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ABSTRACT

Physics-based skin deformation methods can greatly improve the realism of character animation, but
require non-trivial training, intensive manual intervention, and heavy numerical calculations. Due
to these limitations, it is generally time-consuming to implement them, and difficult to achieve a
high runtime efficiency. In order to tackle the above limitations caused by numerical calculations
of physics-based skin deformation, we propose a simple and efficient analytical approach for physics-
based skin deformations. Specifically, we (1) employ Fourier series to convert 3D mesh models into
continuous parametric representations through a conversion algorithm, which largely reduces data size
and computing time but still keeps high realism, (2) introduce a partial differential equation (PDE)-
based skin deformation model and successfully obtain the first analytical solution to physics-based
skin deformations which overcomes the limitations of numerical calculations. Our approach is easy
to use, highly efficient, and capable to create physically realistic skin deformations.

1. Introduction
Skin deformation techniques have been used as a stan-

dardized part of many character animation applications these
days in both academia and industry practices. Over the years,
researchers have developed a variety of skin deformation tech-
niques to improve these major characteristics: efficiency, re-
alism, and ease of use. In particular, Despite the simplicity
and efficiency, geometric skin deformation approaches typi-
cally fall short of producing highly realistic skin deformation
without non-trivial additional efforts. In order to achieve
high realism, example-based approaches need a sufficient
number of skin examples although they are often used to-
gether with geometric skinning methods. Physics-based ap-
proaches arguably have produced most realistic skin defor-
mation results to date, but they often rely on heavy numerical
calculations and specialized user knowledge and skills. Most
existing physics-based skin deformation techniques work in
a discrete vertex space to obtain discrete numerical solu-
tions of skin deformation, causing the aforementioned lim-
itations. Analytical solutions, if obtainable, can overcome
the limitations of numerical calculations of physics-based
method. However, obtaining an efficient analytical solution
to physics-based skin deformation is a non-trivial task.

Inspired by the above challenges, in this paper we de-
∗Corresponding author

bians@bournemouth.ac.uk (S. Bian); zdeng4@uh.edu (Z. Deng);
echaudhry@bournemouth.ac.uk (E. Chaudhry); LYou@bournemouth.ac.uk (L.
You); xyang@bournemouth.ac.uk (X. Yang); sixstoneshi@qq.com (L. Guo);
H.Ugail@Bradford.ac.uk (H. Ugail); jin@cad.zju.edu.cn (X. Jin);
ZXiao@bournemouth.ac.uk (Z. Xiao); jzhang@bournemouth.ac.uk (J.J. Zhang)

ORCID(s): 0000-0003-1108-744X (S. Bian)

Figure 1: Our proposed method can generate physically real-
istic character animation e�ciently given two example poses,
shown in (a) and (e). (b)-(d) are intermediate poses generated
by our approach.

velop a novel approach based on an analytical solution to
physics-basedmodeling, which is capable of producing physically-
realistic skin deformation with high efficiency. Our method
requires at least two example meshes obtained from either
captured or artist-sculpted shapes; any two adjacent exam-
ples constitute one sequence to create intermediate skin de-
formations (an example is shown in Figure 1). The advan-
tages of our approach include: high efficiency, high realism,
and ease of use, as detailed below.

High efficiency. With the obtained analytic solution to
the formulated PDE-based physicsmodel, our approach trans-
forms a discrete example mesh into its continuous Fourier
series representations, avoiding the solving of a large set of
linear equations, which largely reduces data size and com-
puting time.

High realism. Integrating physics-based and example-
based approaches leads to more realistic skin deformations.
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We utilize a small number of provided example meshes in
our physics-based mathematical model, in order to deter-
mine the correct force field acting on skin surfaces and achieve
the high realism of skin deformations.

Explicit solver. Our solution of physics-based skin de-
formations is fully analytical and able to explicitly and quickly
determine physically realistic skin deformations with high
automation. Due to the fully analytical nature and few man-
ual operations, it is easy to implement and use without the
need of physics-based knowledge and skills.

2. Related Work
Geometric skin deformation. Linear Blend Skinning

(LBS), also called Skeleton Subspace Deformation (SSD),
is the most well-known geometric skinning algorithm [27]
due to its efficiency and simplicity. However, its limitations
include collapsing elbow, candy-wrapper effects, and fail-
ure of secondary deformation [24]. A novel skinning algo-
rithm based on linear combination of dual quaternions was
presented in [17] to tackle some drawbacks of LBS. By in-
troducing an extra scalar weight function per bone, a simple
modification of the LBS formulation was presented in [13]
to enable stretching and twisting without changing the ex-
isting skeleton rig or bone weights. Le and Hodgins [22]
choose to pre-compute the optimized center of rotation for
each vertex, and use these centers to interpolate rigid trans-
formations. Vaillant et al. [37] proposed a pure geometric
method to handle skin contact and muscle bulge problems in
real-time, but it fails to address deep self-intersections. To
solve this problem, later Vaillant and Colleagues [38] use
new composition operators to enable blending effects and lo-
cal self-contact between implicit surfaces. Zhao et al. [44]
presents a robust automatic algorithm to deform the meshes
of arbitrary shapes into polycube form. Despite various ef-
forts in recent years, geometric skinning still need to correct
various artifacts to simulate the skin deformations.

Example-based skin deformation is employed to address
the realism issue of geometric skinning, by learning defor-
mation dynamics from a set of given examples [35, 19]. An
automated framework was presented in [29] to fit the param-
eters of a deformation model using a set of examples con-
sisting of skeleton configurations paired with the deformed
geometry as static meshes. Park and Hodgins [31] presented
a data-driven technique to synthesize skin deformation from
skeletal motion. Eulerian representation of skin was pro-
posed in [25] to simulate thin hyper-elastic skin that can
stretch and slide over the underlying body structures such
as muscles, bones, and tendons. One automated algorithm,
called Smooth Skinning Decomposition with Rigid Bones
(SSDR), was introduced in [21] to extract the LBS from a set
of example poses in good accuracy and applicability. Pons-
Moll et al. [32] use a second-order auto-regressive model
that predicts soft-tissue deformations based on previous de-
formations and realistically represents the dynamics of soft
tissue. Wampler [39] describes a new approach for example-
based inverse kinematic mesh manipulation, which gener-

ates high quality deformations for a wide range of inputs,
and in particular works well even for provided stylized or
cartoony examples, but it needs to develop a fast special-
ized solver to deal with the cases of many handles and in-
put shapes. Gao et al. [9] introduced a new rotation invari-
ant mesh difference representation to encode mesh deforma-
tions, and a novel reconstruction algorithm that efficiently
solves for the vertex positions and local rotations simultane-
ously. The representation allows combining multiple defor-
mations by a linear combination. But the limitation of this
data-drivenmethod is that it may not produce realistic results
if the dataset is not large enough to cover target deformations
or scans. Thus, one major limitation of example-based skin
deformation methods is the need for sufficient example skin
shapes in order to produce realistic skin deformations.

Physics-based skin deformation methods are designed
to simulate the underlying physics for creating realistic skin
deformations. In [2], a volume preserving method was pre-
sented to avoid extra bulges or wrinkles, which uses vector
field integration to avoid self-collisions. However, it is com-
putationally expensive. Kavan and Sorkine [18] presented
an elasticity-based skinning method to generate high quality
deformations through the optimization of skinning weights
and the introduction of joint-based deformers. A sophisti-
cated biomechanical model of the human upper bodywas de-
veloped in [23], where a coupled finite element model is em-
ployed to simulate biomechanically realistic flesh deforma-
tions. McAdams et al. [28] introduced a novel discretization
of corotational elasticity over a hexahedral lattice to achieve
near-interactive simulation of skeleton-driven, high resolu-
tion elasticity models, but it still needs several seconds per
animation frame. Since it is hard to model the different elas-
tic behaviors of muscle, fat, and skin using simple volu-
metric meshes, Deul and Bender [7] introduced one novel
multi-layer model to simulate them, but it fails to handle
collisions for fast motions. Jacobson et al. [11] presented a
well-coordinated combination of a reduced deformable body
model with nonlinear finite elements, a linear-time algorithm
for skeleton dynamics, and explicit integration, to boost the
simulation speed. In order to reduce the computational cost
of physics-based skin deformations, model reduction has been
introduced into static [19] and dynamic [36] deformation
simulations. It can achieve real-time performance, but re-
duce the computational accuracy and increase the implemen-
tation complexity. Elastic animation editing with spacetime
constraints was proposed in [26], where optimized control
forces are added to a linearized dynamic model, andmaterial
properties are optimized to better match user constraints and
provide plausible and consistent motion. Recently, Wang et
al. [40] design linear deformation subspaces by minimizing
quadratic deformation energy. Murai et al. [30] presents an
algorithm that generates skin deformation (movement and
jiggle) from joint angle data sequences by two steps: identi-
fication of parameters for a quasi-static muscle deformation
model, and simulation of skin deformation. Roussellet et al.
[33] proposes an efficient way to model muscle primitives
with implicit surfaces. Inspired by [43] that uses a curve-
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defined model to animate skin deformation, Chaudhry et al.
[5] integrate geometric transformations, example-based, and
physics-based approaches to simulate dynamic skin defor-
mations. Xu and Barbic [41] integrate physics-based and
pose-space skin deformations, where the latter combines SSD
[27] with artist-corrected pose shapes, and introduce pose-
dependent model reduction to accelerate the finite element
simulation for real-time applications, but more complicated
implementation. Similar to [41] in spirit, this paper inte-
grates SSD, example-based, and physics-based skin defor-
mations to maximize their strengths.

3. Approach Overview
Unlike numerical solutions that are essentially discrete

representations, analytical solutions are continuous repre-
sentations. In order to develop analytical solutions, discrete
polygon models must be firstly transformed into continu-
ous surfaces. Two mathematical representations can be used
to define continuous surfaces: parametric and implicit sur-
faces. Since parametric surfaces are easier to develop ana-
lytical solutions than implicit surfaces, we select parametric
surfaces to describe 3D skin surfaces.

Physics-based skin deformation approaches determine how
skin deformations change with external forces. When ex-
ternal forces are applied slowly, skin deformations can be
treated as static (called static skin deformations), which does
not consider the effects of acceleration (inertial forces) and
velocity (damping forces) on skin shape changes. Other-
wise, skin deformations can be treated as dynamic (called
dynamic skin deformations) to include the influences of ac-
celeration and velocity.

Parametric skin surfaces, written as S(u, v), where u and
v are two parametric variables. S̄0(u, v) and S1(u, v) stand for
the meshes at any two adjacent poses called the starting pose
and the ending pose, respectively, the shape change from
S̄0(u, v) to S1(u, v) can be decomposed into two parts: ge-
ometric deformation that is resulted from affine transforma-
tions, and physical deformation that is due to the force field
acting on the skin surface. With a time variable t, dynamic
physical deformation can be written as D(u, v, t), where a
time-dependent force field F(u, v, t) is applied onto the skin
surface, through the underlying physics described by differ-
ential equations. Assuming a differential operator L stands
for the operations of the differential equations, the relation-
ship between dynamic skin deformation and the force field
can be described asL(D(u, v, t)) = F(u, v, t), whose concrete
form will be presented in Section 5.1.

Fourier series developed by the French mathematician
Joseph Fourier provides a powerful tool for developing an
analytical solution to differential equations. In order to de-
velop an analytical solution to physics-based deformations,
we will use Fourier series to represent the dynamic deforma-
tion D(u, v, t) and force field F (u, v, t) in Section 4.

As discussed above, the proposed approach consists of
two parts: the first part, Fourier series conversion (Section
4), mainly including identification of vertices on isoparamet-

Figure 2: The pipeline of our method consists of two parts,
including Fourier series conversion and Physics-based skin de-
formation.

ric curves and Fourier series representation. The second
part, physics-based skin deformation (Section 5), mainly
including mathematical model of physics-based skin defor-
mation and analytical solver, which derives a closed form
analytical solution to physics-based skin deformation. The
approach pipeline is illustrated in Figure 2, two examplemeshes
(a) (b) are inputted to our system first in the Fourier se-
ries conversion part. Then, the vertices at the isoparamet-
ric curves are quickly identified to define the isoparametric
curves in (c) and (f). After that, the LBS is introduced to
deform (c) into (d), which together with (f) are transformed
into continuous Fourier series representations indicated in
(e) and (g), then inputted into a deformation calculator to ob-
tain the physical deformation shown in (h). In the Physics-
based skin deformation part, as shown in (i), a physics-
based mathematical model is first developed for both dy-
namic and static skin deformations. Then, the force field
causing skin deformation is represented with Fourier series.
After that, the mathematical model is solved analytically and
a closed form analytical solution is obtained. Finally, the ob-
tained analytic solution is used to create skin deformations
at any poses (j)-(l) between the starting and ending pose.

4. Fourier Series Conversion
The first part, Fourier series conversion, is designed and

tailored to avoid unnecessary manual operations, reduce the
non-negligible amount of preprocessing time, and fast obtain
the Fourier series representations that are needed for follow-
up physics-based deformation determination.

4.1. Identification of Isoparametric Curves
The identification of isoparametric curves includes: i)

automatic segmentation of 3D models, ii) determination of
the intersecting curves of the starting pose, and iii) extracting
the isoparametric curves {u = ui} according to intersecting
curves at the starting pose, which will be used to determine
their counterparts at the ending pose.

Automatic segmentation. Many existing algorithms can
be used to automatically segment 3D mesh models. A com-
prehensive literature review onmesh segmentation algorithms
can be found in [34]. Quantitative evaluation of mesh seg-
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mentation algorithms was also reported in [6]. Due to the
reported efficiency of the randomwalksmethod [20], we em-
ploy it to automatically segment 3Dmodels (specifically, 3D
character models in this work). The intersecting curves be-
tween two adjacent segmented parts are called seam-curves.
After segmenting a 3D model into parts, we obtain the seg-
mented partmodels with one seam-curve (highlighted in green
in Figure 3(b)), two seam-curves (illustrated in Figure 3(c),
(d)), andmore than two seam-curves (illustrated in Figure 3(e)).

Determination of intersecting curves. The determina-
tion of intersecting curves on one part model can be divided
into cases with one seam-curve, two seam-curves, and more
than two seam-curves. For the case of one seam-curve on
a part model (illustrated in Figure 3(b)), we first calculate
the centroid P (blue) of the seam-curve. From the centroid
and the normal of the seam-curve, we specify a step size to
determine next point to create intersecting plane that passes
through the point and perpendicular to the normal, intersect
the part model to obtain an intersecting curve. A new cen-
troid is determined from this intersecting curve. The direc-
tion determined by the two adjacent centroids is taken to be
the direction of next step. This process repeats until arriving
at the farthest end of the part model.

For the case of two seam-curves on a part model (Fig-
ure 3(c)), we use a dichotomy algorithm to obtain intersect-
ing curves. For the first dichotomy, shown as Figure 3(c),
we determine the centroid P and P ′ of the two green seam-
curves, and find themiddle pointP1 of the line segmentPP ′.
From the red middle point P1, an intersecting plane T1 per-
pendicular to the line PP ′ is created to intersect the part
model, which leads to an intersecting curve (blue). Then,
calculate the black centroid P ′

1 of the intersecting curve. For
the second dichotomy, we connect the black centroid P ′

1 with
P and P ′, calculate the red middle points P2 of the line seg-
ments P ′

1P and P ′
1P

′, create two planes T2 to intersect the
model, obtain two intersecting curves (blue) and calculate
two corresponding centroid P ′

2 of the blue curves. Repeat
the iteration until reaching a specified number of iterations
or the threshold of Euclidean distances between red center
points and the black centroid. For the i-th dichotomy, we
can obtain 2(i−1) centroid (black), connect all the black cen-
troids after the i-th dichotomy to generate a new curve skele-
ton shown as the last image of Figure 3(c), use it to create
new intersecting planes (green), which is more sensitive with
character surface shape, then obtain new intersecting curves.
Figure 3(d) demonstrates the application of above dichotomy
algorithm in one irregular model segmentation.

In the situation of more than two seam-curves on a part
model as indicated in Figure 3(e), calculate each centroid of
green seam-curves, and separate them into two clusters using
K-means clustering method. Among each cluster, we com-
pute the average value of these seam-curve centers, named
as P6 and P7. After this treatment, we can transfer this case
into two seam-curves problem (based on P6 and P7), and use
the above dichotomy algorithm to obtain intersecting curves.
The obtained intersecting curves in small regions near the
seam-curves for the situation of more than two seam-curves

Figure 3: Determination of intersecting curves: (a) segmenta-
tion of character models into parts, (b) determination of inter-
secting curves for parts with one seam-curve, (c) for parts with
two seam-curves, (d) for irregular parts with two seam-curves,
and (e) for irregular parts with more than two seam-curves. Ti
means the intersecting plans when i − tℎ dichotomy, the red
points denotes centers of lines, and the black points denotes
centroid of intersecting curves.

on a part model may be closed or open. Since our pro-
posed Fourier series representation and skin deformation al-
gorithm are applicable to both closed and open curves, all
obtained curves, whether closed or open, can be effectively
and correctly processed. With the above three algorithms
of determining intersecting curves, we can control the num-
ber of intersecting curves by taking different step sizes and
effectively deal with irregular meshes with high frequency
details and/or noise.

Extraction of isoparametric curves. The blue intersect-
ing curve in Figure 4(a) is obtained by the aforementioned
Determination of intersecting curves, consists of the green
points in Figure 4(b) which are intersecting points gener-
ated by the intersecting the edges of triangle facets. For each
edge which is intersected by the intersecting plane, we cal-
culate the distances from the intersecting point to the two
end points of the edge, and take the end point with a smaller
distance as an extracted vertex. Repeating this operation, we
extract the red vertices in Figure 4(b) and connect them to-
gether to get a purple isoparametric curve depicted in Fig-
ure 4(c). As can be seen from Figure 4(c), the extracted
purple isoparametric curve is irregular when meshes are not
regular. In order to obtain regular isoparametric curves, we
introduce a threshold to discard some extracted vertices but
keep green intersecting points as follows. We first calculate
the distance from each of the extracted vertices to the inter-
secting curve. If the distance is larger than the threshold, the
extracted vertex is discarded. The intersecting point(s) on
the intersecting curve (green) are kept to generate the new
isoparametric curve (purple), shown as Figure 4(d). Using
the random walks method, various models are segmented
into three types: segmentations with one seam-curve, seg-
mentations with two seam-curves, and segmentations with
more than two seam-curves, as illustrated in Figure 5. We
only need to determine the isoparametric curves of the start-
ing pose. Afterward, the corresponding isoparametric curves
on other meshes can be automatically determined by the cor-
responding vertices index. For any intersecting point, we
use the same ratio to determine the intersecting point on
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Figure 4: Illustration of Extracting isoparametric curves: (a)
shows one mesh intersected with one plane and get the inter-
sected curve (blue). Green points in (b) are the intersected
points, and the red vertex on each mesh edge is the edge end
having smaller distance with green intersected points. Con-
necting these red ends of edges, isoparametric curve (purple)
is extracted shown as (c). Improve the isoparametric curve by
distance threshold, more regular isoparametric curve (purple)
can be obtained shown as (d).

Figure 5: Segmentation results of representative models in the
Princeton Segmentation Benchmark [6], including three types:
blue portions denote one seam-curve segmentations, the yellow
denotes two seam-curves segmentations, and the green denotes
more than two seam-curves segmentations. It can be observed
that our approach could be employed for general models.

the ending example. Figure 6 shows the identified isopara-
metric curves of a human arm (a), a horse (b) and a cat
(c). The extracted isoparametric curves on the surfaces of
some models in Figure 6 such as on the head and body near
the legs of the horse model have been changed into open or
other shapes to present visually pleasing curve networks and
demonstrate our proposed Fourier series representation and
skin deformation algorithm are applicable to all the curves
in the curve networks. The extracted isoparametric curves
on some surfaces of the models in Figure 6 such as on the
head and the body near the legs of the horse model have been
changed into open or other shapes to present visually pleas-
ing curve networks and demonstrate our proposed Fourier
series representation and skin deformation algorithm are ap-
plicable to all the curves in the curve networks. Table 3
gives the computational times for identifying isoparametric
curves. The method proposed in [3] can also be used to ex-
tract isoparametric curves from a triangular mesh. However,
this method: 1) requires users to manually specify the ex-
treme points of a harmonic function to guide the conversion;
2) its computational efficiency is less optimal. For example,
it requires 6.21 seconds to process a mesh with 6,966 tri-
angles into its polar-annular mesh representation using 100
slices on an off-the-shelf computer [3]. Therefore, we pro-
pose the above approach to better serve our specific aim for
Fourier Series Representation.

Figure 6: Isoparametric curve identi�cation algorithm trans-
forms mesh into discrete points on isoparametric curves
S̄0(ui, v)(i = 0, 1, 2, ...I) and the discrete points on the
i-th isoparametric curve are numbered as S̄0(ui, vj)(i =
0, 1, 2, ...I)(J = 0, 1, 2, ...J ) in an arm model (a), a horse model
(b), and a cat model (c).

Figure 7: Removal of transformations between two example
poses. With the LBS model, we transform the starting pose
(b) to obtain the transformed mesh in (c). The purely geomet-
ric transformations are excluded by calculating the di�erence
between the mesh of the ending pose (a) and the transformed
mesh (c), as shown in (d).

4.2. Geometric Transformation
As discussed in Section 3, our physics-based skinning

model does not include affine transformations such as rota-
tion and translation, we must exclude these transformations
first. Although various skinning methods such as LBS, PSD,
and dual quaternion can be used to achieve this goal, we
choose LBS to exclude these affine transformations due to
its efficiency. The identified vertices S̄0(ui, vj) at the starting
pose are transformed to S0(ui, vj) at the ending pose through
a linear combination of bone transformation matrices Tm as
follows.

S0(ui, vj) = (
M
∑

m=1
wij,mTm)S̄0(ui, vj) (1)

wherewij,m are the blending weights, and its subscript indi-
cates the j-th vertex on the isoparametric curve at ui. Since
we have two example poses, the transformation matrices Tm
are straightforwardly fitted by transforming the animation
skeleton at the starting pose to fit the animation skeleton at
the ending pose. We assume the skeletons have been given
by users before hand, and among various weights calcula-
tion methods. Bounded Biharmonic Weights (BBW) [12]
are smooth, shape-aware but need volume discretization. To
maximize the high computational efficiency of this analyti-
cal solution, we use the method [42] to calculatewij,m in the
above Eq. 1, and illustrate this computing process in Fig-
ure 7.
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4.3. Fourier Series Representation
In order to obtain an analytical solution to physics-based

skin deformations, we need to convert example meshes con-
sisting of discrete vertices Sk(ui, vj)(k = 0, 1) into continu-
ous Fourier series representations CFk (ui, v)(k = 0, 1):

CFk (ui, v) = ck0(ui) +
N
∑

n=1

[

ck2n−1(ui) cos 2n�v

+ck2n(ui) sin 2n�v
]

(k = 0, 1) (2)

where CFk (ui, v)(k = 0, 1) are continuous Fourier series rep-
resentations of example models, k = 0 denotes the start-
ing pose, k = 1 denotes the ending pose, the superscript
F indicates Fourier series, ui denotes the i-th isoparamet-
ric curve in each pose, v is a variable in the range of [0, 1],
ckn(ui)(k = 0, 1; n = 0, 1, ..., N) are Fourier coefficients, and
the subscript n denotes the n-th term of the Fourier series. In
order to determine the unknown Fourier coefficients ckn(ui),
we first discuss how to relate the parametric variable v in
Eq. 2 to the points on isoparametric curves. Assuming that
the length of the isoparametric curves Sk(ui, vj) (k=0, 1)
from the point j = 0 to the points j = 1, 2, ..., J is Lkij , and
the total length of the isoparametric curves from the point
j = 0 to the point j = J is LkiJ where the subscript J in-
dicates the last point on the isoparametric curves, the value
vkij of the parametric variable v at the points Sk(ui, vj)(k=0,
1) is determined by the ratio between the length Lkij and the
total length LkiJ , i. e.,

vki0 = 0 vkij = Lkij∕L
k
iJ (j = 1, 2, 3, ..., J ), (3)

where

Lkim =
m
∑

l=1
d(Sk(ui, vl),Sk(ui, vl−1)),

(k = 0, 1; i = 0, 1, 2, ..., I ;m = i, J ; j = 1, 2, ..., J )(4)

where d is the Euclidean distance. After relating the para-
metric variable v in Eq. 2 to the points on the isoparametric
curves, we obtain the points CFk (ui, vj) given by the Fourier
series representations correspond to the points Sk(ui, vj) on
the isoparametric curves. The error caused by the Fourier
series representations can be quantified by the squared sum
of all the Euclidean distances between the pointsCFk (ui, vj)
and the points Sk(ui, vj) with the following equation:

Ek =
J−1
∑

j=0
[d(CFk (ui, vj),Sk(ui, vj)]

2 (5)

where

CFk (ui, vj) = ck0(ui) +
N
∑

n=1

[

ck2n−1(ui) cos 2n�vj +ck2n(ui) sin 2n�vj
]

(6)

Weminimize Eq. 5 over the Fourier coefficients to determine
the unknown Fourier coefficients ckn(ui).

Figure 8: Comparison between original isoparametric curves
(blue) and Fourier series curves (red) (a). When di�erent
Fourier series terms are employed, such as N = 3, 5, 9, the
Fourier series representation (red) from Eq. 2 are increasingly
approaching to the isoparametric curves (blue) of the scanned
arm. When N is set to 9, Fourier series representation ap-
proaches the isoparametric curves very closely.

The above Fourier series conversion algorithm is appli-
cable to both closed and open isoparametric curves. For
closed isoparametric curves, Sk(ui, vJ ) = Sk(ui, v0) and Eq. 5
can be used directly. For open isoparametric curves, we
use CFk (ui, v0) = Sk(ui, v0) and CFk (ui, vJ ) = Sk(ui, vJ )
to achieve the positional continuity at the two end points
and determine two vector-valued unknown Fourier coeffi-
cients in Eq. 2. If tangential or higher continuities at the
two end points are required, the continuity conditions of the
first or higher derivatives are introduced to determine more
unknown constants in Eq. 2. For the positional continuity,
we change j in Eq. 5 starting from 0 into 1 to determine the
remaining unknown constants.

The comparisons between the isoparametric curves (blue)
of a scanned arm and corresponding Fourier series curves
(red) with different terms are shown in Figure 8. They in-
dicate that the proposed Fourier series representations de-
scribe local details well.

4.4. Deformation Calculation
The deformations from the starting pose to ending pose

excluding purely geometric transformations are the differ-
ence between the transformed starting poseCF0 (ui, v) and the
ending pose CF1 (ui, v), described below.

D̃(ui, v) = CF1 (ui, v) − CF0 (ui, v) (7)

Substituting Eq. 2 into Eq. 7 and putting the same coeffi-
cients together, the skin deformations D̃(ui, v) can be rewrit-
ten as the following Fourier series:

D̃(ui, v) = d0(ui) +
N
∑

n=1

[

d2n−1(ui) cos 2n�v +d2n(ui) sin 2n�v
]

(8)

dn(ui) = c1n(ui) − c0n(ui) (n = 0, 1, 2, 3,⋯ , 2N) (9)

where unknown constants c0n(ui) and c1n(ui) are obtained in
Section 4.3.
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5. Physics-based Skin deformation
Physics-based skin deformation determines how skin shapes

change with external forces. There are two types of physics-
based skin deformation techniques: the first type such as
the deformable body dynamics in [14] directly uses a 3D
manifold triangle mesh as a skin surface without consider-
ing the flesh. underneath the skin surface, and the second
type uses more realistic anatomical models which includes
the skin and flesh, such as the anatomically-inspired volu-
metric template model in [16] which consists of skin, un-
derlying generic soft tissue, muscles, tendons, and skeleton.
This paper follows the first type and only considers skin sur-
faces. In order to tackle both dynamic and static skin defor-
mations, the physics-based skin deformation model should
include the contributions of acceleration, velocity, and static
skin deformation. In this section, we will propose such a
physics-based skin deformation model to describe how skin
surfaces change their shapes under the influence of a time-
dependent force field. Since the deformation between the
ending and starting poses has been represented in the Fourier
space through Eq. 8, we also represent the force field in the
same Fourier space to develop an analytical solution for cre-
ating realistic skin deformation efficiently.

5.1. Mathematical Model of Physics-based Skin
Deformation

Similar with the treatment in [15], velocity and acceler-
ation have effects on the shape change of skin surfaces. We
formulate this effect by the vector-valued motion equation:

(�)2∕)t2 + �)∕)t +ℜ)D(u, v, t) = F (u, v, t) (10)

where � and � are the density and damping coefficient of
skin surfaces, and the corresponding terms describe the ef-
fects of acceleration and velocity on the shape variations of
skin surfaces, ℜ is an internal deformation force which is
the function of skin deformations D(u, v, t), and F(ui, v, t) is
a time-dependent force field driving the skin deformations.
Skin deformations are similar to the elastic bending of thin
plates. Accordingly, the internal force for skin bending de-
formations is similar to the internal force of the elastic bend-
ing of thin plates, and mathematically described by

ℜD(u, v, t) = (�)4∕)u4+
)4∕)u2)v2+�)4∕)v4)D(u, v, t)
(11)

Here, � , 
 , � are called shape control parameters which con-
trol the shape change of skin surfaces. Apart from the in-
ternal force for bending deformations, another force which
resists tensile or compressive deformations should also be
considered. This force can be regarded as a restoring force.
Like the deformation of a spring, the restoring force is pro-
portional to the tensile or compressive deformations, which
can be approximated as &D(u, v, t). From the above discus-
sion, the internal deformation forceℜ should be the sum of
the internal force for bending and the restoring force for ten-
sile or compressive deformations. Using them to replace ℜ

Figure 9: E�ects of damping and force on vibration [10]

in the linear elastodynamic equation Eq. 10 and introducing
the differential operator L defined below.

L = �)2∕)t2+�)∕)t+�)4∕)u4+
)4∕)u2)v2+�)4∕)v4+&
(12)

The linear elastodynamic Eq. 10 is transformed into a
vector-valued fourth order dynamic partial differential equa-
tion (PDE):

LD(u, v, t) = F(u, v, t) (13)

As show in Figure 9, the forced vibrations include a tran-
sient part and a steady-state part. The transient part has
an exponentially decreasing amplitude indicated by the blue
curve. After sufficient time, the transient part is damped out,
leaving the motion described by the steady-state part only
indicated by the purple curve whose vibration frequency is
totally determined by the frequency of the external forces
[10]. Since the transient part only occurs in a short time we
focus on the analytical solution to the steady-state part of the
physics-based skin deformationmodel in this paper. We pro-
pose to lower the fourth order dynamic PDE to the second
order by using the following differential operator Eq. 14, it
should be noted that lowering the dynamic PDE order may
reduce the prediction accuracy of skin deformations. How-
ever, this can be well compensated by introducing example
skin shapes.

L = �)2∕)t2+�)∕)t+�)2∕)u2+
)2∕)u)v+�)2∕)v2+&
(14)

When considering the shape changes on the iso-parametric
curve ui, the parametric variable u becomes a constant. Ac-
cordingly, the deformation function D(u, v, t) and the force
functionsF(u, v, t) in Eq. 13 becomeD(ui, v, t) andF(ui, v, t),
the partial derivatives of D(u, v, t) with respect to the para-
metric variable u drop, and the differential Eq. 13 becomes

LD(ui, v, t) = F(ui, v, t), (15)

where

L = �)2∕)t2 + �)∕)t + �)2∕)v2 + & (16)

When two example meshes are known, we can set the
deformations D(ui, v, t) to zero at t = 0 and D̃(ui, v) at t =
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1. If a mesh is motionless at t = 0, the deformation rate
)D(ui, v, t)∕)t is zero. If a mesh is in motion at t = 0, the
deformation rate )D(ui, v, t)∕)t should take the value of the
deformation rate at the instant. If we use Ḋ0 to indicate the
deformation rate at t = 0, these constraint conditions can be
formulated as

t = 0 D(ui, v, t) = 0, )D(ui, v, t)∕)t = Ḋ0

t = 1 D(ui, v, t) = D̃(ui, v) (17)

After defining boundary conditions, themathematical model
is obtained by combining Eq. 15 with Eq. 17, which can
be analytically solved and generate smooth deformation be-
tween two adjacent sequences as described below.

5.2. Fourier Series Force
The time-dependent force field F in LD = F can be de-

termined from the given example skin shapes. At the starting
pose t = 0, there is no skin deformations. The external force
at the starting pose should be zero: F(ui, v, 0) = 0. At the
ending pose t = 1, the skin deformations is D̃(ui, v) deter-
mined by Eq. 8, which are represented with Fourier series
of the parametric variable v. Naturally, we can use the same
Fourier series to represent the external force at the ending
pose, i. e.,

F̃(ui, v) = e0(ui)+
N
∑

n=1
(e2n−1(ui) cos 2n�v+e2n(ui) sin 2n�v)

(18)

Here, the e0(ui), e2n−1(ui), e2n(ui) are unknown constants
that can be obtained by Analytic Solver in Section 5.3. From
the known external forces at the starting and ending poses,
we can obtain the following linear variation of the force field
with respect to the time variable t.

F(ui, v, t) = tF̃(ui, v) = te0(ui) +
N
∑

n=1
(te2n−1(ui) cos 2n�v + te2n(ui) sin 2n�v) (19)

5.3. Analytic Solver
The mathematical model Eq. 15 can be used to deal with

dynamic skin deformations including skin vibrations. The
time-dependent force field represented by Eq. 19 involves
three types of terms: t, t cos 2n�v, and t sin 2n�v. If it is in-
troduced into Eq. 15, D(ui, v, t) should also contain the three
types of terms. If we useD1(ui, t),D2n(ui, v, t) = D2(t cos 2n�v)
and D3n(ui, v, t) = D3(t sin 2n�v) to indicate the three types
of terms, respectively, the deformation function D(ui, v, t)
can be rewritten as

D(ui, v, t) = D1(ui, t)+
N
∑

n=1
[D2n(ui, v, t)+D3n(ui, v, t)] (20)

Substituting Eq. 20 into Eq. 15, we can obtain

L1D1(ui, t)+
N
∑

n=1
L2[D2n(ui, v, t)+D3n(ui, v, t)] = F(ui, v, t),

(21)

where L1 and L2 are determined by

L1 = �)2∕)t2+ �)∕)t+ & L2 = L1+ �)2∕)v2 (22)

Introducing Eq. (19) into Eq. (21) and comparing both sides
of the equation, the following equations are obtained

L1D1(ui, t) = te0(ui)
L2D2n(ui, v, t) = te2n−1(ui)cos2n�
L2D3n(ui, v, t) = te2n(ui)sin2n�

(n = 1, 2, 3, ..., N) (23)

The remaining details of analytically solving the homoge-
nous general and particular solutions to Eq. 21 are given in
Appendix A. Finally, the analytical solution is as follows:

D(ui, v, t) = 
0(t)d0(ui) +
N
∑

n=1

n(t)[d2n−1(ui)cos2n�v + d2n(ui)sin2n�v] (24)

The above Eq. 24 indicates that once the skin deformations
dn(ui)(n = 0, 1, 2, ..., 2N), determined from the skin shapes
at the starting pose c0n(ui) and the ending pose c1n(ui), are
known, the skin deformation at any in-between poses can be
analytically determined by Eq. 24.

6. Experimental results and Comparisons
In Subsection 6.1, we first discuss some basic behaviors

of the proposed physics-based skin deformations. In order to
demonstrate our approach can produce realistic skin defor-
mations efficiently, we compared our approach with geomet-
ric skin deformation methods (6.2), example-based skin de-
formationmethod, i.e., pose space deformation (PSD)method
(6.3), and physics-based dynamic skin deformation methods
(6.4 and 6.5), where 6.4 uses curve-defined skin models and
6.5 uses polygon skin models.

6.1. Basic Behaviors
Basic behaviors to be tested include the effects of ma-

terial and mechanical parameters, differences between dy-
namic and static skin deformations, and the reversibility of
our approach. As aforementioned, skin deformations are
similar to the elastic bending of thin plates and the bend-
ing deformations are described by Eq. 11, where the co-
efficient � is similar to the flexural rigidity of elastic plate
bending, which is connected to Young’s modulus E, Pois-
son ratio �, and skin thickness ℎ through the equation � =
Eℎ3∕[12(1 − �2)]. Young’s modulus, Poisson ratio and the
tensile stiffness & are mechanical parameters of the skin. The
density � and damping coefficient � are material parameters.
All of them have influence on skin shapes. We consider a
skin strip with a rectangle cross-section of height ℎ and unit
width shown in Figure 10(a) where the left end of the skin
strip is fixed and the right end is under the action of a force
F . According to [1, 8], these mechanical and material pa-
rameters for the skin strip can be taken to be: E = 1.5e2,

S. Bian, Z. Deng et al.: Preprint submitted to Elsevier Page 8 of 13



Graphical Models (2019)

ρ = 1.05e3 
η = 0.619
Ε =1.5e2
μ =0.3

ρ = 0
η = 0
Ε =1.5e2
μ =0.3

ρ = 0 
η = 0
Ε =1.5e2
μ =0.1

ρ = 0
η = 0
Ε =1.5e2
μ =0.5

ρ = 0 
η = 0
Ε =1.0e2
μ =0.3

ρ = 0 
η = 0
Ε =2.0e2
μ =0.3

ρ = 0.9e3
η = 0.619
Ε =1.5e2
μ =0.3

ρ = 1.2e3
η = 0.619
Ε =1.5e2
μ =0.3

ρ = 1.05e3 
η = 1.119
Ε =1.5e2
μ =0.3

ρ = 1.05e3 
η = 1.619
Ε =1.5e2
μ =0.3

ρ = 1.05e3 
η = 0.619
Ε =2.0e2
μ =0.3

ρ = 1.05e3 
η = 0.619
Ε =2.5e2
μ =0.3

ρ = 1.05e3 
η = 0.619
Ε =1.5e2
μ =0.4

ρ = 1.05e3 
η = 0.619
Ε =1.5e2
μ =0.5

(a) (b) (c) (d) (e)

(f) (g) (h) (I) (j)

F

Figure 10: (a) shows the initial values for the proposed model,
(b) shows how the performance of dynamic vibration when
density � is decreased or increased; (c) shows how the damp-
ing coe�cient � in�uences the results when overdamped; (d)
shows the amplitude of the object decreases when the Young's
modulus E is increased; (e) shows how Poisson ratio � a�ects
the result. In (f), � = � = 0 can achieve static skin deforma-
tion; (g)-(h) show the results when �xing the Young's modulus
E but changing the Poisson's ratio �, (i)-(j) show the di�er-
ent results when �xing the Poisson's ratio � but changing the
Young's modulus E and (f)-(j) demonstrate the e�ects of the
Young's modulus E and the Poisson's ratio � on static skin
deformations.

Figure 11: (a) indicates static skin deformations by the pro-
posed physics-based skin deformation model, (b) indicates dy-
namic skin deformations and (c) demonstrates substantial dif-
ferences between the generated static and dynamic skin defor-
mations.

� = 0.3, � = 1.05e3, and � = 0.619. With these material
and mechanical parameters, the straight skin strip in grey is
deformed into a new shape in green shown in Figure 10(a).
Then we investigate how each parameter of E, �, � and �
affect skin deformations, shown in Figure 10(b)-(e). In Fig-
ure 10(f), � = � = 0 can achieve static skin deformations,
and (f)-(j) demonstrate the effects of the Young’s modulus
E and the Poisson’s ratio � on static skin deformations. Be-
sides, in our physics-based skin deformation model, setting
the density � = 0 and the damping coefficient � = 0, the
obtained analytical solution can be used to create static skin
deformations. The differences between static and dynamic
skin deformations are shown in Figure 11where Figure 11(a)
indicates static skin deformations, Figure 11(b) indicates dy-
namic skin deformations, and Figure 11(c) shows the differ-
ences between static and dynamic skin deformations.

Figure 12: Skin deformation generated by our approach. (a)
and (e) are the input example poses. (b)-(d) are generated
intermediate shapes by our approach. (f) and (g) shows our
approach gives more realistic skin deformations at leg joints
and arm joints.

6.2. Comparison with Geometric Skin
Deformation Methods

In this subsection, we compared the deformed shapes
created by our approach with 3D scanned groundtruth and
those from baselinemethods including the classical LBS and
the Dual Quaternion blending skinning (DQBS) [17] which
are included in standard character animation pipelines. Since
LBS and DQBS have been included in Autodesk Maya, we
use Maya’s LBS and DQBS to determine skin deformations.
Figure 12(a) - (e) show the skin deformation result of a male
model obtained by our approach. The comparisonwith those
obtained by the two baseline methods is indicated in Fig-
ure 12(f) - (g). Our approach gives more realistic skin de-
formations at the arm and the leg joints. In order to quantify
the errors of various methods, we calculated the vertex er-
rors between the 3D scanned groundtruth and those obtained
by our approach and the two baseline methods, and depicted
the vertex errors with different colours in Figure 13. In the
figure, our proposed method and the method by You et al.
2018 [43] use the ground-truth skin shapes at t=0 and t=1,
shown in Figure 14(a), LBS and Dual Quaternion use the
ground-truth skin shape at t=0, also shown in Figure 14(a),
Figure 13(a) shows the ground-truth skin shapes at t=0.25,
t=0.5 and t=0.75, Figure 13(b), (c), (d), and (e) show the
calculated skin shapes at t=0.25, t=0.5, and t=0.75 by our
proposed method, LBS, Dual Quaternion, and the method
by You et al. 2018[43], respectively. As shown in the fig-
ure, the skin deformation by our approach is the closest to
the ground-truth in this comparison. The visual perception
of the difference between the ground-truth and our approach
is negligible at most. In contrast, the meshes created by the
classic LBS and dual quaternion blend skinning are notice-
ably different from the ground-truth. The Maximum Ver-
tex Error (MVE) by our method is 0.026, while other meth-
ods have much larger MVEs: LBS (0.385), the dual quater-
nion blend skinning (0.278) and the method of You et al.
2018[43](0.169).
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(a) (b) (c) (d) (e)

Figure 13: Comparisons between our method and baseline
skinning methods. Three rows (from top to bottom) corre-
spond to the poses at t=0.25, t=0.5, and t=0.75, respectively.
The columns from left to right are: ground-truth from laser
scanning data, our approach, the classical LBS, dual quater-
nion skinning [17], curve-based method [43]. The color images
at top-right corners are the visualization of the vertex errors,
compared to the ground-truth.

6.3. Comparison with Example-based Skin
Deformation Methods

As above discussed, example-based skin deformationmeth-
ods are often used together with geometric skinning, and re-
alistic skin deformations require sufficient examples. Since
the Pose Space Deformation (PSD) method [24] is a widely-
used example-based skin deformation method, we compare
our approach with PSD in this subsection and demonstrate
our proposed physics-based approach can be used to improve
the realism of example-based skin deformations. All the
threemethods: ourmethod, PSDonLBS, and PSDonDQBS,
use the ground-truth arm skin shapes at t=0 and t=1 shown
in Figure 14(a). The obtained skin shapes at t = 0.25, t = 0.5
and t = 0.75 are depicted in Figure 14(b)-(d). In the figure,
(b) is from our approach, and (c) and (d) are from the PSD
tool added to Maya 2016 Extension 2. We can find that both
PSD on LBS and PSD on DQBS improve the skin deforma-
tion results purely on LBS and DQBS, but still can not avoid
the collapsing-joint, bulging-joint and distorted normal ef-
fects, whereas our approach creates more realistic skin de-
formations without these artifacts.

6.4. Comparison with Physics-based Skin
Deformation Methods Using Curve Defined
Models

Table 1

Runtime comparison between this method and [43].

Data Verts Our method(fps) [43](fps)

Arm 3840 531 23
Cat 7207 273 17
Horse 10128 205 14
Runner 32185 86 4

Although several previous curve-based skin deformation
methods [43, 5] have been proposed, they have the following
limitations. 1) The curves defining skin surfaces are man-
ually extracted, leading to heavy and time-consuming hu-

Figure 14: Comparison with PSD, (a) shows the input data,
(b) shows the models generated by our method, without
collapsing-joint, bulging-joint and distorted normal. (c) shows
the models create by PSD based on LBS. The left overlap parts
show the di�erences between results of LBS (red) and PSD on
LBS (blue). (d) shows the models generated by PSD based on
DQBS.

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 15: Skin deformation result of a horse model. (a), (e),
and (i) are three input example poses, (b)-(d) are in-between
poses generated by our method based on (a) and (e). (f)-
(h) are in-between poses generated by our approach based on
(e) and (i). During these two adjacent sequences, the shapes
show a smooth transition form the �rst sequence (a)-(e) to the
second sequence (e)-(i).

man involvements. 2) A large linear system must be solved
to obtain skin deformations at finite difference nodes [5] or
unknown constants involved in analytical mathematical ex-
pressions of skin deformations [43]. 3) The animation is
not smooth at the connecting poses between adjacent anima-
tion sequences. The above limitations 1) to 2) make previ-
ous curve-based skin deformation methods less suitable for
those applications requiring high animation frame rates, and
the limitation 3) would seriously affects the quality of result-
ing animations. Our approach overcomes all the above three
limitations. Since both deformation continuity and deforma-
tion rate continuity are introduced into Eq. 17, our method
only requires at least two examplemeshes to produce smooth
and physically realistic animations as demonstrated by the
horse model in Figure 15 and the accompanying video. In
contrast, the previous approaches such as [43] would fail to
produce smooth animations if multiple example poses are
given, as demonstrated by the animation result in the accom-
panying video. Among various existing curve-based skin
deformation approaches, the work of [43] is the most effi-
cient. We compare the computing time of our approach with
[43] through four different models: scanned arm, cat, horse,
and human, presented in Table 1 which shows that our ap-
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Verts: 258Verts: 112

MaxError: 0.091
AveError:  0.032 

MaxError: 0.457
AveError:  0.368 

 Fourier Coefficient: 20

(b) (a)

(g)(f)

(d) (e) (c)

Figure 16: The high-resolution curve (a) in polygon mesh re-
duced to (b) with large accuracy lose in (d), (f). But Fourier
series representation (c) keep high realism with sharply de-
creasing data-size.

proach is about 12-18 times faster than [43].

6.5. Comparison with Physics-based Skin
Deformation Methods Using Polygon Models

As discussed before, physics-based skin deformationmeth-
ods produce high-quality and realistic results, but require
heavy numerical calculations. Our method significantly re-
duces the computing cost and manual operations. In this
subsection, we will compare our proposed approach with ex-
isting physics-based skin deformation methods using poly-
gon models. We first demonstrate our proposed Fourier se-
ries representation can greatly reduce design variables com-
paredwith polygonmodels but still keep high-realism, shown
as Figure 16. Table 2 gives a comparison of design vari-
ables. For polygon models, the total design variable is the
total number of vertices. After representing polygon models
with Fourier series, the total design variables become the
total vector-valued Fourier coefficients. The data illustrate
the design variables of polygon models are 4.3-8.6, 2.7-5.5,
and 1.6-3.2 times of Fourier series representations, when FC
set to be 3, 5, and 9, respectively. Using Fourier series repre-
sentations, it reduce design variables for calculation sharply,
and the specific value of Fourier coefficients used in our ex-
periments are shown in Table 3.

Table 2

Comparison of variables, FC: Fourier Coe�cients Terms.
The second row shows the total vertices of character
models. The third to �fth rows show the total vector-
valued Fourier coe�cients when using di�erent Fourier
series terms to describe the models.

Arm Cat Horse Dancer Runner

Verts 3840 7207 10128 13201 32185
FC N=3 448 1681 2363 3080 5632
FC N=5 704 2642 3713 4840 8850
FC N=9 1216 4563 6414 8360 15287

Among various physics-based skin deformation approaches,
the approach proposed in [41] incorporates physically based
simulation into rigging/skinning to automatically produce
secondary skin motion and use model reduction to acceler-

Table 3

Runtime breakdown of our approach. FC:Fourier Coef-
�cients, variables of Fourier series representations used
in these experiments. IIL: Identi�cation of isoparametric
curves. GT: Geometric Transform. FSC: Fourier Se-
ries Representation. DC: Deformation Calculation. AS:
Analytic Solver. SD:Skin Deformer.

Runtime (ms)

Model FC IIL GT FSR+DC AS+SD Total

Arm 1216 0.35 0.215 1.19 0.13 1.885
Cat 2642 0.72 0.258 2.47 0.21 3.658
Horse 3713 0.99 0.450 3.15 0.27 4.860
Runner 15287 1.83 0.656 8.25 0.79 11.526

ate numerical calculations, which sacrifices the accuracy to
a certain extent. It should be noted that, since our method
focuses on integrating example skin shapes to physics-based
model to create high-realistic skin deformation in the steady-
state part of forced vibrations. By contrast, the work de-
scribed in [41] includes the calculations of vibration modes
under constraints. Therefore, it is unable to make a fair com-
parison between our method and [41].To accommodate large
deformations around each pose, [41] augments the linear
model basis with modal derivatives proposed in [4]. In [4],
after frame 1000, the vertical displacement of a vertex of a
spoon’s simulation between full simulation andmodal deriva-
tives could reach about half of the length of the spoon. In
order to obtain elastic and inertial forces, [41] needs several
samples for training, which brings in fewer than 3% rela-
tive training error. Although the pose-dependent model re-
duction [41] divides a polar bear model of 6,876 vertices
into 8 local regions and uses 8 threads with OpenMP, it still
takes 1.43 ms to animate skin deformations of the polar bear
model. Without any multithreading, our proposed approach
only takes 1.627 ms to animate skin deformations of a horse
model with 10,128 vertices. It indicates that our approach is
comparable with the pose-dependent model reduction, if not
faster.

The method in [18] generates higher quality deforma-
tions than both linear and dual quaternion skinning through
skinning weights optimization, but requires at least a few
minutes to precompute the deformationweights. Themethod
in [28] needs at least several seconds for torso and arms sim-
ulation per frame on GPU, it is still not fast enough for in-
teractive posing. Through a quantitative comparison with
ground-truth skin deformations shown in Figure 13, the high
realism of our approach has been clearly demonstrated.

Using shell elements and the same example skin shapes
at extreme poses, we also compared with the finite element
simulation of steady-state skin vibrations, shown in Figure 17,
which further shows a high realism achieved by our approach.

7. Discussion and Conclusion
This paper develops an analytical approach to efficiently

create physically-realistic skin deformations. It includes ver-
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(b)(a) (c)

Figure 17: Simulating skin vibration with steady-state dynam-
ics:(a)(b)(c) are comparisons of three model poses created by
ABAQUS steady-state dynamic simulation (gold) and by our
steady-state dynamic simulation (silver).

tex identification on isoparametric curves, Fourier series con-
version, and an analytic solution to the formulated physics-
based skin deformationmodel. Many experiments have been
conducted to validate this approach. We discussed the ef-
fects of various factors, and made direct comparisons with
various skin deformation approaches including geometric skin
deformationmethods, example-based skin deformationmeth-
ods, and physics-based skin deformation methods. These re-
sults demonstrate our approach avoids unnecessary manual
operations and time-consuming numerical calculation that
require specialized knowledge and skills, produces physically-
realistic models and reaches high animation frame rates for
real-time applications. Several improvements can be made
in the future. First, we will extend our method to develop
an analytical solution to fourth order differential equations
to tackle elastic dynamic skin deformations including both
transient and steady-state skin vibrations. Our current ana-
lytic solution to physics-based skin deformation is derived
from linearly varying forces. It can be extended to nonlin-
early varying forces. We will examine which force variation
can generate more realistic skin deformations in the future
work.

Acknowledgment
This research is supported by the PDE-GIR project which

has received funding from the European Union’s Horizon
2020 research and innovation programme under the Marie
Sklodowska-Curie grant agreement (No.778035), theNational
Natural Science Foundation of China (Grant No.51475394),
and InnovateUK (Knowledge Transfer PartnershipsKTP.010860).
Shaojun Bian is also supported by Chinese Scholar Council.
Xiaogang Jin is supported by the KeyResearch andDevelop-
ment Program of Zhejiang Province (No.2018C01090) and
theNational Natural Science Foundation of China (No.61732015).

A. Appendix
The homogenous general solution to each equation of

Eq.(23) can be taken as D̃1(ui, t) = ert,D̃2(ui, v, t) = eqt cos 2n�v
and D̃3(ui, v, t) = est sin 2n�v. Substituting them into each
of Eq.(23), considering the situations 4�� − �2 > 0 and

4(� − 4�n2�2) − �2 > 0, and setting

�r = −�∕(2�) �r = �r
√

4��∕�2 − 1

ℎn = � − 4n2�2� �n = �r
√

4ℎn∕�2 − 1 (A1)

we obtain r1,2 = �r + i�r, qn1,2 = sn1,2 = �r + i�n and the
homogenous general solutions below

D̃1(ui, t) = C1(ui)f (t) + C2(ui)f̄ (t)
D̃2n(ui, v, t) = [C3n(ui)gn(t) + C4n(ui)ḡn(t)] cos 2n�v
D̃3n(ui, v, t) = [C5n(ui)gn(t) + C6n(ui)ḡn(t)] sin 2n�v

f (t) = e�rt cos �rt f̄ (t) = e�rt sin �rt
gn(t) = e�rt cos �nt ḡn(t) = e�rt sin �nt (A2)

Then, the particular solutions to Eq.(23) can be taken as
D̄1(ui, t) = a1(ui)+a2(ui)t, D̄2n(ui, v, t) = [a3(ui)+a4(ui)t] cos 2n�v,
D̄3n(ui, v, t) = [a5(ui)+a6(ui)t] cos 2n�v. Substituting them
into Eq.(23) to obtain

D̄1(ui, t) = (�t − �)e0(ui)∕�2

D̄2n(ui, v, t) = (ℎnt − �)e2n−1(ui) cos 2n�v∕ℎ2n
D̄3n(ui, v, t) = (ℎnt − �)e2n(ui) sin 2n�v∕ℎ2n (A3)

Introducing Eq.(A2) and Eq.(A3) into Eq.(20), we obtain the
function D(ui, v, t) which involves the unknown constants
e0(ui), e2n−1(ui), e2n(ui) and C1(ui), C2(ui) and Ckn(ui)(k =
3, 4, 5, 6). Using the boundary conditions Eq.(17), we could
determine these unknown constants. Then, substituting the
obtained unknown constants back into D(ui, v, t), and intro-
ducing

�0 = e�r [−��r cos �r + � (1 + ��r∕� ) sin �r] −
��r(1 − �∕� )

�n = e�r [−��n cos �n + (1 + ��r) sin �n] −
�n(1 − �∕ℎn)


0(t) = [−��rf (t) + � (1 + ��r∕� )f̄ (t) −
��r(t − �∕� )]∕�0


n(t) = [−��ngn(t) + (1 + ��r)ḡn(t)
−�n(t − �∕ℎn)]∕�n (A4)

we obtain Eq.(24).
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