matching, and extend the framework for the computation
of the medial axis transform of a 3D volume.

Appendix A. Error term computation

As discussed in Section 4.2, the energy function E(X)

(Equation 3) could be computed from d2(pi, ∂Ŝ), which
is the squared Euclidean distance from boundary point pi

to the envelope boundary of a segment S sampled on the
curves of M. For each segment S, there are two points
v1 and v2, which represent two medial circles (u1, r1) and
(u1, r1) in 2D space. And there are one or two common
external tangent for two medial circles, which is implied
by the property of the medial axis transform.

Consider the case where two circles have two distinct
external tangent lines (Fig. A.11). Let qi(i = 1, 2, 3, 4) be
the tangent points. The external tangent lines through qi

are represented as L12 and L34. The circle is partitioned
into two circular arcs by tangent points, and the two outer
arcs are denoted as A14 and A23, respectively. The bound-
ary of the shape represented by S, denoted by ∂Ŝ, consists
of two outer arcs A14, A23 and two external tangent lines

8



(a) (b) (c)

Figure 7: A comparison of different error thresholds in our noise pruning algorithm (Algorithm 2). (a) The initial medial axis
transform of a crab. (b) A stable medial axis transform via noise filtering with a smaller error threshold ε̂ = 0.28%. (c) A stable
medial axis transform via noise filtering with a larger error threshold ε̂ = 1.40%. For illustration purpose, zoom-in views are
displayed in the bottom row.

(a) (b) (c) (d) (e)

Figure 8: A comparison of medial axis pruning methods. (a) The ground truth. (b) The initial medial axis of a butterfly with
noisy boundary. (c) The angle-based method [8], ε = 0.34%. (d) The SAT method [7], ε = 0.34%. (e) Our algorithm, ε = 0.10%.

(a) Cat (b) Rhinoceros

Figure 9: Comparisons of discrete medial axis transform and spline medial axis transform. (a) Medial axis transforms of a cat.
(b) Medial axis transforms of a rhinoceros. In both comparison sets, the left is a discrete medial axis transform and the right is a
piecewise cubic B-spline medial axis transform.
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(a) Car (b) Dolphin

(c) Lizard (d) Bird

(e) Elephant (f) Beetle

(g) Mouse (h) Superman

Figure 10: Compact spline medial axis transform results on different shapes. In each set of shapes, the left one is the initial medial
axis transform M0 generated from a Voronoi-based approach; the middle one is a stable medial axis transform Ms computed
by our noise pruning algorithm; the right one is a piecewise cubic B-spline medial axis transform M optimized by our geometric
simplification algorithm.

Shape O #pi ε̂
ε |V | Compactness Time(sec)

ε(O,M̂s) ε(O,M̂) M0 Ms M Ms → M

Car 1000 0.40% 0.40% 0.32% 998 295 36 87.8% 0.08

Dolphin 800 0.25% 0.24% 0.15% 798 685 31 95.5% 0.08

Lizard 1000 0.50% 0.49% 0.48% 998 836 65 92.2% 0.11

Bird 1000 0.30% 0.30% 0.28% 998 559 37 93.4% 0.13

Elephant 1000 0.50% 0.50% 0.44% 998 660 67 89.8% 0.15

Beetle 1000 0.50% 0.50% 0.43% 998 872 79 90.9% 0.18

Mouse 1000 0.50% 0.50% 0.34% 998 619 81 86.9% 0.26

Superman 851 0.35% 0.34% 0.32% 853 633 85 86.6% 0.40

Table 2: Performances of our algorithm (shapes of Fig. 10). #pi is the number of boundary points. ε̂ is the user-definded error
threshold. ε is the approximation error of medial reconstruction to O. |V | is the number of medial/control points in medial axes.
M0 is the initial medial axis transform based on a Voronoi-based approach. Ms represents the stable medial axis transform
computed by our noise pruning algorithm, and M is the spline medial axis transform optimized by our geometric simplification
algorithm. Compactness shows the medial points reduction from Ms to M. Time column records the time cost of geometric
simplification from Ms to M.
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L12, L34. Let β1 = ∠piu1u2, β2 = ∠piu2u1, α1 repre-
sents ∠q1u1u2 or ∠q4u1u2, α2 be ∠q2u2u1 or ∠q3u2u1.
By comparing these angles, we can easily tell which part
pi’s footpoint lies in. In sequence, the distance from pi to
its footpoint on ∂Ŝ is computed as

d2(pi, ∂Ŝ) =


(r1 − ‖piu1‖2)2 if β1 ≥ α1
(r2 − ‖piu2‖2)2 if β2 ≥ α2
d2(pi,L34) if β1 < α1 and β2 < α2 and

pi,u1,u2 are in clockwise order

d2(pi,L12) otherwise

,

where d2(pi,L12) and d2(pi,L34) are easy to compute,
since we know the algebraic representation of two outer
tangents, and the gradient of d2(pi, ∂Ŝ) can be obtained
similarly.

It is also possible that only one common external tan-
gent exists for two medial circles, which occurs when the
slope of two medial points equals 1, computed as Equa-
tion 5. In that case, S is a circle and computation of
d2(pi, ∂Ŝ) is trivial.

r2

r1

β2

β1

α1

α1

α2

α2

pi

q3

q2

q1

q4

u2

u1

Figure A.11: The envelope of two medial circles (u1, r1) and
(u2, r2).
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