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Abstract
Physically-based cloud simulation is an effective approach for synthesizing realistic cloud. However, generating clouds with
desired shapes requires a time-consuming process for selecting the appropriate simulation parameters. This paper addresses
such a problem by solving an inverse cloud forming problem. We propose a convolutional neural network, which has the abil-
ity of solving nonlinear optimization problems, to estimate the spatiotemporal simulation parameters for given cloud images.
The cloud formation process is then simulated by using computational fluid dynamics with these control parameters as ini-
tial states. The proposed parameter-predicting model consists of three components, including the feature extraction network,
the adversarial network and the parameter generation network. These subnetworks form two parallel branches for different
functionality-feature extraction and parameter estimation. To solve the challenge of estimating high-dimensional spatiotempo-
ral simulation parameters, we adapt an encoder and decoder network to compress these parameters into a low-dimensional
latent space. We train the proposed deep learning model with pairwise data of time series parameters and the corresponding
synthetic images, which are rendered by the density fields of the synthesized clouds under different illuminations. In the prac-
tice, our method can simulate physically plausible cloud evolution processes and generate clouds with desired shapes for the
real-world and synthetic images.

CCS Concepts
• Computing methodologies → Modeling methodologies; Shape modeling;

1. Introduction

In computer graphics, clouds are important weather phenomena
for outdoor scenes synthesis, heavily contributing to scene real-
ism. Physically-based cloud simulation has become an important
research field as it can generate realistic clouds. Over the years,
different methods [HBSL03,DKNY08,DG17] have been proposed
to achieve visually plausible cloud scenes for games and movie pro-
duction. However, it is difficult to generate clouds matching user-
specified shapes by using these methods. This limit their applica-
tions for movies, theater scenes of battlefields and virtual experi-
ment relating to recreating cumulus cloud observations, in which it
is desirable to generate clouds with specific shapes through physi-
cally natural cloud evolution processes.

Traditionally, this problem can be tackled by the forward cloud
formation methods [MDN02, HBSL03, FBDY15]. A user could
find the appropriate parameters that produce a satisfactory result
through a repetitive trial-and-error process according to the cor-
responding output image. To avoid the time-consuming parame-

ter tuning process, Dobashi et.al. [DKNY08] propose a feedback-
based method to automatically tune some physical parameters, in-
cluding the coefficient of latent heat and water vapor supply, so
that the simulated cloud can closely match the user-specified shape.
However, the constraint of shape only includes a specified top con-
tour. Moreover, as both the latent heat coefficient and water vapor
supply are adjusted during run-time according to the height differ-
ence between the simulated cloud and target contour, the setting
lacks physical rationality, resulting in unrealistic situations such as
constant heat on ground. Also, this approach does not produce a
physically natural cloud formation process due to an extra feed-
back control. While some fluid accelerating simulation methods
[TSSP17,XWY19] can accelerate the parameter design interaction,
the time-consuming trial-and-error process is still required.

Solving an inverse cloud formation problem could remove the
repetitive trial-and-error process. As the cloud formation process
is governed by a set of nonlinear dynamical equations which
use some physical parameters as initial state, Arcia-Dorado et

submitted to GOMD (2019)



2 Zhang et al. / Cumuliform Cloud Formation Control using Parameter-Predicting Convolutional Neural Network

al. [GDAB∗17] propose a Markov Chain Monte Carlo optimiza-
tion based method to explore the search space and find proper ini-
tial conditions that can exhibit the desired cloud state by using
a procedurally-generated model. The method can obtain the de-
sired cloud coverage, such as the percentage of sky covered by
clouds throughout a day, without any artificial force during sim-
ulation. However, it is not easily extendable to high-dimensional
constraints. Moreover, it is impossible to describe all cloud shapes
using a finite state space.

In our method, in contrast to [DKNY08], which relied on feed-
back control, we focus on solving the inverse cloud formation prob-
lem to automatically generate appropriate parameters that control
the cumuliform cloud formation to match the cloud shape from
a given image without adding any artificial force during simu-
lation. Inspired by recent advances in deep learning for solving
both nonlinear optimization problems [LSD∗18] and fluid simu-
lation [MTP∗18,XWY19,KAT∗19], we propose a deep neural net-
work to estimate parameters controlling the formation process of
clouds. To efficiently solve the inverse cloud formation problem,
we first propose a set of decoupled parameters that play an impor-
tant role in the shape of cloud by analyzing the formation process.
Based on that, we present a novel parameter-predicting convolu-
tional neural network (PPCNN) consisting of two parallel streams,
namely feature extraction and parameter generation. Instead of di-
rectly predicting control parameters according to the raw images,
we first use the feature extraction branch based on a generative ad-
versarial network to encode the image for eliminating noise and
lighting influence. The extracted features are then used as the inputs
to the parameter generation branch processing by a convolutional
neural network.

As it is necessary to finely discretize these control parameters in
both space and time for numerical simulation, the parameter space
has a large degree of freedom. Optimizing such a large number of
parameters makes it difficult for training the model. As a solution,
we propose to compress the parameters into a latent space by us-
ing an encoder and decoder network. Consequently, the proposed
PPCNN learns from the control parameter latent space representa-
tion instead of the raw higher dimensional parameters. To train the
model, we use [DKNY08] to generate a simulated dataset under
various control parameter conditions and render the simulated data
under different illumination to get the synthetic images.

We evaluate our method on both synthetic images and real pho-
tos. We give both qualitative and quantitative analysis on the ac-
curacy of the simulated results using structural similarity index
(SSIM), mean, standard deviation of peak signal-to-noise ratio
(PSNR), intersection over union (IOU) and perceptual loss. We
analyze the parameter generation power by calculating the mean
absolute percentage error (MAPE) between the generated parame-
ters and the simulation-based results. We have also compared our
method with previous approaches [DKNY08, YLH∗14]. Results
show that our approach achieves effective parameter estimation,
which generates cloud matching user-specified shape and preserves
physically natural dynamics.

Our main contributions include:

• A new method to reconstruct clouds from a given image by solv-

ing an inverse formation problem combining atmospheric fluid
dynamics and data-driven methods.
• A set of decoupled influence components, which are useful for

learning control parameter and analyzing the relationship be-
tween the cloud shape and the environment.
• A model to predict the learned latent space of control parame-

ters for cloud images consisting of a discriminator branch and an
parameter generation branch based on an autoencoder.

This paper is organized as follows. We describe existing ap-
proaches of fluid control, inverse cloud simulation and learning-
based fluid simulation in Section 2. In Section 3, we formulate in
detail the problem of solving inverse cloud formation. The structure
of the parameter predicting model is described in Section 4. Both
quantitative and qualitative experiments results are highlighted in
Section 5, followed by discussion and conclusion in Section 6.

2. Related Works

We now review the most closely related work to our method, in-
cluding fluid control, inverse cloud simulation and learning-based
fluid simulation.

Fluid Control In terms of target guiding fluid simulation, many
control methods have been proposed for guiding fluid animations
with desired shape.

Treuille et al. [TMPS03] proposed a method for controlling
smoke simulation to match user-specified keyframes by optimizing
appropriate wind forces based on the quasi-Newton optimization
technique. Mcnamara et al. [MTPS04] controlled physics-based
smoke and water simulations by using the adjoint method. More
recently, Pan and Manocha [PM16] used a space-time optimization
solver to control smoke animation. These methods assume that the
entire simulation process is a function whose gradient information
can be computed, which can generate natural simulation. However,
these methods are computationally expensive.

To avoid expensive optimization over the entire fluid sequence,
other methods have been proposed. Hong and Kim [HK04] con-
trolled smoke animation by adding a potential dimension to the
simulation space. Shi and Yu [SY05] generated the control forces
according to the error between the current fluid shape and the target
keyframe shape. Raveendran et al. [RTWT12] controlled fluid mo-
tion with the guidance of a dense sequence of control meshes gen-
erated by a volume preserving morph. These methods can control
smoke and water animation so that they form user specified shapes.
However, they apply virtual artificial control forces that influence
the natural physical governing law over the simulation domain.

All these methods do not consider the phase transition pro-
cess, which is important for cloud formation. To obtain the desired
cloud, Dobashi et.al. [DKNY08] proposed a feedback control based
method that tuned the latent heat coefficient and water vapor supply
in real-time. As adding artificial controls, including a feedback con-
trol and an external force due to the geometric potential field, over
the simulation domain, the approach failed to produce a physically
natural cloud formation process. In contrast, our method achieves
shape guiding cloud formation with physically natural dynamics.

Inverse Cloud Simulation The most closely-related simulation
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methods to our work in computer graphics are various forms of in-
verse cloud simulation. These methods usually requires to find a set
of parameters or the initial conditions to control the simulation be-
having as desired. Dobashi et al. [DIO∗12] used genetic algorithms
to search for optimal illumination parameters, such as albedo and
extinction coefficients, for rendering clouds such that the appear-
ance of the synthetic cloud is similar to the cloud in a given pho-
tograph. Due to the high dimensionality of control parameters for
cloud formation, it is difficult to extend the method to solve the
inverse cloud formation problem. To estimate the cloud thickness
from an image, Yuan et al. [YLH∗14] determined the shape of a cu-
mulus cloud by inversely solving a single scattering model. Closer
to our area of application, Garcia-Dorado et al. [GDAB∗17] pro-
posed a Markov Chain Monte Carlo optimization based method to
find proper initial conditions, including the gradients in landscape
and the initial wind and humidity values that can exhibit the desired
cloud coverage and the behaviors of the weather. They searched the
parameters via state changes. However, it was difficult to extend it
to achieve our aim due to the high-dimensional constraints and the
infinite cloud shapes.

In contrast to the above methods, our approach based on deep
learning is powerful to solve nonlinear optimization problems. We
propose a convolutional neural network to estimate control param-
eters used as the initial conditions to drive the cloud formation and
evolution. This allows us to generate clouds with desired shapes,
while keeping the nature of physically based simulation.

Learning-based Fluid Simulation Ladický et al. [JSP∗15] em-
ployed random regression forests to estimate the acceleration of
every fluid particle for each frame. However, the method re-
quired handcrafted features that lack the generality and abstrac-
tion power of CNNs. Recently, deep learning with neural networks
has been successfully applied in solving problems in fluid sim-
ulation. Jonathan et al. [TSSP17] used convolutional neural net-
work to solve the incompressible Euler equations, which included
a large sparse linear system with many parameters. These methods
were only designed to accelerate the enforcement of fluid simula-
tion. Deep learning have also been applied to synthesize smoke de-
tails [CT17, XFCT18], simulate liquid drops [MLC∗18] and learn
the evolution of fluid flow [WBT18]. Our work shares some simi-
larities in term of the goals with the method [MTP∗18], which pro-
posed a model using deep reinforcement learning to control cou-
pled fluid and rigid systems in 2D domains. The method only fo-
cused on the fluid interactions with rigid bodies and did not con-
sider the shape of fluid. In contrast to our aim, Kim et al. [KAT∗19]
proposed a generative model using convolution neural network,
which could synthesize a fluid velocity field for a given time from
a set of parameters. The input parameters usually contained the po-
sition and width of the fluid source and the current time. Our ap-
proach is motivated by these developments and we present a novel
deep neural network to estimate the proper control parameters for
a given cloud image.

3. Problem Definition

We focus on controlling cumuliform cloud formation by dealing
with an inverse problem, which is solved using a deep learning
method. Fig. 1 shows the basic idea of our system. First, the de-

Figure 1: Overview of our method. C denotes the decoupled con-
trol parameters, which is yielded by the autoencoder CNN through
an encoded space of Ĉ. The key of our pipeline is the parameter-
predicting CNN which can estimate the optimal control parameters
Ĉ for a given cloud image. Then, the autoencoder CNN decodes the
latent space encoding of Ĉ into C.

signers only need to give a cloud image as the input for the system.
Second, the proposed parameter-predicting Convolutional Neural
Network (PPCNN) predicts parameters Ĉ for the input, which is
then processed by the autoencoder CNN to form a latent space
encoding the physical control parameters. Third, the autoencoder
CNN decodes the input Ĉ to C. Finally, we solve the Naiver-Stokes
equations and thermodynamics equations to simulate cloud forma-
tion using these control parameters C as input, and the simulated
result matches the given cloud image.

In this section, we give an overview of both the cloud formation
process and the decoupling of physical influence elements to obtain
a set of proper control parameters for efficient learning. We then
formulate the parameter estimation problem for designing the deep
learning model described in the next section.

3.1. Cloud Formation and Parameter Decoupling

In this paper, we focus on cumulus clouds, which are usually re-
sulted from the upwards motion of air parcels. Cumulus clouds
usually have flat bases and round tower tops in appearance. The
cloud formation has two consecutive stages: birth and lift.

Cloud Formation The birth of a cloud on the ground is caused
by heating the air parcels [HJ14,DG17]. The particles of air parcels
get steadily warmer on the ground by absorption of solar radiation.
When each particle reaches its convective temperature Tc at some
time, these particles begin to rise above the ground. Meanwhile, the
birth of cloud is also related to the placement of each air parcels on
the ground, which is called the area of emitting particles for clarity.
The larger the area, the more coverage the cloud expands.

At the lifting stage, each air parcel born from the ground rises
into the atmosphere due to buoyant and mechanical forces. Assum-
ing the atmosphere is incompressible and inviscid, the motion of
the air parcels can then be governed by the following Navier-Stokes
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Figure 2: Overview of cloud formation process. Colored circles de-
note air parcels with different temperatures from the terrain. CCL
and EL are convective condensation level and equilibrium level,
respectively.

equations:

∂u
∂t

=−(u ·∇)u− 1
ρ
∇p−ρgz+B+ f (1)

∇·u = 0 (2)

where u denotes the velocity vector, ρ is the density, p is the pres-
sure, g is the coefficient for the gravity, z is the unit vector (0,0,1)
pointing in the upward vertical direction, f accounts for the exter-
nal forces affecting fluid flow, and B is the buoyance expressed as
follows:

B = kb
Tp−Ta

Ta
z (3)

where Tp and Ta are the the air parcel temperature and the ambient
temperature, respectively. kb is the coefficient for the buoyance.

The temperature of the rising air parcels decreases due to adia-
batic cooling during the rising process. When air parcels reach the
convective condensation level (CCL), cloud originates due to phase
transition, i.e., saturated air parcels condense into droplets to form
a cloud. The cloud formation process described above is shown in
Fig. 2. It should be noted that the evolution of cloud also contains
other physical processes, such as evaporation and autoconversion.
As we mainly focus on cumulus cloud formation, it is reasonable
simplification to only consider the transition between water vapor
and droplet.

Parameter Decoupling There are many physical elements to
jointly influence the cloud formation process and the final cloud
shapes. To enable efficient parameter learning and analyzing the re-
lationship between the paramters and the cloud shape, we propose
a stategy to decouple them.

Since each air parcel gets steady internal energy at the stage
of birth and its temperature gradually decreases due to its expan-
sion during the lift, the temperature of the ground directly influ-
ences the temperature of each particle. Depending on the temper-
ature at ground level, particles inside clouds reach their equilib-

Figure 3: Examples of the influence of different ground temperature
profiles on the cloud formation.

rium at a higher or lower altitude in the atmosphere. Meanwhile,
combing the different temperature profiles of the ground and the
distinct air parcel emission patterns result in clouds of various
shapes [GDAB∗17]. If the ground temperature decreases during an
extended period and more particles are released at higher temper-
atures, it will generate a cloud with an upside-down turret shape
and a larger cloud base, as shown in the left image of Fig. 3). If the
amount of air parcels emission oscillates during the simulation, the
cloud will then mainly spread horizontally, as shown in the right
image of Fig. 3. Hence, the particle releasing pattern over a period
of time is also an important factor.

During the lift process, the ambient temperature Ta also plays
an important role on the buoyance. Meanwhile, the phase tran-
sition between water vapor (wv) and liquid water (wl) begins to
occur. Several parameters, including the phase transition ratio α,
phase transition parameters and dry adiabatic lapse rate, influence
the amount of the phase transition. Meanwhile there are several pa-
rameters used to simplify more complex processes, e.g., kb and g,
which affect the buoyance, to be considered.

To achieve the aim of decoupling parameters, we first choose
the ground temperature and the air parcel emission area, which are
denoted as ST and SA, respectively, as control elements based on
the foregoing analysis. We then decouple the two control elements
from the rest of parameters, including other environment elements
and the manual tuning parameters. To focus on analyzing the in-
fluence of ST on the buoyance, the parameter Tp is set to be lin-
ear change from bottom to top similar to the method [DKNY08].
Meanwhile, the coefficient for buoyance force kb is also set to be
constant. The factor of CCL only determines the cloud-base height,
hence, the parameter is set to be constant without a negative effect
on controlling cloud shape. In short, we opt for the spatiotempo-
ral distribution of the ground temperature, ST and the parcel emis-
sion area, SA to control cloud formation. For clarity, we name the
two high-dimensional influence components as control parameters
(CPs), i.e., CPs = [ST ,SA].

3.2. Parameter Learning Formulation

According to the described cloud formation, we now formulate the
solution to the inverse cloud formation problem. We aim to form
the desired cloud shape from a given cloud image by controlling
the cloud formation process via a set of control parameters based
on fluid dynamics. The input to our system is a cloud photograph,
and the system predicts a set of proper initial generation conditions
represented as control parameters that minimize the following ob-

submitted to GOMD (2019)



Zhang et al. / Cumuliform Cloud Formation Control using Parameter-Predicting Convolutional Neural Network 5

jective function O :

arg min
C
O(S(R(NS(C,α))),S(I)) (4)

where C = [C1,C2, · · · ,Ct ] is a series of control parameters used for
controlling cloud formation, Ci ∈ Rn is the control vector at time i,
and t is the total simulation time. α denotes a vector consisting of
other initial parameter values, such as the ambient temperature Ta
and the coefficient for buoyance kb, which could be given accord-
ing to the sounding data or the statistical law. I denotes a specified
cloud photograph with height Himg and width Wimg. NS is the evo-
lution function solving the fluid dynamics equations with the pa-
rameters C and α as inputs to generate a cloud density field. Then
the operator R renders the generated cloud to obtain a cloud im-
age. The function S extracts the structure information for the input
image. The objective function is to minimize the cloud structure
difference between I and the reconstructed cloud, which is the out-
put of R.

Due to the nonlinear nature of the cloud formation process and
the high dimensionality of control parameters, C, it is very hard to
estimate a set of proper parameters for a user-specified cloud im-
age. Existing works [XWY19, KAT∗19] show that deep convolu-
tional neural networks can tailor non-linear functions to input data.
Motivated by this, we propose a novel model based on deep con-
volutional neural network, G(I;θ), to fit the control parameters for
a given cloud image, where θ is the weight vector of the model
and G(I;θ) : RHimg×Wimg 7→ Rn×t is the output of our network. As
it is an ill-posed inverse problem, we finally formulate the inverse
problem as an optimization problem:

θ
∗ = arg min

θ

EI∼Id(G(I;θ),C) (5)

where I denotes the set of the cumuliform cloud images, d(·, ·) is a
similarity metric, C is the simulation-based data of the generation
conditions for the input image I. It is difficult to obtain the real-
world generation conditions for a given photo by using physical
equipment, such as radiosonde balloon and satellite. In lieu of real-
world fluid data, we generate a synthetic dataset (Section 5.1) for
training by using a Naiver-Stokes solver.

4. Parameter-Predicting Convolutional Neural Network

In this section, we present the details of the proposed parameter-
predicting convolutional neural network (PPCNN) as shown in Fig.
4, which maps the input image I to the latent space of control-
ling parameters. As mentioned in Section 1, there are two main
challenges: the high-dimensionality of spatiotemporal controlling
parameters and the difference between synthesized and real cloud
images due to the illumination and noise. We use an autoencoder to
reduce the dimensionality of controlling parameters (Section 4.1).
The second challenge is addressed by using generative adversarial
network to formulate the feature extractor, F, learning joint features
of the two image domains as the input for the parameter generator,
P (Section 4.2). During training, as shown in Fig. 4, the synthetic
images and the natural images are passed through the branch F-P
and F-G-D, respectively. At test phase, the parameter prediciton is
only achieved by the F-P pair (see Fig. 1).

Figure 4: Framework overview of the parameter-predicting net-
work. In the training phase, our model consists of two parallel
branch: feature extraction branch (F-G-D networks) and param-
eter estimation branch (F-P networks). The descriptors denote the
features of the input images extracted by the network F. After train-
ing the model, we only use the second branch to estimate the opti-
mal control parameters for a given image.

4.1. Dimensionality Reduction

In this paper, the simulation of cloud formation is based on the
Eulerian method [Bri15]. Hence, we use a two-dimensional uni-
form grid, Ω, with the resolution of Ws×Hs as the parcel emission
area. Meanwhile, we set the number of frames to be M. If Ws = 64,
Hs = 64 and M = 64, the controlling parameters C ∈ RWs×Hs×M ,
would have hundreds of thousands of spatial degrees of freedom.
Due to the high-dimensionality of C, directly predicting this formu-
lation will result in too many parameters θ to be optimized, which
in turn requires a large number of data to fit θ. To address this is-
sue, we choose to extract a low-dimensional feature vector from
the high-dimensional controlling parameters using a convolutional
autoencoder.

As it is difficult to label the optimal low-dimensional features of
the control parameters, the unsupervised learning is appropriate in
our case. The convolutional autoencoders [MMCS11], which are
unsupervised feature learning algorithms have been used in both
image and video processing [PHC15, SZL∗18, HNK∗19]. More-
over the autoencoder can better preserve the nonlinear relationships
among parameters than traditional linear methods. We adapt the
model to achieve the aim of reducing the dimensionality of control
parameters. Meanwhile, the extracted features cover more compre-
hensive information, which results in better parameter prediction
performance.

The proposed autoencoder uses a mirrored structure. We use a
series of convolutional layers activated by leaky rectified linear
units (LeakyReLU) for encoder and decoder, with a bottleneck
layer of dimensionality ml . This layer yields the latent space en-
coding that the proposed PPCNN predicts. The encoderHc(C;=c)
compresses the high-dimensional controlling parameters C to a
low-dimensional latent space Ĉ. The decoder Hd(Ĉ;=d) maps
from the latent space back to the original input. Given a dataset
of C, the parameters of the encoder and decoder will be found by
minimizing the reconstruction error as follows:

arg min
=c,=d

‖Hd(Hc(C;=c);=d)−C‖2 (6)
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Figure 5: The architecture of the autoencoder. The output of the
encoder network is denoted as Ĉ.

Figure 6: The visualization for a example of C and Ĉ. The left is
the input for the autoencoder, and the right is the two-dimensional
visualization for the spatial latent space vector generated by the
encoder.

The implementation of the autoencoder model is shown in Fig. 5.
In our experiments, we set the ml to be 512.

After training the autoencoder, the controlling parameters C =
[C1,C2, · · ·CM ] will be encoded as Ĉ ∈ Rml . Fig. 6 gives a visual-
ization for an example of C and Ĉ. To visualize the latent space
vector generated by the encoder better, we change it into a two-
dimensional form. As a consequence, the network PPCNN will
predict the low-dimensional parameters Ĉ instead of the raw con-
trol parameters C. At the stage of cloud formation simulation, the
output for the PPCNN is decoded to yield the raw spatiotemporal
control parameters, namely C =Hd(Ĉ;=d).

4.2. Network Architecture

We train the proposed parameter-predicting network using our sim-
ulated dataset. The input are synthesized cloud images generated
by rendering three-dimensional cloud density fields, which are ob-
tained by performing the numerical simulation at the training stage.
However, inputs to the testing stage may be real cloud images, com-
prising different characteristics from synthesized cloud images.
Specifically, when light rays are injected into a cloud absorebed
by cloud particles, there are still long chains of light-matter inter-
actions forming an integral part to determine the cloud appearance.
Hence, photos of real clouds usually display more perfect silver-
lining effect than synthesized cloud images. As multiple scattering
of light is in the order of thousands of photon-matter interactions,
it is impossible to simulate all such interactions for each cloud par-

ticles. Hence, the traditional model trained by the simulated dataset
may have sub-optimal performance for natural cloud images.

4.2.1. The Double-Branched Deep Learning Model

To solve the domain shift problem, we propose a double-branched
deep learning model. As shown in Fig. 4, the proposed parameter-
predicting model contains four components: F network, G network,
D network and P network. The four networks form two parallel
streams, namely the adversarial branch and the generation branch.
The former branch consists of F-G-D networks, trained by natrual
images Ĩ, and the latter branch consists of F-P networks, trained by
synthetic images I.

As shown in Fig. 4, we learn the non-linear relationship between
the control parameters and the features extracted by the network
F in order to generate effective control parameters for both syn-
thetic and natural images. To learn a shared encoding representa-
tion for both the source data with labels and the target data without
labels, Ghifary et. al. proposed a model called DRCN [GKZ∗16].
The DRCN did not only preserve the ability of modeling the la-
bel distribution in source domain but also encoded useful informa-
tion from the target domain. In our paper, synthetic images, nat-
ural images, control parameters correspond to the source domain,
the target domain and the label, respectively. During our experi-
ments, we found that the traditional reconstruction losses comput-
ing pixel by pixel (eg. MSE used in DRCN) are not useful for our
object as the input cloud images usually have a similar appearance
and background. Inspired by the success of Generative Adversarial
Networks (GANs) [GPAM∗14], we choose the adversarial loss to
substitute MSE, namely using GAN as the reconstruction network,
which transfers rich gradient information to the learned embedding.

The input of generator network G is xg = [F(Ĩ),z] which is a
concatenated version of the encoder feature vector F(Ĩ) and a ran-
dom noise vector z ∈ Rd sampled form N (0,1). The network G
generates a cloud image as output, the dimensionality of which is
same as the input image. The discriminator D takes the real image
Ĩ or the generated image G(xg) as input and is modeled as a binary
classifier, which detects whether the input is a synthesized cloud
image or a real one. We use 0 and 1 as class labels for a synthe-
sized image and a real one, respectively. F and G are updated based
on the real images. Hence, the gradients of network G and D are
generated using the loss functions Lg and Ld respectively:

LG = min
G

Ex∼Ĩ(log(1−D(G(F(x),z)))) (7)

LD = min
D

Ex∼Ĩ(log(D(x))+ log(1−D(G(F(x),z)))) (8)

where Ĩ denotes the set of real images.

The network P takes the embedding F(I) as input and Ĉ as out-
put. The inverse problem solved during training aims at minimiz-
ing the error between the predicted parameters and the simulation-
based parameters:

LP = min
P

Ex∼I(L2(R(F(x)),Ĉ) (9)

where L2(·) is L2 loss function and I denotes the set of the synthetic
images.
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Figure 7: The architecture of the parameter-predicting CNN. The
output of the MobileNetV2 contains 160 feature maps with the size
of 7× 7. Each convolutional layer is specified by its kernel width,
kernel height, no. of filters and stride, while each fully connected
layer is specified by its no. of neurons.

The feature extraction network, F, has to effectively minimize
the reconstructor loss and parameter generation constraints. Thus,
the loss for the network F is summarized as:

LF =min
F

(Ex∼I(L2(R(F(x)),Ĉi)+λEx∼Ĩ(log(1−D(G(F(x),z)))))

(10)
where λ controls the strength of the second terms.

4.2.2. Implementation

The implementation of our parameter-predicting model is shown
in Fig. 7. We have tried to apply four different models pre-
trained using ImageNet as our feature extraction network: VGG19,
ResNet18, ResNet50 and MobileNetV2. During our experiments,
we found that MobileNetV2 is as well as ResNet50 and is bet-
ter than others. Considering that MobileNetV2 has less parame-
ters (only 1/8 of ResNet50), we finally decided to choose Mo-
bileNetV2 [SH] as the feature extraction network, F, to extract deep
feature maps from the input cloud images.

The input image is a 3-channel RGB image with the resolution
of 224×224. The F network extracts the features of dimensionality
m f , denoted as Z. In the experiments, we set m f to be 7840. Both
the generator and the discriminator networks, G and D, are mod-
eled with convolutional neural networks (CNNs). The generator G
contains five convolutional leayers. The last layer is followed a tanh
activation and the others are followed by a LeakyReLU activation
function. The dimensionality of input for G is the same as the fea-
tures extracted by F, i.e., 7840. The subnetwork D is composed of
seven convolutional layers, one pooling layer and a full connected
layer. Each convolutional layer is followed by a LeakyReLU acti-
vation function. The input of D is a generated image with the di-
mensionality of 2242. We use four convolutional layers, activated
by a ReLU activation function except for the third one, one pool-
ing layer and two full connected layers for the network P. The last
fully connection layer predicts the latent space of the controlling
parameters C.

At the training stage, both branches are trained in turns and op-

timally reach an equilibrium state. The outline of our pipeline is
summarized in Algorithm 1.

Algorithm 1 Iterative training procedure.
1: training iterations=N
2: for t in i : N do
3: Sample k synthesized images denoted as S : {si,ci}k

i=1
4: Let fi = F(si) be the embeddings for synthesized images
5: Sample k real images denoted as T : {ti}k

i=1
6: Let hi = F(ti) be the embeddings for real images
7: Sample k random noise samples {zi}k

i=1 ∼ N(0,1)
8: Let hi concatenate with zi and denote it as hzi

9: Update D using the following objective:
LD = max

F
1
k ∑

k
i=1 log(D(ti))+ log(1−D(G(hzi)))

10: Update G using the following objective:
LG = min

G
1
k ∑

k
i=1 log(1−D(G(hzi)))

11: Update F using the following objective:
LF = min

F
λ

1
k ∑

k
i=1 log(1−D(G(hzi)))+

1
k ∑

k
i=1 ||P( fi)−

ci||2
12: Update P using the following objective:

LP = min
P

1
k ∑

k
i=1 ||P( fi)− ci||2

13: end for

5. Experiments

This section reports the experimental validation of our approach.
We refer readers to our supplemental video for the cloud evolu-
tion results. We train and evaluate all our networks on a 12GB
NVIDIAr Titan X GPU with Intelr I7-8700 CPU and 16.0G
RAM unless ortherwise noted.

5.1. Data Generation and Training

Since it is unrealistic to obtain a large amount of corresponding
meteorological data about the environment states against the cloud
shapes, we construct the training dataset through numerical simu-
lation for the proposed model PPCNN. The input of our proposed
model is a pair [I, C̃], where I is a synthesized cloud image ren-
dered from a cloud density field, which is obtained by simulating
the cloud formation process based on the parameters C̃ containing
multi-frame information of the control parameters (CPs). Specifi-
cally, C̃ is defined as C̃ = {[S1

T ,S
1
A], [S

2
T ,S

2
A], · · · , [SM

T ,SM
A ]}, where

Si
T and Si

A denote the distribution of the ground temperature and
the emission area at frame i, respectively.

As we use a two-dimensional uniform grid, Ω, with the resolu-
tion of Ws×Hs as the parcel emission area, we have Si

A ∈ RWs×Hs

and Si
T ∈RWs×Hs . If an air parcel was emitted from a cell positioned

at (x,y) in frame i, the value of Si
A(x,y) is set to 1, or otherwise it

is set to 0.

In the area of environmental engineering, the Gaussian distri-
bution has been used to analyze the land surface temperature in
some researches [Str03, EvdKVB13, ABP14]. Hence, we assume
that the ground temperature obeys a two-dimensional Gaussian dis-
tribution. We denote the location of the cell with the highest tem-
perature as (µx,µy). Then, the air-parcel temperature at the location

submitted to GOMD (2019)



8 Zhang et al. / Cumuliform Cloud Formation Control using Parameter-Predicting Convolutional Neural Network

(x,y), Si
T (x,y), is calculated as follows:

Si
T (x,y) =

T̃ i
p

2∗σxσy
√

1−Λ2
e

(x−µx)
2

2σ2
x
−2∗Λ (x−µx)(x−µy)

σxσy
+

(y−µy)
2

2σ2
y (11)

where T̃ i
p is the max temperature of air parcel emitted at frame i. We

could control the variances, σx and σy, the correlation coefficient,
Λ, and the mean, µx and µy, to achieve different distributions of air-
parcel temperature. As the air parcels get warmer by absorbing the
solar radiation on the ground, we also assume that the distribution
of the air parcel temperature is independent each other.

When the temperature of the air parcel is higher than the ambient
temperature, the air parcel begins to rise, namely the emission of an
air parcel from the ground. Meanwhile, the ground temperature is
constant. Then, we calculate the parameter Si

A according to the Si
T

as follows:

Si
A(x,y) =

{
1 Si

T (x,y)> Ta

0 Si
T (x,y)<= Ta

(12)

Hence, we use the distribution of the ground temperature to simu-
late the parameter of the air parcel emission.

We apply [DKNY08] to simulate cumulus cloud formation on a
grid of size 643. To avoid obtaining low cloud density field, the du-
ration of the CPs ranges from 40 to 100 frames. Meanwhile, we set
the ambient temperature to be linearly changing from 22.4◦C (bot-
tom) to 17.6◦C (top), which is similar to the settings in [DKNY08].
We also follow [DKNY08] to use the dry adiabat instead of the
moist adiabat over the simulation domain. Hence, the temperature
of air parcel is the only factor with an impact on the EL. The dry
adiabat lapse rate is set to 9.8◦C/km. This assumption is helpful
for solving the inverse problem. However, it does not influence the
controlling results.

To study the impact of emission area, we fix the shape of area
as a rectangle and choose three different sizes, including 16× 16,
40×40 and 54×54, which represent the small, medium and large
scales, respectively. We change the variances, σx and σy, of the
function Si

T (x,y) to study the distribution for the temperature of air
parcels at different times. According to our experiments, when the
variances, σx and σy are larger than 100, the distribution of temper-
ature is near to the uniform distribution. To generate different dis-
tributions, we set both variances to be within the interval [5,100]. A
large value indicates that all air parcels have similar temperatures.
A small value generate the condition under which some air parcels
have higher internal energy than other parcels. In the experiments,
we found that if the distance between the means, (µx,µy), of the
distributions of two ground temperatures is too small, the shapes of
the generated clouds will not be distinctive. Hence, the sampling
intervals of the two means, µx and µy, are set to 4 grid cells in our
experiment. Meanwhile, we design three temperature profiles in-
cluding increasing profile, decreasing profile and mixed profile. To
ensure a sufficient amount of variance with respect to the control-
ling parameters, we set the value for the four parameters, i.e., the
size of area, the variances, the means and the temperature profile,
by randomly sampling from their range. Finally, our data set con-
tains 15,000 scenes of different control parameters, and has a total
size of 42.8GB.

For training the PPCNN, we initialize the parameters of the net-
work using the method of He et al. [HZRS15]. Meanwhile, we em-
ploy the ADAM optimizer with β1 = 0.9, β2 = 0.999, decay =
5×1e−5 and an initial learning rate of 2×1e−4. The minibatches
size is set to 16. The synthetic dataset is split into 80% and 20% be-
tween non-overlapping training, T and validation subsets, D. The
first is used for training the parameters of the network, while the
second is to monitor convergence and test the model.

5.2. Qualitative and Quantitative Analysis

In the following, we demonstrate that our proposed method can
generate cumulus clouds with desired shapes using the control pa-
rameters learned via the PPCNN. To evaluate the effectiveness and
robustness of our method, we conduct several experiments on both
synthesized and real cloud images.

Synthesized Cloud Images Firstly, we verify the ability of our
method using synthetic cloud images as the source images. Some
examples of these source images are shown in the insets of the right
column in Fig. 8. These clouds have different control parameter
distributions. Result 1 is generated by a smaller area of air par-
cel emission than the clouds in other rows. Result 2 absorbs more
heat from the ground during the formation process. Result 3 ab-
sorbs heat from the generated area more evenly at each frame. We
first use the proposed PPCNN to generate control parameters from
these source images, and then simulate the cloud formation pro-
cesses with these parameters using the physically based method
[DKNY08]. The three images on each row display cloud evolu-
tion at different stages, which are at 40, 70 and 100 frames from
left to right. Particularly, the right image in each row corresponds
to the rendered cloud of the finally generated density distribution.
The generated clouds highly resemble the real images by justifing
from the cloud shape and appearance based on visual inspection.
It indicates that the PPCNN can find the optimal control parame-
ters for clouds of different shapes. This result is satisfactory for the
purpose of finding the parameters to the cloud formation.

We implement quantitative analysis on the structure similarity
between the given source image and the rendered image using the
generated density field of the cloud. As we render the simulation-
based result and the generated image under the same illumination
conditions, similar to the method [EUT19], we calculate the struc-
tural similarity index (SSIM) and the mean and standard deviation
of peak signal-to-noise ratio (PSNR) to evaluate the structure sim-
ilarity. Table 1 summarizes the similarity statistics of all presented
synthetic image examples. The averaged PSNR value is 30.68 for
image differences, across all test dataset. These tests indicate that
our method is capable of effectively estimating control parameters
to drive cloud formation to match given images.

Real Cloud Images Secondly, we investigate the capability of
our proposed method to handle real cloud images as the source im-
ages. Two examples of these source images are shown in the insets
of the right column in Fig. 9. These two cumulus clouds exhibit
significantly different shape characters as they are influenced by
different initial environment conditions, such as the profile of the
soil temperature. Cloud4 shows two convex upward parts at the
cloud top, while cloud5 has one bulge at the cloud top. In addi-
tion, the difference between the two cloud shapes may be caused
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Figure 8: Cloud simulated from synthesized cloud images with dif-
ferent shape features. From top to bottom: Result 1, Result 2 and
Result 3, respectively. Source cloud images are shown in the small
insets of the right column.

Table 1: Shape Similarity Analysis

Image
Cloud Area Ratio

SSIM PSNR
Simulation-based Ours

Result 1 10.77 10.80 0.89 20.26
Result 2 22.83 23.93 0.93 23.66
Result 3 21.29 22.21 0.95 28.29

by the distribution of the ground temperature. With our method, we
generate the control parameters for these two source cloud images,
respectively. We then simulate cloud formation using the learned
parameters based on the fluid dynamics. The three images on each
row display cloud evolution at different stages, which are at 40, 70
and 100 frames from left to right. Particularly, the right image in
each row corresponds to the final reconstructed cloud. The results
show that our approach can control the cloud formation process to
generate cumulus clouds highly resembling the clouds from user
specified real photograph.

As our work does not to directly reconstruct natural images, it
is unsuitable to measure the natural image against the generated
one pixel by pixel. We choose the intersection over union (IOU)
to measure the shape and the perceptual loss [JAFF16] to analyze
the structure similarity between the given natural image and the
generated one. To calculate the IOU, we first resize the natural and
the generated images to the same size. Then, we binarize them to
eliminate the influence of color. In our experiments, the cloud and
background pixels are set to be 1 and 0, respectively. To calculate
the perceptual loss, we calculate the cosine distance of the deep
features of images which are extracted by using the subnetwork
F as shown in Fig.4. The results are shown in the column of λ =
0.001 in Table 3. These tests indicate that the natural image and the
generated one have similar shape and structure.

Figure 9: Cloud simulated from real cloud photographs. From top
to bottom: Result 4 and Result 5, respectively. Source cloud images
are shown in the small insets of the right column.

5.3. Comparison to Previous Methods

In order to demonstrate the importance of estimating the control
parameters on the cloud simulation, we compared our method with
the feedback control approach [DKNY08] and the method pro-
posed by Yuan et al. [YLH∗14].

Fig. 10 compares our method against the simulation approach
of Dobashi et al. [DKNY08]. We first generate the density field of
the cumulus cloud as shown in the leftmost image to match the
user-specified top contour line (the red curve) using the method
[DKNY08]. Then, we estimate the optimal control parameters us-
ing the rendered image of the density field as input. Finally, we
simulate the cloud formation process using the generated physical
control parameters as initial conditions. The second to the right-
most images show the snapshots of the cloud formation process at
frames 20, 40, 60, 80 and 100. The rightmost image shows that the
generated cloud can match with the cloud shape specified by the
contour line drawn by the user. Moreover, there is no extra manual
force, e.g., the external force due to the geometric potential field,
required to control the cloud formation during the simulation pro-
cess. Meanwhile, our method estimates the controlling parameters
from the standpoint of the overall simulation. It avoids manually
adjusting the physical parameters according the difference between
the simulated cloud and the target at each frame. The property of
solving inverse formation explains why our approach can gener-
ate controlled cloud animation with better visual plausibility than
methods that use non-zero ghost forces throughout the simulation
domain.

As we simulate the cloud formation process to match a user-
specified cumulus cloud image, the reconstructed density distri-
bution of cloud is more visually natural. To demonstrate this, we
compare our method with the method [YLH∗14] modeling cumu-
lus cloud shape by inversely solving the single scatter equation.
The method assumes that the shape of the cloud is symmetric. Af-
ter obtaining the front and back surfaces, the side surface is formed
by connecting the vertices on the two boundaries of the front and
back surfaces. As the method [YLH∗14] directly reconstructs a 3D
model from input images, the method could generate more similar
model with the input image than our method. However, the recon-
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Figure 10: A comparison of our method against [DKNY08]. The leftmost image is generated by using [DKNY08] and the red curve is given
by users. The second to the rightmost images display the cloud formation process using our method.

Figure 11: Compare with Yuan et al. [YLH∗14]. From left to right:
input image, reconstructed image with [YLH∗14], and generated
image using our approach, respectively.

structed side surface using the method [YLH∗14] is less natural
than ours (see Fig. 11). There is an obvious center line on the sur-
face of the cloud due to manual stitching. Meanwhile, the symmet-
ric assumption of [YLH∗14] also leads to unnatural cloud shape.

5.4. Performance Analysis

Generated Parameters Analysis To analyze the parameter gen-
eration power of the PPCNN, we compare generated parameters
for the images, which have a direct correspondence to the origi-
nal dataset, i.e. the simulation-based samples. Fig. 12 is the visual-
izaiton of the control parameters at the frame 30 for Result 3. The
simulation-based and generated results are shown on the left and
the right, respectively. It is obvious that the parameter distribution
of the simulation-based data and the generated one are similar by
visual inspection. Meanwhile, we do more detailed analysis for the
generated parameters as shown in Fig. 13. Both the left and middle
images of the Fig. 13 show the parameter mean plots comparing the
simulation-based result and our model output for the Result 1 image
and all test dataset, respectively. The right image shows the plots of
parameter mean variance for each frame across all the test dataset.
The mean of temperature meani for the ith frame is calculated as
follows: meani =

1
Ws×Hs×|D| ∑D

∑
Hs
y=1 ∑

Ws
x=1 Si

T (x,y), where |D| de-

notes the amount of the test dataset. The variance vari is defined
as: vari =

1
Ws×Hs×|D| ∑D

∑
Hs
y=1 ∑

Ws
x=1 ||S

i
T (x,y)−meani||2. The gen-

erated and simulation-based parameters are shown on the top row.
We calculate the mean absolute percentage error (MAPE) or all
cells on the bottom level in the simulation domain at each time (see
the bottom row of Fig. 13) to measure the difference between the
generated and simulation-based data. The MAPE accounts for that
the max value for the mean of control parameters is less than 3%.

Figure 12: Examples of the control parameters for Result 3 at
frame 30. The left is the simulation-based one, and the right is the
generated parameters using our method.

As shown in the top-right figure, the distribution of the generated
parameters is similar with the simulation-based one. We further cal-
culate the mean absolute percent error between the generated vs
simulaion-based per sample, and Fig. 14 shows the statistical re-
sults. It is noted that 82.6% of test data have error lower than 0.2.
Table 2 gives the statistics of mean and variance of the simulation-
based and generated control parameters for the three synthetic im-
ages as shown in Fig. 8. These tests indicate that the CNN shows a
high control parameter estimation quality.

For the real images, we calculate the mean of each control pa-
rameter cell across all simulation frames. The results for Cloud4
and Cloud5 are visualized in the left and right of Fig. 15, respec-
tively. There are three areas with more high temperature in the left
figure, which correspond to the tree humps of the input image.
As the real cloud5 has one top, the right figure contains only one
area with more high mean temperature. The experimental results
demonstrate that our method effectively estimates the distribution
of control parameters which can describe the intricate shapes of the
complex real cloud as shown visually in Fig. 9.

Cost of Simulation According to our method, the cost of simu-
lation mainly includes two items, i.e., the cost of training and the
time of cloud formation simulation. The training cost depends on
the number of iterations and the resolution of the simulation grid.
In our experiments, the resolution of the simulation grid is 643.
Under these setting, the training time for the parameter-predicting
CNN and the autoencoder CNN are 4h and 24h, respectively. Af-
ter training the PPCNN, the time of parameter prediction is 0.016s.
The formation simulation is carried out on the CPU and the GPU is
used for rendering clouds. We used Blender for rendering. The av-
erage computation time for each time step of the simulation is 0.31
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Figure 13: Examples of the generated parameters. From left to right: the mean for Result 1, the mean and the variance across all test dataset,
respectively. The top row shows the distribution of generated parameters and the simulation-based data. The bottom row shows the MAPE
for each frame of control parameters.

Table 2: Generated Parameter Analysis

Image
Frame30 Frame60 All Frames

Simulation-based Generated Simulation-based Generated Simulation-based Generated
Mean◦C Variance Mean◦C Variance Mean◦C Variance Mean◦C Variance Mean◦C Variance Mean◦C Variance

Result 1 7.17 112.85 6.99 71.97 5.56 70.69 5.59 45.31 6.12 92.01 6.24 64.41
Result 2 36.43 23.98 27.16 22.35 20.82 14.89 21.59 15.21 22.61 50.7 23.76 42.84
Result 3 22.19 9.02 24.44 18.32 16.21 4.82 18.92 12.18 22.29 47.03 20.67 34.47

Figure 14: Histogram of mean absolute percent error between the
generated and simulation-based data per sample. The vertical axis
denotes the sample size.

Figure 15: Mean temperature plot of each cell of generating con-
trol parameters across all simulation frames for real images as
shown in Fig. 9. From left to right show the results for Result 4
and Result 5, respectively.

seconds, while that of Dobashi et al. [DKNY08] is 0.37 seconds.
However, some care must be taken when interpreting this number
because our method takes a cloud image as constraints, while the
method [DKNY08] only uses a top contour as constraints.

Ablation Analysis In this experiment, we study the effect of the
adversarial network (as shown in Fig.4) to the overall performance.
Fig.4 shows that the network F is updated using a combination of
losses from the supervised parameter prediction network P and the
adversarial network G-D. To analyze the effects of GAN, firstly,
we only use the parameter estimation branch, i.e., the F-P pair, and
only use the synthetic data to train. The setting, i.e., λ = 0, makes
the network F to be updated only by using the gradients from the
network P. After training the network, F-P, we test the performance
on the real images. Fig. 16 shows the generated results for Cloud4
and Cloud5. Comparing with Fig. 9 by visual inspection, the branch
of GAN improves the performance of parameter prediction.

Secondly, we further change the parameter λ to analyze the ef-
fects of GAN. As the GAN branch mainly influences the prefor-
mance for real cloud images, we quantitatively measure the results
for Result 4 and Result 5 by calculating the IOU and the perceptual
loss. We set the λ to be 0.001, 0.01 and 0.1 in the experiments. Ta-
ble 3 presents the results for these settings. It can be observed that
the GAN does improve the performance of predicting control pa-
rameters for real cloud images. As λ is bigger, the network F learns
more information about real images without the corresponding con-
trol parameters. It causes that the feature descriptor extracted by F
contains less information about the control parameters. Hence, it is
noted that the model PPCNN obtains the best performance under
the setting λ = 0.001.
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Figure 16: Examples for real images generated only using the F-P
branch. From letf to ringt: Result 4 and Result 5.

Table 3: Performance Analysis for different λ value

Image
λ = 0 λ = 0.001 λ = 0.01 λ = 0.1

IOU Cosine IOU Cosine IOU Cosine IOU Cosine
Result 4 0.74 0.89 0.76 0.95 0.51 0.82 0.39 0.58
Result 5 0.68 0.76 0.82 0.85 0.66 0.54 0.58 0.57

Convergence of The Algorithm In order to evaluate the conver-
gence of the presented architecture, we plot the training error after
each iteration. Training time highly depends on the prediction qual-
ity and the dimensionality of the control parameters. Generally, the
higher the dimensionality of the control parameter latent space, the
lower the model convergence rate. Meanwhile, the parameter λ in
Eq. (10) also influences the convergence of the learning. In our ex-
periments, we find that the mean error is 0.45, 0.46, 0.52 and 0.53
with λ = 0, λ = 0.001, λ = 0.01 and λ = 0.1, respectively. Fig.
17 shows the convergence plot of our model with λ = 0.001, with
training iterations on the x-axis and error on the y-axis. The curve
shows that the control parameters is already estimated with good
accuracy when the model is trained about 40 iterations. Although
the L1 loss is lower when λ = 0, the IOU measures is smaller than
that of λ = 0.001 (see the Table 3). This is because that the network
F does not learn the features of natural images due to only train-
ing on the simulation-based data when λ = 0. When the λ value
is larger than 0, it is noted that the L1 loss is smaller, the IOU is
bigger.

Figure 17: Convergence plot of the L1 loss for the parameter latent
space with 512 dimensionality.

Figure 18: Example of high resoltution. From left to right: Frame
40, Frame 70 and Frame 100, respectively.

5.5. Discussion and Limitations

In this experiment, we demonstrate how our model performs on the
additional dataset with higher spatial resolutions, i.e., 1283. Due
to the additional complexity of this dataset, we set the latent space
size of the control parameters, ml , to be 2048, correspondingly. The
results (see Fig.18) show that our method successfully predicts the
control parameters for the input.

To validate physical rationality of predicting parameters, we
compare our method to state-of-the-art researches on the relation-
ship between cumulus shape and latent heat supplying. For exam-
ple, the profile of the ground temperature generating Result 1 is
monotonically decreasing (see the top-left image in Fig. 13) simi-
lar to the cloud shown in Fig. 6(b) of [DG17], and the two clouds
have the similar upside-down turret shape. We also compare the
variation of control parameters for the cloud with almost constant
width to the well-known case [DPS∗14], which studied the topic in
a laboratory environment. Fig. 19 has a visualization of the ground
temperature predicted by our method for the clouds having similar
shapes as the cloud highlighted in the green box, which is generated
from [DPS∗14]. The variations of predicting parameters are similar
to the profile of latent heat supply for the red cloud which is sim-
ulated by supplying nearly constant heat in the method [DPS∗14].
As this kind of cloud is generated due to overall rising motion of
the air parcels driven mainly by buoyancy forces [DPS∗14], it is
noted that the top of the cloud generated with higher temperature is
higher than the one with lower temperature.

While we have shown that our approach can generate realis-
tic cloud with desired shape, it also has some limitations. First,
our system is designed to learn the space-time distribution of the
ground temperature which controls the cumulus cloud formation
process. This implies that the proposed method is not suitable for
estimating full environment conditions to control cloud formation.
Meanwhile, since we train the PPCNN on the dataset of cumulus
clouds, our approach cannot generate clouds without the main fea-
tures of cumulus cloud such as cirrus, clouds without a wide base
(as shown in Fig. 20) due to lack of this kind of shape in the dataset.
Another limitation of our method is its dependence on the simu-
lated dataset, which does not fully express the real physical evolu-
tion. Hence, it is not suitable for our method to some application
scenarios in which users need higher accuracy for coming up so-
lutions. In addition, our method inherits the limitations of the deep
learning on different domains. The method does not guarantee suc-
cessful prediction of proper control parameters for arbitrary input
images, e.g., freehand contour sketching of cloud.
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Figure 19: Examples of validating physical rationality. Both the
blue and orange lines are the visualization of the ground tempera-
tures predicted by our method for the clouds showing above the two
lines, respectively. The two clouds and the cloud generated from the
method [DPS∗14], which is highlighted with a green box, have sim-
ilar shapes with almost constant width. The variations of predicting
parameters are similar to the profile of latent heat supply for the red
cloud, which is simulated by adding nearly constant moderate heat
in the laboratory environment of [DPS∗14].

Figure 20: Example of failing to generate clouds without a wide
base. The left is the input image, the right is the generated one.

6. Conclusions and Future Work

In this paper, we presented a learning-based approach for solving
the inverse cumulus cloud formation. In our approach, we proposed
a parameter predicting neural network to estimate the proper con-
trol parameters for a given image. By designing an auto-encoder
neural network, the higher dimensionality of control parameters
is reduced to a lower dimensionality, which make our approach
achieve a high convergence rate. The optimal control parameters
through the PPCNN after training can be estimated in real-time.
The results show that our method could simulate natural cloud for-
mation and finally obtain desired cumulus cloud shape by using
the learned parameters as initial conditions. Another important as-
pect of the proposed system is its representation capability about
the relationship between the cloud shape and the distribution of the
ground temperature. We demonstrate that our method is helpful for
users to control cloud formation for tuning weather conditions via
human intervention.

In the future, we would like to try more challenging problems. In
some applications, such as flight simulation, it is useful to estimate
the full environment conditions to reconstruct a similar scene for
a user-given real cloud image. We plan to extend our framework
to handle the problem of full environment condition estimation. To

achieve the objective, it is helpful to generate real cloud evolution
dataset by combining the cloud formation simulation in the lab-
oratory and meteorological satellite data. In our current method,
the user specifies the shape of clouds via giving a real or synthe-
sized image. However, some users may want to specify cloud shape
by freehand counter lines or semantic descriptions, when there is
no proper image meeting the users’ expectations. Extending our
method to incorporate user constraints is also an important future
direction.
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