
ar
X

iv
:1

71
1.

02
85

5v
4

 [
cs

.D
S]

 2
4

A
pr

 2
01

8

A compressed dynamic self-index for highly repetitive text

collections

Takaaki Nishimoto1 Yoshimasa Takabatake2 and Yasuo Tabei1

1 RIKEN Center for Advanced Intelligence Project, Chuo-ku, Tokyo, Japan

{takaaki.nishimoto, yasuo.tabei}@riken.jp
2 Kyushu Institute of Technology, Fukuoka, Japan

takabatake@ai.kyutech.ac.jp

Abstract

We present a novel compressed dynamic self-index for highly repetitive text collections. Signature
encoding, an existing self-index of this type, has a large disadvantage of slow pattern search for short
patterns. We obtain faster pattern search by leveraging the idea behind a truncated suffix tree (TST)
to develop the first compressed dynamic self-index, called the TST-index, that supports not only fast
pattern search but also dynamic update operations for highly repetitive texts. Experiments with
a benchmark dataset show that the pattern search performance of the TST-index is significantly
improved.

1 Introduction

A highly repetitive text collection is a set of texts such that any two texts can be converted into each other
with a few modifications. Such collections have become common in various fields of research and industry.
Examples include genome sequences for the same species, version-controlled documents, and source code
repositories. For human genome sequences, it is said that the difference between individual human
genomes is around 0.1%, and there is a huge collection of human genomes, such as the 1000 Genome
Project [1]. As another example, Wikipedia belongs to the category of version-controlled documents.
There is clearly a strong, growing need for powerful methods to process huge collections of repetitive
texts.

A self-index is a data representation for a text with support for random access and pattern search op-
erations. Quite a few self-indexes for highly repetitive texts have been proposed thus far. Early methods
include the SLP-index [5] and LZ-end [9]. The block tree index (BT-index) [14] is a recently proposed self-
index that reaches compression close to that of Lempel-Ziv. The run-length FM-index (RLFM-index) [7]
is a recent breakthrough built on the notion of a run-length-encoded Burrows-Wheeler transform (BWT).
The RLFM-index can be constructed in a space-efficient, online manner while supporting fast operations.
Although existing self-indexes for highly repetitive texts are constructible in a compressed space and also
support fast operations, there are no proposed methods supporting dynamic updating of self-indexes for
editing a set of texts with a highly repetitive structure. Thus, an important open challenge is to develop
a self-index for highly repetitive texts that supports not only fast operations for random access and
pattern search but also dynamic updating of the index.

The ESP-index [18] and signature encoding [15] are two self-indexes using the notion of a locally
consistent parsing (LCPR) [11] for highly repetitive texts. While they have the advantages of being
constructible in an online manner and supporting dynamic updates of data structures, they have a
large disadvantage of slow pattern search for short patterns. From a given string, these methods build
a parse tree that guarantees upper bounds for parsing discrepancies between different appearances of
the same substring. For pattern search, the ESP-index performs top-down search of the parse tree to
find candidate pattern appearances, and then it checks whether the pattern does occur around each
candidate. In contrast, signature encoding uses a 2D range of reporting queries for pattern search.
Traversing the search space, especially for short patterns, takes a long time for both methods, which
limits their applicability in practice.

In this paper, we present a novel, compressed dynamic index for highly repetitive text collections,
called a truncated suffix tree- (TST-) based index (TST-index). The TST-index improves on existing

1

http://arxiv.org/abs/1711.02855v4

self-indexes on an LCPR to support faster pattern search by leveraging the idea behind a q-truncated
suffix tree (TST) [13]. A q-TST is built from an input text, and a self-index is created for the transformed
text by using the q-TST, which greatly improves the search performance. In addition, the TST-index
supports dynamic updates, which is a useful property when input texts can be edited, as noted above.
Experiments with a benchmark dataset of highly repetitive texts show that pattern search with the
TST-index is much faster than that with signature encoding. In addition, the TST-index has pattern
search performance competitive with that of the RLFM-index, yet the size of the TST-index can be
smaller than that of the RLFM-index.

2 Preliminaries

Let Σ be an ordered alphabet and σ = |Σ|. Let string T be an an element in Σ∗, with its length denoted
by |T |. In general, a string P ∈ Σ∗ is called a pattern. Let N = |T | and m = |P | throughout this paper.
For string T = xyz, x, y, and z are called a prefix, substring, and suffix of T , respectively. For two
strings x and y, let x · y = xy.

The empty string ε is a string of length 0. Let Σ+ = Σ∗−{ε}. For any 1 ≤ i ≤ |T |, T [i] denotes the i-
th character of T . For any 1 ≤ i ≤ j ≤ |T |, T [i..j] denotes the substring of T that begins at position i and
ends at position j. Let T [i..] = T [i..|T |] and T [..i] = T [1..i] for any 1 ≤ i ≤ |T |. For strings T and K and
indexes i and k, we define insertion and deletion operations as follows: insert(T, i,K) = T [..i−1]·K ·T [i..]
and delete(T, i, k) = T [..i−1] ·T [i+k−1..]. For any strings P and T , let Occ(P, T) denote all occurrence
positions of P in T ; that is, Occ(P, T) = {i | P = T [i..i + |P | − 1], 1 ≤ i ≤ |T | − |P | + 1}. Let
occ = |Occ(P, T)|. Similarly, cOcc(c, T) = Occ(c, T) for c ∈ Σ.

For a string P and integer q, we say that P is a q-gram if |P | = q. We then say that P is a q-short
pattern if |P | ≤ q, or a q-long pattern if |P | > q. Similarly, we say that a suffix of length at most q of P
is a q-short suffix of P . Let Σq

T be the set of all substrings of length q and all suffixes of length at most
q in T , i.e., Σq

T = {T [i..min{i+ q − 1, |T |}] | i ∈ 1 ≤ i ≤ |T |}. For example, if T = babababbabab$ and
q = 4, then Σq

T = {$, ab$, abab, abba, b$, bab$, baba, babb, bbab}. For a string T ∈ Σ+, we say that T is
a |Σ|-colored sequence if T [i] 6= T [i+ 1] holds for any 1 ≤ i < |T |.

For a string T and an integer 1 < i ≤ |T |, the longest prefix f of T [i..] such that f occurs in T [..i]
is called the longest previous factor without self-reference at position i of T . Furthermore, f1, . . . , fd is
called a factorization of T if f1 · · · fd = T holds, where factor fi for each i ∈ {1, 2, ..., d} is a substring
of T and d is the size of the factorization. Then, the run-length encoding RLE(T) is a factorization of
string T such that each factor is a maximal run of the same character in T . Such a run is denoted as ak

for length k and character a ∈ Σ. For example, for T = aabbbbbabb, RLE(T) = a2b5a1b2. RLE(T) is a
|RLE(T)|-colored sequence when we treat each factor as a character.

Next, the Lempel-Ziv77 (LZ77) factorization without self-reference [21] for a string T is a factorization
LZ(T) = f1, . . . , fz satisfying the following conditions: (1) f1 · · · fz = T ; (2) f1 = T [1]; (3) fi is the longest
previous factor without self-reference at position ℓ = |f1 · · · fi−1|+ 1 of T , if it exists for 1 < i ≤ z; and
(4) otherwise, fi = T [ℓ]. Hence, z is the number of factors in LZ77, i.e., z = |LZ(T)|. For example, if
T = abababcabababcabababcd, then LZ(T) = a, b, ab, ab, c, abababc, abababc, d.

A self-index is a data structure built on T and supporting the following operations:

• Count: Given a pattern P , count the number of appearances of P in T .
• Locate: Given a pattern P , return all positions at which P appears in T .
• Extract: Given a range [i..i+ ℓ− 1], return T [i..i+ ℓ− 1].

Such a self-index is considered static. In contrast, a dynamic self-index supports not only the above three
operations but also an update operation on the self-index for insertion and deletion of a (sub)string of
length k on string T of maximal length M ≥ N . A compressed dynamic self-index is a compressed
representation of a dynamic self-index. We assume that M = N for a static setting and M ≥ N for a
dynamic setting.

Our model of computation is a unit-cost word RAM with a machine word size of W = Ω(log2 M) bits.
We evaluate the space complexity here in terms of the number of machine words. A bitwise evaluation
of space complexity can be obtained with a log2 M multiplicative factor.

Finally, let log(1) n = log2 n, log
(i+1) n = log log(i) n, and log∗ n = min{i | logi n ≤ 1, i ≥ 1} for a real

positive number n.

2

3 Literature Review

Self-indexes for highly repetitive text collections constitute an active research area, and many methods
have been proposed thus far. In this section, we review the representative methods summarized in the
upper part of Table 1. See [7] for a complete survey.

Self-indexes for highly repetitive text collections are broadly classified into three categories. The first
category is a grammar-based self-index. Claude and Navarro [5] presented the SLP-index, which is built
on a straight-line program (SLP), a context-free grammar (CFG) in Chomsky normal form for deriving a
single text. For the size n of a CFG built from text T , the SLP-index takes O(n) space in memory while

supporting locate queries in O(m
2

ǫ log(logN
logn) + (m+ occ) logn) time, where ǫ ∈ (0, 1] is a parameter [5].

Two other grammar-based self-indexes, the ESP-index [18] and signature encoding [15], use the
notion of LCPR. Each takes w = O(z logN log∗ M) space in memory while supporting locate queries in
O(mfA + occ logN + logw logm log∗ M(logN + logm log∗ M) time, where fA = f(w,M) and f(a, b) =

O(min{ log log b log log a
log log log b ,

√

log a
log log a}). Signature encoding also supports dynamic updates in O((k + logN

log∗ M) logw logN log∗ M) time for highly repetitive texts. Although the ESP-index and signature
encoding have an advantage in that they can be built in an online manner, and although signature
encoding also supports dynamic updates, these self-indexes have a large disadvantage in that locate
queries are slow for short patterns.

The second category includes self-indexes based on LZ77 factorization. Recently, Bille et al. [4]
presented a self-index with a time-space trade-off on LZ77. Their self-index takes O(ẑ log(N/ẑ)) space

while supporting locate queries in O(m(1+ logǫ′ ẑ
log(N/ẑ))+occ(log logN+logǫ

′

ẑ)) time, where ẑ is the number

of factors in LZ77 with self-reference on T and ǫ′ ∈ (0, 1) is an arbitrary constant. Navarro [14] presented
a self-index based on a block tree (BT), called the BT-index. The BT-index uses O(z log (n/z)) space

and locates a pattern in O(m2 log (N/z) + m logǫ
′′

z + occ(log logN + logǫ
′′

z)) time for any constant
ǫ′′ > 0.

The third category includes the RLFM-index built on the notion of a run-length-encoded BWT. The
RLFM-index was originally proposed in [10] but has recently been extended to support locate queries [7].
It uses O(r) space for the number r of BWT runs and takes O(m log logW (σ+N/r)+occ log logW (N/r))
time for locate queries. Although the RLFM-index supports fast locate queries in a compressed space,
it has a serious issue with its inability to dynamically update indexes.

Despite the importance of compressed dynamic self-indexes for highly repetitive text collections, no
previous method has both supported fast queries and dynamic updates of indexes while achieving a
high compression ratio for highly repetitive texts. We thus present a compressed dynamic self-index,
called the TST-index, that meets both demands and is applicable to highly repetitive text collections in
practice. The TST-index has the following theoretical property, which will be proven over the remaining
sections.

Theorem 1. For a string T and an integer q, the TST-index takes space w′ = O(z(q2 + logN log∗ M))
while supporting the following four operations: (i) count queries in O(m(log log σ)2) time for a pattern of
length m ≤ q; (ii) locate queries in O(m(log log σ)2 + occ logN) time for a pattern of length m ≤ q;(iii)
extract queries in O(ℓ + logN) time; and (iv) update operations in O(fB(k + q + logN log∗ M) + (k +
q)q(log log σ)2) time, where fB = f(w′,M).

4 Fast queries with truncated suffix trees

In this section we present a novel text transformation, called a q-TST transformation, to improve the
search performance of a self-index. We first introduce the TST in the next subsection and then present
the q-TST transformation in the following subsection.

4.1 Tries, compact tries and truncated suffix trees

A trie X for a set of strings F is a rooted tree whose nodes represent all prefixes of the strings in F (see
the left side of Figure 1). Let U be the set of nodes in X , and let UL be the set of leaves in X . We then
define the following five operations for X , u, v ∈ U , c ∈ Σ, and P ∈ Σ∗:

• pathX (u): Returns the string P starting at the root and ending at node u.
• locusX (P): Returns the node u such that pathX (u) = P .

3

Table 1: Summary of self-indexes for highly repetitive text collections. Here, occc ≥ occ is the number
of candidate occurrences of a given pattern as obtained by the ESP-index [18].

Method Space Locate Time Update time

RLFM-index [7] O(r) O(m log logW (σ +N/r) + occ log logW (N/r)) Unsupported

Bille et al. [4] O(ẑ log(N/ẑ)) O(m(1 + logǫ
′

ẑ
log(N/ẑ)

) + occ(log logN + logǫ
′

ẑ)) Unsupported

BT-index [14] O(z log (N/z)) O(m2 log (N/z) +m logǫ
′′

z Unsupported

+occ(log logN + logǫ
′′

z))

SLP-index [5] O(n) O(m
2

ǫ
log(log N

logn
) + (m+ occ) logn) Unsupported

Signature O(z logN log∗ M) O(mfA + occ logN + log z O((k + logN log∗ M) log z
encoding [15] logm log∗ M(logN + logm log∗ M) logN log∗ M) on average

TST-index-s O(z(q + logN log∗ N)) O(m+ occ) (m ≤ q) Unsupported
(this study) O(m+ occc logm log∗ N logN)(m > q)
TST-index-d O(z(q2 + logN log∗ M)) O(m(log logσ)2 + occ logN) (m ≤ q) O(fB(k + q + logN log∗ M)
(this study) +(k + q)q(log log σ)2)

• leaveX (P): Returns the set of all leaves whose prefixes contain P .
• childX (u, c): Returns the node v such that pathX (u) · c = pathX (v) holds if it exists.
• slinkX (u) = v: Returns the node v such that pathX (v) = pathX (u)[2..] holds if it exists.

All nodes in X are categorized into two types. If node v is an internal node and has only one child,
then v is called an implicit node; otherwise, v is called an explicit node. Let Uimp and Uexp be the
respective sets of implicit and explicit nodes in X .

For u ∈ Uimp, the function explX (u) returns the lowest explicit node v ∈ Uexp such that u is an
ancestor of v. The computation times for explX (u), locusX (P), pathX (u) = P , and leaveX (P) are
constant, O(|P |g), O(|P |), and O(|P |g + |leaveX (P)|), respectively, where g is the computation time for
childX (u, c). Here, g = O(1) when we use perfect hashing [6] in O(|Uexp|) space. Moreover, slinkX (u) = v
can be computed in constant time if node u stores a pointer to v in constant space. Hence, the data
structure requires O(|Uexp|) space.

A compact trie is a space-efficient representation of a trie X such that all chains of implicit nodes in
X are collapsed into single edges (see the right side of Figure 1). We use two representations for node
labels in a compact trie. The first representation uses a string Y ∈ Σ∗ such that each edge label in
X is represented as a pair of start and end positions in Y , resulting in a space-efficient representation
of the edge labels in X . This representation is called a compact trie with a reference string and takes
O(|Uexp|+ |Y |) space. The second approach represents each node label explicitly and is called a compact
trie without a reference string. This representation takes O(|U |) space. The compact trie with a reference
string is more space efficient and is used in the static case, while the compact trie without a reference
string is used in the dynamic case.

We can insert or delete a string K into or from a compact trie without a reference string in O(|K|ĝ)
time [12], where ĝ is the computation time for updating the data structure for childX (u, c) when a child
is inserted into or removed from u (assume g ≤ ĝ). Here, g, ĝ = f(u′, σ) = O((log log σ)2) when we use
the predecessor/successor approach of Beame and Fich [3] in O(|Uexp|) space, where u′ is the number of
children of u.

Example 2. The trie on the left side of Figure 1 is built on F = {$, ab$, abab, abba, b$, bab$, baba, babb,
bbab}. In this trie, U = {1, . . . 10, A, . . . , I}, Uexp = {1, 3, 6, 8, A, . . . , I}, Uimp = 2, 4, 5, 7, 9, 10,
pathX (3) = ab, locusX (baba) = G, leaveX (b) = {E,F,G,H, I}, childX (5, a) = D, slinkX (4) = 7,
and expl(4) = C.

The q-TST X [13] of a string T is a trie for Σq
T . We assume that T ends with a special char-

acter $ not included in Σ. Since Σq
T = F for Example 2, the right side of Figure 1 shows a q-TST

built on T = babababbabab$. Trie X is a 4-TST built on T = babababbabab$, because Σq
T = F =

{$, ab$, abab, abba, b$, bab$, baba, babb, bbab}.
An important fact is that slinkX (u) always exists for every leaf node u in q-TST. We thus explicitly

store slinkX (u) for every leaf u.
Vitale et al. showed that the reference string Y of a q-TST can be represented as a string of length

O(|Σq
T |), and that a q-TST for a string T can be constructed in O(|T |ĝ) time in an online manner while

using O(|Σq
T |) working space [20].

4

1

6

8

3
a

b

b

a

$
a

b

$

b

a
b

$ b

$

b

a

b

A

B

C
D

E

F
G

H
I

a
4

2

7 9

10
5

1

6

8

3A

B

C D

E

F
G

H
I

Y[1..3]
Y[2..3]

Y[2..3]
Y[2..3]

Y[1..2]

$ b

$

$ b

$

a

Figure 1: Trie for F = {$, ab$, abab, abba, b$, bab$, baba, babb, bbab} (left) and its corresponding
compact trie with reference string Y = bab$ (right).

4.2 q-TST transformation

We now present a string transformation using a q-TST, which we call a q-TST transformation. A string
T is transformed into a new string Tq by a q-TST transformation built on T . A self-index with improved
search performance can then be built on Tq.

A q-TST transformation using a q-TST X on T is a transformation of T into a new string Tq by
replacing every q-gram P in T by locusX (P) (i.e., by its node id). Formally, Tq = C (T, 1) · · ·C (T, |T |),
where C (T, i) = locusX (T [i..min{i + q − 1, |T |}]). Similarly, a pattern P is transformed into Pq by a
q-TST transformation using the same q-TST X , i.e., Pq = C(P, 1) · · ·C(P, |P | − q + 1). Given these
definitions, the following lemma holds.

Lemma 3. For two strings T, P and q-TST of T , the following equation holds.

Occ(P, T) =

{

⋃

c∈leaveX (P) cOcc(c, Tq) for |P | ≤ q

Occ(Pq, Tq) for |P | > q
(1)

For |P | > q, Occ(P, T) = φ when Pq cannot be computed, i.e, when P contains a new q-gram not
occurring in T .

Proof. Recall that a q-gram beginning at position i in T is transformed to the corresponding q-TST
leaf beginning at position i in Tq. This means that a substring P of length at most q and beginning at
position i in T is transformed to a q-TST leaf containing P as a prefix beginning at position i in Tq. Let
L be the set of all leaves containing P as a prefix. Then all occurrence positions of all leaves of L in Tq

are given by Occ(P, T). Since L = leaveX (P), Equation 1 holds for q-short patterns.
Similarly for a q-long pattern P , a substring P beginning at position i in T is transformed to Pq

beginning at position i in Tq. Occ(P, T) = φ clearly holds when Pq cannot be computed. Therefore,
Equation 1 also holds for q-long patterns.

Example 4. Let T = babababbabab$ and q = 4, and let the trie in Figure 1 be a q-TST of T . Then
Tq = GCGCHDIGCFBEA. Let P = ab and P ′ = babab. Then Occ(P, T) = cOcc(B, Tq)∪cOcc(C, Tq)∪
cOcc(D,Tq) holds, because leaveX (P) = {B,C,D}, cOcc(B, Tq) = {11}, cOcc(C, Tq) = {2, 4, 9}, and
cOcc(D,Tq) = {6}. Similarly, Occ(P ′, T) = Occ(P ′

q , Tq) = Occ(GC, Tq) = {1, 3, 8}, because |P ′| > q.

We can compute leaveX (P) in O(|P |g + |leaveX (P)|) time. Pq also can be computed in O(|P |g)
time by using slinkX and childX . This is because for u = C (P, i + 1), v = C (P, i), and q ≤ i < m,
u = childX (slinkX (v), P [i+ q]) holds if u and v exist.

Lemma 3 tells us that we can improve search queries on a general self-index for q-short patterns on
a q-TST in O(|P |g + c1 × |leaveX (P)|) time if the computation time for pattern search on the general
self-index is greater than O(|P |g+ c1×|leaveX (P)|), where c1 is the computation time for cOcc with the
general self-index. If the length of pattern P is at most q, i.e., |P | ≤ q, then we perform search queries
on the q-TST. Otherwise, we perform search queries of Pq on a self-index for Tq.

We obtain the following theorem by using Lemma 3.

Theorem 5. Let I(T) be an index supporting cOcc(P, T) in O(c1) time and Occ(P, T) in O(c2) time.
Then there exists an index of O(|Σq

T |+ |I(Tq)|) space that supports Occ(P, T) in O(m+c1×|leaveX (P)|)
time for a q-short pattern P , and that supports Occ(P, T) in O(m + c2) time for a q-long pattern P ,
where |I(T)| is the size of I(T).

We apply Theorem 5 to signature encoding and present a novel self-index named TST-index in the
next section.

5

5 TST-index

We obtain the TST-index by combining Theorem 5 with signature encoding. First, we introduce LCPR
and signature encoding, and then we develop the TST-index.

5.1 Locally consistent parsing (LCPR)

LCPR [11] is a factorization of a string T by using a bit string τ(T) computed for T . Let pi be the
position of the i-th 1 in τ(T). Then τ(T) and pi satisfy the conditions given in Lemma 6.

Lemma 6 ([11]). For a c-colored sequence T of length at least 2, there exists a function τ(T) that returns
a bit sequence of length |T | satisfying the following properties: (1) 2 ≤ pi+1 − pi ≤ 4 and p1 = 1 hold for
1 ≤ i ≤ d, where d = |cOcc(1, τ(T))| and pd+1 = |T |+ 1. (2) If T [i−∆L..i+∆R] = T ′[j −∆L..j +∆R]
holds for integers i and j, then τ(T)[i] = τ(T ′)[j] holds, where ∆L = log∗ c+ 6,∆R = 4, and T and T ′

are c-colored sequences.

An LCPR for a c-colored string T using pi for 1 ≤ i ≤ d + 1 is defined as LC c(T) = T [p1..p2 −
1], . . . , T [pd..pd+1 − 1].

Example 7. Let ∆L = 2,∆R = 1, and T = abcabcdabcab, and assume that τ(T) = 100100010010.
Then LC |Σ|(T) = abc, abcd, abc, ab, p1 = 1, p2 = 4, p3 = 8, p4 = 11, p5 = 13, and 2 ≤ pi+1−pi ≤ 4 holds
for any 1 ≤ i ≤ 4. Since T [3−∆L..3+∆R] = T [10−∆L..10+∆R] = abca holds, τ(T)[3] = τ(T)[10] = 0.
Similarly, since T [4−∆L..4 + ∆R] = T [11−∆L..11 + ∆R] = bcab holds, τ(T)[3] = τ(T)[10] = 1.

5.2 Signature encoding

A signature encoding [11] of a string T is a context-free grammar G = (Σ,V ,D, S) generating the single
text T and built using RLE (T) and LC 4M . Here, V = {e1, . . . , ew} is a set of positive integers called
variables. D = {ei → fi}

w
i=1 is a set of deterministic production rules (a.k.a. assignments), with each

fi being either of a sequence of variables in V or a single character in Σ. S is the start symbol deriving
string T .

A signature encoding corresponds to a balanced derivation tree of height O(logN) built on the
given string T , where each internal node (respectively, leaf node) has a variable in V (respectively, a
character in Σ), as illustrated in Figure 2. Since this derivation tree is balanced, the node labels at
each level can be considered as a sequence from the leftmost node to the rightmost node at a level.
We define Assgn+(f1, f2, . . . , fd) as a function returning a variable sequence e1, e2, . . . , ed, where fi is
a single character in Σ or a sequence of variables in V , and ei is a single character in Σ. In addition,
(ej → fj) ∈ D holds for 1 ≤ j ≤ d. Then, SET

t is a sequence of node labels at the t-th level of the
derivation tree built from string T and defined using Assgn+(f1, f2, . . . , fd) as follows.

SET
t =











Assgn+(T [1], . . . , T [|T |]) for t = 0,

Assgn+(LC 4M (SET
t−1)) for t = 2, 4, . . . ,

Assgn+(RLE (SET
t−1)) for t = 1, 3,

Here, S = SET
h [1] holds for the minimum positive integer h satisfying |SET

h | = 1. Hence, h + 1 is the
height of the derivation tree of S. Let w = |V| be the size of G, whose bound is given by the following
lemma.

Lemma 8 ([17]). The size w of G is bounded by O(min(z logN log∗ M,N)).

G satisfies the following properties by the definition. (1) h = O(logN) holds because |SET
t | ≤

1
2 |SE

T
t−1| for a positive even integer t. (2) Every variable is at most 4M because SET

t must be a 4M -

colored sequence to apply an LCPR to SET
t . (3) G can be stored in O(w) space, because every variable

e in D is in one of three cases: (i) e → c ∈ Σ; (ii) e → êk, where ê ∈ V and 1 ≤ k ≤ N ; or (iii) e derives
a variable sequence of length 2 ≤ d ≤ 4.

Example 9. Let G = (Σ,V ,D, S) be a context-free grammar, where Σ = {A,B}, V = {1, . . . , 20},
D = {1 → A, 2 → B, 3 → 11, 4 → 21, 5 → 22, 6 → 12, 7 → (3, 4), 8 → (3, 5, 3), 9 → (4, 3), 10 →
(4, 3, 4, 6), 11 → 73, 12 → 81, 13 → 91, 14 → 101, 15 → 93, 16 → (11, 12, 13), 17 → (14, 15), 18 →
161, 19 → 171, 20 → (18, 19)}, and S = 20. Assume that LC 4N (SET

1) = (3, 4)3, (3, 5, 3), (4, 3), (4, 3, 4, 6),
(4, 3)3, LC 4N (SET

3) = (11, 12, 13), (14, 15), and LC 4N (SET
5) = (18, 19) hold. Then G is the signature

encoding of T = ABABABABBAABABABAABABABA.

6

T =

SE0
T=

SE1
T=

SE2
T=

SE3
T=

SE4
T=

20

SE5
T=

1716

10

1511

8 9 97

3 5 3 4 3 4 6 4 3 4 33 4 4 3 4 3 4 3

1 1

3 4

9 9

1 2 1 1 2 1 2 2 1 2 12 1 2 1 2 2 2 1 1 2

12 13 14

18 19

7 7

SE6
T=

A AA B A A B A B B A B AB A B A B B B A A B

Figure 2: The derivation tree of G of Example 9.

5.3 Static TST-indexes

We can extend signature encoding as a self-index for pattern search. A key idea for pattern search is
that there exists a common variable sequence of length O(log |P | log∗ M) representing every substring
P in the parse tree of G. This sequence is called the core of P and is computable from P , as described
elsewhere [18, 15] in detail.

Since we can perform top-down searches of the parse tree for the core of P instead of P itself, we
obtain the following lemma. 1

Lemma 10 ([18]). For a signature encoding, there exists an index of O(w) space supporting count and
locate queries in O(m+ occc logm log∗ M logN) time, cOcc(c, T) in O(occ) time, and extract queries in
O(ℓ + logN) time, where occc ≥ occ is the number of candidate occurrences of P by this index.

Proof. In the original paper of Takabatake et al. [18], their index performs count and locate queries
in O(log logw(m log∗ M + occc logm log∗ M logN)) time and cOcc(c, T) in O(occ logN) time. We can
remove the log logw term, however, by using perfect hashing [6]. Since the m log∗ M term is the com-
putation time for τ(P), it can also be reduced to m by using the data structure proposed by Alstrup et
al. [2]. Both of these data structures use O(w) space.

Next, we show that we can compute cOcc(c, T) in O(occ) time by using O(w) space. The directed
acyclic graph (DAG) of D represents the derivation tree T of G, and each node in the DAG represents a
distinct variable in V . For an edge p in the DAG, let the relevant offset between the parent u and child v
be the length of the string generated by e1 · · · ei−1, where u represents e → e1 · · · ek ∈ D and p represents
the i-th edge in u. Then the occurrence position of a node in T is the sum of relevant offsets in the path
starting at the root and ending at the node. Hence, we can compute cOcc(c, T) in O(occ logN) time by
storing all relevant offsets, because the height of T is O(logN). Furthermore, the offsets can be stored
in O(w) space, because we can represent the relevant offsets between e and ê for e → êk ∈ D by using
O(1) space.

Next, for a node v representing e ∈ V , we store the lowest ancestor u of v such that the in-degree
of u is at least 2 or u is the root in the DAG, i.e, the node representing S. We also store the sum of
relevant offsets on the path starting at u and ending at v. By summing up these values, we can reduce
O(occ logN) to O(occ) time, and the data structures use O(w) space.

We call the signature encoding built on Tq a q-signature encoding. Our static self-index consists of the
q-TST X of T and the self-index of Lemma 10 for G representing Tq. In turn, we construct Tq from X , G
from Tq, and the self- index of Lemma 10 from G. The search algorithm is based on Theorem 5, meaning
that, for locate queries, we compute locusX (P) by using X and output all occurrences of locusX (P)
on Tq by using locate queries on Tq if |P | ≤ q. Otherwise, we compute Pq by using X and output all
occurrences of Pq on Tq by using locate queries on Tq. Similarly, we can perform count queries. Hence,
we obtain the following performance for our self-index from Theorem 5 and Lemma 10.

1Takabatake et al. [18] construct the grammar representing an input text by using a technique called alphabet reduction,
which is essentially equal to LCPR. Although the definition of their grammar is slightly different from ours, we can use
their search algorithm with our signature encoding.

7

Theorem 11. For a string T and an integer q, there exists an index using O(|Σq
T | + w′) space and

supporting (i) locate queries in O(m + occ) time for q-short patterns, (ii) locate and count queries in
O(m + occc logm log∗ M logN) time for q-long patterns, and (iii) extract queries in O(ℓ + logN) time,
where w′ is the size of the q-signature encoding of T .

We give the following upper bound for w′.

Theorem 12. For a q-signature encoding of T , w′ = O(z(q + logN log∗ M)) holds.

Proof. See Section 6.

We also give an upper bound |Σq
T | = O(zq) [19]. Thus, the size of our index is O(z(q+logN log∗ M)).

The results of an empirical evaluation of the TST-index are given in Section 7.

5.4 Dynamic TST-indexes

In this section, we consider maintaining our self-index for q-short patterns with a dynamic text T . Recall
that our index consists of a q-TST X of T and an index of Tq. In the dynamic setting, the index is still
based on Theorem 5, but we use the following data structure for Tq instead of that given by Lemma 10.

Lemma 13 (Dynamic signature encoding [16]). With the addition of data structures taking O(w) space,
G can support update operations in O(fA(k + logN log∗ M)) time. The modified data structure also
supports computing cOcc(c, T) in O(occ logN) time for c ∈ Σ and extract queries in O(ℓ+ logN) time.

Hence, our dynamic index supports locate queries in O(mg + occ logN) time for q-short patterns.
For count queries, we append |Occ(pathX (v), T)| to v ∈ Uexp as extra information. We also append
slinkX (v) to v ∈ UL.

The remaining problem is how to update these data structures when T is changed. The main problem
is how Tq changes when T is changed. If we can understand that process, then we can update the data
structures through each update operation.

Let C (T, i, j) = C (T, i) · · ·C (T, j) for a string T and two integers i and j, i.e., C (T, i, j) = Tq[i..j].
For strings x, y, z ∈ Σ∗, the following equations hold, where s = x[|x| − q + 1]z[1..q] and s′ = x[|x| − q +
1] · y · z[1..q]:

C (xz, 1, |xz|) = C (x, 1, |x| − q + 1)C (s, 1, |s| − q + 1)C (z, 1, |z|)

C (xyz, 1, |xyz|) = C (x, 1, |x| − q + 1)C (s′, 1, |s′| − q + 1)C (z, 1, |z|) (2)

We can explain the changes in Tq due to update operations by using Equation 2. First, Tq =
C (xz, 1, |xz|) changes to C (xyz, 1, |xyz|) when we update T by insert(T, i,K), where x = T [1..i − 1],
y = K, and z = T [i..|T |]. Similarly, Tq = C (xyz, 1, |xyz|) changes to C (xz, 1, |xz|) when we update T
by delete(T, i, k), where x = T [1..i− 1], y = T [i..i+ k − 1], and z = T [i+ k..|T |]. A substring of length
at most |y|+ 2q only changes in the q-TST leaf sequence of xz when we insert y between x and z. This
means that we can update Tq with two insertions and deletions when T is updated by an insertion or
deletion.

Next, we consider the update algorithm for our self-index. For insert(T, i,K), we update X and G
by the following four steps:

(i) Insert all q-grams in s′ into X .

(ii) Compute C (s′, 1, |s′| − q + 1) by using X .

(iii) Insert C (s′, 1, |s′| − q + 1) into Tq, and remove C (s, 1, |s| − q + 1) from Tq.

(iv) Remove old (unused) q-grams from X .

Similarly, we update the q-TST and G for delete(T, i, k). Step (iii) can run in O(fB(k+q+logN log∗ M))
time by Lemma 13. Note that we can detect old q-grams by checking V , because G removes old variables
during updating.

Next, we consider how to update the q-TST X of T . If X does not have extra information, then it
can be updated in O((k + q)qĝ) time. Hence, we need to show that X can maintain extra information
without increasing the update time. When a new q-gram P is created in T , we insert P into X and
increment the value representing |Occ(pathX (v), T)| for each explicit node v on the path from the root

8

to u = locusX (P). This runs in O(|P |ĝ) time. If u is a node created by this insertion, then we need
to compute slinkX (u). We can also do this in O(|P |ĝ) time by computing locusX (P [2..]). Note that
locusX (P [2..]) always exists after computing Step 1 in the update algorithm. Similarly, we can update
the extra information in the same time when a q-gram is removed from T . Hence Steps (i), (ii), and (iv)
can run in O((k + q)qĝ) time.

The only remaining point of discussion is maintenance of leaf IDs in the q-TST. When a new leaf v
is created in X , we need to assign an unused integer to v. In the dynamic setting, we use the address
representing leaf v as this integer, so every character in Tq uses W bits.

Since |U | = O(q|Σq
T |) = O(zq2), we obtain Theorem 1 from Lemma 13 and Theorem 12. Note that

our data structure can support extract queries in O(ℓ + logN) time by using Lemma 13.

6 Tight upper bound for signature encodings of Tq

In this section, we obtain the proof of Theorem 12 by using the proof of Lemma 8. Note that we can
simply show that w′ = O(zq logN log∗ M) by using the following lemma and Lemma 8, but this order is
larger than that in Theorem 12.

Lemma 14. z′ = O(zq) holds for a string T and integer q, where z′ = LZ(Tq).

Proof. Let LPF (i) and LPFq(i) be the longest previous factors without self-reference at position i in
T and Tq, respectively. Then |LPFq(i)| ≥ max{|LPF (i)| − (q − 1), 0} holds for 1 ≤ i ≤ N by a q-TST
transformation. This means that every LZ77 factor of LZ77(T) is divided into at most q LZ77 factors
on Tq. Hence, z

′ = O(zq).

6.1 The proof of Lemma 8

We begin by explaining our approach for the proof of Lemma 8. Since |V | is equal to X , the number
of distinct variables in the derivation tree of G, we try to bound X through the following idea: (1)
Since each variable is determined by a local context (substring) of T obtained by signature encoding,
the variables for common local contexts are the same. (2) Let LZ(T) = f1, . . . fz. Since each factor is a
longest previous factor in T , a variable whose local context is contained in an LZ77 factor also occurs at
another position. Hence, the upper bound of X is Y , the number of variables whose local context is on
two or more LZ77 factors of T . (3) Finally, since there exist O(logN log∗ M) such variables in a factor,
we can obtain Lemma 8.

We can now work through our approach more formally. Every variable in G is determined by a
strictly local context of T . To be precise, every variable for t = 0 is determined only by the represented
character. For a positive even integer t, every variable is determined by the SET

t used by the bit sequence
representing the form of the variable. Recall Example 7. The factor representing abcd does not change
as long as g(T)[4..8] does not change. We can compute g(T)[4..8] from T [4−∆L..8 +∆R], so the factor
depends locally on T [4 − ∆L..8 + ∆R]. For a positive odd integer t, every variable is determined by
a run representing e and the left and right characters at either end of the run. Recall the example of
RLE (T). The factor b5 changes into b6 if the left character is b, but the factor always remains b5 as
long as the characters at both ends do not change. Hence, the factor depends locally on T [2..8]. In
short, a variable on SET

t depends on an interval on SET
t−1. By recursively applying this rule, a variable

ultimately depends on an interval on T . For a variable on SET
t [i], let depT

t (i) be the corresponding
interval on T on which it depends. Formally, let SET

t [i] represent SE
T
t−1[L..R] when t is a positive even

integer, and SET
t−1[L

′..R′] when t is a positive odd integer. Then, we define depT
t (i) as follows.

depT
t (i) =











{i} for t = 0,
⋃R+1+∆R

x=L−∆L
depT

t−1(x) for t = 2, 4, . . . ,
⋃R′+1

x=L′−1 dep
T
t−1(x) for t = 1, 3, . . . ,

Example 15. Recall Example 9. Let ∆L = 2 and ∆R = 1. Then depT
0 [7] = {7}, depT

1 [8] = {7, . . . , 10},
and depT

2 [5] = depT
1 [10−∆L] ∪ · · · ∪ depT

1 [12 + ∆R] = {7, . . . , 15}.

The local context of SET
t [i] is a substring on depT

t (i) in T . Note that each depT
t (i) represents an

interval on [1, N]. The following observation holds with respect to signature encodings and dep.

9

Observation 16. For two integers i < j and an integer t, let depT
t (i) = [ℓ, r] and depT

t (j) = [ℓ′, r′].
Then ℓ < ℓ′ and r < r′ hold.

Observation 17. Let [ℓ, r] and [ℓ′, r′] be two intervals on [1, N] such that T [ℓ..r] = T [ℓ′..r′] holds. If
there exists two integers i and t such that depT

t (i) = [ℓ, r], then there exists an integer j such that
depT

t (j) = [ℓ′, r′].

Hence, variables having a common local context are the same.
Next, let K(x, t) = {i | 1 ≤ i ≤ |SET

t |, x ∈ depT
t (i)}, constituting the set of variables on SET

t that
depend on position x in T . We obtain the following inequality from Sentence (2) and the local context
property:

w = |V | ≤

z
∑

i=1

h
∑

t=0

|K(xi, t)| (3)

holds, where xi = |f1 · · · fi|. We can then bound |K(x, t)| by using the following lemma.

Lemma 18 ([2]). (1) For a positive even integer t, if |K(x, t− 1)| = d holds, then |K(x, t)| ≤ (d+∆L+
∆R)/2 also holds. (2) For a positive odd integer t, if |K(x, t − 1)| = d holds, then |K(x, t)| ≤ d also
holds.

Proof. By Observation 16, we can represent K(x, t− 1) by an interval E = [p, p+ d− 1]. Let X be the
set of positions SET

t whose variable depends on a position in E on SET
t . Then X = K(x, t) holds by

dep. Let SET
t [i] represent SE

T
t−1[Li..Ri]. Then |X | ≤ (d+∆L +∆R)/2 holds, because SET

t [i] depends

on SET
t−1[Li−∆L..Ri+∆R+1] and every factor LC 4M (SET

t−1) has a length of at least 2. (2) Similarly,
for a positive odd integer t, if |K(x, t− 1)| = d holds, then |K(x, t)| ≤ d also holds.

Hence, |K(x, t)| = O(log∗ M) holds for any integers x and t by Lemma 18 and |K(x, 1)| ≤ 2.
Therefore, Lemma 8 holds by h = O(logN), Lemma 18, and Inequality 3 , where h+ 1 is the height of
the derivation tree of G.

6.2 The proof of Theorem 12

We can now easily prove Theorem 12 by using the same approach for the proof of Lemma 8. The point
is that we can regard a character at i in Tq as depending on T [i..i + q − 1]. The means that we can

regard a variable on SE
Tq

t as depending on a local context in T , not Tq. Formally, we modify dep
Tq

t (i)
for a q-signature encoding as follows.

dep
Tq

t (i) =











[i, i+ q − 1] for t = 0,
⋃R

x=L dep
Tq

t−1(x) for t = 2, 4, . . . ,
⋃R′+1

x=L′−1 dep
Tq

t−1(x) for t = 1, 3, . . . ,

Similarly, K(x, t) is redefined by the modified version of dep
Tq

t (i). Note that Inequality 3 and Lemma 18

still hold. Hence,
∑h′

t=0 |K(i, t)| = O(q + h′ log∗ M) immediately holds by |K(x, 0)| ≤ q, where h′ + 1 is
the height of the derivation tree of the signature encoding representing Tq. Therefore, Theorem 12 holds
by h′ = O(logN), where z is the number of LZ77 factors of T , not Tq.

7 Experiments

In this section, we demonstrate the effectiveness of the TST-index in a static setting with a benchmark
dataset of highly repetitive texts.

For a benchmark dataset we used nine highly repetitive texts consisting of the files DNA, en-
glish.200MB, einstein.en.txt, einstein.de.txt, Escherichia Coli, cere, influenza, para, and world leaders
from the Pizza & Chili corpus (http://pizzachili.dcc.uchile.cl). We sampled 1000 substrings of
each length m = {4, 8, 16, . . . , 2048} from each benchmark text and used those substrings as queries. We
used the memory consumption and search time for count and locate queries as evaluation measures. We

10

http://pizzachili.dcc.uchile.cl

Table 2: Index size in megabytes for each text. The TST-index is denoted as q-TST for each value of
parameter q in {4, 8, 16, 32}.

DNA english einstein einstein Escherichia cere influenza para world
200MB en.txt de.txt Coli leaders

Text 385 200 445 88 107 439 147 409 44

ESP 438 248 2 1 42 47 23 60 5
RLFM 2,429 760 3 1 146 124 31 164 6

4-TST 501 388 8 3 48 54 24 71 13
8-TST 826 1,987 27 10 87 94 37 124 47
16-TST 23,927 10,615 48 17 1,794 1,417 277 1,960 88
32-TST 32,287 13,199 69 24 2,292 1,876 762 2,835 155

performed all the experiments on one core of a quad-core Intel(R) Xeon(R) E5-2680 v2 (2.80 GHz) CPU
with 256 GB of memory.

We compared our TST-index with the ESP-index [18] and the RLFM-index [7]. The ESP-index
provides a baseline for evaluating the effectiveness of the TST-index, while the RLFM-index is a state-
of-the-art self-index for highly repetitive text collections. We used the C++ language to implement
the TST-index 2 as a combination of a q-TST and the ESP-index, the self-index on an LCPR given in
Lemma 10. We varied the parameter q by testing q-gram lengths from {4,8,16,32}. We used existing
implementations of the ESP-index (https://github.com/tkbtkysms/esp-index-I) and the RLFM-
index (https://github.com/nicolaprezza/r-index).

7.1 Results

Figures 3 and 4 show the measured search times for count and locate queries for each method. In
addition, Table 2 lists the index sizes obtained with each method. The results show that the size of
the TST-index increased exponentially with the size of q. This is because the variety of q-grams also
increased exponentially. From a practical standpoint, the size of the TST-index is small when q is at
most 8.

The TST-index was much faster than the ESP-index, especially when searching for short patterns of
length at most 64, which demonstrates the effectiveness of the TST-index as a combination of a q-TST
and the ESP-index. The TST-index was much more efficient for count queries than for locate queries.
For the file DNA, in fact, the TST-index was 10,000 times faster than the ESP-index for count queries
with patterns of length 8 but only 2 times faster than the ESP-index for locate queries with patterns of
the same length. The improvement in locate queries for short patterns with the TST-index was small
because the computation time of cOcc for the ESP-index was slow. The performance could be improved
by modifying the ESP-index implementation. Although the size of the TST-index was at most three
times larger than that of the ESP-index, it remained small for highly repetitive texts in practice, showing
the practicality of the TST-index.

For short patterns, pattern search with the TST-index was competitive with respect to that with the
RLFM-index. The size of the TST-index was smaller than that of the RLFM-index, especially for highly
repetitive texts and small q. In addition to the smaller index size, the TST-index has a large advantage
in that it supports dynamic updates, unlike the RLFM-index.

8 Conclusions

We have presented a novel self-index, the TST-index, that supports fast pattern searches and dynamic
update operations for highly repetitive text collections. Experimental results demonstrated that the
search performance of the TST-index was significantly improved in comparison with other self-indexes
on an LCPR, while the index size remained small. In addition, the search performance was competitive
with that of the RLFM-index.

Note that a q-TST can be combined with any index. Kärkkäinen and Sutinen [8] proposed an index
for q- short patterns. By combining their index with a q-TST, we obtain the following result.

2https://github.com/TNishimoto/TSTESP

11

https://github.com/tkbtkysms/esp-index-I
https://github.com/nicolaprezza/r-index
https://github.com/TNishimoto/TSTESP

Theorem 19 ([8] and [20]). For a string T and integer q, there exists an index using O(|Σq
T |+ LZ(Tq))

space while supporting locate queries in O(m+ occ) time for q-short patterns.

The size of their index is O(zq), because |Σq
T |, |LZ(Tq)| = O(zq). Note that |Σq

T |, |LZ(Tq)| = O(zq)
still holds even if we replace z with ẑ, where ẑ ≤ z is the number of factors in LZ77 with self- reference
on T . Although their index is smaller than our static TST-index, it does not support extract queries.

Acknowledgments. We thank comments of the reviewers.

12

1
e

−
0

4
1

e
−

0
2

1
e

+
0

0
1

e
+

0
2

1
e

+
0

4

DNA [count]

pattern length

ti
m

e
[m

s
]

ESP
RLFM
4-TST
8-TST
16-TST
32-TST
64-TST
128-TST
256-TST

4 8 16 32 64 128 256 512 1024 2048

1e
−

04
1e

−
02

1e
+

00
1e

+
02

1e
+

04

english.200MB [count]

pattern length

tim
e[

m
s]

4 8 16 32 64 128 256 512 1024 2048

1e
−

04
1e

−
02

1e
+

00
1e

+
02

1e
+

04

einstein.en.txt [count]

pattern length

tim
e[

m
s]

4 8 16 32 64 128 256 512 1024 2048

1e
−

04
1e

−
02

1e
+

00
1e

+
02

1e
+

04

einstein.de.txt [count]

pattern length

tim
e[

m
s]

4 8 16 32 64 128 256 512 1024 2048

1e
−

04
1e

−
02

1e
+

00
1e

+
02

1e
+

04

para [count]

pattern length

tim
e[

m
s]

4 8 16 32 64 128 256 512 1024 2048

1e
−

04
1e

−
02

1e
+

00
1e

+
02

1e
+

04

cere [count]

pattern length

tim
e[

m
s]

4 8 16 32 64 128 256 512 1024 2048

1e
−

04
1e

−
02

1e
+

00
1e

+
02

1e
+

04

Escherichia_Coli [count]

pattern length

tim
e[

m
s]

4 8 16 32 64 128 256 512 1024 2048

1e
−

04
1e

−
02

1e
+

00
1e

+
02

1e
+

04

influenza [count]

pattern length

tim
e[

m
s]

4 8 16 32 64 128 256 512 1024 2048

1e
−

04
1e

−
02

1e
+

00
1e

+
02

1e
+

04

world_leaders [count]

pattern length

tim
e[

m
s]

4 8 16 32 64 128 256 512 1024 2048

Figure 3: Times for count queries on each benchmark text.

13

1
e

−
0

4
1

e
−

0
2

1
e

+
0

0
1

e
+

0
2

1
e

+
0

4

DNA [locate]

pattern length

ti
m

e
[m

s
]

ESP
RLFM
4-TST
8-TST
16-TST
32-TST
64-TST
128-TST
256-TST

8 16 32 64 128 256 512 1024 2048

1e
−

04
1e

−
02

1e
+

00
1e

+
02

1e
+

04

english.200MB [locate]

pattern length

tim
e[

m
s]

8 16 32 64 128 256 512 1024 2048

1e
−

04
1e

−
02

1e
+

00
1e

+
02

1e
+

04

einstein.en.txt [locate]

pattern length

tim
e[

m
s]

8 16 32 64 128 256 512 1024 2048

1e
−

04
1e

−
02

1e
+

00
1e

+
02

1e
+

04

einstein.de.txt [locate]

pattern length

tim
e[

m
s]

8 16 32 64 128 256 512 1024 2048

1e
−

04
1e

−
02

1e
+

00
1e

+
02

1e
+

04

para [locate]

pattern length

tim
e[

m
s]

8 16 32 64 128 256 512 1024 2048

1e
−

04
1e

−
02

1e
+

00
1e

+
02

1e
+

04

cere [locate]

pattern length

tim
e[

m
s]

8 16 32 64 128 256 512 1024 2048

1e
−

04
1e

−
02

1e
+

00
1e

+
02

1e
+

04

Escherichia_Coli [locate]

pattern length

tim
e[

m
s]

8 16 32 64 128 256 512 1024 2048

1e
−

04
1e

−
02

1e
+

00
1e

+
02

1e
+

04

influenza [locate]

pattern length

tim
e[

m
s]

8 16 32 64 128 256 512 1024 2048

1e
−

04
1e

−
02

1e
+

00
1e

+
02

1e
+

04

world_leaders [locate]

pattern length

tim
e[

m
s]

8 16 32 64 128 256 512 1024 2048

Figure 4: Times for locate queries on each benchmark text.

14

References

[1] 1000 Genomes Project Consortium: A map of human genome variation from population-scale se-
quencing. Nature 467, 1061–1073 (2010)

[2] Alstrup, S., Brodal, G.S., Rauhe, T.: Dynamic pattern matching. Technical report, Department of
Computer Science, University of Copenhagen (1998)

[3] Beame, P., Fich, F.E.: Optimal bounds for the predecessor problem and related problems. Journal
of Computer and System Sciences 65(1), 38–72 (2002)

[4] Bille, P., Ettienne, M.B., Gørtz, I.L., Vildhøj, H.W.: Time-space trade-offs for lempel-ziv compressed
indexing. In: Proceedings of 28th Annual Symposium on Combinatorial Pattern Matching. LIPIcs,
vol. 78, pp. 16:1–16:17 (2017)

[5] Claude, F., Navarro, G.: Improved grammar-based compressed indexes. In: Proceedings of the 19th
Symposium on String Processing and Information Retrieval. pp. 180–192 (2012)

[6] Fredman, M.L., Komlós, J., Szemerédi, E.: Storing a sparse table with 0(1) worst case access time.
Journal of the ACM 31, 538–544 (1984)

[7] Gagie, T., Navarro, G., Prezza, N.: Optimal-time text indexing in BWT-runs bounded space. CoRR
abs/1705.10382 (2017)

[8] Kärkkäinen, J., Sutinen, E.: Lempel-ziv index for q-grams. Algorithmica 21, 137–154 (1998)

[9] Kreft, S., Navarro, G.: On compressing and indexing repetitive sequences. Theoretical Computer
Science 483, 115–133 (2013)

[10] Mäkinen, V., Navarro, G.: Storage and retrieval of individual genomes. Nordic Journal of Computing
12, 40–66 (2005)

[11] Mehlhorn, K., Sundar, R., Uhrig, C.: Maintaining dynamic sequences under equality tests in poly-
logarithmic time. Algorithmica 17, 183–198 (1997)

[12] Morrison, D.R.: PATRICIA - practical algorithm to retrieve information coded in alphanumeric.
Journal of the ACM 15, 514–534 (1968)

[13] Na, J.C., Apostolico, A., Iliopoulos, C.S., Park, K.: Truncated suffix trees and their application to
data compression. Theoretical Computer Science 304, 87–101 (2003)

[14] Navarro, G.: A self-index on block trees. In: Proceedings of the 24th Symposium on String Process-
ing and Information Retrieval. pp. 278–289 (2017)

[15] Nishimoto, T., I, T., Inenaga, S., Bannai, H., Takeda, M.: Dynamic index and LZ factorization in
compressed space. In: Proceedings of the 20th Annual Symposium on Prague Stringology Confer-
ence. pp. 158–170 (2016)

[16] Nishimoto, T., I, T., Inenaga, S., Bannai, H., Takeda, M.: Fully dynamic data structure for LCE
queries in compressed space. In: Proceedings of 41st International Symposium on Mathematical
Foundations of Computer Science. pp. 72:1–72:15 (2016)

[17] Sahinalp, S.C., Vishkin, U.: Data compression using locally consistent parsing. Technical report,
University of Maryland Department of Computer Science (1995)

[18] Takabatake, Y., Tabei, Y., Sakamoto, H.: Improved ESP-index: A practical self-index for highly
repetitive texts. In: Proceedings of the 13th International Symposium on Experimental Algorithms.
pp. 338–350 (2014)

[19] Tanimura, Y., Nishimoto, T., Bannai, H., Inenaga, S., Takeda, M.: Small-space encoding LCE data
structure with constant-time queries. CoRR abs/1702.07458 (2017)

[20] Vitale, L., Mart́ın, A., Seroussi, G.: Space-efficient representation of truncated suffix trees, with
applications to markov order estimation. Theoretical Computer Science 595, 34–45 (2015)

[21] Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE Transactions on
Information Theory 23, 337–343 (1977)

15

	1 Introduction
	2 Preliminaries
	3 Literature Review
	4 Fast queries with truncated suffix trees
	4.1 Tries, compact tries and truncated suffix trees
	4.2 q-TST transformation

	5 TST-index
	5.1 Locally consistent parsing (LCPR)
	5.2 Signature encoding
	5.3 Static TST-indexes
	5.4 Dynamic TST-indexes

	6 Tight upper bound for signature encodings of Tq
	6.1 The proof of Lemma ??
	6.2 The proof of Theorem ??

	7 Experiments
	7.1 Results

	8 Conclusions

