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Abstract

Simulating sonar devices requires modeling complex underwater acoustics, si-

multaneously rendering time-efficient data. Existing methods focus on basic

implementation of one sonar type, where most of sound properties are dis-

regarded. In this context, this work presents a multi-device sonar simulator

capable of processing an underwater scene by a hybrid pipeline on GPU: Ras-

terization computes the primary intersections, while only the reflective areas

are ray-traced. Our proposed system launches few rays when compared to a

full ray-tracing based method, achieving a significant performance gain without

quality loss in the final rendering. Resulting reflections are then characterized

as two sonar parameters: Echo intensity and pulse distance. Underwater acous-

tic features, such as speckle noise, transmission loss, reverberation and material

properties of observable objects are also computed in the final generated acoustic

image. Visual and numerical performance assessments demonstrated the effec-

tiveness of the proposed simulator to render underwater scenes in comparison

to real-world sonar devices.
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1. Introduction

The number of underwater structures in the offshore industry has signifi-

cantly increased over the last decades, and so the need of monitoring, inspec-

tion and intervention of these structures (Wang et al., 2018). Since autonomy is

necessary to reduce mission expenses, the offshore industry has leading the de-

velopment of autonomous underwater vehicles (AUVs) to accomplish the main

field tasks. With a pre-programmed mission and onboard sensors, AUVs are

able to perform completely autonomous decisions, returning to surface only for

servicing.

The accomplishment of AUV tasks demands to deal with challenges inherent

to undersea environment. For instance, beneath the water, optical cameras are

affected by turbidity and lightning conditions, thus restricting the image quality

to short visible ranges. On the other hand, imaging sonars take advantage of the

low attenuation of sound waves in order to cover larger areas than those ones

covered by optical cameras, although producing noisy data with low resolution.

AUV real-world experimentation is challenging, mainly due to human re-

sources, time consumption and hazards involved on deployment and testing the

underwater vehicles in the target domain. While initial experiments can be per-

formed in water tanks (e.g., low-level control and basic prototyping), high-level

tests require trials in deep open waters (e.g., way-point navigation, mapping

and autonomous control). An unexpected behavior of an AUV may result in

an unrecoverable equipment, causing a considerable financial loss. This way,

simulation of underwater sensors and reproducible environments is essential to

cope with insufficient data, as well as to develop effective algorithms before tests

in the wild.

To contribute with the development of underwater acoustic-based systems,

this paper introduces a novel simulator able to reproduce the operation of differ-

ent sonar devices. Rendering of a virtual scene is accelerated by a selective ras-

terization and ray-tracing scheme on GPU, where the computational resources

are allocated only for reflective regions. Subsequently, the resulting reflections
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are converted to the acoustic scene representation on CPU, including several

phenomena present on the sonar images.

1.1. Related work

By considering the complexity in the process of transmitting sound through

the water, several mathematical and computational models have been proposed

to approximate the calculation of acoustic propagation (Etter, 2018). Ray-based

methods are the most common solutions to simulate underwater sonar systems

(Bell & Linnett, 1997; Guériot et al., 2007; Gu et al., 2013; Kwak et al., 2015;

DeMarco et al., 2015; Saç et al., 2015; Mai et al., 2018; Soares, 2016), although

other approaches can also be considered (Coiras & Groen, 2009; Cerqueira et al.,

2017; Gwon et al., 2017). All simulation methods try to mimic one or more types

of sonar devices.

Side scan sonar (SSS) simulation: Bell & Linnett (1997) presented a

simulator for SSS imagery based on optical ray-tracing, where a group of rays is

projected to insonify the scene and produce the acoustic data; fractal models are

used to represent the roughness surface of the seafloor; stochastic influences as

noise and reverberation are neglected in that work. Instead of propagating many

individual rays, Guériot et al. (2007) developed a volume-based approach with

a tube tracing technique; the tubes are composed of four rays, which intersect a

certain area to allow computing the backscattered energy; the few launched rays

optimized the sonar rendering, while the surface details and transmitting sig-

nal characteristics are suppressed. By using a frequency domain-based method,

Coiras & Groen (2009) produced frames from a virtual SSS by using Fourier

transform; the returned intensity relies on the angle of incidence applied to a

basic Lambert illumination model; physical effects, such as noise and multi-path

returns, are considered, although the method was not designed to operate online.

With a simplified Lambert diffusion model, Gwon et al. (2017) generated SSS

data integrated with UWSim simulator and ROS framework; acoustic frames

are degraded with speckle (low frequency) and Rayleigh (high frequency) noises;

although the performance of feature matching methods decays in images con-
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taining multiplicative noise, due to the variance for intensity and affine changes,

the authors applied SIFT, SURF, ORB and AKAZE algorithms to evaluate the

similarity between two consecutive frames, obtaining a very low number of in-

liers for all feature extractors.

Forward-looking sonar (FLS) simulation: Gu et al. (2013) modeled

an FLS system, where the rays are comprised of basic lines, equivalent to the

number of pixels of sonar image to be emulated; the reflection representation is

severally reduced to three colors only (black, gray and white). Kwak et al. (2015)

improved Gu et al.’s method by introducing sound attenuation effect in order

to produce gray-scale sonar images; by assuming a mirror-like reflection model,

the sonar system only considers specular reflections, so that the method is only

successful for smooth surfaces. Saç et al. (2015) introduced an acoustic model

by combining ray-tracing in frequency domain; the intensity and the range of

sonar data are calculated by Lambert diffusion model and Euclidean distance

respectively; the high average time to compute a single FLS frame prevents the

use of the method in real-time operations. DeMarco et al. (2015) detailed an

FLS simulator integrated with Gazebo simulator and ROS for diving assistance;

the ray path mimics the sound wave to generate a point cloud; the simulated

images are compared with real ones, although the reflectivity of the objects

and the noise models are analytically defined. Mai et al. (2018) conceived a

simulator based on ray propagation to produce acoustic data; by assuming only

the freshwater component, the sound attenuation is partially considered, while

other physical properties of sound are ignored; time consumption to calculate

one single frame has not been well established by Mai et al. (2018).

Mechanical scanning imaging sonar (MSIS) simulation: Soares (2016)

fused the ray-tracing and additive noise models, proposed in Bell & Linnett

(1997) and Coiras & Groen (2009), respectively, to produce single beam data;

in that work, no image distortion induced by robot movement was considered;

the simulated frames were later used to feed an underwater localization system

based on Hilbert maps. Cerqueira et al. (2017) introduced a GPU-based simu-

lator to reproduce the operation of two sonar devices; by deferred shading, the
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Table 1: Summary of state-of-the-art works on imaging sonar simulation.
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M
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Frequency domain # #  # #  # # # # # #

Tube tracing #  # # # # # # # # # #

Ray-tracing  # #      # #   

Rasterization # # # # # # # # #  #  

F
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Reflection model    # G#  G#  G#    

Surface irregularities  # # # # # # # #  #  

Surface reflectance # # # # # # G# # #  #  

Attenuation  # # # G# # # # # # G#  

Speckle noise # # G# # # # G# G# G# G# #  

Reverberation # # G# # # G# # G# # # # G#

Robotics framework support # # # # # #  # #    

E
v
a
l.

Qualitative             

Computation time # # # # # G# G# # #  G#  

Quantitative # # # # # # # # #  #  

 = provides property; G# = partially provides property; # = does not provide property.

rasterization rendering was exploited to compute the acoustic parameters (i.e.,

echo intensity, pulse distance and azimuth angle); sound phenomena such as

multiplicative noise and material properties were addressed, while multipath re-

turns, attenuation and additive noise did not; experiments comparing real-world

acoustic images certified the use of the simulator by real-time applications.

1.2. Contributions

This paper proposes a sonar simulator that extends the work in (Cerqueira

et al., 2017) by combining rasterization and ray-tracing to optimize acoustic
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reflections and fulfilling the missing physical phenomena. A comparative sum-

mary between the state-of-the-art works and ours is detailed in Table 1.

Instead of simulating a specific sonar type (Bell & Linnett, 1997; Guériot

et al., 2007; Coiras & Groen, 2009; Gu et al., 2013; DeMarco et al., 2015; Kwak

et al., 2015; Saç et al., 2015; Soares, 2016; Gwon et al., 2017; Mai et al., 2018),

our proposed method is able to reproduce the operation of FLS and MSIS sen-

sors. A selective rasterized ray-tracer is integrated on GPU, where the com-

putational resources are restricted to only reflective regions; this combination

enables multipath reflections (not present in rasterization-based works, such as

in Cerqueira et al. (2017)), launching few rays with the same final result in

comparison with full ray-tracing and tube tracing methods (Bell & Linnett,

1997; Guériot et al., 2007; Gu et al., 2013; DeMarco et al., 2015; Kwak et al.,

2015; Saç et al., 2015; Soares, 2016; Gwon et al., 2017; Guériot et al., 2007; Mai

et al., 2018). Additionally the number of intersection tests of ray-tracing model

is significantly reduced by using bounding volumes and a ray-box intersection

algorithm, accelerating the rendering time as a consequence.

The sonar simulator is already integrated with a robotics framework (i.e.,

Rock), supporting the integration with real and simulated robotic systems, fea-

ture present in (DeMarco et al., 2015; Cerqueira et al., 2017; Mai et al., 2018).

The echo intensity from observable objects depends on surface normal direc-

tions, material reflectivity and sound attenuation properties, differently from

existing approaches (Gu et al., 2013; DeMarco et al., 2015; Gwon et al., 2017),

where the reflection value is empirically defined. Yet, the reflection model is

valid for any type of surface representation, in opposition to (DeMarco et al.,

2015; Saç et al., 2015). Five of the analyzed works consider either additive or

multiplicative noise, while speckle effect is just partially simulated (Coiras &

Groen, 2009; Saç et al., 2015; Soares, 2016; Gwon et al., 2017; Cerqueira et al.,

2017). In our work, speckle noise is fully reproduced.

Our experiments comprises qualitative, computational time and quantita-

tive evaluations between simulated and real-world sonar data, assessing time-

efficiency and rendering quality of the generated acoustic images.
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Figure 1: Viewing volume of imaging sonar. The observable scene is defined by the minimum

and maximum ranges rmin and rmax, maximum azimuth angle θmax, and maximum elevation

angle φmax.

2. Working with underwater sonars

Sonar systems use the propagation of sound waves to detect and locate ob-

jects underwater. These systems are grouped into two basic types: Passive and

active (Rossing, 2015). A passive sonar essentially listens for the sound waves

made by submerged objects; in contrast, an active sonar transmits sound pulses,

and then listens for echoes. Imaging sonars are classified as active devices.

To compose an acoustic image, an active sonar insonifies the scene with

a sound wave. The visible area is delimited by maximum azimuth angle θmax,

maximum elevation angle φmax, and minimum rmin and maximum rmax ranges,

as illustrated in Fig. 1. In case that a sound wave hits an object, the returning

echo is sampled as a function of range and bearing, since the speed of sound in

water is known. The transducer reading in a given direction composes a beam,

while each distance sampled along this beam is named bin. The strength of

backscattered energy in each bin determines the echo intensity from an insonified

object. Combining the array of transducer readings, the group of echo intensities

forms an image of the reflective surfaces in front of the sonar head.
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Figure 2: Model of the imaging sonar projection. A spherical point Q(r, θ, φ) is projected

into a point P on an image plane. Considering an orthographic approximation, the point P

is mapped onto P̂ , which is equivalent to all points along the same arc.

2.1. Geometry of the sonar projection

A 3D point is usually expressed in Cartesian coordinates as [x, y, z]T . A sonar

system has the reference frame defined in spherical coordinates as Q = [r, θ, φ]T ,

with range r, azimuth angle θ, and elevation angle φ, as depicted in Fig. 2. The

conversion of Cartesian to spherical coordinates is given by

Q =


r

θ

φ

 =


√
x2 + y2 + z2

tan−1(y/x)

tan−1(
√
x2 + y2/z)

 . (1)

Since the elevation angle φ is missing during the process of acoustic pro-

jection, the sonar system measures the range r and azimuth angle θ onto the

zero-elevation plane, as an approximation to an orthographic projection (Jo-

hannsson et al., 2010). This two-dimensional system is named polar coordinates

and follows a nonlinear model defined as

P̂ =

x
y

 =

r cos θ

r sin θ

 . (2)
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2.2. Sound attenuation

When a sound pulse propagates through the water, the acoustic energy is

gradually converted into heat by a spherical spreading, absorption and chemical

properties of the sea. This effect decreases the signal amplitude exponentially

with distance, and the total acoustic attenuation in the ocean is expressed by

three additive components: Relaxation of borid acid (H3BO3) molecules below

1 kHz, relaxation of magnesium sulphate (MgSO4) below 100 kHz, and viscosity

of pure water (Bjørnø, 2017). A common attenuation method is proposed by

Ainslie & McColm (1998), where the attenuation coefficient is expressed as

α = αB + αM + αF , (3)

with the boric acid component αB defined as

αB = 0.106
f1f

2

f2 + f2
1

e(pH−8)/0.56 , (4)

f1 = 0.78

(
S

35

)1/2

eT/26 , (5)

the magnesium sulphate component αM defined as

αM = 0.52

(
1 +

T

43

)(
S

35

)
f2f

2

f2 + f2
2

e−z/6 , (6)

f2 = 42eT/17 , (7)

and the freshwater component αF defined as

αF = 0.00049f2e−(T/27+z/17) , (8)

where α is the intensity absorption coefficient in dB/km, f is frequency in kHz,

S is salinity in parts per thousand (ppt), pH is acidity, z is depth in km, and T

is the water temperature in Celsius.
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2.3. Speckle noise

Due to coherent nature of scattering phenomena, sonar images are affected

by speckle noise, a granular pattern, which severely deteriorates the visual qual-

ity, and reduces relevant features as edges and shapes. This type of noise pro-

duces random variations of image intensity, which causes light and dark pixels

and interferes in further operations, such as object detection and segmentation.

The noisy image, Î, has been expressed as (Mateo & Fernández-Caballero, 2009)

Î(r, θ) = I(r, θ)ηm(r, θ) + ηa(r, θ) , (9)

where (r, θ) are the polar coordinates, I is the noise-free image, and ηm and ηa

are the multiplicative and additive noise components, respectively.

2.4. Reverberation

When active sonars transmit sound pulses, incoming echoes are usually re-

turned from several different sources. The result of unwanted echoes is named

reverberation, which is mainly caused by the multiple path propagation and

successive interactions of the transmitted signal, weakening the sound intensity

(Hodges, 2010). Sources of reverberation in the ocean include the surface, the

seafloor and the volume of water.

2.5. Representation of sonar image

The raw sonar data is generated as a function of range and bearing, resulting

in a polar image I(r, θ) with an echo intensity value for each pixel. For a better

human interpretation, this polar representation can be converted to Cartesian

coordinates I(x, y) using Eq. (2). In Cartesian coordinates, the fan-shaped

image preserves the target geometry. The conversion from polar to Cartesian

system entails a non-uniform resolution, where the representation of the clos-

est bins to sonar origin are superscripted, while the far ones are interpolated,

yielding to image distortions and object flatness. The raw polar data and the

corresponding representation in Cartesian space is illustrated in Fig. 3.
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(a) Raw data as Cartesian image. (b) Raw data as polar image.

Figure 3: Different types of acoustic data representations. A wrecked ferry was captured with

FLS Tritech Gemini 720i sensor from a real AUV. In this paper, the simulated images are

displayed in Cartesian coordinates to retain the characteristics of the insonified objects (a),

while the polar image is applied during similarity evaluation without loss of original data (b).

3. Simulating acoustic images based on a rasterized ray-tracing pipeline

The pipeline of the proposed sonar simulator is depicted in Fig. 4, and

bridges two domains. On GPU domain, the engine computes reflections using

an approach based on a selective rasterized ray-tracing. The resulting sonar

rendering parameters are processed into the simulated acoustic data on CPU

domain, where the sonar image is presented. This approach is detailed into

the following subsections.

3.1. Representation of underwater scene

Underwater environment is defined with Rock-Gazebo integration (Watan-

abe et al., 2015). Gazebo handles with physical simulations, where the hy-

drostatic and hydrodynamic forces and moments are modelled and applied on

underwater vehicles, and provides access to the simulated objects and data; os-

gOcean, a plugin for OpenSceneGraph, renders the ocean with several visual

effects such as sunlight, ocean surface foam, water turbidity, and light absorp-

tion and scattering. Rock framework manages the communication and syn-
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chronization between simulated components and displays the virtual scenario.

Environment model and robot parts are described by SDF files.

3.2. Sonar rendering on GPU

A virtual camera, properly configured with the desired sonar settings (i.e.,

pose, field of view, range and resolution), samples the underwater simulated

scene (Fig. 4 (i)). In vertex and fragment shaders, the captured rendering area

passes by a rasterization and selective ray-tracing scheme, where the deferred

shading provides the information needed to compute the primary reflections and

only reflected areas are ray-traced for secondary reflections. This effectively

enables a multipath propagation, prevents a whole interaction of intersection

tests, and produces the same result in comparison of a full ray-tracer.

3.2.1. Rasterized reflections

The first reflection comes from the closest intersection of source wave with

a scene object in 3D space. In order to improve the performance of findings the

closest intersections, this work uses the deferred shading technique to mimic

the first reflections with a sound wave. Rather than launching individual rays

through the virtual environment, the primary reflections take advantage of

two geometric information stored in G-buffers (position and normal vectors in

world space) to compute the sonar rendering parameters during rasterization

process (Figure 4 (ii)):

• Pulse distance: Reproduces the length of sound wave. This parameter

uses the depth information to compute the Euclidean distance between

camera center and object surface, as defined by r in Eq. (1).

• Echo intensity : Simulates the backscattered power of sound wave. The

value is initially obtained from the normal incidence concerning the virtual

camera.

Multiple factors can affect the strength of the reflected sound waves. In

order to produce more realistic sonar images, four phenomena are considered

13



here: Surface irregularities, material reflectance, sound attenuation and speckle

noise. The former property enables the Lambertian diffuse reflection by applying

normal map, an RGB texture, which changes the normal directions and, as a

consequence, fakes roughness at the object surface with no additional polygons.

The material reflectance deals with the acoustic reflectivity of sound waves,

whose echoes are stronger from objects with densities different than water. So

rocks, air-filled objects and compact gas reflect more sonar energy than softer

surface types, like plastic and mud (Christ & Wernli Sr, 2013). In this context,

when an object has the reflectivity defined, this value is multiplied by the echo

intensity. These two characteristics are detailed in Cerqueira et al. (2017). Next

the influence of sound attenuation and speckle noise effects are presented.

3.2.2. Selective ray-traced reflections

Ray-tracing extends the wave propagation theory to simulate effects like

reflections, ambient occlusions and shadows, but at a great computational cost.

For highly complex scenes, this model generally becomes time-consuming due

to excessive amount of intersection tests. In this work, the world position and

normal vectors from G-buffers are used to compute the primary reflections of

sound wave through the virtual scene, which identify where each ray starts and

in which direction it should be reflected. Then the proposed ray-tracer starts

the secondary reflections by selecting all pixels with surface normal values

greater than zero to be traced (Fig. 4 (iii)). In practice, this scheme propagates

few rays when compared to a full ray-tracer, resulting in a significant speed-up

with no significant loss of information.

Testing if a ray intersects any surface requires analyzing all objects in the

scene. According to the complexity of geometric surfaces, these scene objects

can be described by simple shapes like spheres, cylinders and planes, or using

mathematical models such as polygon meshes and splines for high detailed rep-

resentations. In this context, ray-geometry intersection methods have to deal

with each supported type of surface, increasing then the complexity of the im-

plementation, drastically. Here all objects in the virtual underwater scene are

14



depicted as triangulated meshes by using tessellation at rendering time, and the

triangles data (i.e., vertices, surface normal, and centroid) feed the shader as

textures. This way, any arbitrary surface can be rendered since each camera

ray is tested against every individual triangle producing each polygon object in

the scene with ray-triangle intersections.

The amount of time to compute ray-triangle intersections is directly propor-

tional to the number of triangles in the scene. The rendering time can be saved

by reducing the number of intersection tests (Akenine-Möller et al., 2018). The

selective ray-tracer is accelerated by bounding volume and a classic axis-aligned

bounding boxes (AABBs) algorithm (Williams et al., 2005), as follows: For each

object in the scene, one box encapsulates all vertices; if the ray does not inter-

sect a box, it is not able to intersect any triangle within this bounding volume;

otherwise, the ray is tested against each triangle contained into the box with a

Möller-Trumbore intersection algorithm (Möller & Trumbore, 1997); in case of

new intersection, the pulse distance and echo intensity values between triangle

and ray origin are stored in a resulting image. This approach reproduces the

secondary reflections by saving a significant number of calls to the ray-triangle

routine, being summarized in the Algorithm 1.

3.2.3. Unified reflections

After the computation of primary and secondary reflections, the correspond-

ing results are blended in an unified shader image with echo intensity and pulse

distance values, and finally the signal attenuation effect is applied (Fig. 4

(iv)). Since the water is a dissipative medium, the sound intensity decreases

exponentially with the distance travelled by absorption and spreading, while

propagating. Equation (3) expresses the attenuation coefficient α, which can be

converted to Np/km, as follows:

1dB =
1

20 log10 e
Np ≈ 0.0115Np, γ = 0.0115α . (10)
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Algorithm 1 Selective ray-tracer in GPU

1: function SecondaryReflections(first)

2: second← (0, 0)

3: for all n in first.normals such that n> 0 do

4: [orig, dir]← GetWorldCoordinates(n)

5: ray ← CalculateRay(orig, dir)

6: for all box in boxes do

7: intersection← IntersectBox(ray,box)

8: if intersection.hit then

9: for all triangle in box do

10: intersection← IntersectTriangle(ray,triangle)

11: if intersection.hit then

12: normal← triangle.normal

13: distance← Length(ray,triangle)

14: second.writeReflection(normal,distance)

15: end if

16: end for

17: end if

18: end for

19: end for

20: end function

The sound pressure decays according to

pd = p0e
−γd . (11)

Within the same medium, the sound intensity is proportional to the average

of the squared pressure (Dunn et al., 2015)

I ≈ p2 . (12)

Therefore

Id = I0e
−2γd , (13)

where the initial intensity I0 is reduced to Id at a distance d (in km), and the

attenuation coefficient γ in Np/km. An example of the effect is showed in Fig. 5,

where the attenuation coefficient weakens the acoustic intensity with increasing

propagation distance.
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(a) (b)

(c) (d)

Figure 5: Example of different attenuation coefficient values, α, applied on scene rendering

of a cone. In shader images, the blue and green channels express the pulse distance and

echo intensity data, respectively, for (a) α = 0 dB/km and (c) α = 0.013 dB/km. The

corresponding sonar images are depicted in ((b)) and (d). By applying sound attenuation

effect, the echo intensity decreases exponentially with distance from the source.

The final pulse distance and echo intensity values are organized as blue and

green channels of shader image, respectively (see sonar rendering parame-

ters in Fig. 4(v)). These values range from 0 to 1. For the echo intensity, zero

means no energy, while one denotes maximum reflection returned. For the pulse

distance, the minimal and maximum values express the near and far planes, re-

spectively. At the end, the sonar parameters are rendered to a floating-point

RGBA texture, using a framebuffer object (FBO), to avoid loss of precision

mainly for the pulse distance values.

17



3.3. Generating the sonar image on CPU

On CPU domain, the resulting sonar rendering parameters are converted into

the respective acoustic data. While the azimuth angle is radially spaced over

the virtual camera, the elevation angle is lost during sonar projection geometry.

This process implies all pixels belong a column have the same bearing angle.

The shader image columns are then divided into a number of beam parts. For

each beam section, a distance histogram groups the pixels in bins, according

to pulse distance values (Fig. 4 (vi)). Finally, the accumulated bin intensity

value, I, is computed with an energy normalization function (Fig. 4 (vii)),

given by

I(r, θ) =

N∑
x=1

1

N
S(ix), (14)

where (r, θ) are polar coordinates, N is the number of pixels with respect to

one bin, x is the pixel index, and S is a sigmoid function applied over the echo

intensity ix.

Due to the acquisition process and complexity of underwater sound prop-

agation, acoustic devices suffer from speckle noise and random variations of

echo intensity. All these make further data interpretation difficult. To sim-

ulate the speckle noise in the resulting image, Eq. (9) is used according to

noise simulation functions (Fig. 4 (viii)). The multiplicative component fol-

lows a non-uniform Gaussian distribution, while the additive one is denoted by

a Gaussian random variable with zero mean and standard deviation σ2. The

noise model is repeated for each acoustic frame.

The simulation ends with the conversion of noisy intensity values into a

data structure of corresponding beam (Fig. 4). The sonar data is latter

displayed in Cartesian coordinates on Rock framework, according to Eq. (2).
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4. Experimental evaluation

4.1. Setup

Our sonar simulator was implemented in C++, OpenCV and OpenScene-

Graph on CPU. Shaders relies in massive parallelism available on GPU to render

the underwater scene using rasterization and ray-tracing, and Ruby scripts con-

nect and monitor components on Rock framework. All experiments were per-

formed on an Intel Core i7-8750H 2.20 GHz, running with 16 GB DDR3 RAM,

NVIDIA GeForce GTX 1060 video card and Ubuntu 16.04 64 bits operating

system.

4.2. Visual quality

To evaluate the visual quality of the images generated by the simulator,

FLS and MSIS devices, equipping a virtual AUV, were simulated to insonify

four different scenarios. In the first scene, illustrated in Fig. 6(a), a wrecked

ferry was used; the shape of the ferry is insonified in the FLS image, as well as

the corrugated seabed after a normal mapping technique, as can be seen in the

sonar chart of Fig. 6(b); given the material reflectance is defined, the target is

distinguishable from other scene components. The second scene consists of a

subsea cooler connected to pipelines in an oil production field (see Fig. 6(c));

front faces of targets and the shadows occluding part of the scene are clearly

visible in FLS chart image (see Fig. 6(d)); the echo intensity of acoustic image

is perturbed with speckle noise pattern; also, the attenuation effect weakens

the intensity of the farthest bins from sonar head. The third scene contains a

destroyed car on the seafloor, and is depicted in Fig. 7(a); using the MSIS in

horizontal orientation, the regions with approximated perpendicular angle to

the sonar viewpoint, or multiple returns, are identified as brightest areas in the

sonar chart of Fig. 7(b); the image of this sonar chart is also characterized by

the granular disturbance of the speckle noise. An offshore Christmas tree is the

main target of the last scene (see Fig. 7(c)); an MSIS vertically mounted on the

AUV captures the slice scanning of seafloor and the Christmas tree (see Fig.

7(d)).
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(a) (b)

(c) (d)

Figure 6: Demonstration of acoustic images generated by the sonar simulation system: (a)

and (c) are the insonified targets in the underwater environment; (b) and (d) present sonar

data produced by FLS device. The simulated representation of wrecked ferry in Fig. 3 is

depicted by (a) and (b).

For all experiments, the initial bins presented low intensity values, caused by

the lack of acoustic feedback in short ranges. The rendering of complex scenes

was also addressed, highlighting the details present on geometries of insonified

objects. Yet, acoustic shadows contain valuable information for the accurate

interpretation of the sonar images; depending on the angle of incidence, the

shadows can present more details than the sonar acoustic return, as illustrated

by the pipelines in Fig. 6(d).
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(a) (b)

(c) (d)

Figure 7: Demonstration of acoustic images generated by the sonar simulation system: (a)

and (c) are the insonified targets in the underwater environment; (b) and (d) denotes the vir-

tual acoustic representations by MSIS device mounted in horizontal and vertical orientations,

respectively.

4.3. Computational time

To evaluate the computational cost of our simulator, we built a data set

containing four different geometric shapes randomly positioned along the sonar

viewport, for each frame: Cylinder, box, sphere and cone. These geometric

shapes provides a good variation in the amount of triangle meshes during tes-

selation process. To measure the execution time, three metrics were used, as

such: Average time, standard deviation and frame rate. For each iteration, the
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simulator executed the same series of tasks: 1) read input scene frame and sonar

device settings; 2) solve acoustic model equations; 3) output virtual sonar im-

age. The data set was used to compare the performance of the sonar simulator

with the method proposed in Cerqueira et al. (2017), with the same hardware

resources. The results are summarized in Tables 2 and 3.

According to the results, our simulator spends almost double the time than

the method in (Cerqueira et al., 2017); this can be explained by the fact that our

simulator constructs the scene by ray-tracing the secondary reflections, turning

the tessellation of shapes and additional acoustic phenomena to produce an extra

computational cost. Yet, since the processing time of ray-tracing depends on the

reflective areas presented in the camera viewport of the simulator (determined

by the scene to be rendered), the standard deviation was much greater than

that based on pure rasterization. On the other hand, the parallel approach on

GPU and the significant reduction of ray-triangle intersection calls retained our

approach close to the operation of real sonar devices. According to the list of

main FLS available in the market (Hurtós Vilarnau, 2014), the Tritech Gemini

720i sensor, with a field of view of 120◦x 20◦and 256 beams, owns refresh rates

of 5-30 fps (range dependent).

In comparison with other simulators, for the FLS device, our rates are su-

perior to the rates listed by DeMarco et al. (2015) (3 fps), Mai et al. (2018)

(1 fps) and Saç et al. (2015) (2.5 min), even with additional acoustic phenom-

ena present in the simulated sonar image. For MSIS type, to the best of our

knowledge, there is no previous work with rates for comparison.

The number of bins and beams also impacts on the simulation performance.

The former is directly proportional to image resolution; the amount of pixels

to be processed increases with the number of bins. The latter determines the

number of beam sections of shader images to be rendered.

4.4. Quantitative evaluation

For quantitative analysis, two different scenarios were sampled by real FLS

and MSIS sensors equipped on FlatFish AUV (Albiez et al., 2015). In the for-
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(a) (b)

Figure 8: Trials with FlatFish AUV during acoustic data acquisition for quantitative evalua-

tion: (a) At DFKI RIC, Bremen, Germany; (b) In Todos os Santos Bay, Salvador, Brazil.

mer scenario, a Tritech Gemini 720i insonified a subsea safety isolation valve

(SSIV) mockup on the seabed in Todos os Santos Bay, Salvador, Brazil; the lat-

ter scenario is comprised of a Tritech Micron DST sonar horizontally mounted to

capture the tank walls surrounding the AUV at DFKI RIC, Bremen, Germany.

Figure 8 present the FlatFish AUV during these trials. The aforementioned

experiments were repeated in the virtual underwater scenario with the same

targets, and our sonar system generated the corresponding acoustic representa-

tions. A summary of the experiments is depicted in Figs. 9 and 10.

Similarity measurements between real and simulated sonar images depend

on device configuration, environment characteristics, observable objects and ac-

quisition viewpoint. Four metrics were chosen to compute the similarity be-

tween the acoustic frames of the real and simulated images: Mean-squared

error (MSE), peak signal-to-noise (PSNR), structural similarity index measure

(SSIM) (Yang et al., 2008) and multi-scale structural similarity index measure

(MS-SSIM) (Wang et al., 2003). In order to preserve the original data, polar-

coordinate based images were used in this evaluation. Table 4 summarizes the

results found in comparison with the method proposed in (Cerqueira et al.,

2017). Values in the table were normalized to zero representing minimum simi-
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Table 4: Similarity evaluation results between real and simulated sonar images.

Scene Cerqueira et al. (2017) Ours

Device Target MSE PSNR SSIM MS-SSIM MSE PSNR SSIM MS-SSIM

FLS SSIV 0.990 0.669 0.361 0.628 0.994 0.690 0.405 0.683

MSIS Tank 0.996 0.761 0.834 0.852 0.996 0.760 0.832 0.849

larity, while one denotes maximum correlation.

In the FLS experiment, the values of our proposed work with MSE, PSNR,

SSIM and MS-SSIM were higher to those values found in (Cerqueira et al.,

2017), mainly explained by the attenuation, additive noise and reverberation

phenomena presented in the complex and full-detailed image. Conversely, SSIM

individually presents lower performance for our proposed system, due to the

sensitivity of this metric to changes on local intensity and contrast patterns

on a very simple scene image (see Figs. 9 (d) and (e)). In MSIS experiment,

MSE, PSNR, SSIM and MS-SSIM showed values approximately equal to the

ones found in Cerqueira et al. (2017), what can be justified to the simplicity of

the object edges insonified by the MSIS device. Indeed, the level of attenuation,

speckle noise and reverberation was not enough in the image to define a gain

on the simulated image in comparison with the real one, specifically regarding

the quality of the image.

5. Discussion and conclusions

Existing methods focus on simplified implementation of one specific sonar

type, where the majority of underwater sound properties are disregarded. The

proposed simulator here was able to reproduce the operation of two different

sonar devices: FLS and MSIS. All experimental scenarios were defined to demon-

strate phenomena usually found in real sonar images, such as speckle noise,

transmission loss and material properties of insonified surfaces. It is notewor-

thy that the sea level is not considered during sonar rendering, turning this

particular reverberation component absent from the computation of the final
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(a) (c)

(b) (d)

(e)

Figure 9: Experimental results with FLS device: (a) An SSIV mockup; (b) the acoustic data

captured by Tritech Gemini 720i sonar equipped on the FlatFish AUV; (c) a 3D model of the

SSIV; (d) and (e) are the acoustic data generated by our simulator and that one proposed in

Cerqueira et al. (2017), respectively.
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(a) (c)

(b) (d)

(e)

Figure 10: Experimental results with MSIS device: (a) DFKI tank; (b) the acoustic data

captured by Tritech Micron DST sonar horizontally mounted on the FlatFish AUV; ((c))

simulated tank; ((d)) and ((e)) are acoustic data generated by our simulator and that one

proposed in Cerqueira et al. (2017), respectively.
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simulated image.

The combination of rasterization and ray-tracing showed to speed up the

overall sonar simulation time, in comparison with full ray-based techniques.

This was achieved by reducing the number of launched rays, and at the same

time not degrading the quality of the image (what was improved, in fact). The

parallel ray-box routines on GPU also accelerated the intersection tests on ray-

tracing algorithm. According to the results, the proposed simulator was able

to compete with real sonar devices in terms of execution time, providing more

realistic scenes than those generated by state-of-the-art methods.

Regarding experimental evaluation, only three of the analyzed ray-based

works assessed the performance of their works, although restricted only to com-

putational time, showing high rendering frame rates. The similarity analysis

with real images demonstrated a raise with respect to our previous work for

complex scenes, and comparable results for simpler scenes. In fact, visual anal-

ysis of insonification from substantial detailed scenes illustrated that the pro-

posed simulator may help in developing and validating sonar-based intelligent

techniques, such as navigation, obstacle avoidance and target tracking. Finally,

our simulator was able to reproduce characteristics of sonar device operation,

although more proper evaluation needs and depends on the acquisition of more

real sonar data for comparison.

For future works, our guess is that the use of a ray-geometry intersection

algorithm along with spatial data structures, such as K-D trees and Octrees,

might optimize intersection tests, mainly for dynamic and complex scenarios.

Also, since the sonar simulator is open-source, next step will focus to support

other robotics platforms as ROS framework1.

1If the paper is accepted, code of the proposed simulator will become available for all the

research community.
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