Barycentric convolution surfaces based on general planar polygon skeletons
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ARTICLE INFOQ ABSTRACT
Kiywads: Using bary ceniric coordinates for thidnes interpolation, we present a novel palygonal skel=ion bassd comyahu-
Corvadation sorfares

Polygrn sheledon
Baryoemirk coordinates
Support radies

tion surface approximation method with vanying mdii. Given the presoribed =dii of anarbitrary planar polygonal
skel=ion, we first employ a smooth interior mean value @ardinate interpalation approach tocal culate the thick-
ness at each projection pasition in the palygonal plane. Then a al thicknes approxdimation methad bassd an
finite-suppornt kemeks is introduced to create an implicit surface with smoothly varying thidmess. In addition, a

palygan affsst with different distances by winding numbers is employed to creste local approcimation atpolygan
baundaries. Our experiments shaw that the propossd uniform smooth thidmes interpolation: and local comvo
lution approximation method can not only avoid surface wrinkles bat also reduce computation cost Morsover,
our approadh i inssnsitive to exteriar thickness imterpalation. Therefore smaooth baryeentric coondinates within
a palygon can all be exsily integraed into our approach.

1. Introductdon

Eficient sheleton-driven 3D modelling (s commonly applied in both
explicit surfaces [17] and implicht sudfaces [2]. As one of the most
important implicit sufaces, a convolution surface i defined by con-
volving a skeleton with a theedimensional, low pass flter kermel
[3], and it provides a powerful means to design smooth branching
shapes through nneitve sheletons [4]. The superposition amd smooth-
ness properties enable its wellbehaved blending with undedying shele-
toms Using convohition surfaces, wers can design a comples smooth
shape by mssembling different pars controlled by underlying shele
toms [5]. Because of its integrml form, much atention has been given
to desgn efficient closed-form solutions to redwece the computation
et According to the mathematical formulations of convolution s
faces, we observe that there are lmited cholces of kerms] functons
and skeletal pimitves that can be convolved together analytically. Ak
though there are some analytieal solutbons for one-dimensonal shele
toms (e.g, lines, arcs and quadrate curves) with a varying kermel
[4,6-E], the solutlons for two-d imenslonal sheletons with varying radil
are still mot well investigated. Sweh a solutlon b quite weful forcreating
mare complex polygon skeleton-based convoluton shapes with varying
thickmess.

Recently, convolution surfaces have also been succesfully employed
In the Brush2Model system [9] which allows users to create smooth
shapes by sketching 3D sheletons in a HMD envimnment. Although the
amabytical convolutlon approsimation for skeleton models with a user-

defined mdius i3 proposed in their approach, polygonal shelet ons have
to be triangulated and subdivided for surface design a8 no cloged-form
solutions can be directly derived for varying mdil at polygon vertices.
Similarly, inspired by convolution swerfaces, SCALe-invariant Integral
Surfaces (SCALIS) [10] are designed for rad us contml in which the ra-
dius of the surfaces amund a skeleton can be explicitly controlled. The
generated blending shapes are sel-similar regardless of the scale of the
mad el. However, the Ineady varying thicknes control based on polyg-
omal skeletons has to be perdformed wsing numerical integration.

In this paper, we present 8 novel convolution suface modelling ap-
proach to create 30 sheet-lke shapes with smoothly varying thickness
based om a polygonal skeleton, which is important in an int eractive mod-
eling system. In order to create shapes allowing not only lecal radius
adjustment but also global smoothmess, analytical soluthons for mean
value coordinates are derived to model smoothly varying thickness at
any podnt on an arbitmary polygon. Moreover, the baryeentric thickness
ks intrduced to derive a closed-form local convolution surface approo-
imation based on a polyline or a polygonal skeleton.

The remainderof the paper is crganized asfollows. After introducing
the related work in Sectlon 2, convolution surfaces with finlte s pport
are desceribed in Section 3. Then we give a brief definiton of baryeentric
oo inates and the chosen mean valse coondinates for our applications
In Sectlon 4. InSectlon 5, the ¢onvol thon surface approximation based
on mean value coondinates s derived, followed by the implementation
datails and some modelling results with owr appreach in Section &, and
our paper ends with the conclusion gven in Sectlon 7.



2, Related work

Although quite a lot of worls are related to our approach, the most
relevant ones include convolution surfaces and baryeentre ooordinates,
which will be detalled balow.

Convolution surfaces were frst proposed by Bloomenthal and
Shoemake [ 3] to create smooth swurfaces by convolving geometric skele
tons with a Gausstan kemel function. To avold the global support of swuch
kemels as Gausstan function and Cascehy function, fnite supported omes
[4,11] are uwswally preferred due to thelr locality property. As the high
computation costs of convolutlon Integration hinders s uwse, derlved
closed -form solutions [12] make i feasible for convolution surfaces to
be employed in many interactive systems [5,9,13]. In theory, any ge
ometdic models can serve as convolving skeletons, while line segments
[14,15] are the most commonly wed 1o generate ¢ ylindrical or bramch-
g rounded shapes, and anisotrople conwlutlon surfaces [16,17] gener
ated from 1D skelet ons are proposed to lncrease modeling freedom. If a
planarsurface is required, wing polygomnal skeleton s is the most sultable
option, in the case where their solutlons can be analyt ically represented
[5,18,19]. In orderto obtain as rich shapes as possble, the varying radii
along 1D ine skeletons faclitate smooth manifeld surfices with vary
ing thickness [6-E]. Recently, scale-invariant integral surfaces bullt on
convolstion surfaces have been proposed [10], which can alse appros
imate the prescribed radif at line segment vertices. To the best of our
knowledge, however, no analytical solution exdsts for convolving polyg
onal skeletons with varying welghts, which is frequently computed by a
multi-level polygon subdivision and a subsequent uniform-radivs poly-
gom oo vohst lon. Althowgh Zannd proposed a semi-numerical integration
approach [2] with a limited level of adaptivity, it is not general for ar-
bitrary polygons. Based on the implicit relations berween the thickness
of convolution surfaces and the support radil of the embeddad skeletons
[49], a barycentric policy is employed to generate convoluton surfaces
with smoothly varying thickmeess. In additdon, convolution has been re-
cently employed tomodel evcellent heterogeneous objects [20] and gen-
erate smooth distance functions [21] with high-quality cont nulty.

Barycentric coordinates (e hede Wachepress coordinates [22], Har-
maonte coomdinates [23], Mean value coordinates [24-26], Green omor
dinates [27, 28], Polson coordinates [29] and so on, which are wasally
used to create cage-hased coordinates for lnear data interpolatbon . Ac-
tually due to many optimal properties ssch as smoot hvess, lisear rep-
duction, Lagrange propesty, partithon of unity and non-negativity, they
are commanly wsed in ZD/30 shape deformation [28,30-32]. In this
paper, mean value coordinates which achieve all the above-men toned
advantages will be used for owr formulation. I loeal contml & requined,
an umbrella shaped cell [ 28], local baryoentric coordinates [33], subdi
viding baryeentric coordinates [34] or blended barycentric coondinates
[35] can be wilized. In the recent work [36], cuble mean value ooor
dinates for inferpolating Hermite constraints were proposed which re
cently were further simplifled and efficlently implemented in [37].

3. Convolution surfaces with finite support kernel

A convolution surface | an ko-surface embedded in a 3D feld gen-
emted by convolving a kernel function with a geometric skeleton. Glven
a geometric sheleton:

_ |1 pe skeletond
£p)= {u, otherwise

amd a kernel function f B* — R, the accumulated field at p is the con-
volution integral of the functions g and

Y

Fo = | s gy = @ e e

In theory, any low-pass Alering kemels and geometric seletons can
be palred to define a convoletlon scalar Aeld, but elaborate strateges
areneeded (F an efficlent computation is expected. Here two aspects are

taken into account. Firsly, a polynomial kernel with closed-form sohe-
tons is preferred due to lts lower computation cost companed to other
exponential ones Secondly, alecal support kemel will cut off skeleton
segments which are too far away from the current position in question
Owing to the above reasons, a Andtely supported quanic kemel

(51

b employed in owr approach, wheme R & the skeleton's support radius.
Thies only the clipped pam of a skeleton & convobred, which reduces the
computational cost.

r. R 3
r= R

4. Barycentric coordinates for an arbirary planar polygon

For a planar polygon P with n vertlees v (i = 1.2, ... .l e R, the
fumctlons w= [w! w?.___ w"] - P— R ame called generalized barycen-
e coordinmates if the following properties are satlsfed:

1) Partition of unity property: 1 wyixi=1 Yxe P
) Repmduction property: B wixln=x Yxe P
0, ifidj_.

3) Lagrange property: wir) =4, = {l :i ;ij"-"= l...m
wheme 4 . 15 the Kmnecker delia;

4) Linearity: the functions w; are linear on polygon edges

5) Smoothnes: the functions w, vary smoothly on P

&) Locality: each wertex of P only influences its nearby reglons, and a
point x € P i3 influenced by a small number of the vertces of P,

7)1 Non-megativity: w, =0 VL

Theometically, a unique solutlon w,(xp(i=1,2,3) can be found for a
tangle However, varlows solutlons may exdst for a nsided (n = 3] poly-
gon. Rational funct lons based Wachspress coondinat es have such advan-
tages as mon-square mots, easy evaluation and simple up per bounds on
the gradients, and they can be applied to any convex polygons. How-
ever, for star-shaped polygons and arbltrary polygons, Wachspress co-
omdinates ame not well-defined, which means they are limited { o conwvex
polygons since the denom inator in the rational expresion becomes zero
at certaln polnts in the concave polygon. Themior optimal GBC (Gen-
eral Baryoentric Coordinates) should be chosen for owr conviol ution sur-
face ap proximation based on arbltrary planar polygon sheletons.

Asone of the most popular Knd of GBC [25], mean value coordinates
(MWL) can be defimed as:

w=m=1m[u,-_|,-"1:+4m,n'2]1 i)
Ity — x|

with the angles < a; =alx)<x, 2 shown in Fig. 1. Although

mean valse coordinates are o longer positve if the polygon s mot

sar-shaped, they are very general and surprisingly robust over complex

geomeiric shapes, provided that the angles a, are reated as signed an-

gles That is, if the unit vector e, *= (r, — x}/ |v, — x| = (cos @, zsin @, ), then

Vi+1

Vi

Fig. 1. Kotwtion for mean value coordinate.
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a, =8, , — @ has the same sign as ¢, % ¢, . The reason for MVC's mobust-
nessls that even though each w{x)in Eq. (4) could not be guaranteed to
be positive for arbitmary P, the sum F7 | w,(x) b always positive for any
x in P. The detalls can be referenced in [25], where more good proper-
tes such as the Lagmange and plece-w e linearity properties on dF can
alan be found. Furthermore, closed -form solutions for MV coondi nates
are defimed all over the whole polygonal plane which is wseful for owr
convohit lon interpolation as the potential Aeld computation outside the
polygonal skeleton kas to be performed for lso-suface extractlon. Due
1o these nice propertes of MVC, we will employ it in ower pol ygon thick
ness Interpolation and convolution surface appmoimation. Moreover,
we can uillze the blended barycentric coordinates [35] based on MVC
1o further extend owr approximation for local ity property.

5. Barycentric approximat on with convoluton surfaces

Althowgh a convoluton surface is usually mot a preferred ool to in-
terpolate complex shapes with very high precison, its embed ded shele-
tons allow to eficlently edit the model interactively. This an inntve
and sufficlently accurate firting approach (s esentlal o create a oonv-
lution sudface with the prescrbed thickmess at different positons of the
shelet om.

5.1. Genera Hne skelemn (ntarpolation

As (lhestrated in Fig. 2(a), by adjusting the support radil of a polyline
segment, 8 cylinder/prismrlike convolution swurface with varying thick-
ness is preferred 1o encapsulate the embedded skeleton. For a seres of
skeletons, the total convalved Reld creates a blended Bo-surface which
can be defined as:

5= {p|z.ﬂ|.f|.fp_:l—'.l"=ﬂ}. (5
=l

where f; and 1; are the Aeld and contributon welght of each sheleton,
and T is the threshold of the lso-surface

As discussed b [15], alihowgh a global NNLS { Mon-Megative Least
Squares) is a reasonable method to fit the skeletons with assigned radil
by applying some constralnt vertices, bulging artifacts will ardse because
of nokes or constraint distdbutlons. Therefore, a befter solutlon wdng
loscal thickmess approsximation & employed here to generate more pleas-
ing shapes, based on the assumption that the embedded sheleton seg
ment 15 long enough. A similar idea was also proposed by Zanni et al.
im [10]. If a line skeleton with uniferm support mdius B, 5 used to ap-
proximate the desired thickness d of the convolution surface, the local
welght 1; of the current skeleton can be derived as [15]:
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Fig. 2. Non-umiform skeletal weight distribution.

ib) Polygon skeleton

{a) Line skeleton

iby Convolution surfaces

Fig. 3. Line skeleton besed convolition surfaces.

To deslgn a convolution suface, the preferred support mdis B wually
et as R, = 1d and lis welght k set o 4, = %.

Based on the local approdmation of a line skeleton with a -
form madivs [15], here we generalize it to varying radil along a lne
segment. For a line segment with radil r; at lts vertlces w; (i = 1.2) and
under the asumption that the prjection on the segment vywy of an
arbitrary 3D position p & ¢ = wry + (1 — wlv;, the Aeld contributon at
P should be set as 4= wd; + (] —ukd; wing a uniform support mdies
r=max(ry, 5 ). Since a un iform support mdies leads to inferior approx-
imation espectally at thin/thick parns with large/small mdii, a better
solution in practice s to Interpolate the support radivs at project lon p*
R=uR) +(] - wlR,, which is then employed to compute the contribu-
then wedght with Eq. (&) (Fig. 3L It Is colncident that, If 4, In Eq. (6] 1s
moved ingde the integral, then the formulation is strictly equivalent
with the ame of [10].

52 Arbitrary polygon skelemn interpolaton

Although a similar scheme can also be applied to polygonal skele-
tons {Flg. 2(b)), the barycentric coondinate of an arbltrary 20 poojec-
ton in oa planar polygon k& not unigue anymaore except for a tiangle
As owr baryeentric convolutlon sufaces with vanying thickmes de pend
on the definitdon of barycentric coordinates, global baryeenirie coordi-
mates will bring smooth convolwthon swrfaces withowt wnnatueal trans-
tonal reglons near in-between boundaries of sub-polygons. That is, for
a globally smooth convolutlon surface based on a polygon with varying
thickness, the thickness interpolations af different positions should be
i chepee reclle it oof i fferent groups of vertices in onder to generate artfacts
free surfaces berween reglons of different growups. What we nead (s a
relatively large planar polygon, thus a smooth enough interpolaton for
arbitrary planar polygons is essential bere. The reason for this s that a
tendquee by berpaolati oo solwtlon for triangulated pobygon { Fig. 4{a)) results
in obvious C%-continuity at jolnts between neighboring sub-tdangles
(Flg. #el), as interpolaton along interor tdangulated edges is lin-
ear acoonding to the linearity property 4) of general baryeentric coor-
dimates. Fortunately, the baryeentric coordinate interpolation for the
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Fig. 4. Barycentric weighted height map interpalation
for 4.sided cancave palygon

(a) Triangulated polygon (b} C° barycentric map (c) Triangulated barycentric map
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(d) 4-sided polygon

(e) Barycentric map

1a) Convex decomposition (b) Local barycentric map |

() Barycentric map

() Sesided polygon
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(<) Local barycentric map 2

(h) Map with diagonal line

(f) Back view of map

(d) Triangulated barycentric map  (¢) €* barycentric map

(1) Back view of map

Fig. 5. Barycentric weighted height map interpolation for Ssiled concave palygon

entire polygon (Fig. 4d)) produces smooth results everywhere
(Fig 4e)) except at the vertices, even though no exact interpolation
along diagonak (Fig. 4(f)) can be created. Infact, a polygon with more
vertices will lead to more serous problems if a tdangulation policy is
involved (Fig 5). When a S-sided polygon ABCDE is subdivided into a
triangle BDC and a quadrilateral AEDB (Fig. 5(a)), single barycentric
interpolation for BDC or AEDB does not pass through the other ver
tices of ABCDE (Fig. 5(b), (¢)). If both of the two subdivided polygons
are used to Interpolate the vertices at the same time (Fig 5(d)), obvi-
ous (°-continuity occurs between them (Fig. 5(e)). Therefore a uniform
barycentric interpolation achleves expected smoothness, vertex interpo-
lation and linearity property along polygon boundaries. More practical
experiments validating general barycentric interpolation for convolu-
tion surface approximation will be detailed in the next section.

Unlike line skeletal approximation, a polygonal skeleton-based
convolution surface involves 2D integral calculation. If the p{i=
1.2,....n) of a nsided planar polygon are assigned thickness r,(i=
1.2, .. .n). the anticipated radius of an arbitrary 2D projection p’ can be

computed as:
i) =3, we) 7., m
=1

where w, is the barycentric (here mean value coordinates are used) co-
ordinates of the polygon, where Eq. (4) can be directly applied. Then a
local approximation similar to [38] and [9] Is employed based on the
assumption that the conwolving planar polygon is large enough. After
that, a preferred twice-support radius R, , = 2-rid ) is used to derive a
local convolution ap proximation:

- 2
Ix — re +r2
r(,)=u/ /V s "”(1-L’l,—)rarao=r.
0 0 R“'
IR T :
== et = 54T

= = : 8
x(R}. - r"",))l QxRL

As d1s Inversely proportional 1o Rf,,Eq. (8) can also be regarded as
another 2D version of the equation in [10]
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(d) Boundary with positive winding numbers

(b) Connected offset edges

(e) Final offset polygon in 3D

(¢) Winding number of each region

() Convolution surfaces

Fig. 6. Winding number extemnal affset with varying radii

1) Differens views of palygon skeleton (b) Convolution surface with polygon skeleton

{¢) Convolution surface

Fig. 7. Comvalution surfsce hased on 4-sided convex polygon skeleton.

5.3. Polygon offset exzension

Due to the shrinkage problem of convolution surface approxima-
ton at boundaries, extended line segments or polygons are used to
campensate the undesirable effects [9,10]. For a polygon skeleton, an
image-space-based inflation & employed in [9]. Unfortunately too many
vertices on the inflated contour have to be extracted in their approach,
which is not efficient for our subsequent barycentric interpolation. Ac-
carding to the conclusion of Eq. (14) in [9] (u= 0.42428R__, where uis

the offset distance), the offset distance at a separate vertex of a polygon
was proportional to its local support radius. Therefore, a revised wind-
Ing number extemal offset algorithm [39] with varying offset distances
is utilized for creating a larger skeleton (Figs. 6-7) which consists of the
following steps.

Step 1. According to the direction of the edges of the directional
polygon, the edges are offset to the right side by the anticlockwise rule
(Fig. &(a)).
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(a) Differem views of polypom skeleton (h) Convolunion surfsoe with polygon eletn (¢} Comvolution surface

Fig. 8. Convalution swioe based on $sided conave polygan skeleton.
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(2) Dufterent views of polygos skeleton (b) Convelution sartisce based on sub-skeletons (¢) Comvoletson surface based oa the unitied skelewm

Fig. 9. Comparison between canvolution surfaces based on 4-sided convex palygon skeleton

12k Eflermi vivws of pohucs ehalsion (b Convelulion nrfiess bused vn yub-hykions (6) Comvolution surfacy based o thy unified ekeloen

Fig. 10. Comparsan between convalution surfaces based on Ssided cmnave polygon skeleton.
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(a) Smooth extrapolation for mean value coordinates
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(b) Nearest neighbor extrapolation for mean value coordinates
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(¢) Nearest neighbor extrapolation for blended mean value coordinates

Fig. 11. Different extrapalations for different mean value coordinates.
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Fig. 12. Convalution surfces based on ane quad skeleton
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Fig. 13. Canwolution surfaces based on two comected quad skeletons.

Step 2. As shown In Fig. 6(b), if the vertex ks a convex vertex, the end gon and thelr joint boundary & the final outer offset polygon
vertices of the offset edge are extended and intersected. If the vertex is (Fig. &{c)).
a concave vertex, the endpoints of the offset segment are connected to As the offset distance changes along the edge with different radil,
the current vertex with a straight line segment. convex vertices may produce non-intersected extended offset lines or
Step 3. The zones with positive winding numbers relative to the intersection is too far away from the current vertex, such as the ver-
the offset curve are categorized as being inside the offset poly- tices C and E in Fig. 6(c){e). A mitered offset solution can solve the



(b) Semi-numerical integration based on 100 trapezoids

(¢) Barycentric integration based on 2 sub-triangles

(d) Barycentric integration based on the whole quadrilateral

Fig. 14. Different integration palicies fora 4siled palygon

problem when the distance d between the Intersection € /F and the
original vertex C/E is greater than a threshold d,,__,,. = 2R, where R
is the support radius of the current convex vertex, as only the skele
tons within the support sphere have convolution fleld contributions.
As a matter of fact, the offset policy can also be applied to SCALIS
surfaces [10] provided that the polygon skeletons are tesselated into
triangles.

6. Experiments and results

To demonstrate the efficiency of the proposed barycentric interpola-
tion of a polygonal skeleton-based convolution surface, several convolu-
tion surface models based on polygonal skeletons with varying radil are
created in our experiment on a PC with a 4.0 GHz Intel Core i7-67 00K
(PU{only 1 core is used) with 16 GB memary. Both the convolution po-
tential fiekds and the lso-surface extraction (200 x 200 x 200 Marching
Qubes) are performed in the Unity3D engine and core calculation steps
are implemented with C# language on CPU, which could be accelerated
using parallel computation on GPU.

Figs. 7 and 8 show convolution surfaces based on a convex 4-sided
and a concave S-sided planar polygon, which achieves smoothly vary-
ing thickness. It can be seen that our approach can deal with both
convex and concave polygons and approximate the anticipated skele-
ton shapes well. Although a triangulation-based approach can prod uce
similar shapes, obvious seams arise between neighboring sub-tiangles
(Fige 9(b), 10{b)), which can be awided by our unified polygonal
barycentric interpolation (Figs. 9(¢c), 10{c)). Therefore, when a concave
polygon skeleton is involved, decomposing it into convex parts before
barycentric interpolation and convolution field calculation & not pre-
ferred, especially when the radii at vertices vary too rapidly. The seams
In Figs. 9and 10 are due to the discontinuous interpolation between sub-
tiangles, which results from the fact that regions near the in-between
boundary of sub-triangles are interpolated using distinet groups of ver-
tices.

In addition, the barycentric interpolation for polygon skeleton-based
convolution surfaces &s robust regardless of different external barycen-
tric interpolations if only one skeleton ks involved without further blend-
ing operations. Fig. 11(a) presents regular mean value coordinate inter-
polation both inside and outside of the polygon, a very smooth weight
map interpolation & created and it can be adopted to produce pleasing
convolution surfaces. It is worth to mentioning that, if a regular mean
value coordinate interpolation only applies to the inside of the polygon
and the outside Interpolation is replaced by its nearest position of the
polygon, very similar results can ako be achieved (Fig. 11(b)). The rea-
son Is that, the nearest neighbor extrapolation method generates plece-
wisely constant welghts, which does not vary too rapidly. This implies
that all other general barycentric coordinates can ako be employed In
our framework, even though their interpolations for the outside of a
planar polygon are not well-defined, such as the blended barycentric
coord inates [35] (Fig. 11(c)).

However, there is still discrepancy between the smooth extrapola-
tion and the nearest neighbor extrapolation methods. For comparison,
a quad skeleton with coordinates and linear weights of ((0, 0, w = 0.5),
©, 1, w = 0.5), (1.5, 0, w = 0.05), (1.5, 1, w = 0.05)) is designed
In Flg. 12(a). We can find that there & no visible difference between
the produced convolution surfaces with the nearest neighbor extrapo-
lation (Fig. 12(b)) and the smooth extrapolation policies (Fig. 12(c)).
In Fig. 13(a), the QUAD is divided into two connected quad skele-
tons with the coordinates and weights as QUAD1((0, 0, w = 0.5),(0,
1, w=035), {0.75, 0, w= 0.275), (0.75, 1, w = 0.275)), QUAD2({0.75,
0,w=0.275),(0.75,1, w= 0.275), (1.5, 0,w =0.05),(1.5, 1, w=0.05)).
Visible bulges arise in the connection region when a nearest neigh-
bor extrapolation approach & employed (Fig 13(b)), while the same
surface as one whole quad skeleton (Fig. 12(c))) can be created us-
Ing smooth extrapolation (Fig. 13(c)). Therefore, the smooth extrapo-
lation method keeps the superposition propenty of convolution surfaces,
while the nearest neighbor extrapolation does not. The seam artifacts
In Figs. 9 and 10 are due to the non-continuous interpolation across
the boundary line between sub-polygons, and it does not contradict
with the superposition property of convolution surfaces. That is to say,
the thickness at some place within the polygon plane should depend
on all or most of the polygon vertices rather than only a small part of
them.
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Table 2
Camparison betwesn triangulation scheme and owr barycentric approach.

Subskekeons Time{s)
(a) 1 15.590
{b) 1 4.480
(c) 4 16743
(d) 40 159.951
(e) 319 1207808
0 860 3182.045
(g) 3351 12644.94




Table3

Semi-numerical integration [2,10] far a triangle skeleton with varying radii

Skedeton Conwol udon surface Subd- slelewas Timeds)
(3) ’ ' 6 33277
=
(b] m -
[:) u w :
(d) u m B

As mentioned above, two different approaches of controlling varying
thickness can be used for the unified polygon interpolation: field weight
Interpolation with unified support radius (Table 1{(b)-{e)) and suppon
radius interpolation {Table 1(0-{i)). From Table 1, both methods are
campared based on different polygons, and the results show that the lat-
ter one is superior especially at very thin pans (Table 1(b)-{c), (N-(g)).
The reason can be explained as follows: 1) It & not sultable to produce
thin convaution surfaces with a large support radius as a large suppon
radius absorbs small detaiks for Its large filtering radius; 2) A uniform
large support radius is the only choice if thick pans have to be satisfied.
On the other hand, more shrinkage emerges due to the large unified
support radius (Table 1(b), (N). Although it can be improved to some
extent by offsetting the polygon to a larger outer polygon (Table 1(d),
(h)), support radius interpolation behaves much better for thin surface
approximation.

In previous applications, if a polygon skeleton-based convolution
surface with varying thickness Is needed, a commonly used strategy
is to triangulate the polygon followed by a triangle-based convolution
field calculation with respective independent support radil. As listed In
Table 2, uniform support radii can only generate prism-like surfaces
with equal thickness all over the polygon (Table 2(b)). Low resolution
triangulation results in step artifacts (Table 2(c)-{e)), and higher res
olutions can only alleviate the bumpiness to some extent (Table 2(f),

(2)), but the computation cost Increases rapidly. Although the semi-
numerical integration [2,10] (Table 3) could effectively red uce the con-
wlution fleld computation by convolving parallel trapezokds instead
of iregular smaller triangles the subdivision density of their method
depends on the thickness of the surfaces (Table 3(c)), and it Is neces-
sary to subdivide a general polygon into sub-triangles before a semi-
numerical Integration (Fig. 14{a)(b)). Different from these approaches,
our method can produce the shapes with varying thickness more effi-
clently (Table 2(a)), and it can be conveniently utilzed for producing
multi-vertex polygonal skeleton-based convolution surfaces with vary-
ing thickness (Fig. 15). As the support radll vary at different projection
positions in our method, it is identical to the SCALe-surface in essence
for each queried spatial point.

Theoretically, designing variable kemels in space is also a good al-
ternative to create polygon skeleton-based convolution surfaces with
varying thickness. However, it & non-trivial to deduce a closed-form
solutions, especlally for a finite support kernel. Although an analytical
solution for a triangle skeleton with an infinite variable kernel may exist
[38], it cannot be applied to a general planar polygon directly. That ks,
the smoothness of the resulting surface depends on all the vertices of the
polygon rather than a subset of them, which will result in similar seam
artifacts in Fgs. 9 and 10. On the other hand, our barycentric method
can be easlly applied to other kemels In Fig. 16, the infinite Cauchy
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Fig. 15 Conwolution surface approximation with owr barycentric approach.

\

(b} Palygon skeleton

1a) Triangle skeleton
Fig. 16. Barycentric interpolation for Cauchy kemels.

kemel [38] is employed to create polygonal skeleton-based convolution
surfaces with varying thickness by interpolating thickness and using a
reasonable parameter 5.

Moreover, the barycentric method can ako be adopted in
other skeleton-based Implicit surfaces, such as distance surfaces
[40] (Fig 17(b)). Although the intersection region is not a smooth as
baryentric convolution surfaces (Fig 17(d)), the result is better than
the sub-tangle skeleton-based method (Fig. 17(c)).

7. Conclusion and future work

We have Introduced a novel computation method of polygon
skeleton-based convolution surfaces with varying radii using barycentric
coord Inates. Both field weight Interpolation and support radius interpo-
lation are addressed, and the latter one can produce much betrer approx-
imations for thin skeleton vertices. The barycentric interpolation for a
unified polygon is employed for its low computation cost and crease-
free property. In addition, a winding number offset polygon with vary-
Ing distance is adopted to compensate for convolutjon surface boundary
shrinkage. Complex shapes with varying thickness can be easily created
with our approach.

However, if the differences of a polygon's vertex radil are too dis-
tinct while the polygon is not big enough, it is still difficult to achieve
an excellent approximation (Fig. 18). Moreover, the approximation er-
ror will increase when the skeleton becomes even smaller or when the
difference of the radil at vertices becomes even larger. Additionally, the
GPU acceleration can be further tntrod uced for interactive practical ap-
plications.

() Two guadnlateml skelesans

(b) Barycentne distance surfoce (e) Distance sarface hased an suh-eringles (d) Ranperntnic coovalition surface

Fig. 17. Composed skeletonbased implicit surfaces.

—

(1) Skekgon with rdil

(b} Skekesan with convolution surfbce

(¢} Convolution surtae

Fig. 18. A ©ilwe example.
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