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Abstract

We discuss bi-harmonic fields which approximate signed distance fields. We con-
clude that the bi-harmonic field approximation can be a powerful tool for mesh
completion in general and complex cases. We present an adaptive, multigrid
algorithm to extrapolate signed distance fields. By defining a volume mask in a
closed region bounding the area that must be repaired, the algorithm computes
a signed distance field in well-defined regions and uses it as an over-determined
boundary condition constraint for the biharmonic field computation in the re-
maining regions. We discuss this approximation in practical examples in the
case of triangular meshes resulting from laser scan acquisitions which require
massive hole repair. We conclude that the proposed algorithm is robust and
general, being able to deal with complex topological cases.

Keywords: Model repair, Thin-plate energy, Volumetric methods

1. Introduction

Repairing mesh holes in very large geometric models is nowadays still a chal-
lenge. Mesh completion algorithms should be automatic, stable and robust, to
cope with a huge number of unrepaired regions having unpredictable topologies.

The motivation of this paper came from a Cultural Heritage project aiming
at the acquisition and 3D reconstruction of the entrance of the Ripoll Monastery
in Spain. The monument is also known as the “Portalada”, and is the main
Romanic sculpture in Catalonia, dating back to the 12" Century. The total size
of the mesh after registration was in the vicinity of 173 Mtriangles, presenting
14622 holes of different sizes. More details on the project can be found in [1].
Holes and cracks were automatically detected through a search for cycles of
border edges, and simple holes could be repaired by projecting their boundary
onto a suitable plane and triangulating the projection without adding Steiner
points. Classical mesh repair algorithms, however, were not able to handle large
holes or holes with a complex boundary, as discussed later in the paper.
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In this paper, we present a novel algorithm that solves and repairs complex
hole configurations without any user intervention. Our approach is based on
several ideas. We compute a suitable approximation of the signed distance
field to the mesh in a volumetric data structure, in the vicinity of a hole. Other
authors have used diffusion equations or other variational formulations to obtain
smooth signed distance fields (except on a set of null-measure manifolds). We
choose to find a 3D thin-plate solution of the bi-harmonic equation to guarantee
C" continuity with the mesh around the repaired area. The repairing surface
is then obtained as the zero-isosurface of the scalar bi-harmonic field. The
algorithm starts by computing a volume mask which allows the computation
of the signed distance field to the mesh around the hole in the domain of the
mask, and uses this distance field to over-constrain the boundary conditions of
the bi-harmonic equation. A discrete approximation of the bi-harmonic field is
obtained by solving a quadratic optimization problem with a multigrid adaptive
solver. Omne of the remarkable features of our approach is that it is able to
successfully address complex topologies with disconnected mesh regions in a
robust way. As far we know, this is the first automatic solution for hole repair
in very large triangle meshes that provides a smooth blending at the boundaries.

Our approach was also inspired by [2]. However, as discussed in the next
Section, they used the heat diffusion equation which results in a C° field. To
reach O continuity with the hole border regions, they included a heuristic step
in each iteration by adding a heat source term after each diffusion step. We
claim that in order to obtain general volume-based solutions for the mesh repair
problem, the heat equation is not sufficient. Instead, we show that bi-harmonic
fields do provide acceptable results.

The main contributions of the presented algorithm are:

e A volumetric mesh repair algorithm, based on the local computation of
a bi-harmonic field approximation of the signed distance field. A key
ingredient in the solution is the pre-computation of a volume mask to
delimit a region where the signed distance is well-defined, and can be used
to over-constrain the boundary conditions of the bi-harmonic equation
overt the whole domain.

e A discrete solution of the bi-harmonic equation based on a quadratic op-
timization, with a multi-grid adaptive repair algorithm.

e A fully automatic algorithm for massive hole repair in very large triangle
meshes, including the detection of mesh areas with holes, their repair and
post-processing.

e The ability to handle complex hole topologies having islands and general
shapes.

The next two Sections present an overview of the prior art and of our pro-
posed algorithm. Section 4 details the generation of the initial distance field



and our bi-harmonic field approximation, while Section 5 discusses the accelera-
tion and adaptive solutions that have been implemented. The last two Sections
present and discuss the results and detail the conclusions of the paper.

2. Previous work

The need to repair surface models has always been present regardless of
their source. Since the general repair problem is inherently ill-posed (due to
ambiguities), production in this subfield has been ongoing. The first algorithms
developed to address this challenge attempted to characterize all possible de-
fects (gaps, holes, self-intersections, degeneracies, loss of sharp features, noise,
topology problems, ...). Various surveys detail these problems and many of the
contributions that have been proposed to solve them until now [3, 4].

Partly because of this divide and conquer approach, partly because of the
lack of the computing resources needed for alternative strategies, the first so-
lutions focused on repairing meshes directly. Liepa [5] proposed a step-based
algorithm in which the holes were identified, triangulated, the resulting mesh
patch refined, and finally, smoothed. More recently Bac et al [6] introduced a
similar method where refining the mesh and minimizing bending energy were
alternated. Both methods share their inability to deal with holes with “islands”.

Another group of approaches to the problem used a different approach. So-
lutions known as volumetric methods start from a model to be repaired (a mesh
or point cloud) and transform it into a volume where multiple defects can be
treated in a common way. Volumetric methods guarantee surfaces free of self-
intersections. The main differences within this group of methods come from
the process used to transform the input model into a volume and the algorithm
applied to complete the repair if the first step is insufficient.

Some of these techniques build an octree to represent the surface and use it to
help in the repair of the entry model. Ju in [7] computes signs for the vertices of
the octree nodes consistently with the intersections between the triangles of the
mesh and the edges of the octree. These signs serve later to extract an isosurface
without defects, but that only approximates the original mesh. Instead, in
[8] the user provides a maximum tolerance error for the corresponding octree
construction ensuring that the final mesh does not deviate beyond this distance.
This approach excels at repairing CAD models, but is not applicable to models
resulting from a scan, since the holes can be hundreds of times greater than the
average edge size.

Other techniques compute a signed distance field. Davis et al [2] calculate an
initial signed distance field near the surface, over which they alternate the appli-
cation of a low-pass filter with a composition operator. This solution resembles
a simulation of heat diffusion. The patches produced interpolate the edges of
the hole adequately but they do not achieve normal continuity. Nooruddin et
al [9] throw rays in multiple directions counting the number of intersections
with the model. Using the parity rule on the resulting data they compose a dis-
tance field that represents the repaired model, but they require that all defects
are treated simultaneously which may be inefficient for larger objects. Other
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Figure 1: The results of some previous algorithms on one of our test cases. a) shows the
original hole to fix, b) the iso-surface computed by our algorithm, and c) the final mended
mesh we obtain. Figure d) the result of Nooruddin and Turk [9], e) the result of Liepa [5],
and f) the result of Ju [7]. Notice that these last three do not achieve C' continuity at the
boundary.
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authors attempt to calculate an initial field, extending the distance values ob-
tained using some interpolation technique, and the help of an expert user in the
case of complex shapes. In particular, Masuda [10] used quadratic functions
to perform this extension of the distance field. Brunet et al [11] also use an
iterative algorithm that alternates smoothing steps —based on B-splines— and
fitting steps, but their method requires an initial triangulation of the detected
holes, which could adversely affect the outcome.

These previous art often focuses on closed meshes with some imperfections,
and therefore try to complete all boundaries. Thus, a direct comparison with our
framework is not possible. In order to compare them, we have completed one of
our sample holes with a portion of its bounding box, and run those algorithms on
the resulting closed —but defective— mesh. The results are shown in Figure 1.
In this example, Nooruddin and Turk [9] delete a portion of the original mesh
(Figure 1(d)), Liepa [5] does not blend smoothly at the boundary (Figure 1(e)),
and Ju [7] produces triangles that are too large (Figure 1(f)), and all three
solutions join the boundary with only C° continuity.

There are also algorithms that get rid of the requirement of using signed
distances in order to handle point clouds directly. Hornung et al [12] pro-



pose immersing the point data in a voxelization so an unsigned distance field
can be computed. The resulting distance values can be interpreted as inverse-
likelihoods of the voxel being visited by the surface. Feeding this information
into a min-cut algorithm yields a classification of the voxels’ faces. This al-
gorithm has the potential of producing a manifold boundary from the vertices
alone, but does not respect the initial data points. Instead, it resamples the
data at the frequency of the highest resolution used.

As the above methods have a tendency to use smooth patches to fill holes
surrounded by complex patterns, another set of proposals attempt to reproduce
the original shape of the model —in a plausible way—. One possibility is to apply
principles similar to those used in texture synthesis and fill the holes with pieces
of geometry that fit in from the model itself. Sharf et al [13] use local implicit
approximations in order to measure the similarity between two patches. These
patches are put in place using first a rigid transformation followed by an iter-
ative closest point procedure with non-rigid transformations. The underlying
assumption in all of these methods is that an appropriate shape continuation
can be inferred from the acquired sample points only, using generic smoothness
or self-similarity priors for missing parts of the model. Kraevoy et al [14] use
instead template-based completion techniques. Their method computes a map-
ping between the incomplete input mesh and the template to correctly close
gaps and holes.

An advantage of our algorithm is the fact that we can minimize the distance
from the computed to the original mesh. This allows us to use pieces of the
resulting isosurface to close the holes (as it is done in [11]), while preserving the
original geometry.

3. Overview

Our approach is aimed at repairing and completing very complex meshes in
a robust and automatic way. As mentioned, our work was initially motivated
by the case presented in [1], where a mesh of 173 million triangles with more
than 14,000 holes had to be repaired. Cases from real applications like [1] with
very large acquired meshes require fully automatic and reliable algorithms. In
our opinion, volumetric schemes are well suited to fulfill these requirements.

The input of the algorithm is an unrepaired triangle mesh. Figure 2 shows
the steps of our algorithm on a sample hole in the mesh reported in [1]. The
operation of the algorithm is fully automatic and requires no special parameters
to be set by the user to achieve these results. Our algorithm starts by detecting
all border edges (triangle edges which do not belong to any other triangle). Holes
are identified as closed loops of border edges. Every hole is then associated with
its extended bounding box By, which is obtained by extending its bounding box
by 20% in each coordinate direction. By computing these extended bounding
boxes, we ensure that a sufficient part of the mesh around the hole is included
in BH.

The next steps of the algorithm, detailed below, are then repeated for each
detected hole. It may occur that the extended bounding box By of a certain
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Figure 2: Steps of our algorithm, illustrated with an example hole. The leftmost image
shows the input mesh; the second image shows (a slice of) the mask; the third shows (the
same slice of) the bi-laplacian smoothed distance field, and finally the last image shows the
resulting isosurface used to fill-in the missing portion of the model. The details are more
easily perceived in the accompanying video.

hole H contains other small holes. These secondary holes are also repaired as a
byproduct of the repair process of H.

e A uniform grid is defined in the volume By, with a resolution similar to
the size of the triangles in this extended bounding box. We have experi-
mentally observed that a resolution of 1282 is usually acceptable, although
in some cases the optimal resolution may be 642 (for small holes) or 2563,
in the case of big holes.

e For all By grid vertices, two distances are computed: the unsigned dis-
tance to the mesh triangles in By and the unsigned distance to the border
edges of the hole H. This is detailed in Section 4.1.

e A mask defining a partition in the discrete volume By is computed. The
basic idea behind the mask concept is to split the discrete volume By into
two disjoint regions Rp and Rp. As shown in Section 4.1, Rp is a closed
region where a signed distance field to the mesh around the hole can be
computed, while Rp is the region closer to the hole, where we want to
smoothly extend the distance computed inside Rp. In what follows, we
define the mask as the characteristic function of Rp, Figure 2(b).

e A signed distance field to the mesh around the hole is computed for every
mesh vertex in Rp, as detailed in Section 4.1.

e A discrete bi-harmonic field is computed by solving a constrained opti-
mization problem, see Section 4.2. The field is defined in By and the
algorithm works by optimizing its smoothness. A key ingredient of the
scheme is the use of over-constrained bi-harmonic boundary conditions.
A plausible and C! continuous solution is obtained by constraining all
grid vertices in Rp to be as close as possible to the pre-computed signed
distance field values. By over-constraining the boundary conditions of the
bi-harmonic function, we obtain a stable and robust solution, as discussed
in Section 6, (see Figure 2(c)).



Figure 3: Given the geometry surrounding a hole (left) we compute a mask (center) by
classifying a discrete volume’s vertices into those closer to that geometry (Rp, colored in red)
and those closer to the hole itself (Rp, colored in blue). This mask determines where to apply
constraints.

e The computation of the bi-harmonic field is accelerated by using a multi-
grid solver with adaptive refinement, as detailed in Section 5.

e Once the bi-harmonic field is computed, the hole is closed by blending the
zero-isosurface of the field with the triangles in the vicinity of the border
edges.

Observe that, unlike some previous approaches, our algorithm does not re-
quire an initial triangulation of the holes. The computation of the bi-harmonic
field is driven by the mask M and the signed distance field in the region Rp.

4. Discrete bi-harmonic field

4.1. Initial distance field

We start by defining a uniform grid in the volume By of each mesh hole.
The grid resolution is chosen to guarantee that cell sizes are of the order of the
size of the triangles in By.

Then, a volume mask defining a region Rp in the discrete volume By is
computed. Valid masks Rp are defined as a set of By grid vertices, with the
property that all grid cells containing mesh triangles in By must be in Rp,
and that the set of cells containing mesh triangles in By splits Rp in two
disconnected regions RE and R;: any connected path in Rp from any cell
in RJB to any cell in R, mush go through a cell containing mesh triangles.
Moreover, another desirable property that provides increased stability to the
boundary conditions of the bi-harmonic equation is to have a mask with a high
number of cells in Rp. Rp is the mask region, a closed region where the signed
distance field to the mesh around the hole can be reliably computed, while Rp
is the complement By — Rp. As discussed in Section 4.2, the signed distance
field to the mesh in the mask region Rp works like an over-determined set of
boundary conditions for the computation of the bi-harmonic field in the domain
Bp. The computation of optimal masks for general mesh topologies in By is
however beyond the scope of this paper and will be investigated as part of our
future work.



In our present implementation, we use distance fields to compute the mask.
We start by computing two unsigned distances for every By grid vertex: the
unsigned distance to the mesh triangles in By and the unsigned distance to
the border edges of the hole H. Then, the region Rp is defined as the set
of By grid vertices such that their distance to the mesh triangles in By is
lower than the distance to the border edges of the hole H. The complement of
Rp in By is defined as the region Rpg, the set of grid vertices such that their
distance to the mesh triangles equals the distance to the border edges of the
hole. Figure 3 shows the mask and the regions Rp and Rp in a simple 2D
example. Both unsigned distance fields are computed by using a priority queue
while iteratively propagating distances from cells containing mesh triangles to
neighbor cells.

A signed distance field to the mesh around the hole can now be computed
for every mesh vertex in Rp by simply using the sub-regions RB and R, to
assign coherent signs to the already computed distance field to the mesh.

4.2. Biharmonic field approximation

Our approach solves the mesh completion problem in each By by computing
a discrete bi-harmonic approximation to the signed distance field to the mesh.

Let Op be the set of grid vertices in the two outer layers of the By grid.
We use a discrete approximation of the bilaplacian for each grid vertex V in
Bg — Og, involving a 5 x 5 x 5 kernel. This kernel is a straightforward 3D
extension of the well-known 2D discrete bilaplacian on uniform grids expressed
as a convolution by matrix:

0 O 1 0 O
0 2 -8 2 0
1 -8 20 -8 1
0o 2 -8 2 0

0o 0 1 0 O

To ensure a smooth behavior of the field on the boundaries of By, we also
include a laplacian optimization term for every grid vertex in Og. In short, we
have laplacian terms for grid vertices in the two outer layers of the By grid and
bilaplacian terms for the rest of grid vertices.

The second part of the optimization function includes the constraints or
boundary conditions. For every grid vertex V in Rp, we impose that its final
value F(V') should be equal to the value of the already computed signed distance
field D(V') at this point.

In other words, instead of trying to find the field F' (V') by solving the bilapla-
cian equation A?(F(V)) = 0 for all grid vertices in By, we solve a constrained
optimization problem by computing:

arg;nin Z (A%F(V))?

for all V in By, with the constraint F'(V) = D(V) for all V in Rp.
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Figure 4: We can close a hole directly through triangulation (left) and use it to create an
initial distance field (center left) that we can use as an initial estimate of an iterative solver.
This method risks getting trapped in non-optimal configurations (center right). However,
using a direct method provides the expected result (right).

To avoid potential instabilities produced by mesh noise in the vicinity of
the holes which can be visible in the D(V) field, we convert the constrained
optimization into an unconstrained optimization problem:

argmin(A > (APF(V))4A D AFWV)*+(1-X) Y (F(V') = D(V'))?

4 VeBu—On Veon V/eRp

This optimization problem is quadratic, with a well-defined solution involv-
ing a linear system of equations. We have observed that the solution of this
unconstrained problem is more robust and stable.

An alternative could be to provide an initial estimate of the distance field
obtained from triangulating detected holes and then use for instance the tech-
nique presented in [5]. This mechanism is not good enough, as illustrated in
Figure 4 with the voxelization of a 2D hole, and in Figure 1(f) for a 3D example.

As also discussed in Section 6, this bi-harmonic solution is well behaved even
for complex topological configurations like holes containing islands of groups of
mesh triangles and unrepaired areas with complex geometries.

5. Performance

The system set forth in the previous section is sufficient to successfully solve
the formulated problem, but even for small resolutions (323, 643) it is too ex-
pensive. Since we may find large holes or complex shapes that require higher
resolutions, we need to improve its efficiency. In this section we present how to
extend the basic implementation using an adaptive multiresolution scheme.

5.1. Multiresolution approach

To address the high cost of solving the complete system at higher resolution,
we first obtain a good estimate of field distances at a lower resolution (163 or
323, depending on the complexity and size of the hole) through a direct solver
and then use the resulting solution to construct an initial guess of an iterative
solver at higher resolutions.



If the size of the voxelization that we want to apply to the solution of the
problem is N3, we choose a resolution M? where M < N, and down-sample by
discarding values. No interpolation mechanism is used during this step which
helps to facilitate the construction of the corresponding mask of size M3 because,
as described in the previous section, the mask can only take one of two values
(in/out Rp). It is also important to note that the result of this decreased
resolution system will be used as the initial value of the iterative algorithm, not
as the final solution.

After solving the system of size M3 using a direct solver (Cholesky in our
implementation), we need to apply a process of up-sampling to obtain a distance
field of size N3. For this step we could apply many interpolation schemes.
In our current implementation we have tested both trilinear interpolation and
more sophisticated Bspline-based interpolations. Using splines gives a smoother
estimate and, in many cases, closer to the desired solution, but the cost is
substantial when compared with other steps (for an example, see Section 6,
Table 1). We have therefore desisted from using any more precise interpolation
scheme, as the increase in precision is vastly outweighed by the time needed to
reach the result.

Moreover, the main advantage of applying more powerful methods of in-
terpolation (such as B-splines) is in the fact that the initial guess provided to
the iterative solver will be closer to the final solution. However, we can apply
the above process into smaller steps so that the up-sampling has to calculate
fewer values and deviates less from the global minimum. In our implementa-
tion, we start with the system of size M?3, solve it using a direct solver, apply
up-sampling to a size of (2M)3, and apply an iterative solver (Conjugate Gra-
dient in our case). Repeating the last two steps we eventually reach the desired
resolution N3. Mainly, this reduces the number of iterations required at each
multiresolution level for the chosen iterative solver to do its job. Furthermore,
as each step of up-sampling is much smaller, a trilinear interpolation is good
enough as shown in Section 6. In all the cases we have tested time gained by
using trilinear interpolation exceeded what was obtained by the reduction of the
number of iterations, while the accuracy of the resulting solutions was largely
unaffected.

5.2. Adaptive refinement

To further improve efficiency we have made the process adaptive. That is, we
only compute new values for nodes in each step when they are sufficiently close to
the surface. In particular, for each step of the multi-resolution process we extract
the discrete band DB of the current voxelization (set of voxels containing the
zero isosurface), and we enlarge it a distance 0 (measured in voxels) by a dilation
operator, obtaining FDB. When assembling the linear system described in
Section 4, only nodes inside EDB are considered to be unknowns. The rest are
considered constant, eliminating from the system all equations that end with no
unknowns. Finally, before performing the upsampling needed to continue with
the next multiresolution step, we replace the values of the unknowns into the
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Figure 5:  Outline of the adaptive multiresolution strategy used to generate the results
presented in Section 6.

distance field, preserving the values outside EDB. This process is outlined in
Figure 5

The distance 6 we use to dilate DB determines how much we gain in terms
of efficiency with the adaptive method, but too small a number will cause the
surface to be unable to move to voxels outside of EDB. In all our tests we have
found a distance of § = 1 suffices to produce satisfactory results. Using a factor
of 2 between the sizes of each multiresolution level ensures that the final surface
will not be found more than one voxel away from the solution of the previous
step.

6. Results

We have tested our algorithm with different interpolation schemes to com-
pute the up-sampling in EDB (see Figure 5), in order to determine the best
compromise between efficiency and quality of the results, as mentioned in the
previous section. All times reported in this section have been measured on a
PC with a Core i7 CPU at 3.20GHz, with 12GB of memory, and at 64 bits. The
GPU is a GeForce GTX 570, but it was only used for rendering and does not
impact the times reported.

As a typical example, Table 1 shows the time spent and the approximation

Interpolation RMS Bilapl. RMS E3  time (sec)
Method

Trilinear 0.00099643  0.00583506 23.114
B-spline 0.00020538 0.00537014 710.151

Table 1: Comparison of grid refinement with interpolating uniform B-splines and with trilinear
interpolation.

error achieved when interpolating the higher resolution grid with simple trilinear
interpolation, and when using an interpolating uniform b-spline. The columns
list the root mean square error in the solution of the bi-laplacian equations,
the root mean square distance from the resulting mesh to the ring-three around
the hole, and the time in seconds of the whole computation. As expected, the
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better interpolation yields smaller errors, but in all cases we have tested, this
improvement seems too little for the huge increase in computation time. We
think the results achieved through trilinear interpolation are of high quality
already, and therefore it is not sensible to spend the time needed to use a more
precise interpolation scheme when raising the resolution of the grid.

Figure 6 shows four examples of holes from the scanning of the “Portalada”,
and the results of our hole-filling algorithm. Notice how holes with intricate
shapes and inner islands (Figure 6(j)) are handled properly.

A comment is in order regarding the measure of geometric precision in the
data above. In dealing with meshes produced by 3D scanners, we’ve found that
—because holes originate in regions the scanner cannot reach— points on the
boundary of the holes are usually more noisy than those slightly further away.
Consequently, we measure the fitting of the new surface not right on the edge
of the hole, but on vertices that lie at an edge-distance of 3 from the hole.
The difference is witnessed by the data in Table 2, that lists —for the holes in
Figure 6— the error on the edge of each hole (RMS E0) and on the vertices of its
3-ring (RMS E3), both before smoothing the distance field and after completing
the algorithm. The table shows that both errors are similar in magnitude, so

Test Case RMS bi-lapl. RMS EO RMS E3
hole a (beg) 6.86325 0.00488603 0.00434737
hole a (end) 0.00248534  0.0161777  0.0128677
hole d (beg) 18.4518 0.00573393  0.00505522
hole d (end) 0.00537352 0.0161812 0.0134089
hole g (beg) 9.66015 0.00411624 0.00373306
hole g (end) 0.00099643  0.0268693 0.00581358
hole j (beg) 8.40509 0.00433601 0.00342995
hole j (end) 0.00254796 0.032138  0.00934204

Table 2: Errors for the test cases in Figure 6.

using RMS E3 does not influence the quality of the result, while it does provide
a more stable measure.

Table 3 shows the time it takes to complete our algorithm for the test holes
in Figure 6. We list the time it took to smooth the distance field, along with the

Test t. smooth t. total unknowns unknowns unknowns
case 323 643 1283
hole a 11971 12.392  20.49% 10.07% 5.05%
hole d 12.19 13.01  21.16% 10.43% 5.21%
hole g 21.33 23.42  35.43% 17.80% 8.91%
hole j 17.72 19.27  28.78% 14.73% 7.43%

Table 3: Run-times for filling the sample holes shown in Figure 6

total time of up-sampling and smoothing, using the multigrid approach. The
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Figure 6: Four cases of holes in the mesh from [1]. The left column shows the scanned meshes,
while the middle column shows the iso-surface computed by our algorithm. The rightmost
column shows the final mended mesh; notice that all holes not abutting the external boundary
are fixed.

last three columns of this table indicate the proportion of relevant unknowns
using the multigrid approach with respect to the total number of unknowns in
the full system.

In order to facilitate the verification of our results, and hoping that it will
promote adoption of the technique, we have made our code available at https:
//github.com/achicac/BiharmonicRepair.
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7. Conclusions

We have presented an algorithm to automatically repair complex hole con-
figurations without any user intervention. Our approach is based on several
ingredients. We solve a volumetric problem in the vicinity of each mesh hole to
compute a suitable approximation of the signed distance field. The algorithm
is based on computing a 3D thin-plate solution of the bi-harmonic equation
that guarantees C'' continuity with the previous mesh around the repaired area,
and obtains the repairing surface by computing the zero-isosurface of the scalar
bi-harmonic field.

A key ingredient of the algorithm is a volume mask such that the signed dis-
tance field to the mesh around the hole can be reliably computed in the mask
domain. The rest of the algorithm uses this distance field to over-constrain
the boundary conditions of the bi-harmonic equation over all of By. A dis-
crete approximation of the bi-harmonic field is obtained by solving a quadratic
optimization problem, with a multigrid adaptive solver.

Unlike some previous approaches, our algorithm does not require an initial
triangulation of the holes. The computation of the bi-harmonic field is driven
by the mask and the signed distance field in its domain.

Our approach is able to successfully address complex topologies with dis-
connected mesh regions in a robust way. As far as we know, this is the first
automatic solution for hole repair in very large triangle meshes that provides a
smooth blending at the boundaries.

In the near future we plan to include an option with the possibility to ex-
trapolate the roughness of the mesh around the hole to its smooth bi-harmonic
completion by statistically synthesizing similar details. This would be helpful in
practical cases where we want to conceal the repaired portion and make it pass
as original. We also plan to explore ways to find more general, optimal masks.
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