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Flexible G1 interpolation of quad meshes

Georges-Pierre Bonneau , Stefanie Hahmann

University of Grenoble, Laboratoire Jean Kuntzmann, INRIA, Grenoble

Abstract

Transforming an arbitrary mesh into a smooth G1 surface has been the

subject of intensive research works. To get a visual pleasing shape with-

out any imperfection even in the presence of extraordinary mesh vertices

is still a challenging problem in particular when interpolation of the mesh

vertices is required. We present a new local method, which produces visu-

ally smooth shapes while solving the interpolation problem. It consists of

combining low degree biquartic Bézier patches with minimum number of

pieces per mesh face, assembled together with G1-continuity. All surface

control points are given explicitly. The construction is local and free of

zero-twists. We further show that within this economical class of surfaces

it is however possible to derive a sufficient number of meaningful degrees

of freedom so that standard optimization techniques result in high quality

surfaces.

1 Introduction

Quad meshes are a popular surface representation in Computer

Graphics. In contrast to triangle meshes they are better suitable to

represent shapes with symmetry axes. Since most manufactured

objects have at least one symmetry axis, it is more natural to

represent these objects by quads with the edges following the

symmetry axis instead of using triangles. For the same reason

quad meshes are preferably used by professional designers for

creating 3D content such as character animations.

Converting an arbitrary manifold quad mesh into a smooth

piecewise polynomial surface is the problem the present paper

deals with. Whereas subdivision surfaces [3, 13] can generate a

smooth shape with only a few subdivision steps from a coarse

mesh, parametric polynomial spline surfaces have the following

three main advantages over subdivision surfaces. First, they

provide an explicit polynomial parameterization enabling exact

evaluation of surface points and any higher order differential

quantities such as tangent, bi-tangent, normal, curvature or

derivative of curvature with a finite number of patches. Second,

they are compatible with existing CAD standards. All classical

modeling operations such as trimming, intersection, blending

and Boolean operations can thereby be performed directly with

our resulting surfaces. Third, GPU-accelerated tessellation units

are based on parametric patches and thus allow for real-time

rendering of animated polynomial splines surfaces. Efficient

subdivision surface modelers [34] therefore convert a subdivision

surface finally into a finite set of parametric patches for rendering

purposes [27].

Smooth spline surfaces defined on arbitrary quad meshes are also

a powerful alternative to singularly parameterized tensor product

surfaces since they combine the advantages of both, the arbitrary

topology of quad meshes and the smoothness of the tensor

product patches. Herein, tensor product piecewise polynomial

patches, so-called macro-patches, are assembled with tangent

plane continuity, in one-to-one correspondence to the mesh faces.

In this way they are capable to represent manifold shapes of

arbitrary topological type. Classical tensor product surfaces on

the contrary are restricted to meshes with vertices of valence four.

In the present paper we propose a new approach for inter-

polating the vertices of a given arbitrary manifold quad mesh.

Even though the existing literature on this topic is large, only a

few methods are dedicated specifically to the interpolation prob-

lem. Most approaches generate a smooth surface from the given

mesh by approximating it. When it comes to interpolation, the

lack of sufficient degrees of freedom often results in unwanted

undulations. The problem can be solved by either increasing the

polynomial degrees of the patches or the number of patches com-

posing a macro-patch.

Our goal is to solve the interpolation problem by staying within

the class of low degree Bézier patches, biquartic in this case. But

instead of increasing the number of patches per macro-patch in

order to improve visual quality, we show that it is possible to

provide sufficient meaningful degrees of freedom with a minimal

number of patches so that for a first time an interpolating biquar-

tic surface of excellent visual quality can be achieved for arbitrary

meshes. We demonstrate the efficiency of our method with vari-

ous examples including large quad meshes and complex shapes.

Figures 1 and 2 show examples of results with input quad meshes

of genus topological types 0 and 2 including extraordinary ver-

tices of valence 3, 5 and 6.

Figure 1: Vase and Apple meshes, with genus 2 and 0 topological types

respectively. The input quad meshes have extraordinary vertices of va-

lence 3, 5, and 6. Left: our interpolating piecewise quartic G1 surfaces

rendered with Blender. The smoothness of the reflections and highlights

that cross several quartic patches underlines the smoothness of the surface

across quartic patches. Right: input quad meshes.

1.1 Related Works

The present paper solves the problem of defining a G1-continuous

spline surface interpolating the vertices of an arbitrary quad mesh

with low degree polynomial tensor product patches while produc-

ing shapes of high visual quality.

We further aim to solve the interpolation problem in a com-

pletely general manner. Several special interpolation methods ex-

ist [41, 38, 12, 37], but they all make either restrictions on the

mesh topology (vertices of valence 3,4,5 only) or on the input

data, and lead to higher degree patches. [11] constructs 2 × 2

bicubic macro-patches per quad, but the method is valid only for

very special cases, the construction fails in the general setting as
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Figure 2: Irregular quad meshes interpolated by a G1-continuous surface composed of biquartic Bézier patches. Each object is composed of nine

independent genus 0 meshes representing the body and the face elements separately.

pointed out in [33]. In [33] it is also shown that 4 is the min-

imal possible degree for localized G1 constructions with 2 × 2

macro-patches. The simplest structure for general bicubic G1-

surfaces is a 3 × 3 macro-patch such as proposed in [7]. An

important achievement here is that for regular quads, where all

vertices are of valence 4, the standard C2 plines are yield. The-

oretically, the method can be used for interpolation. However,

no example of interpolation with sufficiently big quad meshes are

shown to assess if interpolation is free of unwanted surface be-

havior. [19] uses biquintic patches for adaptive fitting of triangle

meshes, but solves the G1 conditions with a global linear sys-

tem. [39] proposes biquintic G1 B-splines with many patches.

Further methods [23, 4] deviate from standard polynomial rep-

resentation. [29, 20, 14] solve the similar but more constraint

problem of interpolation of a mesh of boundary curves and thus

need to make severe restrictions on the input data. The visual

smoothness of interpolatory subdivision surfaces is not satisfac-

tory in the neighborhood of extraordinary points even with im-

proved schemes [6, 42, 16, 18]. They generally do not provide an

explicit polynomial representation. Another class of schemes pro-

duces visually smooth surfaces without having the corresponding

mathematical smoothness. These approximate G1 schemes [21]

compute C0 surfaces in order to overcome the mathematical re-

strictive G1 constraints. They use simple heuristics to reduce the

discontinuity. It is obvious that fewer constraints give degrees of

freedom for shape design. It would be interesting to have conver-

gent G1 surfaces or even practical G2 schemes, but this is not the

purpose of the present paper, even though it is an actual research

issue [15, 32].

A precursor of many of the surface splines mentioned above

is the biquartic spline in [30]. Herein explicit expressions of all

Bézier control points are computed by local averaging of neigh-

boring face center points. The macro-patches are constructed in

one-to-one correspondence to a quad sub-mesh which is previ-

ously generated by applying the mid-point refinement technique

to any arbitrary input mesh. The scheme however produces zero-

twists, which are known to produce poor shape quality. Inter-

polation is theoretically possible, but produces unwanted undula-

tions in practice. In contrast to the schemes in [30, 7], which

mimic Catmull-Clark subdivision surfaces, our scheme is inten-

tionally an interpolation scheme. The interpolation property in

our method is not a by-product, it is its main characteristic. All

efforts in developing the scheme in the subsequent sections focus

on how to maximize the number of degrees of freedom in partic-

ular for the patch boundary curves in order to get perfect visually

pleasing shapes.

1.2 Contributions and Overview

This paper presents a novel method to interpolate the vertices of

a given arbitrary quad mesh with a fair surface of overall G1-

continuity. Vertex normals can either be explicitly prescribed or

may be derived from neighboring mesh vertices. The surface

construction is based on a 1-to-4 split of the parameter domain

for each surface patch (see Section 2). It is shown in this pa-

per that thanks to the 4-split technique, the resulting surface is of

low bi-degree 4 and locally defined (see Section 4). We give ex-

plicit simple linear formulas for computing all control points of

the surface. Our method provides many meaningful independent

degrees of freedom for local shape control. The resulting surface

is of high visual quality. It is free of zero-twists and avoids un-

wanted undulations although the mesh is interpolated.

The interpolation scheme applies to any arbitrary 2-manifold sur-

face quad mesh. The scheme is completely general in the sense

that it does not make any restriction of the valence of the vertices,

i.e. no restriction of the number of patches joining around a com-

mon vertex.

Furthermore, we explain how shape optimization can be per-

formed on this new surface model (see Section 5). Finally we

demonstrate the efficiency of our method by analyzing the quality

of the resulting shapes with isophotes and comparing with previ-

ous analogous works (see Section 6).
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Figure 3: 4-split of the parameter domain. Parameterization of the surface

patches around a mesh vertex. Always four Bézier patches are constructed in cor-

respondence to each mesh face, called macro-patch. The benefits of the 4-split are

mainly that the resulting surface is local and of low degree while interpolating the

mesh vertices.

2 4-splitting

2.1 Notations

Let M denote the input mesh. M is a set of vertices, edges and

quadrilateral faces that describes a 2-manifold oriented surface in

IR
3 with or without boundary and of arbitrary topological genus.

The mesh faces do not need to be planar, and there is no restric-

tion on the number of faces meeting at a vertex. M is called an

arbitrary quad mesh. The number of edges incident in a vertex is

referred to as valence of a vertex. The set of vertices sharing the

edges incident to a vertex is called vertex neighborhood.

2.2 4-split

The problem we address is the computation of the Bézier control

points of a biquartic G1-continuous surface S interpolating the

vertices of M . Since we want to be able to model a surface of

arbitrary genus each surface patch can be seen as the image of

one quadrilateral domain. Thus instead of considering a classical

map from a regular, chess board planar domain onto the surface,

we consider many maps of one unit quadrilateral domain onto

different patches of the surface, see Figure 3.

In our setting, each map associates in one-to-one correspon-

dence a collection of four biquartic Bézier patches to one quadri-

lateral parameter domain. In fact, we subdivide the parameter

domain into 4 sub-domains as illustrated in Figure 3. The col-

lection of four patches is referred to as macro-patch. The macro-

patches join together with G1 continuity. They are C1 continuous

inside. The four corner vertices of a macro-patch interpolate the

four mesh vertices of the corresponding mesh facet.

This 4-split is crucial since it enables the surface scheme to

have many important properties:

• the surface scheme is local,

• the mesh vertices and (optionally) the normals are interpo-

lated,

• explicit formulas for all control points are given,

• several degrees of freedom for each input vertex, edge and

macro-patch are available.

2.3 Macro-patch

When constructing a patchwork of polynomial patches with G1-

continuity special attention has to be paid to what happens at the

mesh vertices. Let us consider a mesh vertex v ∈ IR
3 of valence

n, and its vertex neighborhood v1, . . . ,vn ordered in a counter-

clockwise sense. The macro-patches around the vertex are called

S1
, . . . ,Sn. The super- and subscripts i= 1, . . . ,n are taken modulo

n. Let ui ∈ [0,1] be the parameter corresponding to the curve be-

tween v and vi, the surface macro-patch Si is then parameterized

as illustrated in Figure 3.

3 Simplified G1 conditions

The interpolating surface is required to be polynomial and tangent

plane continuous, i.e. G1-continuous. This means that the surface

is C∞ everywhere except at the boundaries between patches where

it has continuously varying tangent planes.

Let Si and Si−1 be two adjacent macro-patches parameter-

ized as in Figure 3, with a common boundary curve Si(ui,0) =
Si−1(0,ui). We require the following G1-continuity condition to

hold between Si and Si−1:

Φi(ui)
∂Si

∂ui
(ui,0) =

1
2

∂Si

∂ui+1
(ui,0)+

1
2

∂Si−1

∂ui−1
(0,ui),

ui ∈ [0,1],

(1)

where Φi is a scalar function.

These simplified G1 conditions are generally used (see

[22, 30, 10]) in order to keep the scheme of as low degree as

possible. The degree of the surface is related to the degree of

the scalar function Φi since both sides of equation (1) need to

be of same polynomial degree. In order to keep the degree of

the patches low, the degree of Φi has to be low too. Ideally this

would mean to take Φi linear. But then the surface construction

would not be local, since Φ
′
i(0) would depend on the value Φi(1).

This means, it would depend on the valence ni of the neighboring

vertex vi. A local definition is important since the modification

of one mesh vertex should not modify the whole surface but only

the macro-patches around. The outside boundary of this group

of macro-patches should not be affected by this modification.

Therefore all computations around a vertex v should not depend

on information related to the neighboring vertices vi. This is

the reason why Φi has been chosen quadratic in [22] for the

construction of triangular patches and quadratic in [30] for the

construction of biquartic tensor product patches. In [10] it has

been shown that piecewise linear Φi-functions can be used for

triangular patches. This is not possible for the setting here.

In our paper, and similar to [31], we choose Φi to be the

piecewise quadratic function defined by:

Φi(ui)≡





cos
(

2π
n

)
B2

0(2ui), ui ∈ [0, 1
2 ]

−cos
(

2π
ni

)
B2

2(2ui), ui ∈ [ 1
2 ,1].

(2)

Let us denote the coefficients by

Φ
0 := cos

(2π

n

)
and Φ

1 := cos
(2π

ni

)
.

4 Solving G1-continuous interpolation

In this section we derive the explicit formulas for computing the

control points of the G1 continuous piecewise quartic surface in-

terpolating the input quad mesh. We begin in Section 4.1 by

examining the constraints on the control points of the boundary

curves between adjacent macro-patches. Then in Section 4.2 we

express the simplified G1-conditions (1) in terms of Bézier con-

trol points. The two Sections 4.3 and 4.4 give an explicit solu-

tion of these conditions. As a result, the first two rows of control

points are computed along all macro-patch boundaries. Eventu-

ally, Section 4.5 explains how to compute the remaining control

points inside each macro-patch.
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A key point of our approach consists in constantly working

out all possible degrees of freedom instead of fixing them to spe-

cific values as it is usually done. This is essential in order to get

a visually smooth shape when interpolating a mesh. In the three

Sections 4.3, 4.4 and 4.5 we thus explicitly state all DOFs (de-

grees of freedom) used in the computation of the control points.

How to set-up these DOF is explained in Section 5.

Figure 4 illustrates our notations for the three rows of con-

trol points involved in the G1 continuity along a common bound-

ary between two macro-patches. Due to the 4-split, these control

points belong to four quartic Bézier patches. The ˜ is used for the

two Bézier patches on the right. The bi denote the control points

of the common boundary curve, the ci (resp. di) denote control

points of the top (resp. bottom) Bézier patches.
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Figure 4: All control points involved in the G1-conditions between two

macro-patches.

4.1 Common boundary curve

Since Si and Si−1 are composed of biquartic Bézier patches, the

cross-boundary derivatives ∂Si

∂ui+1
(ui,0) and ∂Si−1

∂ui−1
(0,ui) are piece-

wise quartic polynomials in ui. Given the degree of Φi, a so-

lution to (1) can be found only if the common boundary curve

Si(ui,0) = Si−1(0,ui) is a piecewise cubic Bézier curve.

Furthermore we require C1 continuity inside the macro-

patches which implies that the left and right segments of the com-

mon boundary curve must joint with C1 continuity. Since there

exists a unique piecewise C1 cubic curve interpolating given po-

sition, first and second order derivatives at both endpoints, the

boundary curve must be equal to this curve. By degree elevation

of this piecewise cubic curve, it follows that the control points

b3,b4 = b̃4 and b̃3 can be computed from b0,b1,b2 and b̃0, b̃1, b̃2

by:

b4 = b̃4 = 1
2 (2b2 −

4
3 b1 +

1
3 b0 +2b̃2 −

4
3 b̃1 +

1
3 b̃0)

b3 = 1
4 (b4 +6b2 −4b1 +b0)

b̃3 = 1
4 (b4 +6b̃2 −4b̃1 + b̃0).

(3)

How to compute the control points b0,b1,b2 and b̃0, b̃1, b̃2 is

explained in Section 4.3.

4.2 G1-conditions on control points

In this section we express the simplified G1-conditions (1) in

terms of the Bézier control points.

The three control points of the quadratic scalar function Φi of

the left piece of the curve corresponding to the parameter domain

[0, 1
2 ] are (Φ0,0,0). From Section 4.1 we know that the derivative

∂Si

∂ui
(ui,0) along the boundary curve is a quadratic polynomial. Its

three control points are 8(b1−b0),4b0−16b1+12b2,8(b4−b3).

Multiplying Φi(ui) by ∂Si

∂ui
(ui,0) leads to a quartic polynomial

whose five control points are

8Φ
0(b1 −b0),2Φ

0(b0 −4b1 +3b2),
4

3
Φ

0(b4 −b3),0,0.

On the other hand, the five control points of 1
2

∂Si

∂ui+1
(ui,0) +

1
2

∂Si−1

∂ui−1
(0,ui) for ui ∈ [0, 1

2 ] are 4(ci − 2bi + di) for i = 0, . . . ,4.

Therefore the simplified G1-conditions are given by:

8Φ
0(b1 −b0) = 4(c0 −2b0 +d0) (4)

2Φ
0(b0 −4b1 +3b2) = 4(c1 −2b1 +d1) (5)

4

3
Φ

0(b4 −b3) = 4(c2 −2b2 +d2) (6)

0 = 4(c3 −2b3 +d3) (7)

0 = 4(c4 −2b4 +d4) (8)

and by the analogous five conditions for the right piece of curve

with˜control points and Φ
0 replaced by Φ

1.

The following three sections give explicit formulas of all con-

trol points involved in these G1-conditions and the available DOF.

4.3 Control points around input vertices

Among the G1-conditions stated in the previous section, only (6),

(7) and (8) can be solved at each boundary of the macro-patch

independently from the other boundaries. This will be detailed in

the next section. Conditions (4) and (5) involve the control points

b0,d0,c1,d1 which also appear in the G1-conditions between Si−2

and Si−1 and between Si and Si+1. In order to find a compatible

solution we need to solve conditions (4) and (5) for all macro-

patches around the common input mesh vertex v of valence n.

As a result, the points b1,c1,d1 and b2 will be computed for all

macro-patch boundaries around v.

b
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Figure 5: Notations for the control points involved in the G1-conditions

between macro-patches around an input vertex.

Let us first introduce some notations for the control points

around vertex v as illustrated in Figure 5. bi
0,b

i
1,b

i
2 denote the

first three control points of the curve shared by the macro-patches

Si−1 and Si. We consider bi
j to be a 1× 3 line matrix containing

the three Cartesian coordinates. We denote by b j = [b1
j , . . . ,b

n
j ]

T ,

j = 0,1,2, the n×3 matrix collecting these control points around

the input mesh vertex v. Note that bi
0 = v for all i (interpolation).

Analogously, we use c1 = [c1
1, . . . ,c

n
1]

T for collecting all control

points ci
1. Following these notations, conditions (4) and (5) can

now be stated for all pairs of adjacent macro-patches (Si−1,Si)
around v by:

P(b1 −b0) = 0 (9)

T c1 =
1

4
Φ

0b0 +(1−Φ
0)b1 +

3

4
Φ

0b2, (10)

where P and T are two n×n matrices given in the Appendix. In

order to get a smooth interpolating surface we need to maximize

the number of DOF for solving (9) and (10). This can be done by

the following procedure. First, we choose two 1× 3 line vectors
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X and Y and set

b1 = b0 +B1R

(
X

Y

)
, (11)

where B1 and R are matrices of respective dimensions n× n and

n × 2 given in the Appendix. Since PB1 = 0, the choice (11)

solves the first condition (9). The two DOF X and Y define the

tangent plane of the surface at the input mesh vertex v. It is thus

possible to use these DOF to interpolate some prescribed normal

vectors at the interpolated points, as explained later in Section 6.

Then, we have to find values of c1 and b2 solving (10). To

this end we choose n DOF denoted by the n× 3 matrix q, and

additionally, if n is even, we choose a 1×3 vector t as DOF and

set t the n×3 matrix

t =




t

−t

...

t

−t




, if n is even.

Finally, we set

b2 = T q (12)

c1 =
1

4
Φ

0b0 +(1−Φ
0)b1 +

3

4
Φ

0q if n is odd (13)

c1 =
1

4
Φ

0b0 +(1−Φ
0)b1 +

3

4
Φ

0q+ t if n is even (14)

where

b1 = b0 +B1R

(
X

Y

)

and B1 is the n×n matrix given in the Appendix. Using the iden-

tities given in the Appendix and the fact that T t = 0 if n is even,

it is easy to prove that this choice for b2 and c1 gives a solution

for (10).

To summarize, we compute the control points bi
1,b

i
2 and ci

1
around each input vertex by choosing the DOFs X ,Y,q and addi-

tionally t if n is even, and by applying (12) and (13) if n is odd

or (14) is n is even. In the special case of a regular vertex v, i.e.

n = 4, then we replace (12) by b2 = q.

4.4 Control points along macro-patch boundaries

The remaining 10 control points to be computed along the bound-

ary curve, see Figure 6, are c2,c3,c4 = c̃4, c̃3, c̃2 and d2,d3,d4 =

d̃4, d̃3, d̃2.
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Figure 6: Notations for G1-conditions between two macro-patches. The

control points denoted with light gray letters have already been computed

in Section 4.3 and 4.1. The remaining control points denoted with black

letters are computed as explained in Section 4.4.

The 6 central control points are involved in both, the G1 con-

tinuity between the macro-patches Si−1 and Si, and the C1 con-

tinuity between the Bézier patches inside each macro-patch. The

remaining G1 conditions that still need to be fulfilled are stated in

(6) , (7) and (8), whereas the C1-conditions imply

c3 −2c4 + c̃3 = 0

d3 −2d4 + d̃3 = 0.

In order to solve these last two constraints as well as (7) and (8)

with the maximal number of DOFs, we proceed by choosing c3

and c4 = c̃4 as DOFs and by setting

c̃3 = 2c4 − c3 (15)

d̃3 = 2b̃3 − c̃3 (16)

d4 = d̃4 = 2b4 − c4 (17)

d3 = 2b3 − c3. (18)

The last three equations ensure the G1 continuity constraints (7)

and (8) between Si−1 and Si for the left and right parts of the

macro-patches. (15) ensures the C1 continuity constraints be-

tween the left and right Bézier patches inside Si. It is easy to see

that 2d4 − d̃3 = d3, so that the C1 continuity constraints inside

Si−1 are also satisfied.

Finally, the G1 condition (6) remains to be fulfilled for the

left and for the right part, and the 4 control points c2,d2, c̃2, d̃2

have to be computed. Our solution is to take c2 and c̃2 as DOFs

and to set d2 and d̃2 by

d2 =−c2 +2b2 −
1
3 Φ

0(b4 −b3)

d̃2 =−c̃2 +2b̃2 −
1
3 Φ

1(b̃4 − b̃3).

4.5 Control points inside macro-patches

There are 25 remaining control points to be computed inside

each macro-patch, as illustrated with red and blue points in

Figure 7. In order to solve the C1 continuity constraints be-

C

A1 A2

A3A4

B1

B2

B3

B4

D5

D1 D2

D4

D6

D7

D3D8

E1

E4 E2

E3

F 1 F 2

F 3F 4

Figure 7: Bézier control points of a piecewise bi-quartic macro-patch.

The empty control points ensure G1-continuity between adjacent macro-

patches. The colored control points ensure C1-continuity inside a macro-

patch.

tween the four Bézier patches, we choose the 16 control points

A1, . . . ,A4,D1, . . . ,D8,F1, . . . ,F4 as DOFs, and we set the remain-

ing 9 control points as

Bi =
Ai +Ai+1

2
, C =

A1 +A2 +A3 +A4

4
, Ei =

D2i−1 +D2i

2

i = 1, . . . ,4.
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5 Setting DOF

In this section we explain how to set up the DOF of our interpo-

lating surface. The choice of default values is given in Section

5.1 while Section 5.2 tells how optimal values can be computed.

Since our interpolation method is local, all DOF influence

the surface shape locally. They can be divided into three groups

depending on which part of the surface they act on.

• Vertex DOF: X ,Y ∈ IR
3, q = [q1, . . . ,qn]

T , qi ∈ IR
3, and if n

is even, the twist vector t ∈ IR
3 (Section 4.3) for computing

the control points around each mesh vertex.

• Edge DOF: c2, c̃2,c3,c4 = c̃4 ∈ IR
3 for computing the con-

trol points along the boundary between two macro-patches

(Section 4.4).

• Face DOF: 16 control points inside each macro-patch (Sec-

tion 4.5).

Degrees of freedom can be set heuristically in two different

ways, either by computing them explicitly from the mesh geom-

etry or by taking locally some energy into account. The default

values we propose belong to the first category, since they are sim-

ple and produce an initial shape instantly.

5.1 Default DOF

The default values enable to generate a smooth interpolating G1

surface for any given quad mesh. It is a well known fact [24] that

a smooth boundary curve network is mandatory for mesh interpo-

lation schemes to generate globally smooth surfaces. To this end

we set the following default values for vertex DOF heuristically

by taking into account the valence of the mesh vertex v and the

geometry of the local vertex neighborhood v1, . . . ,vn. They re-

sult in first order derivative points that form an affine n-gon in the

tangent plane spanned by X ,Y . The scalar parameter α is a ten-

sion parameter. Our default choice is α = 1. The influence of α is

illustrated in Figure 11. The three surfaces on the top right are ob-

tained respectively with α = 0.2,α = 0.6,α = 1.5 and the other

DOF with default values. Similarly for the second order deriva-

tive points b2 the local mesh geometry is taken into account. The

geometric interpretation of the default choice of q is that the re-

sulting b2 are an affine combination of the mesh vertex b0 and

the midpoint of the barycenter of the two neighboring triangles

∆(b0,vi−1,vi) and ∆(b0,vi,vi+1).

(
X
Y

)
= α

n RT




v1

...

vn




q =




v1

...

vn




t = 0 if n is even.

Note that X ,Y can also be chosen as to interpolate prescribed nor-

mal vectors at the mesh vertices, see Figure 16. The remaining

edge and face DOF can bet set either by computing them explic-

itly from the mesh geometry or by taking locally some energy into

account. Let us first propose some heuristics belonging to the first

category, which can then be improved with a surface fairing step.

The 4 edge DOF are control points along the mesh edges. They

are computed to form a parallelogram with three existing points

as follows:
c2 = c1 +b2 −b1

c̃2 = c̃1 + b̃2 − b̃1

c3 = c2 +b3 −b2

c4 = c̃4 = c3 + b̃4 − b̃3.

Note that at this stage, all boundary control points and first

inner rows of control points are completely determined for each

macro-patch, see empty control points in Figure 7.

The parallelogram rule is also used to set the face DOF as fol-

lows. The parallelogram rule first enables to compute F1, . . . ,F4

from the three neighboring hollow points. The same procedure

is then applied in order to compute A1, . . . ,A4,D1, . . . ,D8. Even

though default values for DOFs cannot provide optimal values,

they enable to generate a first smooth shape very quickly. All our

initial surfaces have been computed using these settings.

A second, but computationally more expensive way to set the

DOF is to take energy E into account locally inside each patch

by solving small least squares systems. This may improve the

shape quality slightly, even though it is a well known fact that

only surface fairing based on global energy minimization [24] can

yield shapes of high visual quality.

5.2 Energy minimization

Despite the fact that degrees of freedom are very useful for shape

control, it is known that finding appropriate heuristics for set-

ting values of DOFs remains a difficult task. Offering to a user

the possibility to interactively change the values of DOF by us-

ing some slide bars is only useful for models with a few macro-

patches. This user interaction becomes however tedious when the

DOF have to be manipulated locally for many vertices, edges and

macro-patches.

The standard and most effective way to set DOF optimally is

to use energy optimization techniques. The linearized thin plate

energy functional combined with the membrane functional

E =
∫

Ω

(S2
uu +2S2

uv +S2
vv)+λ (S2

u +S2
v)dudv

is the most popular surface fairing functional since over 30 years

[28, 9, 2]. Its simplicity and efficiency makes it a standard func-

tional for smooth surface design and fairing techniques not only

for parametric surfaces but for any kind of geometry. The param-

eter λ ≥ 0 is a tension parameter. The greater its value, the more

the surface is tight between the interpolated points [36]. Note,

that in the curve case the analogous functional is minimized by

Nielson’s ν-splines [26], ν being the tension parameter. The use

of non-linear functionals, such as the total curvature, the Laplace-

Beltrami operator [8], the diffusion and curvature flow operator

[5] or MVC [25] are known to offer better results in some cases

but to the price of much higher computational cost, and conver-

gence can not always be guaranteed.

In this paper the optimal values of the DOF are computed

using the standard linearized thin-plate energy minimization

minDOF (E), with λ = 0 in order to make the underlying interpo-

lated mesh invisible. Since the functional E is quadratic, convex

and differentiable the unique minimum is obtained if and only if

Grad(E) = 0. The vector d for all DOF minimizing E is the so-

lution to the normal linear equations Md = b, where M is a sym-

metric positive definite matrix of size k, where k is the number of

DOF. A solution can be computed using a Cholesky factorization.

For large matrices it is however more efficient to use an itera-

tive method. We implemented a conjugate gradient solver using

the Acro optimization package from Sandia National laborato-

ries [17]. The conjugate gradient method converges for convex

functionals, thus for E, in maximal k iterations. This is a theo-

retical bound, in practice the number of iterations is proportional

to
√

cond(M) [40]. One iteration costs ck elementary arithmetic

operations, where c is the mean number of non-zero elements per

row of M.
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6 Results

Unless explicitly stated all examples shown in this section are

computed using optimal degrees of freedom computed as ex-

plained in Section 5.2. The meshes were taken from Cindy

Grimm’s web site 1. We use either isophotes [35] or global illu-

mination rendering using photon mapping to highlight the visual

smoothness of our results. Figure 17 illustrates many examples

with various shapes, curvature behaviors and topological types.

Figure 8: Optimization of different subsets of degrees of freedom. All

remaining DOF are set with default values. The optimized subsets of DOF

are respectively from left to right: (a) no DOF optimized, (b) face DOF,

(c) vertex and face DOF, (d) vertex DOF and twists, (e) all DOF without

twists, (f) all DOF. The input mesh is the torus mesh of Figure 10, second

row. The Bézier control net and isophotes are drawn in blue.

Our method is flexible in the sense that the DOF can be set in

various ways in order to get the desired shape effect, in particular

to get visually pleasant shapes. In a first step we always compute

a surface with the default values (Section 5.1) DOF. These default

values are however not optimal, since they use heuristics based

on local point neighborhoods. It is then possible to improve the

surface quality globally using the iterative solver (Section 5.2) to

compute optimal DOF.

The iterative solver also allows to select subsets of DOF for

optimization, whereas the remaining DOF keep their default val-

ues. The different shape effects of computing subsets of DOF

optimally can be observed in Figure 8 on a torus quad mesh.

From left to right different subsets of DOF are computed opti-

mally whereas the remaining DOF are set with their default val-

ues. The surface obtained by optimizing all DOF is shown in Fig-

ure 8(f). This example clearly shows why it is crucial to maximize

the number of degrees of freedom when developing a method for

smooth surface interpolation. We illustrate this observation fur-

ther with a zoom on the knotty data set in Figure 9. The left image

shows the surface for which all DOF except the twists have been

optimized. The resulting surface is bumpy, because an important

type of DOF is missing. The set of DOF is the same as in Figure

8(e), but the bigger size of the input mesh emphasizes the im-

perfections which cannot be seen with small size meshes. Figure

9-right shows our surface with all DOF optimized. In Figure 17

further surfaces interpolating large-sized meshes with our scheme

are shown, and the isophotes assess the flexibility of the present

interpolant with a pleasant visual behavior.

1http://web.engr.oregonstate.edu/ g̃rimmc/meshes.php

Figure 9: Optimization with all DOF except the twists (left) and all DOF

(right). The isophotes are smoother when all DOF are optimized.

More complex examples of our interpolating G1-continuous

surface are shown in Figure 2. Each object representing the char-

acter Gumby is composed of nine independent genus 0 meshes

representing the body and the face elements separately. Each ob-

ject has in total 1032 faces 1050 vertices. 23686 vector DOF

have been computed optimally as explained in Section 5.2. One

of these Gumby quad meshes has been used in Figure 12 for a

comparison of our interpolating surfaces with Catmull Clark sur-

faces. Both techniques produce visually smooth results. Note

however, that interpolation allows for a more direct control of the

shape and enables to reproduce sharper features.

Comparison to interpolatory schemes for quad meshes. In

Figure 10 a comparison to Kobbelt’s [16] interpolatory subdivi-

sion on quad meshes is shown. A further comparison in Figure

11 shows that the visual quality of our interpolating spline sur-

faces is not altered when tightening or inflating the shape. We

choose the cube mesh since a further comparison is hereby possi-

ble with another method of Li and Zheng [18] who construct in-

terpolatory subdivision schemes based on existing approximating

subdivisions, see the shape and reflection lines on the cube exam-

ple in Figure 8 in [18]. Quad meshes can also be interpolated by

triangular schemes, but splitting quads into triangles introduces

artifacts visible in the interpolating surface.

Interpolation vs. approximation. Even though it is difficult

to compare interpolation and approximation schemes, it is worth

mentioning that the interpolation property is important for sev-

eral applications where a direct shape control is required, such as

connecting surfaces of different representations together or direct

shape manipulations. Furthermore it is easier to control the final

shape for a given input mesh with interpolating surfaces, as the

comparison to Catmull-Clark subdivision surfaces in Figure 12

show. This is especially true when the input quad mesh is coarse,

in which case the Catmull-Clark subdivision surface may be very

distant from the control mesh.

Splines vs. subdivision surfaces. As mentioned in the introduc-

tion spline surfaces have some important advantages over subdi-

vision surface. Let us provide an example of the compatibility of

spline surface with existing CAD standards. CAD-Systems such

as CATIA offer powerful tools for any kind of modeling operation

for splines. To test several of them with our interpolating surface,

we imported the vase surface of Figure 1 as a collection of Bézier

patches via the STEP format [1] into CATIA and applied the fol-

lowing four operations illustrated in Figure 13. We transformed

our surface into a volume and then hollowed out our vase. To this

end, we applied a Boolean difference with another surface. The

latter has been created as a surface of revolution generated by a

spline curve around the z-axis of our vase. The resulting opening

on the top of the vase had a sharp border that we round off with

another standard CAD operation, a constant radius blending. Fi-
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Figure 10: Comparison of the interpolating subdivision scheme of [16]

(left) with our quartic interpolant (right). In all cases the isophotes are

smoother with our quartic interpolant.

nally we visualize a cut of our model by the yz-plane.

Another advantage is the ability of our surface to model sharp

edges or even cuts in the surface. This can either be obtained by

relaxing the continuity constraints along mesh edges, or by post

processing the Bézier control points individually for each patch,

as it has been done for the examples in Figures 14 and 15.

Normal vectors as design handles. The capability to interpo-

late given vertex normal vectors provides in fact some design han-

dles to the user, which can interactively manipulate then. From

a given normal vector n at a mesh vertex v the tangent plane

vectors X ,Y are computed as

(
X

Y

)
=

α

n
RT




v∗1
...

v∗n




where v
∗
i are the orthogonal projections of the vertex neighbor-

hood points vi onto the plane orthogonal to n. Figure 16 gives

an example of normal interpolation whereas the remaining DOF

are still set optimally.

7 Conclusion

In this paper, a new method for interpolating an arbitrary 2-

manifold quad mesh with a G1-continuous piecewise quartic

Bézier surface is introduced. Explicit linear formulas for com-

puting all Bézier control points are given. Particular effort has

been done to extract as many as possible degrees of freedom.

We demonstrate with many examples the ability of our method

to generate visually smooth shapes. The method is local and well

adapted to parallel programming. We plan to explore in future

works the use of a CUDA implementation that would allow to

interact in real-time with our surfaces.

Figure 11: Comparison of the interpolating subdivision scheme of [16]

(left) with our quartic interpolant (right) for a cube mesh. The left column

shows the results with the coefficient ω of [16] equal to 0.2,0.6,1.0 and

1.5 from top to bottom. The right column shows from top to bottom our

quartic interpolant with default DOF and α equal to 0.5,1.,1.2 and all op-

timal DOF on the bottom right. This example allows a further comparison

to the interpolatory method of Li and Zheng [18] (see Figure 8 in [18]).
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Appendix

In the following matrices the indices are taken modulo n.

Ri1 = cos
(2iπ

n

)
, Ri2 = sin

(2iπ)

n

)
, i = 1, . . . ,n,

{B1}i j = cos
(2π( j− i)

n

)
, i, j = 1, . . . ,n,

{B1}i, j =

[
cos

(
2π( j− i)

n

)
+ tan

(
π

n

)
sin

(
2π( j− i)

n

)]
.
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Figure 12: Comparison between our interpolating surface on the left

and (non interpolating) Catmull-Clark surface on the right using the same

input quad mesh.

Figure 13: Our quartic G1 interpolant can be post-processed in stan-

dard CAD systems. This example has been created using CATIA. The

vase surface from Figure 1 is first transformed into a volume. We then

computed another volume bounded by a surface of revolution. Aligning

the axis of both objects and application of the Boolean difference results

in the hollowed-out vase. The sharp border at the top of the vase has

been rounded off by using a constant radius blending operator. The outer

surface is exactly part of our G1 quartic interpolant.

P =




−Φ
0 1

2 0 . . . 0 1
2

1
2 −Φ

0 1
2 0

0
. . .

. . .
. . .

...
... 1

2
1
2

1
2 −Φ

0




T =




1
2 0 · · · 0 1

2
1
2

1
2 · · · 0

. . .

0 · · · 1
2

1
2 0

0 · · · 0 1
2

1
2



,

The following identities hold:

PB1 = 0 T B1 = B1.
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