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Abstract

We provide sufficient conditions for revenue maximization in a two-good monopoly where
the buyer’s values for the items come from independent (but not necessarily identical) dis-
tributions over bounded intervals. Under certain distributional assumptions, we give exact,
closed-form formulas for the prices and allocation rule of the optimal selling mechanism.
As a side result we give the first example of an optimal mechanism in an i.i.d. setting over
a support of the form [0, b] which is not deterministic. Since our framework is based on
duality techniques, we were also able to demonstrate how slightly relaxed versions of it can
still be used to design mechanisms that have very good approximation ratios with respect
to the optimal revenue, through a “convexification” process.

1 Introduction

The problem of designing auctions that maximize the seller’s revenue in settings with many
heterogeneous goods has attracted a large amount of interest in the last years, both from the
Computer Science as well as the Economics community (see e.g. [14, 19, 9, 11, 3, 4, 7, 16, 5]). Here
the seller faces a buyer whose true values for the m items come from a probability distribution
over Rm+ and, based only on this incomplete prior knowledge, he wishes to design a selling
mechanism that will maximize his expected revenue. For the purposes of this paper, the prior
distribution is a product one, meaning that the item values are independent. The buyer is
additive, in the sense that her happiness from receiving any subset of items is the sum of her
values of the individual items in that bundle. The buyer is also selfish and completely rational,
thus willing to lie about her true values if this is to improve her own happiness. So, the seller
should also make sure to give the right incentives to the buyer in order to avoid manipulation
of the protocol by misreporting.

The special case of a single item has been very well understood since the seminal work
of Myerson [17]. However, when one moves to settings with multiple goods, the problem becomes
notoriously difficult and novel approaches are necessary. Despite the significant effort of the
researchers in the field, essentially only specialized, partial results are known: there are exact
solutions for two items in the case of identical uniform distributions over unit-length intervals [19,
14], exponential over [0,∞) [4] or identical Pareto distributions with tail index parameters
α ≥ 1/2 [9]. For more than two items, optimal results are only known for uniform values
over the unit interval [7], and due to the difficulty of exact solutions most of the work focuses
in showing approximation guarantees for simple selling mechanisms [9, 12, 1, 6, 2, 21]. This
difficulty is further supported by the complexity (#P -hardness) results of Daskalakis et al. [3].
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It is important to point out that even for two items we know of no general and simple, closed-
form conditions framework under which optimality can be extracted when given as input the item
distributions, in the case when these are not necessarily identical. This is our goal in the current
paper.

Our contribution We introduce general but simple and clear, closed-form distributional con-
ditions that can guarantee optimality and immediately give the form of the revenue-maximizing
selling mechanism (its payment and allocation rules), for the setting of two goods with values
distributed over bounded intervals (Theorem 1). For simplicity and a clearer exposition we
study distributions supported over the real unit interval [0, 1]. By scaling, the results generalize
immediately to intervals that start at 0, but more work would be needed to generalize them
to arbitrary intervals. We use the closed forms to get optimal solutions for a wide class of
distributions satisfying certain simple analytic assumptions (Theorem 2 and Sect. 4). As useful
examples, we provide exact solutions for families of monomial (∝ xc) and exponential (∝ e−λx)
distributions (Corollaries 1 and 2 and Sect. 4), and also near-optimal results for power-law
(∝ (x+ 1)−α) distributions (Sect. 5). This last approximation is an application of a more gen-
eral result (Theorem 3) involving the relaxation of some of the conditions for optimality in the
main Theorem 1; the “solution” one gets in this new setting might not always correspond to
a feasible selling mechanism, however it still provides an upper bound on the optimal revenue
as well as hints as to how to design a well-performing mechanism, by “convexifying” it into a
feasible mechanism (Sect. 5).

Particularly for the family of monomial distributions it turns out that the optimal mechanism
is a very simple deterministic mechanism that offers to the seller a menu of size just 4 (using the
menu-complexity notion of Hart and Nisan [10, 22]): fixed prices for each one of the two items
and for their bundle, as well as the option of not buying any of them. For other distributions
studied in the current paper randomization is essential for optimality, as is generally expected in
such problems of multidimensional revenue maximization (see e.g. [11, 19, 4]). For example, this
is the case for two i.i.d. exponential distributions over the unit interval [0, 1], which gives the first
such example where determinism is suboptimal even for regularly1 i.i.d. items. A point worth
noting here is the striking difference between this result and previous results [4, 6] about i.i.d.
exponential distributions which have as support the entire R+: the optimal selling mechanism
there is the deterministic one that just offers the full bundle of both items.

Although the conditions that the probability distributions must satisfy are quite general,
they leave out a large class of distributions. For example, they do not apply to power-law
distributions with parameter α > 2. In other words, this work goes some way towards the
complete solution for arbitrary distributions for two items, but the general problem is still open.
In this paper, we opted towards simple conditions rather than full generality, but we believe
that extensions of our method can generalize significantly the range of distributions; we expect
that a proper “ironing” procedure will enable our technique to resolve the general problem for
two items.

Techniques The main result of the paper (Theorem 1) is proven by utilizing the duality frame-
work of [7] for revenue maximization, and in particular using complementarity: the optimality
of the proposed selling mechanism is shown by verifying the existence of a dual solution with
which they satisfy together the required complementary slackness conditions of the duality for-
mulation. Constructing these dual solutions explicitly seems to be a very challenging task and
in fact there might not even be a concise way to do it, especially in closed-form. So instead we
just prove the existence of such a dual solution, using a max-flow min-cut argument as main tool
(Lemma 3, Fig. 2). This is, in a way, an abstraction of a technique followed in [7] for the case of

1A probability distribution F is called regular if t− 1−F (t)
f(t)

is increasing. This quantity is known as the virtual
valuation.
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uniform distributions which was based on Hall’s theorem for bipartite matchings. Since here we
are dealing with general and non-identical distributions, this kind of refinement is essential and
non-trivial, and in fact forms the most technical part of the paper. Our approach has a strong
geometric flavor, enabled by introducing the notion of the deficiency of a two-dimensional body
(Definition 1, Lemma 2), which is inspired by classic matching theory [18, 13].

1.1 Model and Notation

We study a two-good monopoly setting in which a seller deals with a buyer who has values
x1, x2 ∈ I for the items, where I = [0, 1]. The seller has only an incomplete knowledge of the
buyer’s preference, in the form of two independent distributions (with densities) f1, f2 over I
from which x1 and x2 are drawn, respectively. The cdf of fj will be denoted by Fj . As in the
seminal work of Myerson [17], the density functions will be assumed to be absolutely continuous
and positive. We will also use vector notation x = (x1, x2). For any item j ∈ {1, 2}, index −j
will refer the complementary item, that is 3− j, and as it’s standard in game theory x−j = x−j
will denote the remaining of vector x if the j-th coordinate is removed, so x = (xj , x−j) for any
j = 1, 2.

The seller’s goal is to design a selling mechanism that will maximize his revenue. Without
loss2 we can focus on direct-revelation mechanisms: the bidder will be asked to submit bids
b1, b2 and the mechanism consists simply of an allocation rule a1, a2 : I2 → I and a payment
function p : I2 → R+ such that aj(b1, b2) is the probability of item j being sold to the buyer
(notice how we allow for randomized mechanisms, i.e. lotteries) and p(b1, b2) is the payment that
the buyer expects to pay; it is easier to consider the expected payment for all allocations, rather
than individual payments that depend on the allocation of items. The reason why the bids bj
are denoted differently than the original values xj for the items is that, since the bidder is a
rational and selfish agent, she might lie and misreport bj 6= xj if this is to increase her personal
gain given by the quasi-linear utility function

u(b;x) ≡ a1(b)x1 + a2(b)x2 − p(b), (1)

the expected happiness she’ll receive by the mechanism minus her payment. Thus, we will
demand our selling mechanisms to satisfy the following standard properties:

• Incentive Compatibility (IC), also known as truthfulness, saying that the player would have
no incentive to misreport and manipulate the mechanism, i.e. her utility is maximized by
truth-telling: u(b;x) ≤ u(x;x)

• Individual Rationality (IR), saying that the buyer cannot harm herself just by truthfully
participating in the mechanism: u(x;x) ≥ 0.

It turns out the critical IC property comes without loss3 for our revenue-maximization objective,
so for now on we will only consider truthful mechanisms, meaning we can also relax the notation
u(b;x) to just u(x).

There is a very elegant and helpful analytic characterization of truthfulness, going back
to Rochet [20] (for a proof see e.g. [9]), which states that the player’s utility function must be
convex and that the allocation probabilities are simply given by the utility’s derivatives, i.e.
∂u(x)/∂xj = aj(x). Taking this into consideration and rearranging (1) with respect to the
payment, we define

Rf1,f2(u) ≡
∫ 1

0

∫ 1

0

(
∂u(x)

∂x1
x1 +

∂u(x)

∂x2
x2 − u(x)

)
f1(x1)f2(x2) dx1 dx2

2This is due to the celebrated Revelation Principle [17].
3Also due to the Revelation Principle.
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for every absolutely continuous function u : I2 −→ R+. If u is convex with partial derivatives in
[0, 1] then u is a valid utility function and Rf1,f2(u) is the expected revenue of the seller under
the mechanism induced by u. Let Rev(f1, f2) denote the best possible such revenue, i.e. the
supremum of Rf1,f2(u) when u ranges over the space of all feasible utility functions over I2. So
the problem we want to deal with in this paper is exactly that of supuRf1,f2(u).

We now present the condition on the probability distributions which will enable our technique
to provide a closed-form of the optimal auction.

Assumption 1. The probability distributions f1, f2 are such that functions hf1,f2(x)−f2(1)f1(x1)
and hf1,f2(x)− f1(1)f2(x2) are nonnegative, where

hf1,f2(x) ≡ 3f1(x1)f2(x2) + x1f
′
1(x1)f2(x2) + x2f

′
2(x2)f1(x1). (2)

Function hf1,f2 will also be assumed to be absolutely continuous with respect to each of its
coordinates.

We will drop the subscript f1, f2 in the above notations whenever it is clear which distribu-
tions we are referring to. Assumption 1 is a slightly stronger condition than h(x) ≥ 0 which is
a common regularity assumption in the economics literature for multidimensional auctions with
m items: (m+ 1)f(x) +∇f(x) · x ≥ 0, where f is the joint distribution for the item values (see
e.g. [14, 19, 15]). In fact, Manelli and Vincent [14] make the even stronger assumption that for
each item j, xjfj(xj) is an increasing function. Even more recently, that assumption has also
been deployed by Wang and Tang [22] in a two-item setting as one of their sufficient conditions
for the existence of optimal auctions with small-sized menus. It has a strong connection with
the standard single-dimensional regularity condition of Myerson [17], since for m = 1 condition
h(x) ≥ 0 gives that f(x)

(
x− 1−F (x)

f(x)

)
is increasing, thus ensures the single-crossing property of

the virtual valuation function (see also the discussion in [14, Sect. 2]).
Strengthening the regularity condition h(x) ≥ 0 to that of Assumption 1 is essentially only

used as a technical tool within the proof of Lemma 2, and as a matter of fact we don’t really need
it to hold in the entire unit box I2 but just in a critical sub-region D1,2 which corresponds to
the valuation subspace where both items are sold with probability 1 (see Fig. 1 and Sect. 2.1).
As mentioned earlier in the Introduction, we introduce this technical conditions in order to
simplify our exposition and enforce the clarity of the techniques, but we believe that a proper
“ironing” [17] process can probably bypass these restrictions and generalize our results. The
critical Assumption 1 is of course satisfied by all distributions considered in the results of this
paper, namely monomial ∝ xc for any power c ≥ 0 (Corollary 1), exponential ∝ e−λx with rates
λ ≤ 1 (Corollary 2), power-law ∝ (t + 1)−α with parameters α ≤ 2 (Example 2), as well as
combinations of these (see Example 1). However, there is still a large class of distributions not
captured by Assumption 1 as it is, e.g. exponential with rates larger than 1, power-law with
parameters greater than 2 and some beta-distributions (take, for example, ∝ x2(1 − x)2). See
Footnote 6 for an alternative condition that can replace Assumption 1.

2 Sufficient Conditions for Optimality

This section is dedicated to proving the main result of the paper:

Theorem 1. If there exist decreasing, concave functions s1, s2 : I → I, with s′1(t), s
′
2(t) > −1

for all t ∈ I, such that for almost every4 (a.e.) x1, x2 ∈ I

s1(x2)f1(s1(x2))

1− F1(s1(x2))
= 2 +

x2f
′
2(x2)

f2(x2)
and

s2(x1)f2(s2(x1))

1− F2(s2(x1))
= 2 +

x1f
′
1(x1)

f1(x1)
, (3)

4Everywhere except a subset of zero Lebesgue measure.
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then there exists a constant p ∈ [0, 2] such that
∫

D
h(x) dx1 dx2 = f1(1) + f2(1) (4)

where D is the region of I2 enclosed by curves5 x1 + x2 = p, x1 = s1(x2) and x2 = s2(x1)
and including point (1, 1), i.e. D = {x ∈ I | x1 + x2 ≥ p ∨ x1 ≥ s1(x2) ∨ x2 ≥ s2(x1)}, and the
optimal selling mechanism is given by the utility function

u(x) = max {0, x1 − s1(x2), x2 − s2(x1), x1 + x2 − p} . (5)

In particular, if p ≤ min {s1(0), s2(0)}, then the optimal mechanism is the deterministic full-
bundling with price p.

Notice that for any s ∈ I we have
∫ 1

s
h(x) dx1 =

∫ 1

s
3f1(x1)f2(x2) + x1f

′
1(x1)f2(x2) + x2f

′
2(x2)f1(x1) dx1

= 3f2(x2)(1− F1(s)) + f2(x2)

∫ 1

s
x1f

′
1(x1) dx1 + x2f

′
2(x2)(1− F1(s))

= 3f2(x2)(1− F1(s)) + f2(x2)
(

[x1f1(x1)]
1
s − (1− F1(s))

)
+ x2f

′
2(x2)(1− F1(s))

= 2f2(x2)(1− F1(s)) + f2(x2)(f1(1)− sf1(s)) + x2f
′
2(x2)(1− F1(s))

= (1− F1(s))f2(x2)

[
2 +

x2f
′
2(x2)

f2(x2)
− sf1(s)

1− F1(s)

]
+ f1(1)f2(x2)

which means that an equivalent way of looking at (3) is, more simply, by
∫ 1

s1(x2)
h(x) dx1 = f1(1)f2(x2) and

∫ 1

s2(x1)
h(x) dx2 = f2(1)f1(x1). (6)

This also means that (6) can take the place of (3) in the statement of Theorem 1 whenever this
gives an easier way to solve for functions s1 and s2.

2.1 Partitioning of the Valuation Space

Due to the fact that the derivatives of functions sj in Theorem 1 are above −1, each curve
x1 = s1(x2) and x2 = s2(x1) can intersect the full-bundle line x1 + x2 = p at most at a single
point. So let x∗2 = x∗2(p), x

∗
1 = x∗1(p) be the coordinates of these intersections, respectively,

i.e. s1(x∗2) = p−x∗2 and s2(x∗1) = p−x∗1. If such an intersection does not exist, just define x∗2 = 0
or x∗1 = 0.

The construction and the optimal mechanism given in Theorem 1 then gives rise to the
following partitioning of the valuation space I2 (see Fig. 1):

• Region D̄ = I2 \D where no item is allocated

• Region D1 =
{
x ∈ I2 | x1 ≥ s1(x2) ∧ x2 ≤ x∗2

}
where item 1 is sold with probability 1

and item 2 with probability −s′1(x2) for a price of s1(x2)− x2s′1(x2)

• Region D2 =
{
x ∈ I2 | x2 ≥ s2(x1) ∧ x1 ≤ x∗1

}
where item 2 is sold with probability 1

and item 1 with probability −s′2(x1) for a price of s2(x1)− x1s′2(x1)

• Region D1,2 = D \ D1 ∪D2 =
{
x ∈ I2 | x1 + x2 ≥ p ∧ x1 ≥ x∗1 ∧ x2 ≥ x∗2

}
where both

items are sold deterministically in a full bundle of price p.
5See Fig. 1.
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x2

x1

x⋆
1

x⋆
2

s2(x1) = x2

s1(x2) = x1x1 + x2 = p

0 1

1

D̄

D1,2

(x̂1, x̂2)

D1

D2

Figure 1: The valuation space partitioning of the optimal selling mechanism for two independent items, one
following a uniform distribution and the other an exponential with parameter λ = 1. Here s1(t) = (2− t)/(3− t),
s2(t) = 2 −W (2e) ≈ 0.625 and p ≈ 0.787. In region D1 (light grey) item 1 is sold deterministically and item 2
with a probability of −s′1(x2), in D2 (light grey) only item 2 is sold and region D1,2 (dark grey) is where the full
bundle is sold deterministically, for a price of p.

Under this decomposition, by (6):
∫

D1

h(x) dx1 dx2 =

∫ x∗2

0

∫ 1

s1(x2)
h(x) dx1 dx2 = f1(1)F2(x

∗
2)

so expression (4) can be written equivalently as
∫

D1,2

h(x) dx1 dx2 = f1(1)(1− F2(x
∗
2)) + f2(1)(1− F1(x

∗
1)). (7)

2.2 Duality

The major underlying tool to prove Theorem 1 will be the duality framework of [7]. For com-
pleteness we briefly present here the formulation and key aspects, and the interested reader is
referred to the original text for further details.

Remember that the revenue optimization problem we want to solve here is to maximize R(u)
over the space of all convex functions u : I2 −→ R+ with

0 ≤ ∂u(x)

∂xj
≤ 1, j = 1, 2, (8)

for a.e. x ∈ I2. First we relax this problem by dropping the convexity assumption and replacing
it with (absolute) continuity. We also drop the lower bound in (8). Then this new relaxed
program is dual to the following: minimize

∫ 1
0

∫ 1
0 z1(x) + z2(x) dx where the new dual variables

z1, z2 : I2 −→ R+ are such that zj is (absolutely) continuous with respect to its j-coordinate

6



and the following conditions are satisfied for all x1, x2 ∈ I:

zj(0, x−j) = 0, j = 1, 2, (9)
zj(1, x−j) ≥ fj(1)f−j(x−j), j = 1, 2, (10)

∂z1(x)

∂x2
+
∂z2(x)

∂x2
≤ 3f1(x1)f2(x2) + x1f

′
1(x1)f2(x2) + x2f1(x1)f

′
2(x2). (11)

We will refer to the first optimization problem, where u ranges over the relaxed space of contin-
uous, nonnegative functions with derivatives at most 1, as the primal program and to the second
as the dual. Intuitively, every dual solution zj must start at zero and grow all the way up to
fj(1)f−j(x−j) while travelling in interval I, in a way that the sum of the rate of growth of both
z1 and z2 is never faster than the right hand side of (11). In [7] is proven that indeed these two
programs satisfy both weak duality, i.e. for any feasible u, z1, z2 we have

R(u) ≤
∫ 1

0

∫ 1

0
z1(x) + z2(x) dx

as well as complementary slackness, in the form of the even stronger following form of ε-
complementarity:

Lemma 1 (Complementarity). If u, z1, z2 are feasible primal and dual solutions, respectively,
ε > 0 and the following complementarity constraints hold for a.e. x ∈ I2,

u(x)

(
h(x)− ∂z1(x)

∂x1
− ∂z2(x)

∂x2

)
≤ εf1(x1)f2(x2), (12)

u(1, x−j) (zj(1, x−j)− fj(1)f−j(x−j)) ≤ εfj(1)f−j(x−j), j = 1, 2, (13)

zj(x)

(
1− ∂u(x)

∂xj

)
≤ εf1(x1)f2(x2), j = 1, 2, (14)

where h is defined in (2), then the values of the primal and dual programs differ by at most 7ε.
In particular, if the conditions are satisfied with ε = 0, both solutions are optimal.

Our approach into proving Theorem 1 will be to show the existence of a pair of dual solu-
tions z1, z2 with respect to which the utility function u given by the theorem indeed satisfies
complementarity. Notice here the existential character of our technique: our duality approach
offers the advantage to use the proof of just the existence of such duals, without having to ex-
plicitly describe them and compute their objective value in order to prove optimality, i.e. that
the primal and dual objectives are indeed equal. Also notice that the utility function u given by
Theorem 1 is convex by construction, so in case someone shows optimality for u in the relaxed
setting, then u must also be optimal among all feasible mechanisms.

Define function W : I2 → R+ by

W (x) =

{
h(x), if x ∈ D,
0, otherwise,

where D is defined in Sect. 2.1 (see Fig. 1). If one could decompose W into functions w1, w2 :
I2 → R+ such that

w1(x) + w2(x) = W (x) (15)
∫ 1

0
wj(x) dxj = fj(1)f−j(x−j), j = 1, 2, (16)

for all x ∈ I, and wj is almost everywhere continuous with respect to its j-th coordinate, then
by defining

zj(x) =

∫ xj

0
wj(t, x−j) dt

7



we’ll have

∂z1(x)

∂x1
+
∂z2(x2)

∂x2
=

{
h(x), for x ∈ D,
0, otherwise,

(17)

zj(0, x−j) = 0, j = 1, 2, (18)
zj(1, x−j) = fj(1)f−j(x−j), j = 1, 2. (19)

If the requirements of Theorem 1 hold, then it is fairly straightforward to get such a decompo-
sition in certain regions. In particular, we can set w1 = w2 = 0 in I2 \ D, w1 = W = h and
w2 = 0 in D1 and w2 = W = h and w1 = 0 in D2. Then, by (6), it is not difficult to see that
indeed conditions (15)–(16) are satisfied. However, it is highly non-trivial how to create such a
decomposition in the remaining region D1,2 and that is what the proof of Lemma 3 achieves,
with the assistance of the geometric Lemma 2, in the remaining of this section. This is the most
technical part of the paper.

In any case, if we are able to get such a decomposition, by the previous discussion that
would mean that functions z1, z2 : I2 → R+ are feasible dual solutions: it is trivial to verify that
properties (17)–(19) satisfy the dual constraints (9)–(11). But most importantly, the equalities
in properties (17)–(19) and the way w1 and w2 are defined in regionsD1 andD2 tell us something
more: that this pair of solutions would satisfy complementarity with respect to the primal given
in (5) and whose allocation is analyzed in detail in Sect. 2.1, thus proving that this mechanism
is optimal and thus establishing Theorem 1.

2.3 Deficiency

The following notion will be the tool that gives a very useful geometric interpretation to the rest
of the proof of Theorem 1 and it will be critical into proving Lemma 3.

Definition 1. For any body S ⊆ I2 define its deficiency (with respect to distributions f1, f2)
to be

δ(S) ≡
∫

S
h(x) dx− f2(1)

∫

S1

f1(x1) dx1 − f1(1)

∫

S2

f2(x2) dx2,

where S1, S2 denote S’s projections to the x1 and x2 axis, respectively.

Lemma 2. If the requirements of Theorem 1 hold, then no body S ⊆ D1,2 has positive deficiency.

Proof. To get to a contradiction, assume that there is body S ⊆ D1,2 with δ(S) > 0. First,
we’ll show that without loss S can be assumed to be upwards closed. Intuitively, we’ll show
that one can push mass of S to the right or upwards, without reducing its deficiency. By
Assumption 1 function h(x) − f2(1)f1(x1) is nonnegative. Then, if there exists a nonempty
horizontal line segment S|x2:t of S at some height x2 = t, then we can assume that this line
segment fills the entire available horizontal space of D1,2: if that was not the case, and there
existed a small interval [α, β] × t that was not in S, then we could add it to it, not increasing
the projection towards the x2-axis (it is already covered by the other existing points at x2 = t)
and the projection towards the x1-axis is increased at most by β−α, leading to a change to the
overall deficiency by at most

∫ β
α h(x) dx1 − f2(1)

∫ β
α f1(x1) dx1, which is nonnegative6.

6We must mention here that the assumption of the nonnegativity of h(x)− f2(1)f1(x1) could be replaced by
that of h(x) − f2(1)f1(x1) being increasing with respect to x1 and the argument would still carry through: we
can move entire columns of S to the right, pushing elements horizontally; the projection towards axis x2 again
remains unchanged, and because of the monotonicity of h(x)−f2(1)f1(x1), the overall deficiency will not decrease
since we are integrating over higher values of x1.
This means that the monotonicity of h(x) − fj(xj)j−j(1) with respect to xj can replace its nonnegativity in

the initial Assumption 1 (while still maintaining the regularity requirement of h(x) being nonnegative) without
affecting the main results of this paper, namely Theorems 1, 2 and 3.
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So S can be assumed to be the intersection of D1,2 with a box, i.e. S = [t1, 1]× [t2, 1]∩D1,2,
where t1 ≥ x∗1 and t2 ≥ x∗2. This also means that its projections are S1 = [t1, 1] and S2 = [t2, 1].
Now consider the lowest horizontal slice S|x2:t2 of S. It obviously lies within D1,2. But from
condition (6) so do all horizontal line segments of the form [s1(x2), 1] for any x2 ∈ [x∗2, t2]: s1(x2)
is decreasing and specifically less steeply than the line −x2+p which is the boundary of D1,2. So,
by adding all these segments to S we won’t increase the projections towards the x1-axis (these
are covered already by S|x2:t2 , which has to be a superset of [s1(t2), 1], otherwise it would have
a negative deficiency, see (6)) and the new projections towards the x2-axis are dominated by
the increase of the area of S (this segments have nonnegative deficiency). So, S can be assumed
to project in the entire boundaries [x∗1, 1] and [x∗2, 1] of D1,2 and thus, since h is nonnegative,
S can be assumed to fill the entire D1,2 region. But by the definition of price p in Theorem 1,
δ(D1,2) = 0 which concludes the proof.

2.4 Dual Solution and Optimality

Notice that Theorem 1 ensures the existence of a full-bundling price in (4). This needs to be
proven. Indeed, quantity

∫
D h(x) dx continuously (weakly) increases as p decreases, and for

p = 0

∫

D
h(x) dx =

∫ 1

0

∫ 1

0
3f1(x1)f2(x2) + x1f

′
1(x1)f2(x2) + yf ′2(x2)f1(x1) dx1 dx2

= 3 + (f1(1)− 1) + (f2(1)− 1) = 1 + f1(1) + f2(1) > f1(1) + f2(1)

while for p = x̂1 + x̂2, where (x̂1, x̂2) is the unique point of intersection of the curves x2 = s1(x1)
and x1 = s2(x2) in I2 (such a point certainly exists because s1 and s2 are defined over the entire
I),

∫

D1,2

h(x) dx =

∫ 1

x̂2

∫ 1

x̂1

h(x) dx ≤
∫ 1

x̂2

∫ 1

s1(x2)
h(x) dx =

∫ 1

x̂2

f1(1)f2(x2) dx2

= f1(1)(1− F2(x̂2)) ≤ f1(1)(1− F2(x̂2)) + f2(1)(1− F1(x̂1)),

the first inequality holding because h is nonnegative and s1(x2) ≤ s1(x̂2) = x̂1 (s1 is decreasing),
and the second equality by substituting (6), and from (7) this means that

∫
D h dx ≤ f1(1)+f2(1).

Combining the above, indeed there must be a p ∈ [0, x̂1+x̂2] such that
∫
D h dx = f1(1)+f2(1).

In fact, using this argument, if for p = min {s1(0), s2(0)} it is
∫
D h dx < f1(1) + f2(1) then p

must go below this value to get a solution, meaning that the full-bundling region will cover the
rest of the regions D1 and D2, i.e. D = D1,2, and the mechanism defined by (5) is a deterministic
full-bundling.

The following lemma will complete the proof of Theorem 1. It is the most technical part of
this paper, and utilizes a max-flow min-cut argument in order to prove the existence of a feasible
dual pair z1, z2 that satisfies the complementarity conditions with respect to the utility function
given by Theorem 1, thus establishing optimality. It is inspired by the bipartite matching
approach in [7] where Hall’s theorem is used in order to prove existence, in the special case of
uniformly distributed items. Here we need to abstract and generalize our approach in order
to incorporate general distributions in the most smooth way possible. The proof has a strong
geometric flavor, which is achieved by utilizing the notion of deficiency that was introduced in
Sect. 2.3 and using Lemma 2.

Lemma 3. Assume that the conditions of Theorem 1 hold. Then for arbitrary small ε > 0, there
exist feasible dual solutions z1, z2 which are ε-complementary to the (primal) u given by (5).
Therefore, the mechanism induced by u is optimal.
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Proof. Following the discussion in Sect. 2.2, we would like to decompose W into the desired
functions w1 and w2 within D1,2, i.e. such that they satisfy (15)–(16). In fact, we are aiming for
ε-complementarity, so we can relax conditions (16) a bit:

∫ 1

0
wj(x) dxj ≤ fj(1)f−j(x−j) + ε′ (20)

To be precise, the ε-complementarity of Lemma 1 dictates that regarding these conditions we
must show that for a.e. x ∈ D1,2 property (13) holds (conditions (12) and (14) are imme-
diately satisfied with strong equality, by (17) and the fact that within D1,2 both items are
sold deterministically with probability 1.). But since u(x) ≤ x1 + x2 ≤ 2 for all x1, x2 ∈ I
(u’s derivatives are at most 1 with respect to any direction) and also exists M > 0 such that
f1(1)f2(x2), f2(1)f1(x1) ≥ M for all x ∈ D1,2 (the density functions are continuous over the
closed interval I and positive7), indeed (20) is enough to guarantee ε complementarity if one
ensures ε′ ≤ εM/2. So, the remaining of the proof is dedicated into constructing nonnegative,
a.e. continuous functions w1 and w2 over D1,2, such that w1 + w2 = h and (20) are satisfied.

We will do that by constructing an appropriate graph and recovering w1 and w2 as “flows”
through its nodes, deploying the min-cut max-flow theorem to prove existence. To start, we pick
an arbitrary small δ > 0 and discretize I2 into a lattice of δ-size boxes [(i−1)δ, iδ]× [(j−1)δ, jδ],
where i, j = 1, 2, . . . , 1/δ, selecting δ such that 1/δ is an integer. Denote the intersection of such
a box with D1,2 by Bi,j . Also, let B1

i denote the projection of all nonempty Bi,j ’s, as j ranges,
towards the x1-axis and B2

j towards the x2-axis, as i ranges. Note that these are well-defined
in this way, since by the geometry of region D1,2 two nonempty Bi,j , Bi′,j′ will have the same
vertical projection if i = i′ and the same horizontal if j = j′. Also, it is a simple fact to observe
that all B1

i and B2
j are single-dimensional real intervals of length at most δ.

Now let’s construct a directed graph G = (V,E), together with a capacity function c(e)
for all edges e ∈ E. Initially, for any pair (i, j) such that Bi,j has positive (two-dimensional
Lebesgue) measure we insert a node v(i, j) in V . We’ll call these nodes internal and we’ll denote
them by Vo. Also, for any internal node v(i, j) we add nodes v1(i) and v2(j) corresponding
to entire columns and rows, calling them column and row vertices and denoting them by V1
and V2, respectively. Finally there are two special nodes, a source σ and a destination τ .
From the source to all internal nodes v = v(i, j) we add an edge (σ, v) with capacity equal
to the area of Bi,j under h, i.e. c(σ, v) =

∫
Bi,j

h(x) dx. From any internal node v = v(i, j) to
its external column and row nodes v1 = v1(i) and v2 = v2(j) we add edges with capacities
c(v, v1) = c(v, v2) = c(σ, v) equal to the internal node’s incoming edge capacity from the source.
Finally, for all external nodes v1(i) ∈ V1 and v2(j) ∈ V2 we add edges towards the destination τ
with capacities c(v1, τ) = f2(1)

∫
B1

i
f1(x1) dx1 and c(v2, τ) = f1(1)

∫
B2

j
f2(x2) dx2, respectively.

The structure of graph G is depicted in Fig. 2.
As a first observation, notice that the maximum flow that can be sent from σ within the

graph is
∫
D1,2

h(x) dx1 dx2 and the maximum flow that τ can receive is

f2(1)

∫ 1

x∗1

f1(x1) dx1 + f1(1)

∫ 1

x∗2

f2(x2) dx2

(remember that the projection of D1,2 to the x1-axis is [x∗1, 1] and to the x2-axis [x∗2, 1]). But,
from the way the entire region D is constructed, we know that the above two quantities are

7We would like to note here that this is the only point in the paper where the fact that the densities are
strictly positive is used. As a matter of fact, a closer look will reveal that the proof just needs the property to
hold in the closure of D1,2 and not necessarily in the entire domain I2. This allows the consideration of a wider
family of feasible distributional priors, for example the monomial distributions of Corollary 1: their densities
f(t) = (c + 1)tc may vanish at t = 0 but these “problematic” points happen to lie outside the area D1,2 where
both items are sold.
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i
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j

∫
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h(x)

∫
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h(x)

f2(1)
∫
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i
f1(x1)

∫
Bi,j
h(x)

f1(1)
∫
B2

j
f2(x2)

Bi,j′

∫
Bi,j′
h(x)

∫
Bi,j′
h(x)

B2
j′

∫
Bi,j′
h(x)

f1(1)
∫
B2

j′
f2(x2)

σ

τ

1

1

0

x∗
2

x∗
1

x1 + x2 = p

j

j′

i

Figure 2: The graph G in the proof of Lemma 3. Every internal node Bi,j of region D1,2 can receive at most∫
Bi,j

h(x) dx flow from the source node σ and can send at most that amount to each one of its neighbouring

external nodes B1
i and B2

j . Every external node B1
i and B2

j is connected to the destination τ with edges of capacity
f2(1)

∫
B1

i
f1(x1) dx1 and f1(1)

∫
B2

j
f2(x2) dx2, respectively. Internal Bi,j ’s are two-dimensional intersections of δ-

boxes with D1,2, while the external ones, B1
i and B2

j are single dimensional intervals of length δ.

equal (see (7)). Let’s denote this value by ψ. Next, we will prove that indeed one can create
a feasible flow through G that achieves that maximum value ψ. From the max-flow min-cut
theorem, it is enough to show that the minimum (σ, τ)-cut of G has a value of at least ψ. To
do that, we’ll show that (σ, V \ {σ}) is a minimum cut of G.

Indeed, let (S, V \S) be a (σ, τ)-cut of G. First, let there be an edge (v, vj) crossing the cut,
i.e. v ∈ S and vj /∈ S, with v internal node and vj external. Then, by moving v at the other
side of the cut, i.e. removing it from S, we would create at most a new edge contributing to the
cut, namely (σ, v) but also destroy at least one edge (v, vj). Since the capacities of these two
edges are the same, the overall effect would be to get a new cut with weakly smaller value. So,
from now on we can assume that for all edges (v, vj) of G, if v ∈ S then also vj ∈ S. Under
this assumption, if So = Vo ∩S denotes the set of internal nodes belonging at the left side of the
cut, for every v ∈ So all edges (v, vj) adjacent to v will not cross the cut. However, this means
that all edges (vj , τ), where vj ∈ N(v)8, do contribute to the cut. But then, if we remove all
nodes in So, together with their neighbouring external nodes N(So) at the other side of the cut,
we increase the cut’s value by at most

∑
v∈So

c(σ, v) and at the same time reduce it by at least∑
vj∈N(So)

c(vj , τ). However, by the way graph G is constructed, this corresponds to an overall
increase in the cut of at least

∫

B
h(x) dx− f2(1)

∫

B1

f1(x1) dx1 − f1(1)

∫

B2

f2(x2) dx2,

where B = ∪v(i,j)∈So
Bi,j is the region of D1,2 covered by the boxes of nodes in So and B1, B2

are the projections of this body to the horizontal and vertical axis, respectively. From Lemma 2
this difference must be nonpositive, thus this change results in a cut of an even (weakly) smaller
value. The above arguments show that indeed the cut that has only σ remaining at its left side
is a minimum one.

8N(v) denotes the set of neighbours of v in graph G.
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So, there must be a flow φ : E −→ R+, achieving to transfer a total value of ψ through G.
As we argued above though, by the construction of G, in order to achieve this value of ψ the full
capacity of all edges (σ, v) as well as that of all (vj , τ) must be used. So, this flow f manages to
elegantly separate all incoming flow φ(σ, v(i, j)) =

∫
Bi,j

h(x) dx towards an internal box of D1,2,
into a sum of flows φ(v(i, j), v1(i)) + φ(v(i, j), v2(j)) towards its external neighbours. But this
is exactly what we need in order to construct our feasible dual solution! For simplicity, denote
this incoming flow φ(i, j) and the outgoing ones φ1(i, j) and φ2(i, j), respectively. Then, define
the functions w1, w2 throughout D1,2 by

w1(x) =
φ1(i, j)

φ(i, j)
h(x) and w2(x) =

φ2(i, j)

φ(i, j)
h(x),

where Bi,j is the discretization box where point x of D1,2 belongs to. In that way, first notice
that we achieve w1 +w2 = h. Secondly, functions w1 and w2 are almost everywhere continuous,
since the values of the flows are constant within the boxes, and our discretization is finite. The
only remaining property to prove is (20).

Fix some height x2 = x̃2 such that this horizontal line intersects D1,2. We’ll prove that
∫ 1

0
w1(x1, x̃2) dx1 − f1(1)f2(x̃2) ≤ ε′.

Value x̃2 falls within some interval of the discretization, let x̃2 ∈ [(j̃−1)δ, j̃δ] = B2
j̃
. The average

value of function f1(1)f2(x2) (with respect to x2) within this interval is

1

δ
f1(1)

∫

B2
j̃

f2(x2) dx2 = c(v2(j̃), τ)/δ

and the average value of
∫ 1
0 w1(x) dx1 is

1

δ

∫

B2
j̃

∫ 1

0
w1(x) dx1 =

1

δ

∑

i

∫

Bi,j̃

w1(x) dx =
1

δ

∑

i

φ1(i, j)

φ(i, j)

∫

Bi,j̃

h(x) dx =
∑

i

φ1(i, j̃)/δ.

But since the sum of the outgoing flows over any horizontal line of internal nodes of the graph
(here j = j̃) must equal the outgoing flow of the corresponding external node (here v2(j̃)), the
above quantities are equal. Thus, by selecting the discretization parameter δ small enough, we
can indeed make the values

∫ 1
0 w1(x1, x̃2) dx1 and f1(1)f2(x̃2) to be ε′ close to each other 9.

3 The Case of Identical Items

In this section we focus on the case of identically distributed values, i.e. f1(t) = f2(t) ≡ f(t) for
all t ∈ I, and we provide clear and simple conditions under which the critical property (3) of
Theorem 1 holds.

First notice that in this case the regularity Assumption 1 gives 3 + x1f ′(x1)
f(x1)

+ x2f ′(x2)
f(x2)

≥ 0

a.e. in I2 (since f is positive) and thus tf ′(t)
f(t) ≥ −

3
2 for a.e. t ∈ I. An equivalent way of writing

this is that t3/2f(t) is increasing, which interestingly is the complementary case of that studied
by Hart and Nisan [9] for two i.i.d. items: they show that when t3/2f(t) is decreasing, then
deterministically selling in a full bundle is optimal.

9This should feel intuitively clear, and it relies on the uniform continuity of functions f2 and h, but we also
give a formal proof in Appendix A.
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Theorem 2. Assume that G(t) = tf(t)/(1 − F (t)) and H(t) = tf ′(t)/f(t) give rise to well
defined, differentiable functions over I, G being strictly increasing and convex, H decreasing and
concave, with G+H increasing and G(1) ≥ 2 +H(0). Then the requirements of Theorem 1 are
satisfied. In particular

s(t) = G−1(2 +H(t))

and, if ∫ 1

0

∫ 1

0
h(x) dx−

∫ p

0

∫ p−x2

0
h(x) dx− 2f(1) (21)

is nonpositive for p = s(0) then the optimal selling mechanism is the one offering determinis-
tically the full bundle for a price of p being the root of (21) in [0, s(0)], otherwise the optimal
mechanism is the one defined by the utility function

u(x) = max {0, x1 − s(x2), x2 − s(x1), x1 + x2 − p}

with p = x∗ + s(x∗), where x∗ ∈ [0, s(0)] is the constant we get by solving

∫ s(x∗)

x∗

∫ 1

s(x∗)+x∗−x2
h(x) dx +

∫ 1

s(x∗)

∫ 1

x∗
h(x) dx = 2f(1)(1− F (x∗)). (22)

Proof. Function G is strictly monotone, thus invertible and has a range of [G(0), G(1)] =
[0, G(1)] ⊇ [0, 2 +H(0)]. By Assumption 1 and the previous discussion, it must be tf ′(t)/f(t) ≥
−3/2, so 2 + H(t) ≥ 1/2 > 0 for all t ∈ I. Thus, s(t) = G−1(2 + H(t)) is well defined and
furthermore it is decreasing, since G is increasing and H decreasing. Also, by the way s is
defined we get that for all t: G(s(t)) = 2 +H(t), which is exactly condition (3) of Theorem 1.

It remains to be shown that s is concave and that s′(t) > −1. From the definition of
s, s′(t) = H ′(t)/G′(s(t)). Function H is decreasing and concave, so H ′(t) is negative and
decreasing, and function G is increasing and convex and s decreasing, so G′(s(t)) is positive and
decreasing. Combining these we get that the ratio H ′(t)/G′(s(t)) is decreasing, proving that s
is concave. Finally, notice that since we are in a two item i.i.d. setting, the only part of curve
x2 = s(x1) that matters and may appear in the utility of the resulting mechanism (5) is the
one where x1 ≤ x2 (curves x2 = s(x1) and x1 = s(x2) will intersect on the line x1 = x2), so
we only have to show that s′(t) > −1 for t ≤ s(t). Indeed, in that case G′(t) ≤ G′(s(t)), so
s′(t) = H ′(t)/G′(s(t)) ≥ H ′(t)/G′(t) and thus it is enough to show that H ′(t)−G′(t) ≥ 0 which
we know holds since H +G is assumed to be increasing.

Corollary 1 (Monomial Distributions). The optimal selling mechanism for two items with i.i.d.
values from the family of distributions with densities f(t) = (c + 1)tc, c ≥ 0, is deterministic.
In particular, it offers each item for a price of s = c+1

√
c+2
2c+3 and the full bundle for a price of

p = s+ x∗, where x∗ is the solution to (22).

Proof. For two monomial i.i.d. items with f1(t) = f2(t) = (c+ 1)tc we have h(x) = (c+ 1)2(2c+
3)xc1x

c
2 ≥ 0, thus h(x) − f2(1)f1(x1) = (c + 1)2xc1 ((2c+ 3)xc2 − 1) which is nonnegative for all

x2 ≥ c
√

1/(2c+ 3) ≡ ω. So, in order to make sure that Assumption 1 is satisfied, it is enough to
show that x∗ ≥ ω because then D1,2 ⊆ [ω, 1]2. We’ll soon show that this is indeed satisfied for
all c ≥ 0.

Applying Theorem 2 we compute: G(t) = (c+ 1)tc+1/(1− tc+1) which is strictly increasing
and convex in I and H(t) = c which is constant and thus decreasing and concave. Also, it is
trivial to deduce that G+H is increasing and limt→1− G(t) =∞ > 2 + c = 2 +H(0). Then, it

is valid to compute G−1(t) =
(
3+2c
2+c

)− 1
1+c and thus s(t) = c+1

√
c+2
2c+3 which is constant.
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Regarding the computation of the full-bundle price p, condition (22) gives rise to quantity
∫ s

x∗

∫ 1

s+x∗−x2
xc1x

c
2 dx +

∫ 1

s

∫ 1

x∗
xc1x

c
2 dx−

2

c+ 1
(1− x∗c+1),

which by plugging-in x∗ = ω and using the values of s and ω (as functions of c) one can see that
it is positive for all c ≥ 0. So, by the discussion in the beginning of Sect. 2.4 it can be deduced
that the solution to (22) will be such that x∗ > ω.

Notice that for c = 0 the setting of Corollary 1 reduces to a two uniformly distributed goods
setting, and gives the well-known results of s = 2/3 and p = (4−

√
2)/3 (see e.g. [14]). For the

linear distribution f(t) = 2t, where c = 1, we get s =
√

3/5 and p ≈ 1.091.

Corollary 2 (Exponential Distributions). The optimal selling mechanism for two items with
exponentially i.i.d. values over [0, 1], i.e. having densities f(t) = λe−λt/(1−e−λ), with 0 < λ ≤ 1,
is the one having s(t) = 1

λ

[
2− λt−W

(
e2−λ−λt(2− λt)

)]
and a price of p = x∗ + s(x∗) for the

full bundle, where x∗ is the solution to (22). Here W is Lambert’s product logarithm function10.

Proof. For two i.i.d. exponentially distributed items with f1(t) = f2(t) = λe−λt/(1 − e−λ) we
have

h(x)−f2(1)f1(x1) =
λ2

(eλ − 1)
2 e

2−λ(x1+x2)(3−λ(x1+x2)−eλx2) ≥ λ2

(eλ − 1)
2 e

2−λ(x1+x2)(2−λ(x1+x2)) ≥ 0

for all x1, x2 ∈ I, since λ ≤ 1.
Applying Theorem 2 we compute: G(t) = λt/(1 − e−λ(1−t)) which is strictly increasing

and convex in I and H(t) = −λt which is decreasing and concave. Also, G(t) + H(t) =
λte−λ(1−t)/(1− e−λ(1−t)) is increasing and limt→1− G(t) =∞ > 2 = 2 +H(0). Then, it is valid
to compute G−1(t) = t/λ−W

(
tet−λ

)
/λ and thus s(t) = 1

λ

[
2− λt−W

(
e2−λ−λt(2− λt)

)]
.

For example, for λ = 1 we get s(t) = 2 − t − W
(
e1−t(2− t)

)
and p ≈ 0.714. Interest-

ingly, to our knowledge this is the first example for an i.i.d. setting with values coming from
a regular, continuous distribution over an interval [0, b], where an optimal selling mechanism is
not deterministic. Also notice how this case of exponential i.i.d. items on a bounded interval
is different from the one on [0,∞): by [4, 6] we know that at the unbounded case the optimal
selling mechanism for two exponential i.i.d. items is simply the deterministic full-bundling, but
in our case of the bounded I this is not the case any more.

4 Non-Identical Items

An interesting aspect of the technique of Theorem 2 is that it can readily be used also for non
identically distributed values. One just has to define Gj(t) ≡ tfj(t)/(1 − Fj(t)) and Hj(t) =
tf ′j(t)/fj(t) for both items j = 1, 2 and check again whether G1, G2 are strictly increasing and
convex and H1, H2 nonnegative, decreasing and concave. Then, we can get sj(t) = G−1j (2 +
H−j(t)) and check if sj(1) > −1 and the price p of the full bundle can be given by (4). Again, a
quick check of whether full bundling is optimal is to see if for p = min {s1(0), s2(0)} expression∫ 1
0

∫ 1
0 h(x) dx−

∫ p
0

∫ p−x2
0 h(x) dx− f1(1)− f2(1) is nonpositive.

Example 1. Consider two independent items, one having uniform valuation f1(t) = 1 and one
exponential f2(t) = e−t/(1−e−1). Then we get that s1(t) = (2− t)/(3− t), s2(t) = 2−W (2e) ≈
0.625 and p ≈ 0.787. The optimal selling mechanism offers either only item 2 for a price of
s2 ≈ 0.625, or item 1 deterministically and item 2 with a probability s′1(x2) for a price of
s1(x2) − x2s′1(x2), or the full bundle for a price of p ≈ 0.787. You can see the allocation space
of this mechanism in Fig. 1.

10Function W can be defined as the solution to W (t)eW (t) = t.
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5 Approximate Solutions

In the previous sections we developed tools that, under certain assumptions, can give a complete
closed-form description of the optimal selling mechanism. However, remember that the initial
primal-dual formulation upon which our analysis was based, assumes a relaxed optimization
problem. Namely, we dropped the convexity assumption of the utility function u. In the results
of the previous sections this comes for free: the optimal solution to the relaxed program turns out
to be convex anyways, as a result of the requirements of Theorem 1. But what happens if that
was not the case? The following tool shows that even in that case our results are still applicable
and very useful for both finding good upper bounds on the optimal revenue (Theorem 3) as well
as designing almost-optimal mechanisms that have provably very good performance guarantees
(Sect. 5.1).

Theorem 3. Assume that all conditions of Theorem 1 are satisfied, except from the concavity
of functions s1, s2. Then, the function u given by that theorem might not be convex any more
and thus not a valid utility function, but it generates an upper bound to the optimal revenue,
i.e. Rev(f1, f2) ≤ Rf1,f2(u). In particular, this is the case if all the requirements of Theorem 2
hold except the concavity of H.

Proof. The proof is a straightforward result of the duality framework (see Sect. 2.2): By dropping
only the concavity requirement of functions s1 and s2 but satisfying all the remaining conditions
of Theorem 1, we still construct an optimal solution to the pair of primal-dual programs, meaning
that function u produced in (5) maximizes Rf1,f2(u) over the space of all functions u : I2 −→ R+

with partial derivatives in [0, 1] (see (8)); the only difference is that u might not be convex since
s1, s2 might not be concave any more. The actual optimal revenue objective Rev(f1, f2) has
the extra constraint of u being convex, thus, given that it is a maximization problem, it has to
be that Rev(f1, f2) ≤ Rf1,f2(u). Finally, it is easy to verify in the proof of Theorem 2 that
dropping just the concavity requirement for H can only affect the concavity of functions s1, s2
and hence the convexity of u.

Example 2 (Power-Law Distributions). A class of important distributions that falls into the
description of Theorem 3 are the power-law distributions with parameters 0 < α ≤ 2. More
specifically, these are the distributions having densities f(t) = c/(t+1)α, with the normalization
factor c selected so that

∫ 1
0 f(t) dt = 1, i.e. c = (a−1)/(1−21−α). It is not difficult to verify that

these distributions satisfy Assumption 1. For example, for α = 2 one gets f(x) = 2/(x + 1)2,
the equal revenue distribution shifted in the unit interval. For this we can compute via (3) that
s(t) = 1

2

√
5 + 2t+ t2 − 1

2(1 + t) and p ≈ 0.665, which gives an upper bound of Rf,f (u) ≈ 0.383
to the optimal revenue Rev(f, f).

5.1 Convexification

The approximation results described in Theorem 3 can be used not only for giving upper bounds
on the optimal revenue, but also as a design technique for good selling mechanisms. Since the
only deviation from a feasible utility function is the fact that function s is not concave (and thus
u is not convex), why don’t we try to “convexify” u, by replacing s by a concave function s̃? If
s̃ is “close enough” to the original s, by the previous discussion this would also result in good
approximation ratios for the new, feasible selling mechanism.

Let’s demonstrate this by an example, using the equal revenue distribution f(t) = 2/(t+ 1)2

of the previous example. We need to replace s with a concave s̃ in the interval [0, x∗]. So let’s
choose s̃ to be the concave hull of s, i.e. the minimum concave function that dominates s. Since
s is convex, this is simply the line that connects the two ends of the graph of s in [0, x∗], that
is, the line

s̃(t) =
s(0)− s(x∗)

x∗
(x∗ − t) + s(x∗).

15



A calculation shows that this new valid mechanism has an expected revenue which is within a
factor of just 1+3×10−9 of the upper bound given by s using Theorem 3, rendering it essentially
optimal.
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A Remaining Proof of Lemma 3

Functions f2 and
∫ 1
0 w1(x1, x̃2) dx1 are continuous in the interval B2

j̃
, so by the Mean Value

Theorem there exist x̄2, ¯̄x2 ∈ B2
j̃
such that

∫ 1

0
w1(x1, x̄2) dx1 =

1

δ

∫

B2
j̃

∫ 1

0
w1(x) dx =

1

δ
f1(1)

∫

B2
j̃

f2(x2) dx2 = f1(1)f2(¯̄x2) (23)

17

http://www.ma.huji.ac.il/hart/abs/monot-m.html
http://dx.doi.org/10.1073/pnas.1309533110
http://dx.doi.org/10.1016/j.jet.2005.08.007
http://dx.doi.org/10.1016/j.jet.2005.08.007
http://dx.doi.org/10.1016/0022-0531(88)90135-4
http://dx.doi.org/10.1016/0022-0531(88)90135-4
http://ideas.repec.org/p/bge/wpaper/771.html
http://dx.doi.org/10.1287/moor.6.1.58
http://dx.doi.org/10.1215/S0012-7094-55-02268-7
http://dx.doi.org/10.2202/1935-1704.1664
http://dx.doi.org/10.1016/0304-4068(85)90015-1
http://dx.doi.org/10.1016/0304-4068(85)90015-1
http://doi.acm.org/10.1145/2764468.2764510
http://doi.acm.org/10.1145/2600057.2602863


Notice that both x̄2 and ¯̄x2 are δ-close to x̃2. Function f2 is uniformly continuous, so one can
pick δ small enough in order to

f1(1)f2(¯̄x2)− f1(1)f2(x̃2) ≤ ε′/2. (24)

In the same way, because h is uniformly continuous, we can select δ small enough so that
h(x1, x̄2)− h(x1, x̃2) ≤ ε′/3 for all x1 ∈ I, and that would give

∣∣∣∣
∫ 1

0
w1(x1, x̄2) dx1 −

∫ 1

0
w1(x1, x̃2) dx1

∣∣∣∣ ≤
∑

i

f1(i, j)

f(i, j)

∫

B1
i

|h(x1, x̄2)− h(x1, x̃2)| dx1

+ |x̄2 − x̃2| ‖h‖∞

≤
∑

i

∫

B1
i

|h(x1, x̄2)− h(x1, x̃2)| dx1 + δ ‖h‖∞

≤
∫ 1

0

ε′

3
dx1 + δ ‖h‖∞

≤ ε′/2, (25)

for choosing a small enough value for δ, since ‖h‖∞ ≡ supx∈I2 h(x) is a fixed constant (because
h is continuous). The last additive term in the first inequality accounts for the fact that the
length of the intersections of horizontal lines x2 = x̄2 and x2 = x̃2 with D1,2 may differ by
|x̄2 − x̃2| (remember that the boundary of D1,2 is a 45◦–line).

Finally, by plugging in inequalities (24) and (25) into (23) we get the desired
∣∣∣∣
∫ 1

0
w1(x1, x̃2) dx1 − f1(1)f2(x̃2)

∣∣∣∣ ≤ ε′.
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