
Hitting forbidden subgraphs in graphs of
bounded treewidth?

Marek Cygan1, Dániel Marx2, Marcin Pilipczuk3, and Micha l Pilipczuk3

1 Institute of Informatics, University of Warsaw, Poland
cygan@mimuw.edu.pl

2 Institute for Computer Science and Control,
Hungarian Academy of Sciences (MTA SZTAKI), Hungary

dmarx@cs.bme.hu
3 Department of Informatics, University of Bergen, Norway

(Marcin.Pilipczuk|Michal.Pilipczuk)@ii.uib.no

Abstract. We study the complexity of a generic hitting problem H-
Subgraph Hitting, where given a fixed pattern graph H and an input
graph G, we seek for the minimum size of a set X ⊆ V (G) that hits all
subgraphs of G isomorphic to H. In the colorful variant of the problem,
each vertex of G is precolored with some color from V (H) and we require
to hit only H-subgraphs with matching colors. Standard techniques (e.g.,
Courcelle’s theorem) show that, for every fixed H and the problem is fixed-
parameter tractable parameterized by the treewidth of G; however, it is
not clear how exactly the running time should depend on treewidth. For
the colorful variant, we demonstrate matching upper and lower bounds
showing that the dependence of the running time on treewidth of G is
tightly governed by µ(H), the maximum size of a minimal vertex separator
in H. That is, we show for every fixed H that, on a graph of treewidth

t, the colorful problem can be solved in time 2O(tµ(H)) · |V (G)|, but

cannot be solved in time 2o(tµ(H)) · |V (G)|O(1), assuming the Exponential
Time Hypothesis (ETH). Furthermore, we give some preliminary results
showing that, in the absence of colors, the parameterized complexity
landscape of H-Subgraph Hitting is much richer.

1 Introduction

The “optimality programme” is a thriving trend within parameterized complexity,
which focuses on pursuing tight bounds on the time complexity of parameterized
problems. Instead of just determining whether the problem is fixed-parameter
tractable, that is, whether the problem with a certain parameter k can be solved
in time f(k) · nO(1) for some computable function f(k), the goal is to determine
the best possible dependence f(k) on the parameter k. For several problems,

? The research leading to these results has received funding from the European Research
Council under the European Union’s Seventh Framework Programme (FP/2007-2013)
/ ERC Grant Agreement n. 267959, and n. 280152, as well as OTKA grant NK10564
and Polish National Science Centre grant DEC-2012/05/D/ST6/03214.

2

matching upper and lower bounds have been obtained for the function f(k). The
lower bounds are under the complexity assumption Exponential Time Hypothesis
(ETH), which roughly states than n-variable 3SAT cannot be solved in time 2o(n);
see, e.g., the survey of Lokshtanov et al. [11].

One area where this line of research was particularly successful is the study
of fixed-parameter algorithms parameterized by the treewidth of the input graph
and understanding how the running time has to depend on the treewidth. Classic
results on model checking monadic second-order logic on graphs of bounded
treewidth, such as Courcelle’s Theorem, provide a unified and generic way
of proving fixed-parameter tractability of most of the tractable cases of this
parameterization [1, 5]. While these results show that certain problems are solvable
in time f(t)·n on graphs of treewidth t for some function f , the exact function f(t)
resulting from this approach is usually hard to determine and far from optimal.
To get reasonable upper bounds on f(t), one typically resorts to constructing a
dynamic programming algorithm, which often is straightforward, but tedious.

The question whether the straightforward dynamic programming algorithms
for bounded treewidth graphs are optimal received particular attention in 2011.
On the hardness side, Lokshtanov, Marx and Saurabh proved that many natural
algorithms are probably optimal [10, 12]. In particular, they showed that there
are problems for which the 2O(t log t)n time algorithms are best possible, assuming
ETH. On the algorithmic side, Cygan et al. [6] presented a new technique,
called Cut&Count, that improved the running time of the previously known
(natural) algorithms for many connectivity problems. For example, previously
only 2O(t log t) · nO(1) algorithms were known for Hamiltonian Cycle and
Feedback Vertex Set, which was improved to 2O(t) · nO(1) by Cut&Count.
These results indicated that not only proving tight bounds for algorithms on tree
decompositions is within our reach, but such a research may lead to surprising
algorithmic developments. Further work includes derandomization of Cut&Count
in [3, 8], an attempt to provide a meta-theorem to describe problems solvable in
single-exponential time [13], and a new algorithm for Planarization [9].

We continue here this line of research by investigating a family of subgraph-
hitting problems parameterized by treewidth and find surprisingly tight bounds
for a number of problems. An interesting conceptual message of our results is
that, for every integer c ≥ 1, there are fairly natural problems where the best
possible dependence on treewidth is of the form 2O(tc).

Studied problems and motivation. In our paper we focus on the following generic
H-Subgraph Hitting problem: for a pattern graph H and an input graph G,
what is the minimum size of a set X ⊆ V (G) that hits all subgraphs of G that
are isomorphic to H? (Henceforth we call them H-subgraphs for brevity.) This
problem generalizes a few ones studied in the literature, for example Vertex
Cover (for H = P2), where a tight 2t · tO(1) · |V (G)| time bound is known [10], or
finding largest induced subgraph of maximum degree at most ∆ (for H = K1,∆+1),
which is W [1]-hard for treewidth parameter if ∆ is a part of the input [2], but,
to the best of our knowledge, no detailed study of treewidth parameterization for
constant ∆ has been done before. We also study the following colorful variant

3

Colorful H-Subgraph Hitting, where the input graph G is additionally
equipped with a coloring σ : V (G)→ V (H), and we are only interested in hitting
H-subgraphs whose all vertices match their colors.

A direct source of motivation for our study is the work of Pilipczuk [13], which
attempted to describe graph problems admitting fixed-parameter algorithms with
running time of the form 2O(t) · |V (G)|O(1), where t is the treewidth of G. The
proposed description is a logical formalism where one can quantify existence of
some vertex/edge sets, whose properties can be verified “locally” by requesting
satisfaction of a formula of modal logic in every vertex. In particular, Pilipczuk
argued that the language for expressing local properties needs to be somehow
modal, as it cannot be able to discover cycles in a constant-radius neighborhood
of a vertex. This claim was supported by a lower bound: unless ETH fails, for any
constant ` ≥ 5, the problem of finding the minimum size of a set that hits all the
cycles C` in a graph of treewidth t cannot be solved in time 2o(t

2) · |V (G)|O(1).
Motivated by this result, we think that it is natural to investigate the complexity
of hitting subgraphs for more general patterns H, instead of just cycles.

We may see the colorful variant as an intermediate step towards full under-
standing of the complexity of H-Subgraph Hitting, but it is also an interesting
problem on its own. It often turns out that the colorful variants of problems
are easier to investigate, while their study reveals useful insights; a remarkable
example is the kernelization lower bound for Set Cover and related problems [7].
In our case, if we allow colors, a major combinatorial difficulty vanishes: when
the algorithm keeps track of different parts of the pattern H that appear in the
graph G, and combines a few parts into a larger one, the coloring σ ensures
that the parts are vertex-disjoint. Hence, the colorful variant is easier to study,
whereas at the same time it reveals interesting insight into the standard variant.

Our results and techniques. In the case of Colorful H-Subgraph Hitting,
we obtain a tight bounds for the complexity of the treewidth parameterization.
First, note that, in the presence of colors, one actually can solve Colorful
H-Subgraph Hitting for each connected component of H independently; hence,
we may focus only on connected patterns H. Second, we observe that there are
two special cases. If H is a path then Colorful H-Subgraph Hitting reduces
to a maximum flow/minimum cut problem, and hence is polynomial-time solvable.
If H is a clique, then any H-subgraph of G needs to be contained in a single
bag of any tree decomposition, and there is a simple 2O(t)|V (G)|-time algorithm,
where t is the treewidth of G. Finally, for the remaining cases we show that the
dependence on treewidth is tightly connected to the value of µ(H), the maximum
size of a minimal vertex separator in H (a separator S is minimal if there are
two vertices x, y such that S is an xy-separator, but no proper subset of S is).
We prove the following matching upper and lower bounds.

Theorem 1. A Colorful H-Subgraph Hitting instance (G, σ) can be solved

in time 2O(tµ(H))|V (G)| in the case when H is connected and is not a clique,
where t is the treewidth of G.

4

Theorem 2. Let H be a graph that contains a connected component that is
neither a path nor a clique. Then, unless ETH fails, there does not exist an
algorithm that, given a Colorful H-Subgraph Hitting instance (G, σ) and

a tree decomposition of G of width t, resolves (G, σ) in time 2o(t
µ(H))|V (G)|O(1).

In all the theorems in this work we treat H as a fixed graph of constant size,
and hence the factors hidden in the O-notation may depend on the size of H.

In the absence of colors, we give preliminary results showing that the param-
eterized complexity of the treewidth parameterization of H-Subgraph Hitting
is more involved than the one of the colorful counterpart. In this setting, we
are able to relate the dependence on treewidth only to a larger parameter of
the graph H. Let µ?(H) be the maximum size of NH(A), where A iterates over
connected subsets of V (H) such that NH(NH [A]) 6= ∅, i.e., NH [A] is not a whole
connected component of H. Observe that µ(H) ≤ µ?(H) for any H. First, we
were able to construct a counterpart of Theorem 1 only with the exponent µ?(H).

Theorem 3. Assume H contains a connected component that is not a clique.
Then, given a graph G of treewidth t, one can solve H-Subgraph Hitting on

G in time 2O(tµ
?(H) log t)|V (G)|.

We remark that for Colorful H-Subgraph Hitting, an algorithm with

running time 2O(tµ
?(H))|V (G)| (as opposed to µ(H) in the exponent in Theorem 1)

is rather straightforward: in the state of dynamic programming one needs to
remember, for every subset X of the bag of size at most µ?(G), all forgotten
connected parts of H that are attached to X and not hit by the constructed
solution. To decrease the exponent to µ(H), we introduce a “prediction-like”
definition of a state of the dynamic programming, leading to highly involved
proof of correctness. For the problem without colors, however, even an algorithm
with the exponent µ?(H) (Theorem 3) is far from trivial. We cannot limit ourselves
to keeping track of forgotten connected parts of the graph H independently of
each other, since in the absence of colors these parts may not be vertex-disjoint
and, hence, we would not be able to reason about their union in latter bags of
the tree decomposition. To cope with this issue, we show that the set of forgotten
(not necessarily connected) parts of the graph H that are subgraphs of G can be
represented as a witness graph with O(tµ

?(H)) vertices and edges. As there are

only 2O(tµ
?(H) log t) possible graphs of this size, the running time bound follows.

We also observe that the bound of O(tµ
?(H)) on the size of a witness graph

is not tight for many patterns H. For example, if H is a path, then we are
able to find a witness graph with O(t) vertices and edges, and the algorithm of
Theorem 3 runs in 2O(t log t)|V (G)| time.

From the lower bound perspective, we were not able to prove an analog of
Theorem 2 in the absence of colors. However, there is a good reason for that:
we show that for any fixed h ≥ 2 and H = K2,h, the H-Subgraph Hitting

problem is solvable in time 2O(t2 log t)|V (G)| for a graph G of treewidth t. This
should be put in contrast with µ?(K2,h) = µ(K2,h) = h. Moreover, the lower

bound of 2o(t
h) can be proven if we break the symmetry of K2,h by attaching

5

a triangle to each of the two degree-h vertices of K2,h. This indicates that the
optimal dependency on t in an algorithm for H-Subgraph Hitting may heavily
rely on the symmetries of H, and may be more difficult to pinpoint.

2 Preliminaries

Graph notation. In most cases, we use standard graph notation. A t-boundaried
graph is a graph G with a prescribed (possibly empty) boundary ∂G ⊆ V (G)
with |∂G| ≤ t, and an injective function λG : ∂G → {1, 2, . . . , t}. For a vertex
v ∈ ∂G the value λG(v) is called the label of v.

A colored graph is a graph G with a function σ : V (G)→ L, where L is some
finite set of colors. A graph G is H-colored, for some other graph H, if L = V (H).
We also say in this case that σ is an H-coloring of G.

A homomorphism of graphs H and G is a function π : V (H)→ V (G) such
that ab ∈ E(H) implies π(a)π(b) ∈ E(G). In the H-colored setting, i.e., when G
is H-colored, we also require that σ(π(a)) = a for any a ∈ V (H) (every vertex of
H is mapped onto appropriate color). The notion extends also to t-boundaried
graphs: if both H and G are t-boundaried, we require that whenever a ∈ ∂H
then π(a) ∈ ∂G and λG(π(a)) = λH(a). Note, however, that we allow that a
vertex of intH is mapped onto a vertex of ∂G.

An H-subgraph of G is any injective homomorphism π : V (H) → V (G).
Recall that in the t-boundaried setting, we require that the labels are preserved,
whereas in the colored setting, we require that the homomorphism respect colors.
In the latter case, we call it a σ-H-subgraph of G for clarity.

We say that a set X ⊆ V (G) hits a (σ-)H-subgraph π if X ∩ π(V (H)) 6= ∅.
The (Colorful) H-Subgraph Hitting problem asks for a minimum possible
size of a set that hits all (σ-)H-subgraphs of G.

Tree decompositions. In this work, we view tree decompositions as rooted: in a
tree decomposition (T, β), T is a rooted tree and β(w) is a bag at node w ∈ V (T).
We moreover define γ(w) =

⋃
w′�w β(w′), where the union iterates over all

descendants w′ of w in T, and α(w) = γ(w)\β(w). In all our algorithms, by using
a recent 5-approximation algorithm for treewidth [4], we assume that we are given
a tree decomposition (T, β) where each bag is of size at most t; this linear shift
in the value of t is irrelevant for the complexity bounds, but makes the notation
much cleaner. Moreover, we assume that we are additionally equipped with a
labeling Λ : V (G) → {1, 2, . . . , t} that is injective on each bag β(w); observe
that it is straightforward to compute such a labeling in a top-down manner on T.
Consequently, we may treat each graph G[γ(w)] as a t-boundaried graph with
∂G[γ(w)] = β(w) and labeling Λ|β(w).

Important graph invariants, chunks and slices. For two vertices a, b ∈ V (H), a
set S ⊆ V (H) \ {a, b} is an ab-separator if a and b are not in the same connected
component of H \ S. The set S is additionally a minimal ab-separator if no
proper subset of S is an ab-separator. A set S is a minimal separator if it is a

6

Fig. 1: White and gray vertices denote a slice (left), chunk (centre) and separator
chunk (right) in a graph H being a path. The gray vertices belong to the boundary.

minimal ab-separator for some a, b ∈ V (H). For a graph H, by µ(H) we denote
the maximum size of a minimal separator in H.

For an induced subgraph H ′ = H[D], D ⊆ V (H), we define the boundary
∂H ′ = NH(V (H) \ D) and the interior intH ′ = D \ ∂H[D]; thus V (H ′) =
∂H ′] intH ′. Observe that NH(intH ′) ⊆ ∂H ′. An induced subgraph H ′ of H is
a slice if NH(intH ′) = ∂H ′, and a chunk if additionally H[intH ′] is connected.
For a set A ⊆ V (H), we use p[A] (c[A]) to denote the unique slice (chunk) with
interior A (if it exists). The intuition behind this definition is that, when we
consider some bag β(w) in a tree decomposition, a slice is a part of H that may
already be present in G[γ(w)] and we want to keep track of it. If a slice (chunk)
p is additionally equipped with a injective labeling λp : ∂p→ {1, 2, . . . , t}, then
we call the resulting t-boundaried graph a t-slice (t-chunk, respectively).

By µ?(H) we denote the maximum size of ∂c, where c iterates over all chunks
of H. We remark here that both µ(H) and µ?(H) are positive only for graphs H
that contain at least one connected component that is not a clique, as otherwise
there are no chunks with nonempty boundary nor minimal separators in H.

Observe that if S is a minimal ab-separator in H, and A is the connected
component of H \ S that contains a, then NH(A) = S and c[A] is a chunk in H
with boundary S. Consequently, µ(H) ≤ µ?(H) for any graph H. A chunk c for
which ∂c is a minimal separator in H is henceforth called a separator chunk. See
also Figure 1 for an illustration.

3 General algorithm for H-Subgraph Hitting

In this section we sketch an algorithm for H-Subgraph Hitting running in

time 2O(tµ
?(H) log t)|V (G)|, where t is the width of the tree decomposition we are

working on. The general idea is the natural one: for each node w of the tree
decomposition, for each set X̂ ⊆ β(w) and for each family P of t-slices, we would
like to find the minimum size of a set X ⊆ α(w) such that, if we treat G[γ(w)] as
a t-boundaried graph with ∂G[γ(w)] = β(w) and labeling Λ|β(w), then any slice

that is a subgraph of G[γ(w) \ (X ∪ X̂)] belongs to P. However, as there can be
as many as t|H| t-slices, we have too many choices for the family P.

The essence of the proof, encapsulated in the next lemma, is to show that
each “reasonable” choice of P can be encoded as a witness graph of essentially

size O(tµ
?(H)). Such a claim would give a 2O(tµ

?(H) log t) bound on the number of
possible witness graphs, and provide a good bound on the size of state space.

7

Lemma 4. Assume H contains a connected component that is not a clique. Then,
for any t-boundaried graph (G,λ) there exists a t-boundaried graph (Ĝ, λ) that

(a) is a subgraph of (G,λ), (b) ∂G = ∂Ĝ and G[∂G] = Ĝ[∂Ĝ], (c) Ĝ \ E(Ĝ[∂Ĝ])
contains O(tµ

?(H)) vertices and edges, and, (d) for any t-slice p and any set
Y ⊆ V (G) such that |Y |+ |V (p)| ≤ |V (H)|, there exists a p-subgraph in (G\Y, λ)

if and only if there exists one in (Ĝ \ Y, λ).

Proof. We define Ĝ by a recursive procedure. We start with Ĝ = G[∂G]. Then, for
every t-chunk c = (H ′, λ′), we invoke a procedure enhance(c, ∅). The procedure
enhance(c, X), for X ⊆ V (G), first tries to find a c-subgraph π in (G \X,λ). If
there is none, the procedure terminates. Otherwise, it first adds all edges and
vertices of π(c) to Ĝ that are not yet present there. Second, if |X| < |V (H)|,
then it recursively invokes enhance(c, X ∪ {v}) for each v ∈ π(c).

We first bound the size of the constructed graph Ĝ. There are at most
2|V (H)|tµ

?(H) choices for the chunk, since a chunk c is defined by its vertex
set, and there are at most tµ

?(H) labellings of its boundary. The procedure
enhance(c, X) at each step adds at most one copy of H to G, and branches into
at most |V (H)| directions. The depth of the recursion is bounded by |V (H)|.
Hence, in total at most 2|V (H)|tµ

?(H) · (|V (H)| + |E(H)|) · |V (H)||V (H)| edges

and vertices are added to Ĝ, except for the initial graph G[∂G].

It remains to argue that Ĝ satisfies property (d). Clearly, since (Ĝ, λ) is
a subgraph of (G,λ), the implication in one direction is trivial. In the other
direction, we start with the following claim.

Claim 5. For any set Z ⊆ V (G) of size at most |V (H)|, and for any t-chunk c,

if there exists a c-subgraph in (G \ Z, λ) then there exists also one in (Ĝ \ Z, λ).

Proof. Let π be a c-subgraph in (G \Z, λ). Define X0 = ∅. We will construct sets
X0 (X1 (. . ., where Xi ⊆ Z for every i, and analyse the calls to the procedure
enhance(c, Xi) in the process of constructing Ĝ.

Assume that enhance(c, Xi) has been invoked at some point during the
construction; clearly this is true for X0 = ∅. Since we assume Xi ⊆ Z, there
exists a c-subgraph in (G\Xi, λ) — π is one such example. Hence, enhance(c, Xi)

has found a c-subgraph πi, and added its image to Ĝ. If πi is a c-subgraph also in
(Ĝ\Z, λ), then we are done. Otherwise, there exists vi ∈ Z\Xi that is also present
in the image of πi. In particular, since |Z| ≤ |V (H)|, we have |Xi| < |V (H)| and
the call enhance(c, Xi ∪ {vi}) has been invoked. We define Xi+1 := Xi ∪ {vi}.

Since the sizes of sets Xi grow at each step, for some Xi, i ≤ |Z|, we reach

the conclusion that πi is a c-subgraph of (Ĝ \ Z, λ), and the claim is proven. y

Fix now a set Y ⊆ V (G) and a t-slice p with labeling λp and with |Y | +
|V (p)| ≤ |V (H)|. Let π be a p-subgraph of (G \ Y, λ). Let A1, A2, . . . , Ar be the
connected components of H[intp]. Define Hi = NH [Ai], and observe that each
Hi is a chunk with ∂Hi = NH(Ai) ⊆ ∂p. We define λi = λp|∂Hi to obtain a
t-chunk ci = (Hi, λi). By the properties of a t-slice, each vertex of p is present
in at least one graph ci, and vertices of ∂p may be present in more than one.

8

We now inductively define injective homomorphisms π0, π1, . . . , πr such that
of πi maps the subgraph of p induced by ∂p ∪

⋃
j≤iAj to (Ĝ \ Y, λ), and does

not use any vertex of
⋃
j>i π(Aj). Observe that πr is a p-subgraph of (Ĝ \ Y, λ).

Hence, this construction will conclude the proof of the lemma.
For base case, recall that π(∂p) ⊆ ∂G = ∂Ĝ and define π0 = π|∂p. For the

inductive case, assume that πi−1 has been constructed for some 1 ≤ i ≤ r. Define

Zi = Y ∪ π(∂p \ ∂Hi) ∪
⋃
j<i

πi−1(Aj) ∪
⋃
j>i

π(Aj).

Note that since π and πi−1 are injective and Y is disjoint with π(∂p), then
we have that Zi ∩ π(∂p) = π(∂p \ ∂Hi). This observation and the inductive
assumption on πi−1 imply that the mapping π|V (Hi) does not use any vertex
of Zi. Thus, π|V (Hi) is a ci-subgraph in (G \ Zi, λ). Observe moreover that
|Zi| ≤ |Y | + |V (p)| ≤ |V (H)|. By Claim 5, there exists a ci-subgraph π′i in

(Ĝ \Zi, λ). Observe that, since π′i and πi−1 are required to preserve labellings on
boundaries of their preimages, πi := π′i ∪πi−1 is a function and a homomorphism.
Moreover, by the definition of Zi, πi is injective and does not use any vertex
of
⋃
j>i π(Aj). Hence, πi satisfies all the required conditions, and the inductive

construction is completed. This concludes the proof of the lemma. ut

Using Lemma 4, we now define states of dynamic programming algorithm
on the input tree decomposition (T, β). For every node w ∈ V (T), a state is a

pair s = (X̂, Ĝ) where X̂ ⊆ β(w) and Ĝ is a graph with O(tµ
?(H)) vertices and

edges such that β(w) \ X̂ ⊆ V (Ĝ) and Ĝ[β(w) \ X̂] = G[β(w) \ X̂]. We treat

Ĝ as a t-boundaried graph with ∂Ĝ = β(w) \ X̂ and labeling Λ|β(w)\X̂ . We say

that a set X ⊆ α(w) is feasible for w and s if for every Y ⊆ β(w) \ X̂ and
for every t-slice p such that |Y |+ |V (p)| ≤ |V (H)|, if there is a p-subgraph in

(G[γ(w)\(X∪X̂∪Y)], Λ|β(w)\(X̂∪Y)) then there is also one in (Ĝ\Y,Λ|β(w)\(X̂∪Y)).

For every w and every state s, we would like to compute T [w, s], the minimum
possible size of a feasible set X. Note that the answer to the input H-Subgraph
Hitting instance is the minimum value of T [root(T), (∅, Ĝ)] where Ĝ iterates
over all graphs of with O(tµ

?(H)) vertices and edges that do not contain the
t-slice (H, ∅) as a subgraph. Hence, it remains to show how to compute the values
T [w, s] in a bottom-up manner in the tree decomposition, which is relatively
standard.

4 Discussion on special cases of H-Subgraph Hitting

As announced in the introduction, we now discuss a few special cases of H-
Subgraph Hitting. First, let us considerH being a path,H = Ph for some h ≥ 3.
Note that µ(Ph) = 1, while µ?(Ph) = 2 for h ≥ 5. Observe that in the dynamic
programming algorithm of the previous section we have that G[γ(w) \ (X ∪Xw)]
does not contain an H-subgraph and, hence, the witness graph obtained through
Lemma 4 does not contain an H-subgraph as well. However, graphs excluding

9

Ph as a subgraph have very rigid structure: any their depth-first search tree has
depth bounded by h. Using this insight, we can derive the following improvement
of Lemma 4, that improves the running time of Theorem 3 to 2O(t log t)|V (G)|
for H being a path.4

Lemma 6. Assume H is a path. Then, for any t-boundaried graph (G,λ) that
does not contain an H-subgraph, there exists a witness graph as in Lemma 4 with
O(t) vertices and edges.

Second, let us consider H = K2,h (the complete biclique with 2 vertices on one
side, and h on the other), for some h ≥ 2. Observe that µ?(K2,h) = µ(K2,h) = h.
On the other hand, we note the following.

Lemma 7. Assume H = K2,h for some h ≥ 2. If the witness graph given by
Lemma 4 does not admit an H-subgraph, then it has O(t2) vertices and edges.

Proof. Since the constructed witness graph Ĝ does not admit an H-subgraph,
each two vertices v1, v2 ∈ ∂Ĝ have less than h common neighbours in Ĝ, as
otherwise there is a H-subgraph in Ĝ \ ∂Ĝ on vertices v1, v2 and h vertices of
NĜ(v1) ∩NĜ(v2). Hence∑

v∈V (Ĝ)\∂Ĝ

(
|NĜ(v) ∩ ∂Ĝ|

2

)
≤ (h− 1)

(
|∂Ĝ|

2

)
≤ (h− 1)

(
t

2

)
. (1)

Let V (H) = {a1, a2, b1, b2, . . . , bh} whereA := {a1, a2} andB := {b1, b2, . . . , bh}
are bipartition classes of H. Note that there are only two types of proper chunks
in H: NH [ai], i = 1, 2 and NH [bj], 1 ≤ j ≤ h. Hence, one can easily ver-

ify that in the construction of the witness graph Ĝ of Lemma 4 every vertex
v ∈ Ĝ \ ∂Ĝ has at least two neighbours in ∂Ĝ, and Ĝ \ ∂Ĝ is edgeless. Then

we have |NĜ(v) ∩ ∂Ĝ| ≤ 2
(|NĜ(v)∩∂Ĝ|

2

)
for each v ∈ V (Ĝ) \ ∂Ĝ. Consequently,

by (1) there are at most 2(h− 1)
(
t
2

)
edges of Ĝ with exactly one endpoint in ∂Ĝ,

whereas there are at most
(
t
2

)
edges in Ĝ[∂Ĝ]. The lemma follows. ut

Lemma 7 together with a dynamic programming as in Section 3 imply that
K2,h-Subgraph Hitting can be solved in 2O(t2 log t)|V (G)| time, in spite of the
fact that µ?(K2,h) = µ(K2,h) = h.

We now show that a slight modification of K2,h enables us to prove a much
higher lower bound. For this, let us consider a graph Hh for h ≥ 2 defined as K2,h

with triangles attached to both degree-h vertices. Note that µ(Hh) = µ?(Hh) = h.
One may view Hh as K2,h with some symmetries broken, so that the proof of
Lemma 7 does not extend to Hh. We observe that the lower bound proof of
Theorem 2 works, with small modifications, also for the case of Hh-Subgraph
Hitting.

Theorem 8. Unless ETH fails, for every h ≥ 2 there does not exist an algorithm
that, given a Hh-Subgraph Hitting instance G and a tree decomposition of G

of width t, resolves G in time 2o(t
h)|V (G)|O(1).

4 The proofs Lemma 6 and Theorem 8 are deferred to the full version of the paper.

10

Furthermore, the proof of Theorem 8 does not need to assume that h is a constant.
Thus, we obtain the following interesting double-exponential lower bound.

Corollary 9. Unless ETH fails, there does not exist an algorithm that, given a
graph G with a tree decomposition of width t, and an integer h = O(log |V (G)|),
finds in 22

o(t) |V (G)|O(1) time the minimum size of a set that hits all Hh-subgraphs
of G.

5 Overview of the proof for colorful variant

5.1 Proof sketch of Theorem 1

In this sketch, we focus on the definition of a state that will be used in the dynamic
programming algorithm on the input tree decomposition (T, β). A potential chunk

is a separator t-chunk c[A]. A state at node w ∈ V (T) is a pair (X̂,C) where

X̂ ⊆ β(w) and C is a family of potential chunks, where each chunk c in C: (i)

uses only labels of Λ−1(β(w) \ X̂); and (ii) the mapping π : ∂c→ β(w) \ X̂ that
maps a vertex of ∂c to a vertex with the same label is a homomorphism from
H[∂c] to G (in particular, it respects colors). Observe that, as |∂c| ≤ µ(H) for
any separator chunk c, there are O(tµ(H)) possible separator t-chunks, and hence

2O(tµ(H)) possible states for a fixed node w.

The intuitive idea behind a state is that, for node w ∈ V (T) and state (X̂,C),
we investigate the possibility of the following: for a solution X we are looking for, it
holds that X̂ = X ∩β(w) and the family C is exactly the set of possible separator
chunks of H that are subgraphs of G \X, where the subgraph relation is defined
as on t-boundaried graphs and G \X is equipped with ∂G \X = β(w) \X and
labeling Λw|β(w)\X . The difficult part of the proof is to show that this information
is sufficient, in particular, it suffices to keep track only of the separator chunks,
and not all proper chunks of H. We emphasize here that the intended meaning
of the set C is that it represents separator chunks present in the entire G \X,
not G[γ(w)] \X. That is, to be able to limit ourselves only to separator chunks,
we need to encode in the state some prediction for the future. This makes our
dynamic programming algorithm rather non-standard.

Let us proceed to a more formal definition of the dynamic programming
table. For a bag w and a state s = (X̂,C) at w we define the graph G(w, s) as

follows. We first take the graph G[γ(w)] \ X̂ and then, for each chunk c ∈ C we
add a disjoint copy of c to G(w, s) and identify the pairs of vertices with the

same label in ∂c and in β(w). Note that G[γ(w)] \ X̂ is an induced subgraph of
G(w, s): by the properties of elements of C, no new edge has been introduced
between two vertices of β(w). We make G(w, s) a t-boundaried graph in a natural

way: ∂G(w, s) = β(w) \ X̂ with labeling Λ|∂G(w,s). Here we exploit the crucial
property of the colored version of the problem: no two isomorphic chunks glued
to β(w) can participate together in any σ-H-subgraph, since their vertices have
the same colors. Therefore, attaching undeletable chunks of C explicitly to β(w)

11

is equivalent to just allowing these chunks to be present either in the future, or
in the forgotten part of the graph.

For each bag w and for each state s = (X̂,C) we say that a set X ⊆ α(w) is
feasible if G(w, s) \X does not contain any σ-H-subgraph, and for any separator
t-chunk c of H, if there is a c-subgraph in G(w, s) \X then c ∈ C. We would like
to compute the value T [w, s] that equals the minimum size of a feasible set X,
using the standard bottom-up dynamic programming. Observe that T [root(T), ∅]
is the minimum size of a solution for Colorful H-Subgraph Hitting.

5.2 Proof sketch of Theorem 2

The proof of this theorem is inspired by the approach used in [13] for the lower
bound for C`-Subgraph Hitting.

Consider a minimal separator S in H such that µ := |S| = µ(H) and A,B are
two such distinct connected components of H \ S with NH(A) = NH(B) = S.

With some simple preprocessing, we may assume we are given n-variable
3-CNF formula Φ where each variable appears exactly three times, at least once
positively and at least once negatively. Let s be a smallest integer such that
sµ ≥ 3n; s = O(n1/µ). We start by introducing a set M of sµ vertices wi,c,
1 ≤ i ≤ s, c ∈ S, with coloring σ(wi,c) = c. The set M is the central part of the
constructed graph G. In particular, each connected component of G \M will be
of constant size, immediately implying that G has treewidth O(n1/µ).

To each clause C of Φ, and to each literal l in C, assign a function fC,l :
S → {1, 2, . . . , s} such that fC,l 6= fC′,l′ for (C, l) 6= (C ′, l′). Observe that this is
possible due to the assumption sµ ≥ 3n and the preprocessing step.

The main idea is as follows. For each clause C and literal l in C, we attach
a copy of H[NH [A]] and a copy of H[NH [B]] to {wfC,l(c),c | c ∈ S} in a natural
way. For each variable x we use constant-size gadgets to we wire up all the copies
of H[NH [A]] that correspond to an occurrence of that variable, so that with
minimum budget we may hit all copies corresponding to positive occurrences of
x or all copies corresponding to negative occurrences; this choice corresponds to
the decision on the value of x. Similarly, for each clause C we use constant-size
gadgets to wire up all the copies of H[NH [B]] that correspond to literals in
C, so that with minimum budget we may hit all but one of these copies; this
choice corresponds to the decision which literal of C is satisfied by an assignment.
Finally, we attach to the construction a large number of copies of H \ (A∪B∪S),
so that a small solution needs to hit any σ-H-subgraph of (G, σ) in a vertex of
A∪B. The construction enforces that, whenever a clause C chooses a literal l to
satisfy C, it leaves the corresponding copy of H[B] not hit, forcing the solution to
hit the corresponding copy of H[A], and therefore forcing the correct assignment
of the variable in l.

6 Conclusions and open problems

Our preliminary study of the treewidth parameterization of the H-Subgraph
Hitting problem revealed that its parameterized complexity is highly involved.

12

Whereas for the more graspable colored version we obtained essentially tight
bounds, a large gap between lower and upper bounds remains for the standard
version. In particular, the following two questions arise: Can we improve the
running time of Theorem 3 to factor tµ(H) in the exponent? Is there any relatively
general symmetry-breaking assumption on H that would allow us to show a

2o(t
µ(H)) lower bound in the absence of colors?
In a broader view, let us remark that the complexity of the treewidth param-

eterization of minor-hitting problems is also currently highly unclear. Here, for
a minor-closed graph class G and input graph G, we seek for the minimum size
of a set X ⊆ V (G) such that G \ X ∈ G, or, equivalently, X hits all minimal
forbidden minors of G. A straightforward dynamic programming algorithm has
double-exponential dependency on the width of the decomposition. However, it
was recently shown that G being the class of planar graphs, a 2O(t log t)|V (G)|-time
algorithm exists [9]. Can this result be generalized to more graph classes?

References

1. Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable graphs.
J. Algorithms 12(2), 308–340 (1991)

2. Betzler, N., Bredereck, R., Niedermeier, R., Uhlmann, J.: On bounded-degree vertex
deletion parameterized by treewidth. Discrete Appl. Math. 160(1-2), 53–60 (2012)

3. Bodlaender, H.L., Cygan, M., Kratsch, S., Nederlof, J.: Deterministic single expo-
nential time algorithms for connectivity problems parameterized by treewidth. In:
ICALP (1). pp. 196–207 (2013)

4. Bodlaender, H.L., Drange, P.G., Dregi, M.S., Fomin, F.V., Lokshtanov, D., Pilipczuk,
M.: An O(ckn) 5-approximation algorithm for treewidth. In: FOCS. pp. 499–508
(2013)

5. Courcelle, B.: The monadic second-order logic of graphs I: Recognizable sets of
finite graphs. Inf. Comput. 85, 12–75 (1990)

6. Cygan, M., Nederlof, J., Pilipczuk, M., Pilipczuk, M., van Rooij, J.M.M., Woj-
taszczyk, J.O.: Solving connectivity problems parameterized by treewidth in single
exponential time. In: FOCS. pp. 150–159 (2011)

7. Dom, M., Lokshtanov, D., Saurabh, S.: Incompressibility through colors and ids.
In: ICALP (1). pp. 378–389 (2009)

8. Fomin, F.V., Lokshtanov, D., Saurabh, S.: Efficient computation of representative
sets with applications in parameterized and exact algorithms. In: SODA. pp. 142–151
(2014)

9. Jansen, B.M.P., Lokshtanov, D., Saurabh, S.: A near-optimal planarization algo-
rithm. In: SODA. pp. 1802–1811 (2014)

10. Lokshtanov, D., Marx, D., Saurabh, S.: Known algorithms on graphs on bounded
treewidth are probably optimal. In: SODA. pp. 777–789 (2011)

11. Lokshtanov, D., Marx, D., Saurabh, S.: Lower bounds based on the exponential
time hypothesis. Bulletin of the EATCS 105, 41–72 (2011)

12. Lokshtanov, D., Marx, D., Saurabh, S.: Slightly superexponential parameterized
problems. In: SODA. pp. 760–776 (2011)

13. Pilipczuk, M.: Problems parameterized by treewidth tractable in single exponential
time: A logical approach. In: MFCS. pp. 520–531 (2011)

