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1 Introduction

The problem of appropriately partitioning the vertices of a given graph into
subsets, such that certain conditions are fulfilled, is a fundamental algorithmic
problem. Apart from their evident theoretical interest, graph partitioning prob-
lems have great practical relevance in a wide spectrum of applications, such as
in computer vision, image processing, and VLSI layout design, among others,
as they appear in many divide-and-conquer algorithms (for an overview see [2]).
In particular, the problem of partitioning a graph into equal sized components,
while minimizing the number of edges among the components turns out to be
very important in parallel computing. For instance, to parallelize applications
we usually need to evenly distribute the computational load to processors, while
minimizing the communication between processors.

Given a simple graph G = (V,E) and k ≥ 2, a balanced k-partition of G =

(V,E) is a partition of V into k vertex sets V1, V2, . . . , Vk such that |Vi| ≤
⌈
|V |
k

⌉
for every i = 1, 2, . . . , k. The cut size (or simply, the size) of a balanced k-
partition is the number of edges of G with one endpoint in a set Vi and the other
endpoint in a set Vj , where i 6= j. In particular, for k = 2, a balanced 2-partition
of G is also termed a bisection of G. The minimum bisection problem (or simply,
Min-Bisection) is the problem, given a graph G, to compute a bisection of G
with the minimum possible size, also known as the bisection width of G.

Due to the practical importance of Min-Bisection, several heuristics and
exact algorithms have been developed, which are quite efficient in practice [2],
from the first ones in the 70’s [16] up to the very efficient one described in [7].
However, from the theoretical viewpoint, Min-Bisection has been one of the
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most intriguing problems in algorithmic graph theory so far. This problem is
well known to be NP-hard for general graphs [11], while it remains NP-hard
when restricted to the class of everywhere dense graphs [18] (i.e. graphs with
minimum degree Ω(n)), to the class of bounded maximum degree graphs [18],
or to the class of d-regular graphs [5]. On the positive side, very recently it
has been proved that Min-Bisection is fixed parameter tractable [6], while
the currently best known approximation ratio is O(log n) [20]. Furthermore, it
is known that Min-Bisection can be solved in polynomial time on trees and
hypercubes [9, 18], on graphs with bounded treewidth [13], as well as on grid
graphs with a constant number of holes [10,19].

In spite of this, the complexity status of Min-Bisection on planar graphs,
on grid graphs with an arbitrary number of holes, and on unit disk graphs have
remained longstanding open problems so far [8,10,14,15]. The first two of these
problems are equivalent, as there exists a polynomial time reduction from planar
graphs to grid graphs with holes [19]. Furthermore, there exists a polynomial time
reduction from planar graphs with maximum degree 4 to unit disk graphs [8].
Therefore, since grid graphs with holes are planar graphs of maximum degree 4,
there exists a polynomial reduction of Min-Bisection from planar graphs to
unit disk graphs. Another motivation for studying Min-Bisection on unit disk
graphs comes from the area of wireless communication networks [1, 3], as the
bisection width determines the communication bandwidth of the network [12].

Our contribution. In this paper we resolve the complexity of Min-Bisection
on unit disk graphs. In particular, we prove that this problem is NP-hard by
providing a polynomial reduction from a variant of the maximum satisfiability
problem, namely from the monotone Max-XOR(3) problem. This optimization
problem (which is also known as the monotone Max-2-XOR(3) problem) essen-
tially encodes the Max-Cut problem on 3-regular graphs. Consider a monotone
XOR-boolean formula φ with variables x1, x2, . . . , xn, i.e. a boolean formula that
is the conjunction of XOR-clauses of the form (xi ⊕ xk), where no variable is
negated. If, in addition, every variable xi appears in exactly k XOR-clauses in
φ, then φ is called a monotone XOR( k) formula. The monotone Max-XOR( k)
problem is, given a monotone XOR(k) formula φ, to compute a truth assignment
of the variables x1, x2, . . . , xn that XOR-satisfies the largest possible number of
clauses of φ. Recall here that the clause (xi ⊕ xk) is XOR-satisfied by a truth
assignment τ if and only if xi 6= xk in τ . Given a monotone XOR(k) formula
φ, we construct a unit disk graph Hφ such that the truth assignments that
XOR-satisfy the maximum number of clauses in φ correspond bijectively to the
minimum bisections in Hφ, thus proving that Min-Bisection is NP-hard on
unit disk graphs.

Organization of the paper. Necessary definitions and notation are given in
Section 2. In Section 3, given a monotone XOR(3)-formula φ with n variables, we
construct an auxiliary unit disk graph Gn, which depends only on the size n of φ
(and not on φ itself). In Section 4 we present our reduction from the monotone
Max-XOR(3) problem to Min-Bisection on unit disk graphs, by modifying
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the graph Gn to a unit disk graph Hφ which also depends on the formula φ
itself. Finally we discuss the presented results and remaining open problems in
Section 5.

2 Preliminaries and Notation

We consider in this article simple undirected graphs with no loops or multiple
edges. In an undirected graph G = (V,E), the edge between vertices u and v
is denoted by uv, and in this case u and v are said to be adjacent in G. For
every vertex u ∈ V the neighborhood of u is the set N(u) = {v ∈ V | uv ∈ E}
of its adjacent vertices and its closed neighborhood is N [u] = N(u) ∪ {u}. The
subgraph of G that is induced by the vertex subset S ⊆ V is denoted G[S].
Furthermore a vertex subset S ⊆ V induces a clique in G if uv ∈ E for every
pair u, v ∈ S.

A graph G = (V,E) with n vertices is the intersection graph of a family
F = {S1, . . . , Sn} of subsets of a set S if there exists a bijection µ : V → F such
that for any two distinct vertices u, v ∈ V , uv ∈ E if and only if µ(u)∩µ(v) 6= ∅.
Then, F is called an intersection model of G. A graph G is a disk graph if
G is the intersection graph of a set of disks (i.e. circles together with their
internal area) in the plane. A disk graph G is a unit disk graph if there exists
a disk intersection model for G where all disks have equal radius (without loss
of generality, all their radii are equal to 1). Given a disk (resp. unit disk) graph
G, an intersection model of G with disks (resp. unit disks) in the plane is called
a disk (resp. unit disk) representation of G. Alternatively, unit disk graphs can
be defined as the graphs that can be represented by a set of points on the plane
(where every point corresponds to a vertex) such that two vertices intersect if
and only if the corresponding points lie at a distance at most some fixed constant
c (for example c = 1). Although these two definitions of unit disk graphs are
equivalent, in this paper we use the representation with the unit disks instead
of the representation with the points.

Note that any unit disk representation R of a unit disk graph G = (V,E)
can be completely described by specifying the centers cv of the unit disks Dv,
where v ∈ V , while for any disk representation we also need to specify the radius
rv of every disk Dv, v ∈ V . Given a graph G, it is NP-hard to decide whether
G is a disk (resp. unit disk) graph [4, 17]. Given a unit disk representation R of
a unit disk graph G, in the remainder of the paper we may not distinguish for
simplicity between a vertex of G and the corresponding unit disk in R, whenever
it is clear from the context. It is well known that the Max-XOR problem is NP-
hard. Furthermore, it remains NP-hard even if the given formula φ is restricted
to be a monotone XOR(3) formula. For the sake of completeness we provide in
the next lemma a proof of this fact.

Lemma 1. Monotone Max-XOR(3) is NP-hard.

Proof. The Max-Cut problem is NP-hard, even when restricted to cubic graphs,
i.e. to graphs G = (V,E) where |N(u)| = 3 for every vertex u ∈ V [21]. Consider
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a cubic graph G = (V,E). We construct from G a monotone XOR(3) formula
φ as follows. First we define a boolean variable xu for every vertex u ∈ V .
Furthermore for every edge uv ∈ E we define the XOR-clause (xu ⊕ xv) and we
define φ to be the conjunction of all these clauses. Then, G has a 2-partition
(i.e. a cut) of size k if and only if there exists a satisfying assignment τ of φ
that XOR-satisfies k clauses of φ. Indeed, for the first direction, consider such a
2-partition of G into sets V1 and V2 with k edges between V1 and V2, and define
the truth assignment τ such that xu = 1 if u ∈ V1 and xu = 0 if u ∈ V2. Then τ
satisfies k clauses of φ. For the opposite direction, consider a truth assignment τ
that XOR-satisfies k clauses of φ and define a 2-partition of G into sets V1 and
V2 such that u ∈ V1 if xu = 1 and u ∈ V2 if xu = 0. Then this 2-partition has
size k. This completes the proof of the lemma. ut

3 Construction of the unit disk graph Gn

In this section we present the construction of the auxiliary unit disk graph Gn,
given a monotone XOR(3)-formula φ with n variables. Note that Gn depends
only on the size of the formula φ and not on φ itself. Using this auxiliary graph
Gn we will then construct in Section 4 the unit disk graph Hφ, which depends
also on φ itself, completing thus the NP-hardness reduction from monotone Max-
XOR(3) to the minimum bisection problem on unit disk graphs.

We define Gn by providing a unit disk representation Rn for it. For simplicity
of the presentation of this construction, we first define a set of halflines on the
plane, on which all centers of the disks are located in the representation Rn.

3.1 The half-lines containing the disk centers

Denote the variables of the formula φ by {x1, x2, . . . , xn}. Define for simplicity
the values d1 = 5.6 and d2 = 7.2. For every variable xi, where i ∈ {1, 2, . . . , n},
we define the following four points in the plane:

– pi,0 = (2id1, 2(i− 1)d2) and pi,1 = ((2i− 1)d1, (2i− 1)d2), which are called
the bend points for variable xi, and

– qi,0 = ((2i− 1)d1, 2(i− 1)d2) and ri,0 = (2id1, (2i− 1)d2), which are called
the auxiliary points for variable xi.

Then, starting from point pi,j , where i ∈ {1, 2, . . . , n} and j ∈ {0, 1}, we draw
in the plane one halfline parallel to the x-axis pointing to the left and one halfline
parallel to the y-axis pointing upwards. The union of these two halflines on the
plane is called the track Ti,j of point pi,j . Note that, by definition of the points
pi,j , the tracks Ti,0 and Ti,1 do not have any common point, and that, whenever
i 6= k, the tracks Ti,j and Tk,` have exactly one common point. Furthermore note
that, for every i ∈ {1, 2, . . . , n}, both auxiliary points qi,0 and ri,0 belong to the
track Ti,0. The construction of the tracks is illustrated in Figure 1.

We will construct the unit disk representation Rn of the graph Gn in such a
way that the union of all tracks Ti,j will contain the centers of all disks in Rn.The
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Fig. 1. The construction of the points pi,j and the tracks Ti,j , where 1 ≤ i ≤ n
and j ∈ {0, 1}.

construction of Rn is done by repeatedly placing on the tracks Ti,j (cf. Figure 1)
multiple copies of three particular unit disk representations Q1(p), Q2(p), and
Q3(p) (each of them including 2n6+2 unit disks), which we use as gadgets in our
construction. Before we define these gadgets we need to define first the notion
of a (t, p)-crowd.

Definition 1. Let ε > 0 be infinitesimally small. Let t ≥ 1 and p = (px, py)
be a point in the plane. Then, the horizontal (t, p)-crowd (resp. the vertical
(t, p)-crowd) is a set of t unit disks whose centers are equally distributed be-
tween the points (px−ε, py) and (px+ε, py) (resp. between the points (px, py−ε)
and (px, py+ε)).

Note that, by Definition 1, both the horizontal and the vertical (t, p)-crowds
represent a clique of t vertices. Furthermore note that both the horizontal and
the vertical (1, p)-crowds consist of a single unit disk centered at point p. For
simplicity of the presentation, we will graphically depict in the following a (t, p)-
crowd just by a disk with a dashed contour centered at point p, and having the
number t written next to it cf. Figure 2. Furthermore, whenever the point p lies
on the horizontal (resp. vertical) halfline of a track Ti,j , then any (t, p)-crowd
will be meant to be a horizontal (resp. vertical) (t, p)-crowd. For instance, a
horizontal (t, p)-crowd is illustrated in Figure 2.

3.2 Three useful gadgets

Let p = (px, py) be a point on a track Ti,j . Whenever p lies on the horizontal
halfline of Ti,j , we define for any δ > 0 (with a slight abuse of notation) the
points p− δ = (px − δ, py) and p+ δ = (px + δ, py). Similarly, whenever p lies on
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Fig. 2. A horizontal (t, p)-crowd and an equivalent way to represent it using a disk
with a dashed contour centered at point p, where t = 5, ε > 0 is infinitesimally small,
p = (px, py), q = (px − ε, py), and r = (px + ε, py).

the vertical halfline of Ti,j , we define for any δ > 0 the points p−δ = (px, py−δ)
and p+δ = (px, py+δ). Assume first that p lies on the horizontal halfline of Ti,j .
Then we define the unit disk representation Q1(p) as follows:

– Q1(p) consists of the horizontal (n3, p+ 0.9)-crowd, the horizontal
(2n6 − 2n3 + 2, p+ 2.8)-crowd, and the horizontal (n3, p+ 4.7)-crowd, as it
is illustrated in Figure 3(a).

Assume now that p lies on the vertical halfline of Ti,j , we define the unit disk
representations Q2(p) and Q3(p) as follows:

– Q2(p) consists of a single unit disk centered at point p, the vertical
(n6, p+ 1.8)-crowd, a single unit disk centered at point p + 3.6, and the
vertical (n6, p+ 5.4)-crowd, as it is illustrated in Figure 3(b).

– Q3(p) consists of a single unit disk centered at point p, the vertical
(n6, p+ 1.7)-crowd, a single unit disk centered at point p + 3.6, and the
vertical (n6, p+ 5.4)-crowd, as it is illustrated in Figure 3(c).

In the above definition of the unit disk representation Qk(p), where k ∈
{1, 2, 3}, the point p is called the origin of Qk(p). Note that the origin p of
the representation Q2(p) (resp. Q3(p)) is the center of a unit disk in Q2(p)
(resp. Q3(p)). In contrast, the origin p of the representation Q1(p) is not the
center of any unit disk of Q1(p), however p lies in Q1(p) within the area of each
of the n3 unit disks of the horizontal (n3, p+ 0.9)-crowd of Q1(p). For every point
p, each of Q1(p), Q2(p), and Q3(p) has in total 2n6 + 2 unit disks (cf. Figure 3).

Furthermore, for any i ∈ {1, 2, 3} and any two points p and p′ in the plane,
the unit disk representation Qi(p

′) is an isomorphic copy of the representation
Qi(p), which is placed at the origin p′ instead of the origin p. Moreover, for
any point p in the vertical halfline of a track Ti,j , the unit disk representations
Q2(p) and Q3(p) are almost identical: their only difference is that the vertical
(n6, p+ 1.8)-crowd in Q2(p) is replaced by the vertical (n6, p+ 1.7)-crowd in
Q3(p), i.e. this whole crowd is just moved downwards by 0.1 in Q3(p).

Observation 1 Let k ∈ {1, 2, 3} and p ∈ Ti,j, where i ∈ {1, 2, . . . , n} and
j ∈ {0, 1}. For every two adjacent vertices u, v in the unit disk graph defined by
Qk(p), u and v belong to a clique of size at least n6 + 1.
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Fig. 3. The unit disk representations Q1(p), Q2(p), and Q3(p), where p is a point on
one of the tracks Ti,j , where 1 ≤ i ≤ n and j ∈ {0, 1}.

3.3 The unit disk representation Rn of Gn

We are now ready to iteratively construct the unit disk representation Rn of the
graph Gn, using the above gadgets Q1(p), Q2(p), and Q3(p), as follows:

(a) for every i ∈ {1, 2, . . . , n} and for every j ∈ {0, 1}, add to Rn:
• the gadget Q1(p), with its origin at the point p = (0, (2(i− 1) + j)d2),

(b) for every i ∈ {1, 2, . . . , n}, add to Rn:
• the gadgets Q1(qi,0), Q2(ri,0), Q3(pi,0), and Q3(pi,1),
• the gadgets Q1(p) and Q1(p′), with their origin at the points
p = (−d1, (2i− 1)d2) and p′ = (−2d1, (2i − 1)d2) of the track Ti,1, re-
spectively,

(c) for every i, k ∈ {1, 2, . . . , n} and for every j, ` ∈ {0, 1}, where i 6= k, add
to Rn:
• the gadgets Q1(p) and Q2(p), with their origin at the (unique) point p

that lies on the intersection of the tracks Ti,j and Tk,`.

Similarly to Figure 1, we illustrate in Figure 4 the placement of the gadgets
Q1(p), Q2(p), and Q3(p) in the unit disk representation Rn, for the various points
p according to the above construction of Rn. In this figure, the placement of a
gadget Q1(p) (resp. of a gadget Q2(p) and Q3(p)) is depicted by a circled “1”
(resp. by a circled “2” and “3”).

This completes the construction of the unit disk representation Rn of the
graph Gn = (Vn, En), in which the centers of all unit disks lie on some track Ti,j ,
where i ∈ {1, 2, . . . , n} and j ∈ {0, 1}.
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Fig. 4. The placement of the gadgets Q1(p), Q2(p), and Q3(p) in the unit disk repre-
sentation Rn, for the various points p.

Definition 2. Let i ∈ {1, 2, . . . , n} and j ∈ {0, 1}. The vertex set Si,j ⊆ Vn
consists of all vertices of those copies of the gadgets Q1(p), Q2(p), and Q3(p),
whose origin p belongs to the track Ti,j.

For every v ∈ Vn let cv be the center of its unit disk in the representation Rn.
Note that, by Definition 2, the unique vertex v ∈ Vn, for which cv ∈ Ti,j ∩ Tk,`,
where i < k (i.e. cv lies on the intersection of the vertical halfline of Ti,j with
the horizontal halfline of Tk,`), we have that v ∈ Si,j . Furthermore note that
{Si,j : 1 ≤ i ≤ n, j ∈ {0, 1}} is a partition of the vertex set Vn of Gn. In the next
lemma we show that this is also a balanced 2n-partition of Gn, i.e. |Si,j | = |Sk,`|
for every i, k ∈ {1, 2, . . . , n} and j, ` ∈ {0, 1}.

Lemma 2. For every i ∈ {1, 2, . . . , n} and j ∈ {0, 1}, we have that |Si,j | =
4(n+ 1)(n6 + 1).

Proof. Let first j = 0. At part (a) of the above construction of the unit disk rep-
resentation Rn, the set Si,0 receives the vertices of one copy of the gadget Q1(p).
At part (b) of the construction, Si,0 receives the vertices of the gadgets Q1(qi,0),
Q2(ri,0), and Q3(pi,0) (only due to the first bullet of part (b), since j = 0). Fur-
thermore, at part (c) of the construction, Si,0 receives the vertices of 2(i − 1)
copies of the gadget Q1(p) (i.e. one for every intersection of the horizontal halfline
of Ti,0 with the vertical halfline of a track Tk,`, where k < i) and the vertices
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of 2(n− i) copies of the gadget Q2(p) (i.e. one for every intersection of the verti-
cal halfline of Ti,0 with the horizontal halfline of a track Tk,`, where k > i). Note
that this assignment of copies of the gadgets Q1(p), Q2(p), Q3(p) to the vertices
of Si,0 is consistent with the definition of the partition of Vn into {Si,j}i,j . There-
fore, since each copy of the gadgets Q1(p), Q2(p), Q3(p) has 2n6 + 2 vertices, the
set Si,0 has in total (1 + 3 + 2(i− 1) + 2(n− i)) · (2n6 + 2) = 4(n+ 1) · (n6 + 1)
vertices.

Let now j = 1. At part (a) of the construction of Rn, the set Si,1 receives
similarly to the above the vertices of one copy of Q1(p). At part (b) of the
construction, Si,1 receives the vertices of Q3(pi,1) (due to the first bullet) and
the vertices of one copy of each gadget Q1(p) and Q1(p′) (due to the second
bullet). Furthermore, at part (c) of the construction, Si,1 receives similarly to
the above the vertices of 2(i − 1) copies of the gadget Q1(p) and the vertices
of 2(n − i) copies of the gadget Q2(p). Note that this assignment of copies of
the gadgets Q1(p), Q2(p), Q3(p) to the vertices of Si,1 is again consistent with
the definition of the partition of Vn into {Si,j}i,j . Therefore, since each copy of
the gadgets Q1(p), Q2(p), Q3(p) has 2n6 + 2 vertices, the set Si,1 has in total
(1 + 1 + 2 + 2(i− 1) + 2(n− i)) · (2n6 + 2) = 4(n+ 1) · (n6 + 1) vertices. ut

Consider the intersection point p of two tracks Ti,j and Tk,`, where i 6= k.
Assume without loss of generality that i < k, i.e. p belongs to the vertical halfline
of Ti,j and on the horizontal halfline of Tk,`, cf. Figure 5(a). Then p is the origin
of the gadget Q2(p) in the representation Rn (cf. part (c) of the construction
of Rn). Therefore p is the center of a unit disk in Rn, i.e. p = cv for some
v ∈ Si,j ⊆ Vn. All unit disks of Rn that intersect with the disk centered at point
p is shown in Figure 5(a). Furthermore, the induced subgraph Gn[{v} ∪ N(v)]
on the vertices of Gn, which correspond to these disks of Figure 5(a), is shown
in Figure 5(c). In Figure 5(c) we denote by Kn6 and Kn3 the cliques with n6

and with n3 vertices, respectively, and the thick edge connecting the two Kn3 ’s
depicts the fact that all vertices of the two Kn3 ’s are adjacent to each other.

Now consider a bend point pi,j of a variable xi, where j ∈ {0, 1}. Then pi,j is
the origin of the gadget Q3(pi,j) in the representation Rn (cf. the first bullet of
part (b) of the construction of Rn). Therefore pi,j is the center of a unit disk in
Rn, i.e. p = cv for some v ∈ Si,j ⊆ Vn. All unit disks of Rn that intersect with the
disk centered at point pi,j are shown in Figure 5(b). Furthermore, the induced
subgraph Gn[{v} ∪N(v)] of Gn that corresponds to the disks of Figure 5(b), is
shown in Figure 5(d). In both Figures 5(a) and 5(b), the area of the intersection
of two crowds (i.e. disks with dashed contour) is shaded gray for better visibility.

Lemma 3. Consider an arbitrary bisection B of Gn with size strictly less
than n6. Then for every set Si,j, i ∈ {1, 2, . . . , n} and j ∈ {0, 1}, all vertices
of Si,j belong to the same color class of B.

Proof. Let i ∈ {1, 2, . . . , n} and j ∈ {0, 1}. Consider an arbitrary gadget Qk(p) of
Si,j , where k ∈ {1, 2, 3} and p ∈ Ti,j , cf. Definition 2. Assume that there exist at
least two vertices of Qk(p) that belong to different color classes in the bisection
B of Gn. Then, since the induced subgraph of Gn on the vertices of Qk(p) is
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Fig. 5. The disks in Rn (a) around the intersection point p = cv of two tracks Ti,j

and Tk,`, where i < k, and (b) around the bend point pi,j = cv of a variable xi, where
j ∈ {0, 1}. (c) The induced subgraph of Gn on the vertices of part (a), and (d) the
induced subgraph of Gn for part (b).

connected, there exist at least two adjacent vertices u and v in this subgraph
that belong to two different color classes of B. Recall by Observation 1 that u
and v belong to a clique C of size at least n6 + 1 in this subgraph. Therefore, for
each of the n6−1 vertices w ∈ C\{u, v}, the edges uw and vw contribute exactly
1 to the size of the bisection B. Thus, since the edge uv also contributes 1 to
the size of B, it follows that the size of B is at least n6, which is a contradiction.
Therefore for every gadget Qk(p) of Si,j , where k ∈ {1, 2, 3} and p ∈ Ti,j , all
vertices of Qk(p) belong to the same color class of B.

Now note that for all copies of the gadget Q1(p) in the set Si,j , their origins
p have the same y-coordinate (see Definition 2). Similarly, for all copies of the
gadgets Q2(p) and Q3(p) in Si,j , their origins p have the same x-coordinate.
We order the copies of Q1(p) in Si,j increasingly according to the x-coordinate
of their origin p. Consider two consecutive copies of the gadget Q1(p) in this
ordering, with origins at points p1 and p2, respectively. Then, by the construction
of the unit representation Rn of Gn, the distance between p1 and p2 is equal
to d1 = 5.6. Therefore, it is easy to check that the vertices of the horizontal
(n3, p1+4.7)-crowd of Q1(p1) and the vertices of the horizontal (n3, p2+0.9)-
crowd of Q1(p2) induce a clique of size n3 +n3 = 2n3 (cf. Figure 5(a) and 5(c)).
Thus, if the vertices of Q1(p1) belong to a different color class than the vertices
of Q1(p2), then Q1(p1) and Q1(p2) contribute n6 to the size of the bisection B,
which is a contradiction. Therefore all vertices of Q1(p1) and of Q1(p2) belong
to the same color class. Furthermore, since this holds for any two consecutive
copies of the gadget Q1(p) in Si,j , it follows that the vertices of all copies of
Q1(p) in Si,j belong to the same color class.

Similarly, we order the copies of the gadgets Qk(p) in Si,j , where k ∈ {2, 3},
increasingly according to the y-coordinate of their origin p. Consider two con-
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secutive copies of these gadgets in this ordering, with origins at points p1 and
p2, respectively. Note that, by the construction of the unit representation Rn
of Gn, the point p2 is either (i) the auxiliary point ri,0 of track Ti,0 or (ii) the
intersection of the track Ti,j with another track Tk,`, where i < k. Furthermore
note that the gadget with origin at p2 is Q2(p2), while the gadget with origin at
p1 is either Q2(p1) or Q3(p1). Suppose that the gadget with origin at p1 is Q2(p1)
(resp. Q3(p1)). Note that the distance between p1 and p2 is equal to d2 = 7.2.
Therefore, it is easy to check that the vertices of the vertical (n6, p1+5.4)-crowd
of Q2(p1) (resp. of Q3(p1)) and the single unit disk of Q2(p2), which is centered
at point p2, induce a clique of size n6 + 1 (cf. Figure 5(a) and 5(c)). Thus, if
the vertices of Q2(p1) (resp. of Q3(p1)) belong to a different color class than the
vertices of Q2(p2), then Q2(p1) (resp. Q3(p1)) and Q2(p2) contribute n6 to the
size of the bisection B, which is a contradiction. Therefore all vertices of Q2(p1)
(resp. of Q3(p1)) and of Q2(p2) belong to the same color class, and thus the
vertices of all copies of Qk(p) in Si,j , where k ∈ {2, 3}, belong to the same color
class.

It remains to prove that the vertices of the gadgets Q1(p) in Si,j belong to the
same color class with the vertices of the gadgets Qk(p) in Si,j , where k ∈ {2, 3}.
To this end, consider the rightmost gadget Q1(p1) and the lowermost gadget
Q3(p2) of Si,j . Note that, by the construction of the unit representationRn ofGn,
the point p2 is the bend point pi,j of the variable xi (cf. Figure 5(b) and 5(d)). It
is easy to check that the vertices of the horizontal (n3, p1+4.7)-crowd of Q1(p1)
and the vertical (n6, p2+1.7)-crowd of Q3(p2) induce a clique of size n6 + n3

(cf. Figure 5(a) and 5(c)). Thus, if the vertices of Q1(p1) belong to a different
color class than the vertices of Q3(p2), then Q1(p1) and Q3(p2) contribute n3 ·
n6 = n9 to the size of the bisection B, which is a contradiction. Thus all vertices
of Q1(p1) and of Q3(p2) belong to the same color class. Therefore, all vertices of
Si,j belong to the same color class. ut

4 Minimum bisection on unit disk graphs

In this section we provide our polynomial-time reduction from the monotone
Max-XOR(3) problem to the minimum bisection problem on unit disk graphs.
To this end, given a monotone XOR(3) formula φ with n variables and m = 3n

2
clauses, we appropriately modify the auxiliary unit disk graph Gn of Section 3
to obtain the unit disk graph Hφ. Then we prove that the truth assignments
that satisfy the maximum number of clauses in φ correspond bijectively to the
minimum bisections in Hφ.

We construct the unit disk graph Hφ = (Vφ, Eφ) from Gn = (Vn, En) as
follows. Let (xi ⊕ xk) be a clause of φ, where i < k. Let p0 (resp. p1) be the
unique point in the unit disk representation Rn that lies on the intersection of
the tracks Ti,0 and Tk,1 (resp. on the intersection of the tracks Ti,1 and Tk,0). For
every point p ∈ {p0, p1}, where we denote p = (px, py), we modify the gadgets
Q1(p) and Q2(p) in the representation Rn as follows:
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(a) replace the horizontal (n3, p+ 0.9)-crowd of Q1(p) by the horizontal
(n3 − 1, p+ 0.9)-crowd and a single unit disk centered at (px+0.9, py+0.02),

(b) replace the vertical (n6, p+ 1.8)-crowd of Q2(p) by the vertical
(n6 − 1, p+ 1.8)-crowd and a single unit disk centered at (px+0.02, py+1.8).

That is, for every point p ∈ {p0, p1}, we first move one (arbitrary) unit disk of
the horizontal (n3, p+ 0.9)-crowd of Q1(p) upwards by 0.02, and then we move
one (arbitrary) unit disk of the vertical (n6, p+ 1.8)-crowd of Q2(p) to the right
by 0.02. In the resulting unit disk representation these two unit disks intersect,
whereas they do not intersect in the representation Rn. Furthermore it is easy to
check that for any other pair of unit disks, these disks intersect in the resulting
representation if and only if they intersect in Rn. The above modifications of Rn
for the clause (xi ⊕ xk) of φ are illustrated in Figure 6.

n6

n3

0.9 0.9

1.8

1.8

n3 − 1

n6 − 1

p0

Tk,1

Ti,0

(a)

n6

n3

0.9 0.9

1.8

1.8

n3 − 1

n6 − 1

p1

Tk,0

Ti,1

(b)

Fig. 6. The modifications of the unit disk representation Rn for the clause (xi⊕xk) of φ,
where (a) p0 is the intersection of the tracks Ti,0 and Tk,1 and (b) p1 is the intersection
of the tracks Ti,1 and Tk,0. In both cases, one unit disk of Q1(p) is moved upwards
by 0.02 and one unit disk of Q2(p) is moved to the right by 0.02, where p ∈ {p1, p2}.

Denote by Rφ the unit disk representation that is obtained from Rn by
performing the above modifications for all clauses of the formula φ. Then Hφ is
the unit disk graph induced by Rφ. Note that, by construction, the graphs Hφ

and Gn have exactly the same vertex set, i.e. Vφ = Vn, and that En ⊂ Eφ. In
particular, note that the sets Si,j (cf. Definition 2) induce the same subgraphs
in both Hφ and Gn, and thus the next corollary follows directly by Lemma 3.

Corollary 1. Consider an arbitrary bisection B of Hφ with size strictly less
than n6. Then for every set Si,j, i ∈ {1, 2, . . . , n} and j ∈ {0, 1}, all vertices
of Si,j belong to the same color class of B.
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Theorem 1. There exists a truth assignment τ of the formula φ that satisfies
at least k clauses if and only if the unit disk graph Hφ has a bisection with value
at most 2n4(n− 1) + 3n− 2k.

Proof. (⇒) Assume that the truth assignment τ of the variables x1, x2, . . . , xn of
the formula φ satisfies at least k clauses of φ. We construct from the assignment
τ a bisection B of the unit disk graph Hφ as follows. Denote the two color classes
of B by blue and red, respectively. For every variable xi, if xi = 0 in τ then we
color all vertices of Hφ of the set Si,0 blue and all vertices of the set Si,1 red.
Otherwise, if xi = 1 in τ , we color all vertices of Hφ of the set Si,0 red and
all vertices of the set Si,1 blue. Therefore it follows by Lemma 2 that for every
variable xi, 1 ≤ i ≤ n, we have the same number of blue and red vertices in B,
and thus B is indeed a bisection of the graph Hφ.

Recall that, in the formula φ, every variable appears in exactly 3 clauses,
since φ is a monotone Max-XOR(3) formula. Therefore φ has m = 3n

2 clauses.
Let now 1 ≤ i < k ≤ n. If (xi ⊕ xk) is not a clause of φ then, regardless of the
value of xi and xk in the assignment τ , the intersection of the tracks Ti,0, Ti,1
with the tracks Tk,0, Tk,1 contribute (due to the construction of the graphs Gn
and Hφ) exactly 2n3 + 2n3 = 4n3 edges to the value of the bisection B.

If (xi ⊕ xk) is one of the k clauses of φ that are satisfied by τ , then the
intersection of the tracks Ti,0, Ti,1 with the tracks Tk,0, Tk,1 contribute again
2n3 + 2n3 = 4n3 edges to the value of B. Finally, if (xi ⊕ xk) is one of the
m− k clauses of φ that are not satisfied by τ , then the intersection of the tracks
Ti,0, Ti,1 with the tracks Tk,0, Tk,1 contribute

(
2n3 + 1

)
+
(
2n3 + 1

)
= 4n3 + 2

edges to the value of B. Here the two additive factors of “+1” are obtained due
to the shifted and differently colored disks in the construction. Summarizing,
since τ satisfies at least k clauses of φ, the value of this bisection B of Hφ equals
at most((

n

2

)
−m

)
4n3 + (m− k)

(
4n3 + 2

)
+ k · 4n3 = 2n4(n− 1) + 2m− 2k

= 2n4(n− 1) + 3n− 2k

(⇐) Assume that Hφ has a minimum bisection B with value at most 2n4(n−
1) + 3n − 2k. Denote the two color classes of B by blue and red, respectively.
Since the size of B is strictly less than n6, Corollary 1 implies that for every
i ∈ {1, 2, . . . , n} and j ∈ {0, 1}, all vertices of the set Si,j belong to the same
color class of B. Therefore, all cut edges of B have one endpoint in a set Si,j and
the other endpoint in a set Sk,`, where (i, j) 6= (k, `). Furthermore, since B is a
bisection of Hφ, Lemma 2 implies that exactly n of the sets {Si,j : 1 ≤ i ≤ n, j ∈
{0, 1}} are colored blue and the other n ones are colored red in B.

First we will prove that, for every i ∈ {1, 2, . . . , n}, the sets Si,0 and Si,1
belong to different color classes in B. To this end, let t ≥ 0 be the number of
variables xi, 1 ≤ i ≤ n, for which both sets Si,0 and Si,1 are colored blue (such
variables xi are called blue). Then, since B is a bisection of Hφ, there must be
also t variables xi, 1 ≤ i ≤ n, for which both sets Si,0 and Si,1 are colored red
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(such variables xi are called red), whereas n − 2t variables xi, for which one
of the sets {Si,0, Si,1} is colored blue and the other one red (such variables xi
are called balanced). Using the minimality of the bisection B, we will prove that
t = 0.

Every cut edge of B occurs at the intersection of the tracks of two variables
xi, xk, where either both xi, xk are balanced variables, or one of them is a bal-
anced and the other one is a blue or red variable, or one of them is a blue and the
other one is a red variable. Furthermore recall by the construction of the graph
Hφ from the graph Gn that every clause (xi ⊕ xk) of the formula φ corresponds
to an intersection of the tracks of the variables xi and xk. Among the m clauses
of φ, let m1 of them correspond to intersections of tracks of two balanced vari-
ables, m2 of them correspond to intersections of tracks of a balanced variable
and a blue or red variable, and m3 of them correspond to intersections of tracks
of a blue variable and a red variable. Note that m1 +m2 +m3 ≤ m.

Let 1 ≤ i < k ≤ n. In the following we distinguish the three cases of the
variables xi, xk that can cause a cut edge in the bisection B.

– xi and xk are both balanced variables: in total there are (n−2t)(n−2t−1)
2

such pairs of variables, where exactly m1 of them correspond to a clause
(xi⊕xk) of the formula φ. It is easy to check that, for every such pair xi, xk
that does not correspond to a clause of φ, the intersection of the tracks
of xi and xk contributes exactly 2n3 + 2n3 = 4n3 edges to the value of
B. Furthermore, for each of the m1 other pairs xi, xk that correspond to a
clause of φ, the intersection of the tracks of xi and xk contributes either 4n3

or 4n3 + 2 edges to the value of B. In particular, if the vertices of the sets
Si,0 and Sk,1 have the same color in B then the pair xi, xk contributes 4n3

edges to the value of B, otherwise it contributes 4n3 + 2 edges. Among these
m1 clauses, let m∗1 of them contribute 4n3 edges each and the remaining
m1 −m∗1 of them contribute 4n3 + 2 edges each.

– one of xi, xk is a balanced variable and the other one is a blue or
red variable: in total there are (n − 2t)2t such pairs of variables, where
exactly m2 of them correspond to a clause (xi ⊕ xk) of the formula φ. It is
easy to check that, for every such pair xi, xk that does not correspond to a
clause of φ, the intersection of the tracks of xi and xk contributes exactly
2n3 + 2n3 = 4n3 edges to the value of B. Furthermore, for each of the m2

other pairs xi, xk that correspond to a clause of φ, the intersection of the
tracks of xi and xk contributes 4n3 + 1 edges to the value of B.

– one of xi, xk is a blue variable and the other one is a red variable:
in total there are t2 such pairs of variables, where exactly m3 of them corre-
spond to a clause (xi⊕xk) of the formula φ. It is easy to check that, for every
such pair xi, xk that does not correspond to a clause of φ, the intersection of
the tracks of xi and xk contributes exactly 4 · 2n3 = 8n3 edges to the value
of B. Furthermore, for each of the m3 other pairs xi, xk that correspond to
a clause of φ, the intersection of the tracks of xi and xk contributes 8n3 + 2
edges to the value of B.
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Therefore, the value of B can be computed as follows:(
(n− 2t)(n− 2t− 1)

2
−m1

)
4n3 +m∗14n3 + (m1 −m∗1)(4n3 + 2)

+ ((n− 2t)2t−m2) 4n3 +m2

(
4n3 + 1

)
+
(
t2 −m3

)
8n3 +m3

(
8n3 + 2

)
= (n− 2t)(n− 2t− 1)2n3 + 2(m1 −m∗1) (1)

+(n− 2t)2t4n3 +m2

+t2 · 8n3 + 2m3

= (n− 2t)(n+ 2t)2n3 − (n− 2t)2n3 + t28n3 + 2(m1 −m∗1) +m2 + 2m3

= 2n4 (n− 1) + 4n3t+ 2(m1 −m∗1) +m2 + 2m3

Note now that 0 ≤ 2(m1 −m∗1) + m2 + 2m3 ≤ 2m = 3n < 4n3. Therefore,
since the value of the bisection B (given in (1)) is minimum by assumption,
it follows that t = 0. Thus for every i ∈ {1, 2, . . . , n} the variable xi of φ is
balanced in the bisection B, i.e. the sets Si,0 and Si,1 belong to different color
classes in B. That is, m1 = m and m2 = m3 = 0, and thus the value of B is by
(1) equal to 2n4 (n− 1) + 2(m−m∗1). On the other hand, since the value of B is
at most 2n4(n−1)+3n−2k by assumption, it follows that 2(m−m∗1) ≤ 3n−2k.
Therefore, since m = 3n

2 , it follows that m∗1 ≥ k.
We define now from B the truth assignment τ of φ as follows. For every

i ∈ {1, 2, . . . , n}, if the vertices of the set Si,0 are blue and the vertices of the set
Si,1 are red in B, then we set xi = 0 in τ . Otherwise, if the vertices of the set
Si,0 are red and the vertices of the set Si,1 are blue in B, then we set xi = 1 in
τ . Recall that m∗1 is the number of clauses of φ that contribute 4n3 edges each
to the value of B, while the remaining m −m∗1 clauses of φ contribute 4n3 + 2
edges each to the value of B. Thus, by the construction of Hφ from Gn, for every
clause (xi ⊕ xk) of φ that contributes 4n3 (resp. 4n3 + 2) to the value of B, the
vertices of the sets Si,0 and Sk,1 have the same color (resp. Si,0 and Sk,1 have
different colors) in B. Therefore, by definition of the truth assignment τ , there
are exactly m∗1 clauses (xi ⊕ xk) of φ where xi 6= xk in τ , and there are exactly
m −m∗1 clauses (xi ⊕ xk) of φ where xi = xk in τ . That is, τ satisfies exactly
m∗1 ≥ k of the m clauses of φ. This completes the proof of the theorem. ut

We can now state our main result, which follows by Theorem 1 and Lemma 1.

Theorem 2. Min-Bisection is NP-hard on unit disk graphs.

5 Concluding Remarks

In this paper we proved that Min-Bisection is NP-hard on unit disk graphs by
providing a polynomial time reduction from the monotone Max-XOR(3) prob-
lem, thus solving a longstanding open question. As pointed out in the Intro-
duction, our results indicate that Min-Bisection is probably also NP-hard on
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planar graphs, or equivalently on grid graphs with an arbitrary number of holes,
which remains yet to be proved. Our construction for the NP-hardness reduc-
tion involved huge cliques, and thus it seems that a different approach would be
needed to possibly prove NP-hardness of Min-Bisection for planar graphs.
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