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Cyber-Physical Systems (CPSs) are integrations of networking and distributed computing systems
with physical processes, where feedback loops allow physical processes to affect computations and
vice versa. Although CPSs can be found in several real-world domains (automotive, avionics, energy
supply, etc), their verification often relies on simulation test systems rather then formal methodologies.
This is because there is still a lack of research on the modelling and the definition of formal semantics
to compare non-trivial CPSs in terms of their runtime behaviours up to an acceptable tolerance.

We propose a hybrid probabilistic process calculus for modelling and reasoning on cyber-physical
systems (CPSs). The dynamics of the calculus is expressed in terms of a probabilistic labelled tran-
sition system in the SOS style of Plotkin. This is used to define a bisimulation-based probabilistic
behavioural semantics which supports compositional reasonings. For a more careful comparison
between CPSs, we provide two compositional probabilistic metrics to formalise the notion of be-
havioural distance between systems, also in the case of bounded computations. Finally, we provide a
non-trivial case study, taken from an engineering application, and use it to illustrate our definitions
and our compositional behavioural theory for CPSs.

1 Introduction

Cyber-Physical Systems (CPSs) are integrations of networking and distributed computing systems with
physical processes, where feedback loops allow physical processes to affect computations and vice versa.
CPSs can be considered as an evolution of embedded systems, where components are immersed in and
interact with the physical world, via physical devices (such as sensors and actuators). They can also be
seen as an evolution of networked control systems, where physical processes and controllers interact via a
communication system.

The physical plant of a CPS is often represented by means of a discrete-time state-space model1

consisting of two equations of the form

xk+1 = Axk +Buk +wk

yk = Cxk + ek

where xk ∈ Rn is the current (physical) state, uk ∈ Rm is the input (i.e., the control actions implemented
through actuators) and yk ∈ Rp is the output (i.e., the measurements obtained from the sensors). The
uncertainty wk ∈ Rn and the measurement error ek ∈ Rp represent perturbation and sensor noise, respec-
tively. The parameters A, B, and C are matrices modelling the dynamics of the physical system. The next
state xk+1 depends on the current state xk and the corresponding control actions uk, at the sampling instant
k ∈ N. Note that, the state xk cannot be directly observed: only its measurement yk can be observed.

∗A preliminary version appeared in the proceedings of LATA 2017, LNCS 10168, pp. 115-127, Springer [44].
1We refer to [64] for a taxonomy of time-scale models used to represent CPSs.
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2 A Probabilistic Calculus of Cyber-Physical Systems

Figure 1 Structure of a CPS

Actuators Plant
?
wk

Sensors
?
ek

Controller

- -
xk yk

�
uk

-

The physical plant is supported by a communication network through which the sensor measurements
and actuator data are exchanged with the controller(s), i.e., the cyber component, also called logics, of a
CPS (see Figure 1).

In general terms, CPSs can be considered as both nondeterministic and probabilistic systems. Nonde-
terminism arises as they consist of distributed networks in which the activities of specific components
occur nondeterministically, whereas the probabilistic behaviour is due to the presence of the uncertainty
in the model and the measurement error, which are usually represented as probability distributions.

The range of CPSs applications is rapidly increasing and already covers several domains [41]:
advanced automotive systems, energy conservation, environmental monitoring, avionics, critical infras-
tructure control (for instance, electric power, water resources, and communications systems), etc.

However, there is still a lack of research on the modelling and validation of CPSs through formal
methodologies that allow us to model the interactions among the system components, and to verify the
correctness of a CPS, as a whole, before its practical implementation. A straightforward utilisation of these
techniques is for model-checking [17], or even better, for probabilistic model-checking [42], to statically
assess whether the current system deployment can guarantee the expected behaviour. However, they can
also be an important aid for system planning, for instance to decide whether different deployments for a
given application are behaviourally equivalent.

Process calculi have been successfully used to model and analyse concurrent, distributed and mobile
systems (see, e.g., the π-calculus [50], Ambients [14] and the Distributed π-calculus [38]). However, to
better describe systems based on a particular paradigm, dedicated calculi are needed. Hybrid process
algebras [18, 7, 57, 54, 30] have been proposed for reasoning about physical systems and provide
techniques for analysing and verifying protocols for hybrid automata. In order to enrich hybrid models
with probabilistic or stochastic behaviour, a number of different approaches have been proposed in the
last years [56, 39, 12, 2, 29, 36, 62]. However, to our knowledge, none of these formalisms provide
bisimulation metrics semantics to estimate the deviation in terms of behaviour of different CPSs in a
process-algebra setting. The definition of these instruments represents the main goal of the current paper.

Contribution. In this paper, we propose a hybrid probabilistic process calculus, called pCCPS (Proba-
bilistic Calculus of Cyber-Physical Systems), with a clearly-defined probabilistic behavioural semantics
for specifying and reasoning on CPSs. In pCCPS, cyber-physical systems are represented by making
a neat distinction between the physical component describing the physical process (consisting in state
variables, sensors, actuators, evolution law, measurement law, etc.) and the cyber component, i.e., the
logics (i.e., controllers, IDS, supervisors, etc.) that governs sensor reading and actuator writing, as well
as channel-based communication with other cyber components. Thus, channels are used for logical
interactions between cyber components, whereas sensors and actuators make possible the interaction
between cyber and physical components. Despite this conceptual similarity, messages transmitted via
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channels are “consumed” upon reception, whereas actuators’ states (think of a valve) remains unchanged
until its controller modifies it.

pCCPS adopts a discrete notion of time [37] and it is equipped with a probabilistic labelled transition
semantics (pLTS) in the style of [55]. We prove that our probabilistic labelled transition semantics satisfies
some standard time properties such as: time determinism, patience, maximal progress, and well-timedness.
Based on our pLTS, we define a natural notion of weak probabilistic bisimilarity, written ≈. As a main
result, we prove that bisimilarity in pCCPS is preserved by appropriate system contexts and it is hence
suitable for compositional reasoning. Then, we provide a non-trivial case study, taken from an engineering
application, and use it to illustrate our definitions and our compositional behavioural theory for CPSs. We
also use our case study to show that the probabilistic bisimilarity is only partially satisfactory to reason
on CPSs as it can only establish whether two CPSs behave exactly in the same way or not. Any tiny
variation of the probabilistic behaviour of one of the two systems under consideration will break the
equality without any further information on the “distance” of their behaviours. To this end, bisimulation
metric semantics have been successfully employed to formalise the behavioural distance between two
systems [27, 26, 59, 21]. We generalise our probabilistic bisimilarity by providing a notion of weak
bisimulation metric for pCCPS along the lines of [27]. We will write M ≈p N, if the weak bisimilarity
between CPSs M and N holds with a distance p, with probability p ∈ [0,1]. Intuitively, ≈0 will coincide
with the weak probabilistic bisimilarity ≈, whereas

⋃
p∈[0,1] ≈p will correspond to the cartesian product

pCCPS×pCCPS. We also provide a notion of n-bisimilarity metric which takes into account bounded
computations of systems [26]. This kind of metric, denoted with ≈n

p, for n ∈ N+, says that the distance p
of the systems under considerations is ensured only for the first n computation steps. Said in other words,
if M ≈n

p N then for the first n computation steps the runtime behaviour of systems M and N may differ
with probability at most p. Both metrics ≈p and ≈n

p are proved to be preserved by the same contexts
considered for ≈, and hence they reveal to be suitable for compositional reasonings. In particular, they
satisfy a well-known compositional property called non-expansiveness [26, 31, 33], the analogue of the
congruence property of weak bisimulation. Finally, with the help of our case study, we will show how
n-bisimilarity metric can be very helpful in situations where it is not necessary to observe a system “ad
infinitum” as it makes much more sense to observe its behaviour for bounded computations.

Outline. In Section 2, we give syntax and operational semantics of pCCPS. In Section 3, we provide
a bisimulation-based probabilistic behavioural semantics for pCCPS and prove its compositionality. In
Section 4, we model our case study in pCCPS, and prove for it run-time properties as well as system
equalities. In Section 5, we define bisimulation metrics for pCCPS. In Section 6, we revise our case study
by providing a more accurate analysis based on the proposed bisimulation metrics. In Section 7, we draw
conclusions and discuss related and future work.

2 The calculus

In this section, we introduce our Probabilistic Calculus of Cyber-Physical Systems, pCCPS.
Let us start with some preliminary notations. We use x,xk ∈ X for state variables (associated to

physical states of systems), c,d ∈ C for communication channels, a,ak ∈ A for actuator devices, s,sk ∈ S
for sensors devices. Actuator names are metavariables for actuator devices like valve, light, etc. Similarly,
sensor names are metavariables for sensor devices, e.g., a sensor thermometer that measures a state
variable called temperature, with a given precision. Values, ranged over by v,v′ ∈ V, are built from basic
values, such as Booleans, integers and real numbers; they also include names. Given a generic set of
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names N, we write RN to denote the set of functions assigning a real value to each name in N. For ξ ∈RN,
n∈N and v∈R, we write ξ [n 7→ v] to denote the function ψ ∈RN such that ψ(m) = ξ (m), for any m 6= n,
and ψ(n) = v. Given ξ1 ∈ RN1 and ξ2 ∈ RN2 such that N1∩N2 = /0, we denote with ξ1]ξ2 the function
in RN1∪N2 such that (ξ1]ξ2)(n) = ξ1(n), if n ∈ N1, and (ξ1]ξ2)(n) = ξ2(n), if n ∈ N2.

As pCCPS is a probabilistic calculus, we report the necessary mathematical machinery for its formal
definition.

Definition 1 (Probability distribution). A (discrete) probability sub-distribution over a set of generic
objects O is a function δ : O→ [0,1] with ∑o∈O δ (o) ∈ (0,1]. We write |δ | as an abbreviation for
∑o∈O δ (o). The support of a probability sub-distribution δ is given by supp(δ ) = {o ∈ O : δ (o) > 0}.
We write Dsub(O), ranged over γ , δ and ε , for the set of all finite-support probability sub-distributions
over the set O. A probability sub-distribution δ ∈ Dsub(O) is said to be a probability distribution if
∑o∈O δ (o) = 1. With D(O) we denote the set of all finite-support probability distributions over O. For
any o ∈ O, the point (Dirac) distribution at o, denoted o, assigns probability 1 to o and 0 to all others
elements of O, so that supp(o) = {o}.

Let I be a finite indexing set such that (i) δi is a sub-distribution in Dsub(O) for each i ∈ I, and (ii)
pi ≥ 0 are probabilities such that ∑i∈I pi ∈ (0,1]. The probability sub-distribution (or convex combination)
∑i∈I pi · δi is the sub-distribution defined by (∑i∈I pi · δi)(o) = ∑i∈I piδi(o) for all o ∈ O. We write a
sub-distribution as p1 ·δ1 + . . .+ pk ·δk when the indexing set I is {1, . . . ,k}.

In pCCPS, a cyber-physical system consists of:

• a physical component (defining physical variables, physical devices, physical evolution, etc.) and

• a cyber (or logical) component that interacts with the physical devices (sensors and actuators) and
communicates via channels with other cyber components.

Physical components in pCCPS are given by two sub-components: (i) the physical state, which is
supposed to change at runtime, and (ii) the physical environment, which contains static information.2

Definition 2 (Physical state). Let X be a set of state variables, S be a set of sensors, and A be a set of
actuators. A physical state S is a triple 〈ξx,ξs,ξa〉, where:

• ξx ∈ RX is the state function,

• ξs ∈ RS is the sensor function,

• ξa ∈ RA is the actuator function.

All functions defining a physical state are total.

The state function ξx returns the current value associated to each variable in X. The sensor function
ξs returns the current value associated to each sensor in S; similarly, the actuator function ξa returns the
current value associated to each actuator in A.

Definition 3 (Physical environment). Let X be a set of state variables, S be a set of sensors, and A be a
set of actuators. A physical environment E is a triple 〈evol,meas, inv〉, where:

• evol : RX×RA→D(RX) is the evolution map,

• meas : RX→D(RS) is the measurement map,

• inv ∈ 2R
X

is the invariant set.

All the functions defining a physical environment are total functions.

2Actually, this information is periodically updated (say, every six months) to take into account possible drifts of the system.
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Given a state function and an actuator function, the evolution map evol returns a probability distribution
over state functions. This function models the evolution law of the physical system, where changes made
on actuators may reflect on state variables. Since we assume the presence of a known (maximal) uncertainty
for our models, the evolution map does not return a specific state function but a probability distribution
over state functions.

Given a state function, the measurement map meas returns a probability distribution over sensor
functions. Also in this case, since we assume the presence of a known (maximal) measurement error for
each sensor, the measurement map returns a probability distribution over sensor functions, rather than a
specific sensor function.

The invariant set inv returns the set of state functions that satisfy the invariant of the system. A CPS
that gets into a physical state with a state function that does not satisfy the invariant is in deadlock.

Let us now formalise the cyber components of CPSs in our calculus pCCPS. Our (logical) processes
build on Hennessy and Regan’s Timed Process Language TPL [37] (basically CCS enriched with a discrete
notion of time). We extend TPL with three constructs: one to read values detected at sensors, one to write
values on actuators, and one to express (guarded) probabilistic choice. The remaining processes of the
calculus are the same as those of TPL.

Definition 4 (Processes). Processes are defined by the grammar:

P,Q ::= nil
∣∣ tick.C

∣∣ P ‖ Q
∣∣ bchn.CcD

∣∣ phy.C
∣∣ [b]{P},{Q}

∣∣ P\c
∣∣

X
∣∣ recX .P

C,D ::=
⊕

i∈I pi:Pi

chn ::= sndc〈v〉
∣∣ rcv c(x)

phy ::= reads(x)
∣∣ writea〈v〉 .

We write nil for the terminated process. The process tick.C models sleeping for one time unit. We
write P ‖ Q to denote the parallel composition of concurrent processes P and Q. The process bchn.CcD,
with chn ∈ {sndc〈v〉, rcv c(x)}, denotes channel transmission with timeout. Thus, bsndc〈v〉.CcD sends
the value v on channel c and, after that, it continues as C; otherwise, if no communication partner is
available within one time unit, it evolves into D. The process brcv c(x).CcD is the obvious counterpart for
channel reception.

Processes of the form phy.C denote activities on physical devices (sensors or actuators). Thus, the
construct reads(x).C reads the value v detected by the sensor s and, after that, it continues as C, where x
is replaced by v. The process writea〈v〉.C writes the value v on the actuator a and then it continues as C.

The process P\c is the channel restriction operator of CCS. It is quantified over the set of communica-
tion channels, although we often use the shorthand P\{c1, · · · ,cn} to mean P\c1\c2 · · ·\cn. The process
[b]{P},{Q} is the standard conditional, where b is a decidable guard. For simplicity, as in CCS, we
identify process [b]{P},{Q} with P, if b evaluates to true, and [b]{P},{Q} with Q, if b evaluates to false.
In processes of the form tick.D and bchn.CcD, the occurrence of D is said to be time-guarded. The
process recX .P denotes time-guarded recursion as all occurrences of the process variable X may only
occur time-guarded in P.

The construct
⊕

i∈I pi:Pi denotes probabilistic choice, where I is a finite, non-empty set of indexes,
and pi ∈ (0,1], for i ∈ I, denotes the probability to execute the process Pi, with ∑i∈I pi = 1. As in [24], in
order to simplify the operational semantics, probabilistic choices occur always underneath prefixing.

In the two constructs brcv c(x).CcD and reads(x).C, the variable x is said to be bound. Similarly, the
process variable X is bound in recX .P. This gives rise to the standard notions of free/bound (process)
variables and α-conversion. We identify processes up to α-conversion (similarly, we identify CPSs up to
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renaming of state variables, sensor names, and actuator names). A term is closed if it does not contain free
(process) variables, and we assume to always work with closed processes: the absence of free variables is
preserved at run-time. As further notation, we write T{v/x} for the substitution of the variable x with the
value v in any expression T of our language. Similarly, T{P/X} is the substitution of the process variable
X with the process P in T .

Everything is in place to provide the definition of cyber-physical systems expressed in pCCPS.

Definition 5 (Cyber-physical system). Fixed a set of state variables X, a set of sensors S, and a set of
actuators A, a cyber-physical system in pCCPS is given by two components:

• a physical component consisting of

– a physical environment E defined on X, S, and A, and
– a physical state S recording the current values associated to the state variables in X, the

sensors in S, and the actuators in A;

• a cyber component P that interacts with the sensors in S and the actuators A, and can communicate,
via channels, with other cyber components of the same or of other CPSs.

We write E;SonP to denote the resulting CPS, and use M and N to range over CPSs. Sometimes, when the
physical environment E is clearly identified, we write SonP instead of E;SonP. CPSs of the form SonP
are called environment-free CPSs.

The reader should notice that the syntax of our CPSs is slightly too permissive as a process might use
sensors and/or actuators which are not defined in the physical state.

Definition 6 (Well-formedness). Let S = 〈ξx,ξs,ξa〉 be a physical state, E = 〈evol,meas, inv〉 a physical
environment, and P a process. The CPS E;SonP is said to be well-formed if: (i) any sensor mentioned in
P is in the domain of the function ξs; (ii) any actuator mentioned in P is in the domain of the function ξa. A
sub-distribution γ ∈Dsub(pCCPS) is said to be well-formed if its support contains only well-formed CPSs.

Hereafter, we will always work with well-formed CPSs.
As usual in process calculi, we use the symbol ≡ to denote standard structural congruence for timed

processes [50, 49]; its generalisation to CPSs is immediate: E;SonP ≡ E;SonQ if P ≡ Q. Also the
generalisation to sub-distributions in Dsub(pCCPS) is straightforward: given two sub-distributions γ and γ ′

over CPSs, we write γ ≡ γ ′ if γ([M]≡) = γ ′([M]≡) for all equivalence classes [M]≡ ⊆ pCCPS.
Finally, we assume a number of notational conventions. We write Dead to denote a deadlocked CPS

which cannot perform any action. This fictitious CPS will be useful when defining behavioural distances
between CPSs (see Definition 14). We write chn.P instead of recX .bchn.PcX , when X does not occur in P.
We write sndc (resp. rcv c) when channel c is used for pure synchronisation. For k ≥ 0, we write tickk.P
as a shorthand for tick.tick. . . . tick.P, where the prefix tick appears k consecutive times. Given a CPS
M = E;SonP, a process Q and a channel c, we write M ‖ Q for E;Son(P ‖ Q), and M\c for E;Son(P\c).

In the rest of the paper, symbol σ ranges over distributions over physical states, π ranges over
distributions over processes, and γ ranges over distributions over CPSs.

2.1 Probabilistic labelled transition semantics

In this section, we provide the dynamics of pCCPS in terms of a probabilistic labelled transition system
(pLTS) [55]. First, we give a pretty standard probabilistic LTS for processes, then we lift transition rules
from processes to CPSs to deal with the probability distributions occurring in physical environments.

In Table 1, we provide transition rules for processes. Here, the meta-variable λ ranges over labels
in the set {tick,τ,cv,cv,a!v,s?(x)}. These labels denote the passage of time, internal activities, channel
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Table 1 Probabilistic LTS for processes

(Outp)
−

bsndc〈v〉.CcD cv−−→ JCK
(Inpp)

−
brcv c(x).CcD cv−−→ JC{v/x}K

(Write)
−

writea〈v〉.C a!v−−−→ JCK
(Read)

−

reads(x).C
s?(x)
−−−−→ JCK

(Com)
P1

cv−−→ π1 P2
cv−−→ π2

P1 ‖ P2
τ−−→ π1 ‖ π2

(Par)
P

λ−−→ π λ 6= tick

P ‖ Q
λ−−→ π ‖ Q

(ChnRes)
P

λ−−→ π λ 6∈ {cv,cv}

P\c λ−−→ π\c
(Rec)

P{recX .P/X}
λ−−→ π

recX .P
λ−−→ π

(TimeNil)
−

nil
tick−−−→ nil

(Delay)
−

tick.C
tick−−−→ JCK

(Timeout)
−

bchn.CcD tick−−−→ JDK
(TimePar)

P1
tick−−−→ π1 P2

tick−−−→ π2 P1 ‖ P2
τ−−→6

P1 ‖ P2
tick−−−→ π1 ‖ π2

transmission, channel reception, actuator writing, and sensor reading, respectively. As in [24], the
definition of the labelled transition relation for processes relies on a semantic interpretation of probabilistic
processes in terms of (discrete) probability distributions over processes.

Definition 7. For any probabilistic choice
⊕

i∈I pi:Pi over a finite index set I, we write J
⊕

i∈I pi:PiK to
denote the probability distribution ∑i∈I pi ·Pi.

The transition rules in Table 1 use some obvious notation for distributing both parallel composition
and channel restriction over a sub-distribution. Given two sub-distributions π1 and π2 we define the
sub-distribution π1 ‖ π2 as follows: (π1 ‖ π2)(P) = π1(P1) · π2(P2), if P = P1 ‖ P2; (π1 ‖ π2)(P) = 0,
otherwise. Given an arbitrary distribution over processes π = ∑i∈I pi ·Pi, an arbitrary channel c, and a
value v, we define π\c as the distribution ∑i∈I pi ·Pi\c, and π{v/x} as the distribution ∑i∈I pi ·Pi{v/x}.

Let us comment on the transition rules of Table 1. Rules (Outp), (Inpp) and (Com) serve to model
channel communication, on some channel c. Rule (Write) denotes the writing of some data v on an actuator
a. Rule (Read) denotes the reading of some value detected at sensor s. Rule (Par) propagates untimed
actions over parallel components. Rules (ChnRes) and (Rec) are the standard rules for channel restriction
and recursion, respectively. The following four rules are standard, and model the passage of one time unit.
The symmetric counterparts of rules (Com) and (Par) are obvious and thus omitted from the table.

In Table 2, we lift the transition rules from processes to systems, actually to probability distri-
butions overs systems. We adopt the following notation for probability distributions: given a distri-
bution σ over physical states and a distribution π over processes, we write σ onπ to denote the dis-
tribution over (environment-free) CPSs defined as (σ onπ)(SonP) = σ(S) · π(P). Moreover, given a
physical environment E, we write E;σ onπ to extend the distribution σ onπ to full CPSs as follows:
(E;σ onπ)(E;SonP) = σ(S) · π(P). Actions, ranged over by α , are in the set Act = {τ,cv,cv, tick}.
These actions denote: non-observable activities (τ); channel transmission (cv); channel reception (cv); the
passage of time (tick).
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Table 2 Probabilistic LTS for a CPS SonP parametric on an environment E = 〈evol,meas, inv〉

(Out)
P

cv−−→ π S ∈ inv

SonP
cv−−→ Sonπ

(Inp)
P

cv−−→ π S ∈ inv

SonP
cv−−→ Sonπ

(Tau)
P

τ−−→ π S ∈ inv

SonP
τ−−→ Sonπ

(SensRead)
P

s?(z)
−−−−→ π ξs(s) = ∑i∈I pi · vi ξx ∈ inv

〈ξx,ξs,ξa〉onP
τ−−→ 〈ξx,ξs,ξa〉on ∑i∈I pi ·π{vi/z}

(ActWrite)
P

a!v−−−→ π ξx ∈ inv

〈ξx,ξs,ξa〉onP
τ−−→ 〈ξx,ξs,ξa[a 7→ v]〉onπ

(Time)
P

tick−−−→ π SonP
τ−−→6 S ∈ inv

SonP
tick−−−→ nextE(S)onπ

(Deadlock)
S 6∈ inv

SonP
τ−−→ Dead

As physical environments contain static information, for simplicity the resulting transition rules are
parameterised on a physical environment of the form E = 〈evol,meas, inv〉. Thus, instead of providing
the transitions rules for a CPS of the form E;SonP we give the LTS semantics parametric on E for the
environment-free CPS SonP.

All rules, except (Deadlock), have a common premise requiring that the current state function of the
system must satisfy the invariant. With an abuse of notation, we sometimes write S ∈ inv instead of
ξx ∈ inv when S = 〈ξx,ξs,ξa〉. Rules (Out) and (Inp) model transmission and reception, with an external
system, on a channel c. Rule (Tau) lifts non-observable actions from processes to systems. Rule (SensRead)
models the reading of the current data detected at sensor s. Rule (ActWrite) models the writing of a
value v on an actuator a. A similar lifting occurs in rule (Time) for timed actions, where nextE(S) returns
a probability distribution over possible physical states for the next time slot, according to the current
physical state S and physical environment E. Formally, for S = 〈ξx,ξs,ξa〉 and E = 〈evol,meas, inv〉, we
define:

nextE(S) = ∑
ξ ′x∈supp(evol(ξx,ξa))
ξ ′s∈supp(meas(ξx

′))

(
evol(ξx,ξa)(ξ

′
x) ·meas(ξx

′)(ξ ′s)
)
· 〈ξ ′x,ξ ′s ,ξa〉 .

Intuitively, the operator nextE serves to compute the possible state functions and sensor functions of the
next time slot (actuator changes are governed by the cyber-component). More precisely, the (probability
distribution over the) next state function is determined by applying evol to the current state function ξx
and the current actuator function ξa. The probability weight of any possible state function ξ ′x is given by
evol(ξx,ξa)(ξ

′
x). Then, for a state function ξ ′x, the (probability distribution over the) next sensor function

is given by applying meas to ξ ′x. Finally, the probability weight of any possible sensor function ξ ′s is given
by meas(ξ ′x)(ξ

′
s).

Recapitulating, by an application of rule (Time) a CPS moves to the next physical state, in the next
time slot. Rule (Deadlock) is straightforward: if the invariant is not satisfied then the CPS deadlocks.

Finally, notice that in our LTS we defined transitions rules of the form SonP
α−−→ σ onπ , parametric

on some physical environment E. As physical environments do not change at runtime, SonP
α−−→ σ onπ

entails E;SonP
α−−→ E;σ onπ , thus providing the probabilistic LTS for (full) CPSs.

Remark 1. Note that the rules in Table 2 define an image finite pLTS. This means that for any CPS M and
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label α there are finitely many distributions reachable from M in one α-labelled transition step. Moreover,
all transitions M α−→ γ are such that γ has a finite support.

Now, having defined the labelled transitions that can be performed by a CPS of the form E;SonP,
we can easily concatenate these transitions to define the possible computation traces of a system. A
computation trace [8] for a CPS E;S1onP1 is a sequence of steps of the form E;S1onP1

α1−→ . . .
αn−1−−−→

E;SnonPn where for any i, with 1≤ i≤ n−1, we have E;SionPi
αi−→ E;σi+1onπi+1 for distributions σi+1

and πi+1 such that Si+1 ∈ supp(σi+1) and Pi+1 ∈ supp(πi+1).
Below, we report a few desirable time properties [37] which hold in our calculus: (a) time determinism,

(b) maximal progress, (c) patience, and (d) well-timedness. In its standard formulation, time determinism
says that a system reaches at most one new state by executing a timed action tick; however, in our setting,
this holds only for the logical components (up to structural congruence) whereas the evolution of the
physical component is intrinsically probabilistic, due to the presence of uncertainty and measurement
errors. The maximal progress property usually says that processes communicate as soon as a possibility
of communication arises. In our calculus, we generalise this property saying that instantaneous (silent)
actions cannot be delayed. On the other hand, patience says that if no instantaneous actions are possible
then time is free to pass. Finally, well-timedness [49, 15] ensures the absence of infinite instantaneous
traces which would prevent the passage of time, and hence the physical evolution of a CPS.

Theorem 1 (Time properties). Let M = E;SonP.

(a) If M
tick−−−→ γ and M

tick−−−→ γ ′ then γ ≡ γ ′.

(b) If M
τ−−→ γ then there is no γ ′ such that M

tick−−−→ γ ′.

(c) If M
tick−−−→ γ for no γ then either S does not satisfy the invariant of E or there is γ ′ such that

M
τ−−→ γ ′.

(d) There is a k ∈ N such that if M α1−→ . . .
αn−→ N, with αi 6= tick, then n≤ k.

The proof of Theorem 1 can be found in the Appendix, in Section A.1.

3 Probabilistic bisimulation

In this section, we are ready to define a bisimulation-based behavioural equality for CPSs, relying on our
labelled transition semantics. We recall that the only observable activities in pCCPS are: the passage of
time and channel communication. As a consequence, the capability to observe physical events (different
from deadlocks) depends on the capability of the cyber components to recognise those events by acting on
sensors and actuators, and then signalling them using (unrestricted) channels.

In a probabilistic setting, the definition of weak transition α̂
=⇒, which abstract away non-observable

actions, is complicated by the fact that (strong) transitions take CPSs to distributions over CPSs. Following
[24, 47], we need to generalise transitions, so that they take sub-distributions to sub-distributions.

With an abuse of notation, we use γ and γ ′ to range over sub-distributions over CPSs, under the
assumption that ∑M∈pCCPS γ(M)≤ 1.

Let us start with defining the weak transition M α̂−→ γ for any CPS M and distribution γ . If α = τ then
we write M α̂−→ γ whenever either M α−→ γ or γ = M. Otherwise, if α 6= τ then we write M α̂−→ γ whenever
M α−→ γ . The relation α̂−→ is extended to model transitions from sub-distributions to sub-distributions. For
a sub-distribution γ = ∑i∈I pi ·Mi, we write γ

α̂−→ γ ′ if there is a non-empty set J ⊆ I such that M j
α̂−→ γ j for

all j ∈ J, Mi
α̂−→6 , for all i ∈ I \ J, and γ ′ = ∑ j∈J p j · γ j. Note that if α 6= τ then this definition entails that
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only some CPSs in the support of γ have an α̂−→ transition. Then, we define the weak transition relation τ̂
=⇒

as the transitive and reflexive closure of τ̂−→, i.e. τ̂
=⇒= (

τ̂−→)∗, while for α 6= τ we let α̂
=⇒ denote τ̂

=⇒ α̂−→ τ̂
=⇒.

In order to define a probabilistic bisimulation, following [23] we rely on the notion of matching [61]
(also known as coupling) for a pair of distributions. Intuitively, the matching for a pair (γ,γ ′) may be
understood as a transportation schedule for the shipment of probability mass from γ to γ ′.

Definition 8 (Matching). A matching for a pair of distributions (γ,γ ′), with γ,γ ′ ∈ D(pCCPS), is a
distribution ω in the product space D(pCCPS×pCCPS) such that:

• ∑M′∈pCCPSω(M,M′) = γ(M), for all M ∈ pCCPS, and

• ∑M∈pCCPSω(M,M′) = γ ′(M′), for all M′ ∈ pCCPS.

We write Ω(γ,γ ′) to denote the set of all matchings for (γ,γ ′).

Everything is in place to define weak probabilistic bisimulation for pCCPS, along the lines of [53].

Definition 9 (Weak probabilistic bisimulation). A binary symmetric relation R over CPSs is a weak
probabilistic bisimulation if M R N and M

α−−→ γ implies that there exist a distribution γ ′ and a matching

ω ∈Ω(γ,γ ′) such that N α̂
==⇒ γ ′, and M′R N′ whenever ω(M′,N′)> 0. We say that M and N are bisimilar,

written M ≈ N, if M R N for some weak probabilistic bisimulation R.

A main result of the paper is that bisimilarity can be used to reason on CPSs in a compositional
manner. In particular, bisimilarity is preserved by parallel composition of physically-disjoint CPSs, by
parallel composition of pure-logical processes, and by channel restriction; basically, all those contexts that
cannot interfere on physical devices (sensors and actuators), whereas interferences on logical components
(via channel communication) is allowed.

Intuitively, two CPSs are physically-disjoint if they have different plants but they may share logical
channels for communication purposes. More precisely, physically-disjoint CPSs have disjoint state
variables and disjoint physical devices (sensors and actuators). As we consider only well-formed CPSs
(Definition 6), this ensures us that a CPS cannot physically interfere with a parallel CPS by acting on its
physical devices. Although, logical interferences on communication channels are allowed.

Formally, let Si = 〈ξ i
x,ξ

i
s ,ξ

i
a〉 and E i = 〈evoli,measi, invi〉 be physical states and physical environments,

respectively, associated to state variables in the set Xi, sensors in the set Si, and actuators in the set Ai, for
i ∈ {1,2}. For X1∩X2 = /0, S1∩S2 = /0 and A1∩A2 = /0, we define:

• the disjoint union of the physical states S1 and S2, written S1]S2, to be the physical state 〈ξx,ξs,ξa〉
such that: ξx = ξ 1

x ]ξ 2
x , ξs = ξ 1

s ]ξ 2
s , and ξa = ξ 1

a ]ξ 2
a ;

• the disjoint union of the physical environments E1 and E2, written E1 ]E2, to be the physical
environment 〈evol,meas, inv〉 such that:

(evol(ξ 1
x ]ξ 2

x ,ξ
1
a ]ξ 2

a ))(ξ
1
x
′]ξ 2

x
′) = evol1(ξ 1

x ,ξ
1
a )(ξ

1
x
′) · evol2(ξ 2

x ,ξ
2
a )(ξ

2
x
′)

(meas(ξ 1
x ]ξ 2

x ))(ξ
1
s
′]ξ 2

s
′) = meas1(ξ 1

x )(ξ
1
s
′) ·meas2(ξ 2

x )(ξ
2
s
′)

ξ 1
x ]ξ 2

x ∈ inv iff ξ 1
x ∈ inv1 and ξ 2

x ∈ inv2 .

Definition 10 (Physically-disjoint CPSs). Let Mi = Ei;SionPi, for i ∈ {1,2}. We say that M1 and M2 are
physically-disjoint if S1 and S2 have disjoint sets of state variables, sensors and actuators. In this case,
we write M1]M2 to denote the CPS defined as (E1]E2);(S1]S2)on(P1 ‖ P2). For any M ∈ pCCPS, the
special system Dead is physically-disjoint with M, and M]Dead = Dead]M = Dead.
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A pure-logical process is a process which may interfere on communication channels but it never
interferes on physical devices as it never accesses sensors and/or actuators. Basically, a pure-logical
process is a (possibly probabilistic) TPL process [37]. Thus, in a system M ‖ Q, where M is an arbitrary
CPS, a pure-logical process Q cannot interfere with the physical evolution of M. Although, process Q can
definitely interact with M via communication channels, and hence affect its observable behaviour.

Definition 11 (Pure-logical processes). A process P is called pure-logical if it never acts on sensors
and/or actuators.

Now, we can finally prove the compositionality of probabilistic bisimilarity ≈.

Theorem 2 (Congruence results). Let M and N be two arbitrary CPSs in pCCPS.

1. M ≈ N implies M]O≈ N]O, for any physically-disjoint CPS O;

2. M ≈ N implies M ‖ P≈ N ‖ P, for any pure-logical process P;

3. M ≈ N implies M\c ≈ N\c, for any channel c.

The proof can be found in the Appendix, at the end of Section A.3.
The reader may wonder whether the bisimilarity ≈ is preserved by more permissive contexts. The

answer is no. Suppose to allow in the second item of Theorem 2 a process P that can also read on sensors.
In this case, even if M and N are bisimilar, the parallel process P might read a different value in the two
systems at the very same sensor s (due to the sensor error) and transmit these different values on a free
channel, breaking the congruence. Activities on actuators may also lead to different behaviours of the
compound systems: bisimilar CPSs may have physical components that are not exactly aligned. A similar
reasoning applies when composing CPSs with non physically-disjoint ones: interference on physical
devices may break the congruence.

However, in the next section we will see that the congruence results of Theorem 2 will be very useful
when reasoning on complex systems.

4 Case study

In this section, we provide a case study to illustrate how pCCPS can be used to specify and reason on CPSs
in a compositional manner. In particular, we model an engine whose temperature is maintained within a
specific range by means of a cooling system.

As regards the physical environment we adopt discrete uniform distributions over suitable intervals to
model both the evolution map and the measurement map.3 In our model, we assume a granularity g ∈ N+

representing the precision 10−g of the model in estimating physical values. Thus, for an arbitrary real
interval [v,w] we write [v,w]g to denote the finite set of reals {k ∈ [v,w] : k = v+h ·10−g, with h ∈ N}.

Given a granularity g ∈ N+, the physical state Sg of the engine is characterised by: (i) a state variable
temp containing the current temperature of the engine; (ii) a sensor st (such as a thermometer or a
thermocouple) measuring the temperature of the engine, (iii) an actuator cool to turn on/off the cooling
system. The physical environment of the engine, Envg, is constituted by: (i) a simple evolution law evol
that increases (resp. decreases) the value of temp, when the cooling system is inactive (resp. active), by a
value determined according to a discrete distribution of probability, taking into account an uncertainty
in the model that may reach the threshold δ = 0.4, and granularity g over reals; (ii) a measurement map
meas returning the value detected by the sensor st determined by a discrete probability distribution based

3Other forms of finite-support discrete probability distributions could be treated as well.
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on a measurement error that may reach the threshold err = 0.1, and granularity g; (ii) an invariant set
saying that the system gets faulty when the temperature of the engine gets out of the range [0,30].

Formally, Sg = 〈ξx,ξs,ξa〉 and Envg = 〈evol,meas, inv〉 with:
(i) ξx ∈ R{temp} and ξx(temp) = 0;

(ii) ξs ∈ R{st} and ξs(temp) = 0;

(iii) ξa ∈ R{cool} and ξa(cool) = off; for the sake of simplicity, we can assume ξa to be a mapping
{cool}→ {on,off} such that ξa(cool) = off if ξa(cool)≥ 0, and ξa(cool) = on if ξa(cool)< 0.

Furthermore,
(i) evol(ξ ′x,ξ

′
a) = ∑v∈[v1,v2]g

1
|[v1,v2]g| · [temp 7→ ξ ′x(temp)+ v], for any ξ ′x ∈ R{temp} and ξ ′a ∈ R{cool},

where [v1,v2] = [1−δ , 1+δ ], if ξ ′a(cool) = off (inactive cooling), and [v1,v2] = [−1−δ ,−1+δ ],
if ξ ′a(cool) = on (active cooling);

(ii) meas(ξ ′x) = ∑v∈[−err,+err]g
1

|[−err,+err]g| · [st 7→ ξ ′x(temp)+ v], for any ξ ′x ∈ R{temp};

(iii) inv = {[temp 7→ x] : x ∈ R and 0≤ x≤ 30}.
The cyber component of the engine consists of a process Ctrl which models the controller activity.

Intuitively, process Ctrl senses the temperature of the engine at each time interval. When the sensed
temperature is above 10, the controller activates the coolant. The cooling activity is maintained for 5
consecutive time units. After that time, if the temperature does not drop below 10 then the controller
transmits its ID on a specific channel for signalling a warning, it keeps cooling for another 5 time units,
and then checks again the sensed temperature; otherwise, if the sensed temperature is not above the
threshold 10, the controller turns off the cooling and moves to the next time interval. Formally,

Ctrl = recX .readst(x).[x > 10]{Cooling},{tick.X}
Cooling = writecool〈on〉.recY.tick5.readst(x).

[x > 10]{sndwarning〈ID〉.Y},{writecool〈off〉.tick.X} .

The whole engine is defined as: Engg = Envg;SgonCtrl , where Envg and Sg are the physical environ-
ment and the physical state defined before.

Our operational semantics allows us to formally prove a number of run-time properties of our engine.
For instance, the following proposition says that our engine never reaches a warning state and never
deadlocks.
Proposition 1. Let Engg be the CPS defined before. Given any computation Engg

α1−→ . . .
αn−→M, then

αi ∈ {τ, tick}, for 1≤ i≤ n, and there is a distribution γ such that M
α−−→ γ , for some α ∈ {τ, tick}.

Actually, knowing that in each of the 5 time slots of cooling, the temperature will drop of a value
laying in the interval [1−δ ,1+δ ]g, we can be quite precise on the temperature reached by the engine
before and after the cooling activity. Formally:

Proposition 2. Let Engg
α1−−→ . . .

αn−−→M be an arbitrary computation of the engine, for some CPS M:
• if M turns the cooling on then the value of the state variable temp in M ranges over (9.9,11.5];
• if M turns the cooling off then the value of the variable temp in M ranges over (2.9,8.5].
The proofs of both propositions can be found in the Appendix, in Section A.2.
The result formally proved in Proposition 2 finds a correspondence in the left graphic of Figure 2. In

that graphic, we collect a campaign of 100 simulations of our engine in MATLAB4, lasting 250 time units
4MATLAB chooses a value in a real interval by means of a discrete uniform distribution depending on the granularity

imposed by the finite number of bits used for the representation of floats.
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Figure 2 Simulations in MATLAB of the engine Eng
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each, showing that the value of the state variable temp when the cooling system is turned on (resp., off)
lays in the interval (9.9,11.5] (resp., (2.9,8.5]); these bounds are represented by the dashed horizontal
lines. Obviously, when dealing with complex systems even several thousands of simulations do not ensure
the absence of incorrect states, as formally proved in Proposition 1 and Proposition 2.

The right graphic of the same figure shows three possible evolutions in time of the state variable temp:
(i) the first one (in red), in which the temperature of the engine always grows of 1−δ = 0.6 degrees per
time step, when the cooling is off, and always decrease of 1+δ = 1.4 degrees per time unit, when the
cooling is on; (ii) the second one (in blue), in which the temperature always grows of 1+δ = 1.4 degrees
per time unit, when the cooling is off, and always decrease of 1−δ = 0.6 degrees per time unit, when the
cooling is on; (iii) and a third one (in yellow), in which, depending whether the cooling is off or on, at each
time step the temperature grows or decreases of an arbitrary offset laying in the interval [1−δ ,1+δ ].

Now, the reader may wonder whether it is possible to design a variant of our engine which meets
the same specification with better performances. For instance, an engine consuming less coolant. Let us
consider a variant of the engine described before:

Ẽngg = Ẽnvg;SgonCtrl .

Here, Ẽnvg is the same as Envg except for the evolution map, as we set [v1,v2] = [−0.8−δ ,−0.8+δ ] if
ξ ′a(cool) = on (active cooling). This means that in Ẽngg we reduce the power of the cooling system by
20%. In Figure 3, we report the results of our simulations in MATLAB over 10000 runs lasting 10000 time
units each. From this graph, Ẽngg saves in average more than 10% of coolant with respect to Engg. So,
the new question is: are these two engines behavioural equivalent? Do they meet the same specification?

Our bisimilarity provides us with a precise answer to these questions: the two variants of the engine
are bisimilar.
Proposition 3. Engg ≈ Ẽngg , for any g ∈ N+.

The proof can be found in the Appendix, in Section A.4.
At this point, one may wonder whether it is possible to improve the performances of our engine

even more. For instance, by reducing the power of the cooling system by a further 10%, by setting
[v1,v2] = [−0.7−δ ,−0.7+δ ] if ξ ′a(cool) = on (active cooling). We can formally prove that this is not
possible.
Proposition 4. Let Êngg be the same as Engg, except for the evolution map, in which the real interval

[v1,v2] is given by [−0.7−δ ,−0.7+δ ] if ξ ′a(cool) = on. Then, Engg 6≈ Êngg , for any g ∈ N+.



14 A Probabilistic Calculus of Cyber-Physical Systems

Figure 3 Simulations in MATLAB of coolant consumption
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The proof can be found in the Appendix, in Section A.2.
Finally, we show how we can use the compositionality of our behavioural semantics (Theorem 2) to

deal with bigger CPSs. Suppose that Engg denotes the model in our calculus of an airplane engine. In this
case, we could model a very simple airplane control system that checks whether the left engine (EngL

g )
and the right engine (EngR

g ) are signalling warnings. The whole CPS is defined as follows:

Airplaneg =
(
(EngL

g ]EngR
g ) ‖ Check

)
\{warning}

where EngL
g = Engg{L/ID}{temp l/temp}{cool l/cool}{st l/st}, and EngR

g = Engg{R/ID}{temp r/temp}{cool r/cool}{st r/st},
and process Check is defined as follows:

Check = recX .brcv warning(x).[x = L]{CheckL
1},{CheckR

1 }cX
Checkid

i = brcv warning(y).[y 6= id]{sndalarm.tick.X},{tick.Checkid
i+1}cCheckid

i+1

Checkid
5 = brcv warning(z).[z 6= id]{sndalarm.tick.X},{snd failure〈id〉.tick.X}c

snd failure〈id〉.X

for 1 ≤ i ≤ 5. Intuitively, if one of the two engines is in a warning state then the process Checkid
i , for

id ∈ {L,R}, checks whether also the second engine moves into a warning state, in the following 5 time
intervals (i.e. during the cooling cycle). If both engines get in a warning state then an alarm is sent,
otherwise, if only one engine is facing a warning then the airplane control system yields a failure signalling
which engine is not working properly.

So, since we know that Engg ≈ Ẽngg , for any g ∈ N+, the final question becomes the following:

can we safely equip our airplane with the more performant engines, ẼngL
g and ẼngR

g , in which [v1,v2] =
[−0.8−δ ,−0.8+δ ], if ξ ′a(cool) = on, without affecting the whole observable behaviour of the airplane?
The answer is “yes”, and this result can be formally proved by relying on Proposition 3 and Theorem 2.

Proposition 5. Let ˜Airplaneg =
(
(ẼngL

g ] ẼngR
g ) ‖ Check

)
\{warning}. Then, Airplaneg ≈ ˜Airplaneg .

We end this section with an observation. Although, the engine Êngg is not behavioural equivalent to
the original engine Engg, an airplane maker might be interested in knowing an estimation of the deviation
of its behaviour with respect the behaviour of the original engine. If this deviation would be very small
then aeronautical engineers might consider to adopt in their airplanes the engine Êngg instead Ẽngg to
save even more coolant. So, the new question is: how big is the deviation, in terms of behaviour, of the
engine Êngg with respect to the original engine Engg?

The rest of the paper is devoted to develop general quantitative techniques to estimate the deviation of
the probabilistic behaviour of a CPS with respect to another.
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5 Bisimulation metrics

In this section, we provide a weak behavioural distance to compare the probabilistic behaviour of CPSs
up to a given approximation. To this end, we adapt the notion of weak bisimilarity metric [27] to pCCPS.
Intuitively, we will write M ≈p N if the weak bisimilarity between M and N holds with a distance p,
with p ∈ [0,1]. Thus, ≈0 will coincide with the weak probabilistic bisimilarity of Definition 9, whereas⋃

p∈[0,1] ≈p will correspond to the cartesian product pCCPS×pCCPS.
Weak bisimilarity metric is defined as a pseudometric measuring the tolerance of the probabilistic

weak bisimilarity.

Definition 12 (Pseudometric). A function d : pCCPS×pCCPS→ [0,1] is said to be a 1-bounded pseudo-
metric if

• d(M,M) = 0, for all M ∈ pCCPS,

• d(M,M′) = d(M′,M), for all M,M′ ∈ pCCPS,

• d(M,M′)≤ d(M,M′′)+d(M′′,M′), for all M,M′,M′′ ∈ pCCPS.

Weak bisimilarity metric provides the quantitative analogous of the weak bisimulation game: two
CPSs M and N at distance p can mimic each other transitions and evolve to distributions γ and γ ′,
respectively, placed at some distance q, with q ≤ p. This requires to lift pseudometrics from CPSs to
distributions over CPSs. To this end, as in [47], we rely on the notions of matching [61] and Kantorovich
lifting [40].5

In Definition 8, we already provided the definition of matching. Let us define the Kantorovich lifting.

Definition 13 (Kantorovich lifting). Let d : pCCPS×pCCPS→ [0,1] be a pseudometric. The Kantorovich
lifting of d is the function K(d) : D(pCCPS)×D(pCCPS)→ [0,1] defined as:

K(d)(γ,γ ′) = min
ω∈Ω(γ,γ ′)

∑
M,M′∈pCCPS

ω(M,M′) ·d(M,M′)

for all γ,γ ′ ∈D(pCCPS).

Note that since we are considering only distributions with finite support, the minimum over the set of
matchings Ω(γ,γ ′) is well defined.

Definition 14 (Weak bisimulation metric). We say that a pseudometric d : pCCPS×pCCPS→ [0,1] is
a weak bisimulation metric if for all M,N ∈ pCCPS, with d(M,N) < 1, whenever M α−→ γ there is a

sub-distribution γ ′ such that N α̂
=⇒ γ ′ and K(d)(γ , γ ′+(1− |γ ′|)Dead)≤ d(M,N).

Note that in the previous definition, if |γ ′|< 1 then, with probability 1− |γ ′|, there is no way to simulate
the behaviour of any CPS with a valid invariant in the support of γ (the special CPS Dead does not perform
any action).

A crucial result is the existence of the minimal weak bisimulation metric [27], called weak bisimilarity
metric, and denoted with d. We remark that in [27] it is shown that the kernel of d coincides with the
definition of weak probabilistic bisimilarity.

Proposition 6. For all M,N ∈ pCCPS we have d(M,N) = 0 if and only if M ≈ N.

Now, we have all ingredients to define our notion of behavioural distance between CPSs.

5The original formulation of weak bisimulation metric [27] is technically different but equivalent to our definition [22].
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Definition 15 (Distance between CPSs). Let M,N ∈ pCCPS and p ∈ [0,1]. We say that M and N have
distance p, written M ≈p N, if and only if d(M,N) = p.

In the next section, we will use a more refined notion of distance that considers only the first n ∈ N
computation steps, when comparing two CPSs.

Such definition requires the introduction of a complete lattice ([0,1]pCCPS×pCCPS,v) of functions of
type pCCPS×pCCPS→ [0,1] ordered by d1 v d2 iff d1(M,N)≤ d2(M,N) for all M,N ∈ pCCPS, where for
each set D⊆ [0,1]pCCPS×pCCPS the supremum and infimum are defined as sup(D)(M,N) = supd∈D d(M,N)
and inf(D)(M,N) = infd∈D d(M,N), for all M,N ∈ pCCPS. Notice that the infimum of the lattice is the
constant function zero, which we denote by 0.

We also need a functional B defined over the lattice mentioned above such that B(d)(M,N) returns
the minimum possible value for d(M,N) in order to ensure that d is a weak bisimulation metric.

Definition 16 (Bisimulation metric functional). Let B : [0,1]pCCPS×pCCPS→ [0,1]pCCPS×pCCPS be the func-
tional such that for any d ∈ [0,1]pCCPS×pCCPS and M,N ∈ pCCPS, B(d)(M,N) is given by:

sup
{α : M α−→∨N α−→}

max

{
max

M α−→γ1

min
N α̂
=⇒γ2

K(d)(γ1,γ2 +(1− |γ2|)Dead), max
N α−→γ2

min
M α̂
=⇒γ1

K(d)(γ1 +(1− |γ1|)Dead,γ2)

}

where max /0 = 0 and min /0 = 1.

Notice that Definition 16 and Definition 14 are strictly related as weak bisimulation metrics are
pseudometrics that are prefixed points of B. Notice also that all max and min in Definition 16 are well
defined since our pLTS is image finite and CPSs enjoy the well timedness property.

Since K is monotone [52] it follows that B is a monotone function on ([0,1]pCCPS×pCCPS,v). Further-
more, since this structure is a lattice, by Knaster-Tarski theorem it follows that B has a least prefixed point
(which is also the least fixed point). Later we will show that this least prefixed point coincides with d.

Now, we exploit the functional B to introduce a notion of n-weak bisimilarity metric, denoted dn,
which intuitively quantifies the tolerance of the weak bisimulation in n steps. The idea is that d0 coincides
with the constant function 0 assigning distance 0 to all pairs of CPSs, whereas dn(M,N), for n > 0, is
defined as dn(M,N) = B(dn−1)(M,N). Thus, the n-weak bisimilarity metric between M and N is defined
in terms of the (n−1)-weak bisimilarity metric between the distributions reached (in one step) by M and
N, respectively.

Definition 17 (n-weak bisimilarity metric). Let n ∈ N. The function Bn(0), abbreviated as dn, is called
n-weak bisimilarity metric.

Proposition 7. For all n≥ 0, dn is a 1-bounded pseudometric.

The proof of this proposition can be found in Appendix, in Section A.3.
Finally, we are ready to define our notion of n-distance between two CPSs.

Definition 18 (n-distance between CPSs). Let M,N ∈ pCCPS and p ∈ [0,1]. We say that M and N have
n-distance p, written M ≈n

p N, if and only if dn(M,N) = p.

Since our pLTS is image-finite, and all transitions lead to distributions with finite support, it is possible
to prove that B is continuous [58]. Since B is also monotone, we can deduce that the closure ordinal of
B is ω (see Section 3 of [58]). As a consequence, the n-weak bisimilarity metrics converge to the weak
bisimilarity metric when n grows indefinitely. Formally,

Proposition 8. d = limn→∞ dn.



R. Lanotte, M. Merro, S. Tini 17

Last but but not least, the distances introduced in Definition 15 and Definition 18 allow us to compare
CPSs in a compositional manner. In particular, these distances are preserved by parallel composition of
physical-disjoint CPSs, by parallel composition of pure-logical processes, and by channel restriction.
Theorem 3 (Compositionality of distances). Let M and N be two arbitrary CPSs in pCCPS.

1. M ≈p N implies M]O≈q N]O, with q≤ p, for any physically-disjoint CPS O;

2. M ≈p N implies M ‖ P≈q N ‖ P, with q≤ p, for any pure-logical process P;

3. M ≈p N implies M\c ≈q M\c, with q≤ p, for any channel c;

4. M ≈n
p N implies M]O≈n

q N]O, with q≤ p, for any physically-disjoint CPS O and any n≥ 0;

5. M ≈n
p N implies M ‖ P≈n

q N ‖ P, with q≤ p, for any pure-logical process P and any n≥ 0;

6. M ≈n
p N implies M\c ≈n

q M\c, with q≤ p, for any channel c and n≥ 0.
The proof of Theorem 3 can be found in the Appendix, in Section A.3.
Now, suppose that M ≈p N, M′ ≈p′ N′, with M (resp. N) and M′ (resp. N′) physically-disjoint. By

Theorem 3.1, we can infer both M]M′ ≈q N]M′ and N]M′ ≈q′ N]N′, with q≤ p and q′ ≤ p′. Then,
by triangular property of the pseudometric d we get M]M′ ≈q′′ N ]N′, for some q′′ ≤ q+q′ ≤ p+ p′.
Similarly, by applying Theorem 3.4 we can infer that M ≈n

p N and M′ ≈n
p′ N′ entail M]M′ ≈n

q N ]N′,
for some q ≤ p+ p′. This says that our metrics enjoy a well-known compositional property called
non-expansiveness [26, 32, 34].

In the next section, the compositional properties of Theorem 3 will be very useful when reasoning on
our case study.

6 Case study, reloaded

In Section 4, we proved that the original version of the proposed engine, Engg, and its variant Ẽngg (saving
up to 10% of coolant) are behavioural equivalent (i.e., bisimilar). Then, by relying on the compositionality
of our probabilistic bisimilarity (Theorem 2), we proved that the two compound systems, Airplaneg and
˜Airplaneg, mounting engines Engg and Ẽngg, respectively, are bisimilar as well.

Actually, both results can be proved in terms of weak probabilistic metric with distance 0, as this
specific metric coincides with the probabilistic bisimilarity (Proposition 6).
Proposition 9. Let g ∈ N+. Then,
• Engg ≈0 Ẽngg

• Airplaneg ≈0 ˜Airplaneg .

Then, in Section 4 we moved our attention to a more performant engine, Êngg, saving almost 20% of
coolant with respect to the original engine Engg. In our behavioural analysis we rejected this new variant
as it may exhibit a different probabilistic behaviour when compared to Engg. More precisely, the two
systems Engg and Êngg are not bisimilar (Proposition 5).

However, in many complex probabilistic systems, such as CPSs, probabilistic bisimilarity might
reveal to be too strong as the natural behavioural equivalence to take systems apart. Thus, in Section 4
we advocated for some appropriate notion of behavioural distance to estimate the effective difference, in
terms of behaviour, of these two versions of the engine.

In the current section, we apply the bisimulation metrics defined in Section 5 to estimate the distance
between Engg and Êngg, by varying the granularity g ∈ N+. In particular, we apply the notion of n-weak
bisimilarity metric.
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Proposition 10. Let g ∈ N+ and n ∈ N. Then, for pg =
|[0.3,0.4)g|
|[0.3,1.1]g| and qg =

|(1.3,1.4]g|
|[0.6,1.4]g| , we have:

dn(Engg, Êngg) ≤ 1−
(
1−qg(pg)

5)n
.

Note that if the cooling system of Êngg is off and it is not going to be activated in the current time
slot, then the sensed temperature is below than or equal to 10, and the real temperature is below than or
equal to 10.1 degrees (we recall that err = 0.1). Assume that the temperature is exactly 10.1. If in the
current time slot the temperature increases of a value v ∈ (1.3,1.4] then it will reach a value in the interval
(11.4,11.5] (we recall that δ = 0.4). This happens with a probability bounded by qg. In this case, the
cooling system will be turned on, and the temperature will drop, in each of the following 5 time slots,
of some value laying in the interval [0.7−δ , 0.7+δ ] = [0.3,1.1]. However, if in each of those 5 slots of
cooling the temperature is decreased of a value laying in [0.3,0,4), then the cooling activity might not be
enough to avoid (observable) warnings, and the two engines Engg and Êngg will be distinguished. Thus,
pg is given by the number of possible “bad decreases”, | [0.3,0.4)g |, divided by the number of all possible
decreases, | [0.3,1.1]g |; whereas qg is given by the number of possible “bad increases”, | (1.3,1.4]g |,
divided by the number of all possible increases | [0.6,1.4]g |.

Notice that pg and qg refer to real intervals which are basically shifted. Thus, we have that
| [0.3,0.4)g |= | (1.3,1.4]g |= 10g−1 and | [0.3,1.1]g |= | [0.6,1.4]g |= 8 ·10g−1 +1. As a consequence,
pg = qg =

10g−1

8·10g−1+1 = 1
8+10−g+1 . Obviously, the finer is the granularity g the closer is the value of pg and

qg to 1
8 . Formally,

lim
g→∞

dn(Engg, Êngg) ≤ 1−
(
1− 1

86

)n
. (1)

Thus, for instance, assuming a granularity g = 6, after n = 3000 computation steps the distance
between the two systems is less than 0.012. Intuitively, this means that if we limit our analysis to 3000
computation steps the behaviours of two engines may differ with probability at most 0.012. By an easy
inspection in the (common) logics of the two engines, it is easy to see that any two subsequent tick-actions
are separated by at most 2 untimed actions. Thus, 3000 computation steps means around 1000 time slots.
Considering time slots lasting 20 seconds each, this means more than five hours. Thus, an utilisation of
Êngg might be feasible in airplanes used for short-range flights, where the engine is actually used for a
limited amount of time. Actually, aeronautical engineers might consider perfectly acceptable the risk of
mounting the engine Êngg instead of Engg, when compared to the reliability of the other components of
the airplane.

However, since an airplane mounts two engines, engineers need to estimate the difference in terms
of behaviour on the whole airplane resulting by the adoption of different versions of the engine. This is
exactly the point where we can rely on Theorem 3 to support compositional reasoning.

The following result follows from Equation 1, Proposition 10 and Theorem 3.

Proposition 11. Let g ∈ N+ and n ∈ N. Let ̂Airplaneg =
(
(ÊngL

g ] (ÊngR
g ) ‖ Check

)
\{warning} . Then,

1. dn(Airplaneg , ̂Airplaneg) ≤ 2p, where p = 1−
(
1−qg(pg)

5
)n

2. limg→∞ dn(Airplaneg , ̂Airplaneg) ≤ 2
(
1−
(
1− 1

86

)n)
.

Thus, for g = 6, the probability that the two airplanes mounting different engines exhibit a different
behaviour within n = 3000 computation steps is at most 0.024; a distance which may be considered still
acceptable in specific contexts. Notice that in the (common) logics of the two airplanes, it is easy to see
that two tick-actions are separated by at most 5 untimed actions (two for each engine plus one to signal a
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possible alarm). Thus, 3000 computation steps means around 600 time slots, i.e., more than three hours
for time slots lasting 20 second each.

Finally, the reader should notice that the bound of the distance between the two airplanes is given by
the summation of the bounds of the distances between the two corresponding engines. This is perfectly in
line with the fact that our bisimulation metrics enjoy the non-expansiveness property.

The proofs of the previous propositions can be found in the Appendix, in Section A.4.

7 Conclusions, related and future work

We have proposed a hybrid probabilistic process calculus, called pCCPS, for specifying and reasoning on
cyber-physical systems. Our calculus allows us to model a CPS by specifying its physical plant, containing
information on state variables, sensors, actuators, evolution law, etc., and its logics, i.e., controllers, IDSs,
supervisors, etc. Physical and logical components interact through sensors and actuators, whereas
interactions within the logics or between logics of different CPSs rely on channel-based communication.
In pCCPS, the representation of the evolution map takes into account the uncertainty of the physical model,
whereas the representation of the measurement map consider measurement errors in sensor reading. As
a consequence, the two maps returns discrete probability distributions over state functions and sensor
functions, respectively.

pCCPS is equipped with a probabilistic labelled transition semantics which satisfies classical time
properties: time determinism, patience, maximal progress, and well-timedness. As behavioural semantics
we adopt a natural notion of weak probabilistic bisimilarity which is proved to be preserved by appropriate
system contexts that are suitable for compositional reasoning. Then, we argue that probabilistic bisimilarity
is only partially satisfactory to reason on CPSs as it can only establish whether two CPSs behave exactly
in the same way. To this end, we generalise our probabilistic bisimilarity to provide a notion of weak
bisimulation metric along the lines of [27]. We also define a notion of weak bisimulation metric in n
steps, which reveals to be very effective whenever it is not necessary to observe the system “ad infinitum”
but it is enough to observe its behaviour restricted to bounded computations. Again, both bisimulation
metrics are proved to be suitable for compositional reasonings. The paper provides a case study, taken
from an engineering application, and use it to illustrate our definitions and our compositional probabilistic
behavioural theory for pCCPS.

Related work. A number of approaches have been proposed for modelling hybrid systems using formal
methods. For instance, hybrid automata [3] combine finite state transition systems (to model the cyber
component) and continuous variables and dynamic (to represent the physical component). A number of
hybrid process algebras [18, 7, 57, 54, 30] have been proposed for reasoning about physical systems and
provide techniques for analysing and verifying protocols for hybrid automata. Among these approaches,
pCCPS shares some similarities with the φ -calculus [54], a hybrid extension of the π-calculus [50]
equipped with a weak bisimilarity that is not compositional. Galpin et al. [30] proposed a process algebra,
called HYPE, in which the continuous part of the system is represented by appropriate variables whose
changes are determined by active influences (i.e., commands on actuators). The authors define a strong
bisimulation that extends the ic-bisimulation of [7]. Unlike ic-bisimulation, the bisimulation in HYPE
is preserved by a notion of parallel composition that is slightly more permissive than ours. However,
bisimilar systems in HYPE must always have the same influence. Thus, in HYPE we cannot compare
CPSs sending different commands on actuators at the same time, as we do (for instance) in Proposition 3.

In order to enrich hybrid models with probabilistic or stochastic behaviour, a number of different
approaches have been proposed in the last years [56, 39, 12, 2, 29, 36, 62]. Most of these approaches
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consist in introducing either probabilities in the transitions relation, or probabilistic choice, or stochas-
tic differential equations. For instance, in Stochastic Hybrid CSP (SHCSP) [62] probabilistic choice
replaces non-deterministic choice, stochastic differential equations replace differential equations, and
communication interrupts are generalised by communication interrupts with weights.

The formal analysis of probabilistic and stochastic systems follows the two classic mainstreams: (i)
model checking (e.g., [2]) and reachability (e.g., [56, 2]), when the focus is on a single system; behavioural
equivalences (e.g., [48, 55, 53, 5, 4, 13]) when the goal is to compare the behaviour of two systems
(very often, specification and implementation of the same system). Al already said in the Introduction,
probabilistic behavioural equivalences may be too strong in certain probabilistic and stochastic models in
which many interesting systems are only approximately behavioural equivalent. This led to several notions
of behavioural distance that can be grouped in two main families: quantitative counterparts of trace
equivalence [16, 28, 19, 63], and quantitative counterparts of bisimulation equivalence [27, 26, 59, 21].
We refer to [1, 9] for a comparison between these two approaches. In the present paper, we have adopted a
bisimulation-based definition because, unlike trace semantics, bisimulation is sensitive to system deadlock,
a phenomenon that has a great impact in CPSs.

Vigo et al. [60] proposed a calculus for wireless-based cyber-physical systems endowed with a theory
to study cryptographic primitives, together with explicit notions of communication failure and unwanted
communication. The calculus does not provide any notion of behavioural equivalence. It also lacks a clear
distinction between physical and logical components.

Lanese et al. [43] proposed an untimed calculus of mobile IoT devices interacting with the physical
environment by means of sensors and actuators. The calculus does not allow any representation of
the physical environment, and it is equipped with an end-user bisimilarity in which end-users may: (i)
provide values to sensors, (ii) check actuators, and (iii) observe the mobility of smart devices. End-user
bisimilarity is not preserved by parallel composition. Compositionality is recovered by strengthening its
discriminating power.

Lanotte and Merro [45] extended and generalised the work of [43] in a timed setting by providing a
bisimulation-based semantic theory that is suitable for compositional reasoning. As in [43], the physical
environment is not represented.

Bodei et al. [10, 11] have proposed a new untimed process calculus, IoT-LYSA, supporting a control
flow analysis that safely approximates the abstract behaviour of IoT systems. Essentially, they track how
data spread from sensors to the logics of the network, and how physical data are manipulated. Intra-node
generative communications in IoT-LYSA are implemented through a shared store à la Linda [35]. In this
manner physical data are made available to software entities that analyse them and trigger the relevant
actuators to perform the desired behaviour. The calculus adopt asynchronous multi-party communication
among nodes taking care of node proximity (the topology is static). The dynamics of the calculus is given
in terms of a reduction relation. No behavioural equivalences are defined.

Finally, the paper at hand extends the conference paper [44] in the following aspects: (i) the calculus
has become a probabilistic calculus, both in its logical and its physical components; the logics has been
enriched with probabilistic choice, whereas discrete (finite-support) probability distributions have replaced
continuous non-deterministic uncertainties in the evolution and continuous non-deterministic error-prone
measurements; (ii) standard bisimulation has been replaced with probabilistic bisimulation and then with
bisimulation metrics; (iii) as a consequence, the case study has been revisited using our bisimulation
metrics to estimate the deviation in terms of behaviour of the systems under investigation.

Future work. We believe that our paper can lay and streamline theoretical foundations for the develop-
ment of formal and automated tools to verify CPSs before their practical implementation. To that end, we
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will consider applying, possibly after proper enhancements, existing tools and frameworks for automated
verification, such as Maude [51], PRISM [42], SMC UPPAAL [20] and Ariadne [6], resorting to the
development of a dedicated tool if existing ones prove not up to the task. Finally, in [46], we are currently
working on a non-probabilistic version of pCCPS extended with security features to provide a formal study
of a variety of cyber-physical attacks targeting physical devices. In this case, the final goal is to develop
formal and automated tools to analyse security properties of CPSs.

As possible future work, a non-trivial challenge would be to extend the present work in order to
deal with continuous probability distributions. In our setting, this would mean, for instance, that the
evolution map evol should return a continuous distribution over state functions, and that the function
nextE(S) should return a continuous distributions over physical states. However, this would immediately
give rise to a serious technical problem: the definition of probabilistic weak labelled transitions, and
hence the definition of weak behavioural equivalences and distances. To better illustrate the problem,
suppose to adopt continuous probability distributions in our calculus, and suppose a cyber-physical system

M such that M
tick−−−→ γ , for some continuous probability distribution γ over CPSs. Suppose γ is a uniform

distribution such that supp(γ) = {Mr : r ∈ [0,1]}, with Mr 6= Mr′ , for any r 6= r′. Independently on the
specific definition of the CPSs Mr, as the logics of any CPS is intrinsically discrete, the cyber-component
of any Mr will drive the whole system to a discrete distribution. As an example, assume a cyber-physical
system N such that for all reals r ∈ [0,0.5] there is a τ-transition Mr

τ−−→N; whereas for all reals r ∈ (0.5,1]
there is a τ-transition Mr

τ−−→Mr. In such a situation, it is far from obvious to determine what should be
the distribution γm reached by the original CPS M after a weak tick-transition, M tick

===⇒ γm. In fact, γm

can be neither a discrete nor a continuous distribution. This because γm should map N to a probability
weight 0.5 (as in a discrete distribution), and then it should distribute the remaining mass probability as
a uniform (sub-)distribution to all Mr with r ∈ (0.5,1], such that

∫ 1
0.5 γm(Mt)dt = 0.5 (as in a continuous

distribution).
A possible solution to capture weak transitions when working with continuous probability distributions

is to approximate them via discrete ones by adopting the approach proposed for labelled Markov processes
in [25, 26]. In these papers, Desharnais et al. propose approximation techniques for continuous-state
labelled Markov processes S in terms of finite-state Markov chains S (n,ε), parametric in a natural
number n and a rational number ε > 0. Here, n is the maximal number of possible consecutive transitions
from the start state of S (n,ε) (the idea being that this Markov chain is the n-steps unfolding of the original
Markov process S ), whereas the rational number ε > 0 measures the accuracy of probabilities in S (n,ε)
when approximating the transitions of the original process S . In their Theorem 4.4 [25] the authors prove
that if a state s of S satisfies a formula in the logic characterising probabilistic bisimulation then there is
some approximation S (n,ε) satisfying exactly the same formula. Furthermore, the same authors show
that one can always reconstruct the original process from the approximations. More precisely, a Markov
process bisimilar to the original one can always be derived from the countable approximates S (n,2−n),
for some n ∈N (in the current paper we adopted a granularity ε = 10−n). Actually, they do not reconstruct
the original state space, but they reconstruct all the transition probability information, i.e., the dynamical
aspects of the process (see Theorem 4.5 of [25]).

Acknowledgements. We thank the anonymous reviewers for their insightful and careful reviews.
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A Proofs

A.1 Proofs of Section 2

Theorem 1 states that CPSs enjoy time determinism, maximal progress, patience and well-timedness. We
start with showing that processes enjoy the same properties.

Lemma 1 (Processes time properties). Assume a process P.

(a) If P
tick−−−→ π and P

tick−−−→ π ′, then π ≡ π ′.

(b) If P
τ−−→ π then there is no π ′ such that P

tick−−−→ π ′.

(c) If P
tick−−−→ π ′ for no π ′ then there is π such that P

λ−−→ π for some λ ∈ {τ,a!v,s?(x)}.

(d) There is a k ∈ N such that if P
λ1−−→ ·· · λn−−→ P′, with λi 6= tick, then n≤ k.
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Proof. We show the four properties separately.

(a) The proof is by induction on the depth d of the derivation tree allowing us to derive P
tick−−−→ π .

Base case d = 1. The transition P
tick−−−→ π is derived by applying one of the rules (TimeNil), (Delay)

and (Timeout), and the thesis is immediate.

Inductive step d > 1. The transition P
tick−−−→ π is derived by applying one of the rules (TimePar),

(ChnRes) and (Rec). We consider the case (TimePar), the others are similar. Since P
tick−−−→ π is

derived by rule (TimePar), process P must be of the form P≡ P1 ‖ P2 for suitable processes P1 and

P2. Therefore also the rule P
tick−−−→ π ′ is derived through rule (TimePar). We have

P1
tick−−−→ π1 P2

tick−−−→ π2 P1 ‖ P2
τ−−→6

P1 ‖ P2
tick−−−→ π1 ‖ π2

P1
tick−−−→ π ′1 P2

tick−−−→ π ′2 P1 ‖ P2
τ−−→6

P1 ‖ P2
tick−−−→ π ′1 ‖ π ′2

with π = π1 ‖ π2 and π ′ = π ′1 ‖ π ′2.
By the inductive hypothesis we have that π1 ≡ π ′1 and π2 ≡ π ′2, which gives π1 ‖ π2 ≡ π ′1 ‖ π ′2 and
concludes the proof.

(b) The proof is by induction on the depth d of the derivation tree allowing us to derive P
τ−−→ π .

Base case d = 1. There is no rule in Table 1 allowing us to derive transition P
τ−−→ π with depth 1,

hence the thesis follows trivially.

Inductive step d > 1. The transition P
τ−−→ π is derived by applying one of the rules (Com), (Par),

(ChnRes) and (Rec). We consider the case (Com). Since P
τ−−→ π is derived by rule (Com), process

P must be of the form P ≡ P1 ‖ P2 for suitable processes P1 and P2. To show the thesis that no
transition from P1 ‖ P2 labelled tick can be derived, it is enough to note that the only rule in Table 1.
which may be applied to infer any tick-labelled transition from P1 ‖ P2 is rule (TimePar), which
cannot be applied since it has P1 ‖ P2

τ−−→6 among its premises.
The other cases follow directly by induction.

(c) First of al we notice that, if P = recX .Q, then, since P is bounded and has time-guarded recursion,
by applying repetitively the structural congruence recX .Q≡ Q{recX .Q/X}, we find a process P′ ≡ P

such that P′ 6= recY.R, for any Y and R. Since P′ ≡ P implies P′
λ−−→ iff P

λ−−→, for any λ , we can
prove the thesis by structural induction on P where P is not of the form P = recX .Q.
The base cases P = nil, P = tick.C and P = bchn.CcD are immediate since in all these cases a
transition labelled tick from P can be derived. The base case P = phy.C holds since we can apply
either rule (Write) to derive a transition from P labelled a!v, or rule (Read) to derive a transition
labelled s?(x).
The inductive steps are P = P1 ‖ P2, P = [b]{P1},{P2} and P = Q\c. Consider the case P = P1 ‖ P2.
If no transition from P1 ‖P2 labelled tick can be derived, then rule (TimePar) cannot be applied. Then,

at least one of the premises P1
tick−−−→ π1, P2

tick−−−→ π2 and P1 ‖ P2
τ−−→6 does not hold. If P1

tick−−−→ π1

does not hold, then by the inductive hypothesis we have P1
λ−−→ π1 for some λ ∈ {τ,a!v,s?(x)},

and by rule (Par) we infer P1 ‖ P2
λ−−→ π1 ‖ P2, which gives the thesis. If P2

tick−−−→ π2 does not hold,



26 A Probabilistic Calculus of Cyber-Physical Systems

then by the inductive hypothesis we have P2
λ−−→ π2 for some λ ∈ {τ,a!v,s?(x)}, and by the rule

symmetric to (Par) we infer P1 ‖ P2
λ−−→ P1 ‖ π2, which gives the thesis. If P1 ‖ P2

τ−−→6 does not hold
then there is some transition P1 ‖ P2

τ−−→ π , which gives the thesis. The cases P = [b]{P1},{P2} and
P = Q\c are similar.

(d) The well-timedness property is straightforward from time–guardedness recursion.

The challenge in the proof of Theorem 1 is to lift the results of Lemma 1 to the CPSs of pCCPS.

Proof of Theorem 1

(a) We note that transitions labelled tick can be derived only by rule (Time). Therefore, from the

hypothesis M
tick−−−→ γ and M

tick−−−→ γ ′ with M =E;SonP, we infer that there are process distributions
π and π ′ such that

P
tick−−−→ π SonP

τ−−→6 S ∈ inv

SonP
tick−−−→ nextE(S)onπ

and
P

tick−−−→ π ′ SonP
τ−−→6 S ∈ inv

SonP
tick−−−→ nextE(S)onπ ′

where γ = E;nextE(S)onπ and γ ′ = E;nextE(S)onπ ′. By the property of time determinism for

processes in Lemma 1 we infer that P
tick−−−→ π and P

tick−−−→ π ′ imply π ≡ π ′, hence γ ≡ γ ′, which
completes the proof.

(b) From the hypothesis M
τ−−→ γ with M = E;SonP, we infer that γ = E;σ onπ for distributions σ

and π such that SonP
τ−−→ σ onπ is derived from the rules in Table 2. To show the thesis that no

transition from M labelled tick can be derived, it is enough to show that no transition from SonP
labelled tick can be derived from the rules in Table 2. This follows by the fact that the only rule
which may be applied to infer any tick-labelled transition from SonP is rule (Time), which cannot
be applied since it has SonP

τ−−→6 among its premises.

(c) From the hypothesis that M
tick−−−→ γ with M = E;SonP cannot be inferred for any distribution γ , we

infer that SonP
tick−−−→ σ onπ cannot be derived for any σ and π from the rules in Table 2. Therefore,

at least one of the premises P
tick−−−→ π , SonP

τ−−→6 and S∈ inv of rule (Time) does not hold. If premise
P tick−−→ π does not hold for any π , then by the property of patience for processes in Lemma 1 we

have P
λ−−→ π ′ for some π ′ and λ ∈ {τ,a!v,s?(x)}. Let us consider the case λ = τ . From P

τ−−→ π ′,
either S ∈ inv is not valid, or we can apply rule (Tau) to infer the transition SonP τ−→ Sonπ ′, which
gives M τ−→ E;Sonπ ′. In both cases the thesis holds. The cases λ ∈ {a!v,s?(x)} can be proved

similarly by using rules (ActWrite) and (SensRead), respectively. If premise P tick−−→ π holds for some
π then either premises S ∈ inv or premise SonP

τ−−→6 does not hold. In the former case the thesis
follows. In the latter case we have a τ-labelled transition from M and the thesis holds as well.

(d) The proof is by contradiction. Suppose there is no k satisfying the statement of the thesis. Hence
there exists an unbounded derivation

E;SonP = E;S1onP1
α1−−→ ·· · αn−−→ E;SnonPn

αn+1−−−−→ . . .
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with αi 6= tick for i≥ 1, namely there exist distributions σionπi for i≥ 1 with σionPi
αi−→ σi+1onπi+1,

Si+1 ∈ supp(σi+1) and Pi+1 ∈ supp(πi+1). This contradicts the property of well-timedness for
processes in Lemma 1.

A.2 Proofs of Section 4

In order to prove Proposition 1 and Proposition 2 we use the following lemma that formalises the invariant
properties binding the state variable temp with the activity of the cooling system. Intuitively, when the
cooling system is inactive then the value of the state variable temp lays in the interval [0,11+ err+δ ].
Furthermore, if the coolant is not active and the variable temp lays in the interval (10+ err,11+ err+δ ]
then the cooling will be turned on in the next time slot. Finally, if the cooling system is active then there is
some k = 1 . . .5 such that the system was activated k time units ago, it was kept active so far and the state
variable temp lays in the real interval (10− err− k∗(1+δ ),11+ err+δ − k∗(1−δ )].

Lemma 2. Let Engg be the system defined in Section 4. Let

Engg = M1
t1−−→ tick−−−→M2

t2−−→ tick−−−→ ·· ·
tn−1−−−→ tick−−−→Mn

such that the traces t j contain no tick-actions, for any j ∈ 1 . . .n−1, and for any i ∈ 1 . . .n we have
Mi = Envg;SionPi with Si = 〈ξ i

x,ξ
i
s ,ξ

i
a〉 and Envg = 〈evol,meas, inv〉. Then, for any i ∈ 1 . . .n−1 we have

the following:

1. if ξ i
a(cool) = off then ξ i

x(temp) ∈ [0,11+ err+δ ];

2. if ξ i
a(cool) = off and ξ i

x(temp)∈ (10+err,11+err+δ ] then, in the next time slot, ξ i+1
a (cool) = on;

3. if ξ i
a(cool) = on then ξ i

x(temp)∈ (10−err−k∗(1+δ ),11+err+δ−k∗(1−δ )], for some k∈ 1 . . .5
such that ξ i−k

a (cool) = off and ξ
i− j
a (cool) = on, for all j ∈ 0 . . .k−1.

Proof. Let us denote with vi the values of the state variable temp in the systems Mi, i.e., ξ i
x(temp) = vi.

Moreover we will say that the coolant is active (resp., is not active) in Mi if ξ i
a(cool) = on (resp.,

ξ i
a(cool) = off).

The proof is by mathematical induction on n, i.e., the number of tick-actions of our traces.
The case base n = 1 follows directly from the definition of Engg. Let prove the inductive case. We

assume that the three statements holds for n−1 and we prove that they also hold for n.

1. Let us assume that the cooling is not active in Mn, then we prove that vn ∈ [0,11+ err+δ ]. We
consider separately the cases in which the coolant is active or not in Mn−1.

• Suppose the coolant is not active in Mn−1 (and inactive in Mn).
By the inductive hypothesis we have vn−1 ∈ [0,11+ err + δ ]. Since we know that in Mn

the cooling is not active, it follows that vn−1 ∈ [0,10+ err], the reason being that vn−1 ∈
(10+ err,11+ ε + δ ] and the inductive hypothesis would imply that the coolant is active
in Mn. Furthermore, in Mn the temperature will increase of a value laying in the interval
[1−δ ,1+δ ]g = [0.6,1.4]g. Thus vn will be in [0.6,11+ err+δ ]⊆ [0,11+ err+δ ].
• Suppose the coolant is active in Mn−1 (and inactive in Mn).

By the inductive hypothesis we have vn−1 ∈ (10− err− k ∗ (1+ δ ),11+ err+ δ − k ∗ (1−
δ )] for some k ∈ 1 . . .5 such that the coolant is not active in Mn−1−k and is active in all
Mn−k, . . . ,Mn−1.
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The case k ∈ {1, . . . ,4} is not admissible, the reason being that k ∈ {1, . . . ,4} together with
the fact that the coolant is inactive in Mn would imply that the coolant bas been kept active for
less than 5 steps, which cannot happen.
Hence it must be k = 5. Since δ = 0.4, err = 0.1 and k = 5, it holds that vn−1 ∈ (10−0.1−
5∗1.4,11+0.1+0.4−5∗0.6] = (2.8,8.6]. Moreover, since the coolant is active for 5 tick
actions, the controller of Mn−1 checks the temperature. However, since vn−1 ∈ (2.8,8.6] then
the coolant is turned off. Thus, in the next time slot, the temperature will increase of a value in
[1−δ ,1+δ ]g = [0.6,1.4]g. As a consequence in Mn we will have vn ∈ [2.8+0,6,8.6+1.4] =
[3.4,10]⊆ [0,11+ err+δ ].

2. Let us assume that the coolant is not active in Mn and vn ∈ (10+ err,11+ err+δ ], then we prove
that the coolant is active in Mn+1. Since the coolant is not active in Mn then it will check the
temperature before the next time slot. Since vn ∈ (10+ err,11+ err+δ ] and err = 0.1, then the
process Ctrl will sense a temperature greater than 10 and the coolant will be turned on. Thus the
coolant will be active in Mn+1.

3. Let us assume that the coolant is active in Mn, then we prove that vn ∈ (10− err− k ∗ (1+δ ),11+
err+ δ − k ∗ (1− δ )] for some k ∈ 1 . . .5 and the coolant is not active in Mn−k and active in all
Mn−k+1, . . . ,Mn.
We separate the case in which the coolant is active in Mn−1 from that in which is not active.

• Suppose the coolant is not active in Mn−1 (and active in Mn).
In this case k = 1 as the coolant is not active in Mn−1 and it is active in Mn. Since k = 1, we
have to prove vn ∈ (10− err− (1+δ ),11+ err+δ − (1−δ )].
However, since the coolant is not active in Mn−1 and is active in Mn it means that the
coolant has been switched on in Mn−1 because the sensed temperature was above 10 (this
may happen only if vn−1 > 10− err). By inductive hypothesis, since the coolant is not
active in Mn−1, we have that vn−1 ∈ [0,11+ err+ δ ]. Therefore, from vn−1 > 10− err and
vn−1 ∈ [0,11+ err+δ ] it follows that vn−1 ∈ (10− err,11+ err+δ ]. Furthermore, since the
coolant is active in Mn, the temperature will decrease of a value in [1−δ ,1+δ ]g and therefore
vn ∈ (10− err− (1+δ ),11+ err+δ − (1−δ )] which concludes this case of the proof.
• Suppose the coolant is active in Mn−1 (and active in Mn as well).

By inductive hypothesis there is h ∈ 1 . . .5 such that vn−1 ∈ (10− err−h∗ (1+δ ),11+ err+
δ −h∗ (1−δ )] and the coolant is not active in Mn−1−h and is active in Mn−h, . . . ,Mn−1.
The case h = 5 is not admissible. In fact, since δ = 0.4 and err = 0.1, if h = 5 then vn−1 ∈
(10− 0.1− 5 ∗ 1.4,11+ 0.1+ δ − 5 ∗ 0.6] = (2.8,8.6]. Furthermore, since the coolant is
already active since 5 tick actions, the controller of Mn−1 is supposed to check the temperature.
As vn−1 ∈ (2.8,8.6] the coolant should be turned off. In contradiction with the the fact that
the coolant is active in Mn.
Hence it must be h ∈ 1 . . .4. Let us prove that for k = h+1 we obtain our result. Namely we
have to prove that, for k = h+1, (i) vn ∈ (10− err− k ∗ (1+δ ),11+ err+δ − k ∗ (1−δ )],
and (ii) the coolant is not active in Mn−k and active in all Mn−k+1, . . . ,Mn.
Let us prove the statement (i). By inductive hypotheses, it holds that vn−1 ∈ (10− err−h∗
(1+δ ),11+err+δ −h∗ (1−δ )]. Since the coolant is active in Mn then the temperature will
decrease. Hence, vn ∈ (10−err−(h+1)∗(1+δ ),11+err+δ−(h+1)∗(1−δ )]. Therefore,
since k = h+1, we have that vn ∈ (10− err− k ∗ (1+δ ),11+ err+δ − k ∗ (1−δ )].
Let us prove the statement (ii). By inductive hypothesis the coolant is inactive in Mn−1−h and
it is active in all Mn−h, . . . ,Mn−1. Now, since the coolant is active in Mn, for k = h+1, we
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have that the coolant is not active in Mn−k and is active in all Mn−k+1, . . . ,Mn which concludes
this case of the proof.

Proof of Proposition 1 By the first two items of Lemma 2 and since δ = 0.4 and err = 0.1, we infer
that the value of the state variable temp is always in the real interval [0,11.5]. As a consequence, the
invariant of the system is never violated and the system never deadlocks. Then, the last item of Lemma 2
ensures that after 5 tick-actions happening when the coolant is active, the state variable temp is always
in the real interval (10−0.1−5∗1.4,11+0.1+0.4−5∗0.6] = (2.9,8.5]. Hence the process Ctrl will
never transmit on the channel warning.

Proof of Proposition 2 Let us prove the two statements separately.

• If process Ctrl senses a temperature above 10 (and hence Eng turns on the cooling) then the value
of the state variable temp is greater than 10− err. By Lemma 2 the value of the state variable temp
is always less or equal than 11+ err+δ . Therefore, if Ctrl senses a temperature above 10, then the
value of the state variable temp is in (10− err,11+ err+δ ] = (9.9,11.5].

• By Lemma 2 (third item) the coolant can be active for no more than 5 time slots. Hence, by
Lemma 2, when Eng turns off the cooling system the state variable temp ranges over (10− err−
5∗ (1+δ ),11+ err+δ −5∗ (1−δ )] = (2.9,8.5].

Proof of Proposition 4 It is is enough to prove that there exists an execution trace of the engine Êngg
containing an output along channel warning. Then the result follows by an application of Proposition 1.

We prove the thesis for g = 1. Indeed a trace of Êngg with g = 1 is a trace of Êngg′ with g′ ≥ g.

We can easily build up a trace for Êngg with g = 1 in which, after 10 tick-actions, in the 11-th time
slot, the value of the state variable temp is 10.1. In fact, it is enough to increase the temperature of 1
degree for the first 9 rounds and an increase of 1.1 degrees in the 10-th time slot. Notice that these are
admissible values, since both 1 and 1.1 are in [1−δ ,1+δ ]g = [0.6,1.4]g with g = 1. Being 10.1 the value
of the state variable temp, there is an execution trace in which the sensed temperature is 10 (recall that
err = 0.1 and −0.1 ∈ [−0.1,0.1]g with g = 1) and hence the cooling system is not activated. However, in
the following time slot, i.e. the 12-th time slot, the temperature may reach the value 10.1+1+δ = 11.5,
imposing the activation of the cooling system. After 5 time units of cooling, in the 17-th time slot, the
variable temp could be 11.5−5∗ (0.7−δ ) = 11.5−1.5 = 10. The sensed temperature would be in the
real interval [9.9,10.1]g with g = 1. Thus, there is an execution trace in which the sensed temperature is
10.1. As a consequence, the warning will be emitted, in the 17-th time slot.

A.3 Proofs of Section 5

To prove that all dn are 1-bounded pseudometrics (Proposition 7), we need some preliminary results. First
we show that the Kantorovich functional K maps pseudometrics to pseudometrics.

Proposition 12. If d : pCCPS×pCCPS→ [0,1] is a 1-bounded pseudometric, then also K(d) : D(pCCPS)×
D(pCCPS) is a 1-bounded pseudometric.
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Proof. To show K(d)(γ,γ) = 0 for all γ ∈ D(pCCPS) it is enough to take the matching ω ∈ Ω(γ,γ)
defined by ω(M,M) = γ(M), for all M ∈ pCCPS, and ω(M,N) = 0, for all M,N ∈ pCCPS with M 6= N. In
fact, we have K(d)(γ,γ)≤ ∑M,N∈pCCPSω(M,N) ·d(M,N) = ∑M∈pCCPS γ(M) ·d(M,M) = 0.

The symmetry K(d)(γ,γ ′) =K(d)(γ ′,γ) for all γ,γ ′ ∈D(pCCPS) follows directly by the fact that if we
take two functions ω,ω ′ : pCCPS×pCCPS→ [0,1] such that ω(M,N) = ω ′(N,M) for all M,N ∈ pCCPS,
then ω ∈Ω(γ,γ ′) if and only if ω ′ ∈Ω(γ ′,γ).

To prove the triangle inequality K(d)(γ1,γ2)≤K(d)(γ1,γ3)+K(d)(γ3,γ2) for all γ1,γ2,γ3 ∈D(pCCPS),
first we consider the function ω : pCCPS×pCCPS→ [0,1] defined for all M1,M2 ∈ pCCPS as ω(M1,M2) =

∑M3∈pCCPS|γ3(M3)6=0
ω1(M1,M3)·ω2(M3,M2)

γ3(M3)
, where the function ω1 ∈ Ω(γ1,γ3) is one of the optimal match-

ings realising K(d)(γ1,γ3) and ω2 ∈ Ω(γ3,γ2) one of the optimal matchings realising K(d)(γ3,γ2).
Then, we prove that (i) ω is a matching in Ω(γ1,γ2), and (ii) ∑M1,M2∈pCCPSω(M1,M2) · d(M1,M2) ≤
K(d)(γ1,γ3)+K(d)(γ3,γ2), which immediately implies K(d)(γ1,γ2)≤K(d)(γ1,γ3)+K(d)(γ3,γ2). To
show (i) we prove that the left marginal of ω is γ1 by

∑M2∈pCCPSω(M1,M2)

= ∑M2∈pCCPS∑M3∈pCCPS|γ3(M3)6=0
ω1(M1,M3)·ω2(M3,M2)

γ3(M3)

= ∑M3∈pCCPS|γ3(M3)6=0
ω1(M1,M3)·γ3(M3)

γ3(M3)
(by ω2 ∈Ω(γ3,γ2))

= ∑M3∈pCCPS|γ3(M3)6=0 ω1(M1,M3)

= γ1(M1) (by ω1 ∈Ω(γ1,γ3))

and we observe that the proof that the right marginal of ω is γ2 is analogous. Then, we show (ii) by

∑M1,M2∈pCCPSω(M1,M2) ·d(M1,M2)

= ∑M1,M2∈pCCPS∑M3∈pCCPS|γ3(M3)6=0
ω1(M1,M3)·ω2(M3,M2)

γ3(M3)
·d(M1,M2)

≤ ∑M1,M2∈pCCPS,M3∈pCCPS|γ3(M3)6=0
ω1(M1,M3)·ω2(M3,M2)

γ3(M3)
·d(M1,M3) +

∑M1,M2∈pCCPS,M3∈pCCPS|γ3(M3)6=0
ω1(M1,M3)·ω2(M3,M2)

γ3(M3)
·d(M3,M2)

= ∑M1,M3∈pCCPS
ω1(M1,M3)·γ3(M3)

γ3(M3)
·d(M1,M3)+∑M2,M3∈pCCPS

γ3(M3)·ω2(M3,M2)
γ3(M3)

·d(M3,M2)

= ∑M1,M3∈pCCPSω1(M1,M3) ·d(M1,M3)+∑M2,M3∈pCCPSω2(M3,M2) ·d(M3,M2)

= K(d)(γ1,γ3)+K(d)(γ3,γ2)

where the inequality follows from the triangular property of d and the third last equality follows by
ω2 ∈Ω(γ3,γ2) and ω1 ∈Ω(γ1,γ2).

Now we show that, given any weak bisimulation metric d with d(M,N)< 1, then N can mimic weak

transitions M α̂
=⇒ besides those of the form M α−→.

Lemma 3. Assume a weak bisimulation metric d and M,N ∈ pCCPS with d(M,N)< 1. If M α̂
=⇒ γM , then

there is a transition N α̂
=⇒ γN such that K(d)(γM +(1− |γM|)Dead,γN +(1− |γN |)Dead)≤ d(M,N).

Proof. We proceed by induction on the length n of M α̂
=⇒ γM.

Base case n = 1. We have two sub-cases: The first is α = τ and γM = M, the second is M α−→ γM.

In the first case, by definition of τ̂
=⇒ we have N τ̂

=⇒ N and the thesis holds for γN = N by observing that
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K(d)(M+(1− |M|)Dead),N +(1− |N|)Dead) = K(d)(M,N) = d(M,N). In the second case, the thesis
follows directly by the definition of weak simulation metric.

Inductive step n > 1. The derivation M α̂
=⇒ γM is obtained by M

β̂1
=⇒ ρM and ρM

β̂2−→ γM, for some

distribution ρM ∈D(pCCPS). The length of the derivation M
β̂1
=⇒ ρM is n−1 and hence, by the inductive

hypothesis, there is a transition N
β̂1
=⇒ ρN such that K(d)(ρM +(1− |ρM|)Dead,ρN +(1− |ρN |)Dead)≤

d(M,N). The sub-distributions ρM and ρN are of the form ρM = ∑i∈I pi ·Mi and ρN = ∑ j∈J q j ·N j. We
have two sub-cases: The first is β1 = τ and β2 = α , the other β1 = α and β2 = τ .

We consider the case β1 = τ and β2 = α , the other is analogous. In this case we have |ρM|=|ρN |= 1

and K(d)(ρM,ρN)≤ d(M,N). The transition ρM
β̂2−→ γM is derived from a β2-transition by some of the

CPSs Mi, namely I is partitioned into sets I1∪ I2 such that for all i ∈ I1 we have Mi
β2−→ γi for suitable

distributions γi, for each i ∈ I2 we have Mi
β2−→6 , and ρM = ∑i∈I1 pi · γi. Analogously, J is partitioned

into sets J1 ∪ J2 such that for all j ∈ J1 we have N j
β̂2
=⇒ γ j for suitable distributions γ j and for each

j ∈ J2 we have N j
β̂2
=⇒6 . This gives ρN

β̂2
=⇒ γN with γN = ∑ j∈J1 q j · γ j. Since we had N

β̂1
=⇒ ρN , we

can conclude N α̂
=⇒ γN . In the following we prove that the transitions N j

β̂2
=⇒ γ j can be chosen so that

K(d)(γM +(1− |γM|)Dead,γN +(1− |γN |)Dead)≤ d(M,N), which concludes the proof.

Let ω be one of the optimal matchings realising K(d)(ρM,ρN). We can rewrite the distributions ρM

and ρN as ρM = ∑i∈I, j∈J ω(Mi,N j) ·Mi and ρN = ∑i∈I, j∈J ω(Mi,N j) ·N j. For all i ∈ I1 and j ∈ J, define
γi, j = γi. We can rewrite γM as γM = ∑i∈I1, j∈J ω(Mi,N j) · γi, j. Analogously, for each j ∈ J1 and i ∈ I we

note that the transition q j ·N j
β̂2
=⇒ γ j can always be splitted into ∑i∈I ω(Mi,N j) ·N j

β̂2
=⇒∑i∈I ω(Mi,N j) ·γ ′i, j

so that we can rewrite γ j as γ j = ∑i∈I ω(Mi,N j) · γ ′i, j and γN as γN = ∑i∈I, j∈J1 ω(Mi,N j) · γ ′i, j. Then we

note that for all i ∈ I1 and j ∈ J1 with d(Mi,N j) < 1, the transition N j
β̂2
=⇒ γ ′i, j can be chosen so that

K(d)(γi, j,γ
′
i, j +(1− |γ ′i, j|)Dead)≤ d(Mi,N j).

For all i ∈ I1 and j ∈ J1 with d(Mi,N j) < 1, let ωi, j be one of the optimal matchings realising
K(d)(γi, j,γ j +(1− |γ j|)Dead). Define ω ′ : pCCPS×pCCPS→ [0,1] as the function such that

ω
′(M′,N′) =



∑i∈I1, j∈J1 ω(Mi,N j) ·ωi, j(M′,N′) if M′ 6= Dead 6= N′

∑i∈I1, j∈J1 ω(Mi,N j) ·ωi, j(M′,N′)+∑i∈I1, j∈J2 ω(Mi,N j) · γi, j(M′) if M′ 6= Dead = N′

∑i∈I1, j∈J1 ω(Mi,N j) ·ωi, j(M′,N′)+∑i∈I2, j∈J1 ω(Mi,N j) · γ ′i, j(N′) if M′ = Dead 6= N′

∑i∈I1, j∈J1 ω(Mi,N j) ·ωi, j(M′,N′)+∑i∈I1, j∈J2 ω(Mi,N j) · γi, j(M′)
+∑i∈I2, j∈J1 ω(Mi,N j) · γ ′i, j(N′)+∑i∈I2, j∈J2 ω(Mi,N j) if M′ = Dead = N′.

To infer the proof obligation K(d)(γM +(1− |γM |)Dead,γN +(1− |γN |)Dead) ≤ d(M,N) we show
that (i) ω ′ is a matching in Ω(γM +(1− |γM|)Dead,γN +(1− |γN|)Dead), and (ii) ∑M′,N′∈pCCPSω ′(M′,N′) ·
d(M′,N′)≤ d(M,N).

To show (i) we prove that the left marginal of ω ′ is γM +(1− |γM |)Dead. The proof that the right
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marginal is γN +(1− |γN |)Dead) is analogous. For any CPS M′ 6= Dead, we have

∑N′∈pCCPSω ′(M′,N′)
= ∑N′ 6=Dead ∑i∈I1, j∈J1 ω(Mi,N j) ·ωi, j(M′,N′)+∑i∈I1, j∈J1 ω(Mi,N j) ·ωi, j(M′,Dead)

+∑i∈I1, j∈J2 ω(Mi,N j) · γi, j(M′)
= ∑i∈I1, j∈J1 ω(Mi,N j)∑N′∈pCCPSωi, j(M′,N′)+∑i∈I1, j∈J2 ω(Mi,N j) · γi, j(M′)
= ∑i∈I1, j∈J1 ω(Mi,N j) · γi, j(M′)+∑i∈I1, j∈J2 ω(Mi,N j) · γi, j(M′)
= ∑i∈I1, j∈J ω(Mi,N j) · γi, j(M′)
= (γM +(1− |γM|)Dead)(M′)

with the third equality by the fact that ωi, j is a matching in Ω(γi, j,γ
′
i, j).

Consider now the CPS Dead. In this case we have that

∑N′∈pCCPSω ′(Dead,N′)
= ∑N′ 6=Dead ∑i∈I1, j∈J1 ω(Mi,N j) ·ωi, j(Dead,N′)+∑N′ 6=Dead ∑i∈I2, j∈J1 ω(Mi,N j) · γ ′i, j(N′)

+∑i∈I1, j∈J1 ω(Mi,N j) ·ωi, j(Dead,Dead)+∑i∈I1, j∈J2 ω(Mi,N j) · γi, j(Dead)
+∑i∈I2, j∈J1 ω(Mi,N j) · γ ′i, j(Dead)+∑i∈I2, j∈J2 ω(Mi,N j)

= ∑N′∈pCCPS∑i∈I1, j∈J1 ω(Mi,N j) ·ωi, j(Dead,N′)+∑N′∈pCCPS∑i∈I2, j∈J1 ω(Mi,N j) · γ ′i, j(N′)
+∑i∈I1, j∈J2 ω(Mi,N j) · γi, j(Dead)+∑i∈I2, j∈J2 ω(Mi,N j)

= ∑i∈I1, j∈J1 ω(Mi,N j) · γi, j(Dead)+∑i∈I2, j∈J1 ω(Mi,N j)
+∑i∈I1, j∈J2 ω(Mi,N j) · γi, j(Dead)+∑i∈I2, j∈J2 ω(Mi,N j)

= ∑i∈I1, j∈J ω(Mi,N j) · γi, j(Dead)+∑i∈I2, j∈J ω(Mi,N j)

= (γM +(1− |γM|)Dead)(Dead)

where the third equality follows by observing that, being ωi, j a matching in Ω(γi, j,γ
′
i, j), then we have

∑N′∈pCCPS∑i∈I1, j∈J1 ω(Mi,N j) ·ωi, j(Dead,N′) = ∑i∈I1, j∈J1 ω(Mi,N j) · γi, j(Dead), and being γ ′i, j a distribu-
tion, then ∑N′∈pCCPS∑i∈I2, j∈J1 ω(Mi,N j) · γ ′i, j(N′) = ∑i∈I2, j∈J1 ω(Mi,N j), and the last equality follows by
∑i∈I1, j∈J ω(Mi,N j) = ∑i∈I1 pi =|γM|.

To prove (ii), by looking at the definition of ω ′ above we get that ∑M′,N′∈pCCPSω ′(M′,N′) ·d(M′,N′)
is the summation of the following values:

• ∑M′ 6=Dead6=N′ ∑i∈I1, j∈J1 ω(Mi,N j) ·ωi, j(M′,N′) ·d(M′,N′)
• ∑M′ 6=Dead ∑i∈I1, j∈J1 ω(Mi,N j)·ωi, j(M′,Dead)·d(M′,Dead)+∑i∈I1, j∈J2 ω(Mi,N j)·γi, j(M′)·d(M′,Dead)

• ∑N′ 6=Dead ∑i∈I1, j∈J1 ω(Mi,N j)·ωi, j(Dead,N′)·d(Dead,N′)+∑i∈I2, j∈J1 ω(Mi,N j)·γ ′i, j(N′)·d(Dead,N′)

• ∑i∈I1, j∈J1 ω(Mi,N j)·ωi, j(Dead,Dead)·d(Dead,Dead)+∑i∈I1, j∈J2 ω(Mi,N j)·γi, j(Dead)·d(Dead,Dead)
+∑i∈I2, j∈J1 ω(Mi,N j) · γ ′i, j(Dead) ·d(Dead,Dead)+∑i∈I2, j∈J2 ω(Mi,N j) ·d(Dead,Dead).

By moving the first summand of the second, third and fourth items to the first item, we rewrite this
summation as the summation of the following values:

• ∑M′,N′∈pCCPS∑i∈I1, j∈J1 ω(Mi,N j) ·ωi, j(M′,N′) ·d(M′,N′)
• ∑i∈I1, j∈J2 ω(Mi,N j) · γi, j(M′) ·d(M′,Dead)

• ∑i∈I2, j∈J1 ω(Mi,N j) · γ ′i, j(N′) ·d(Dead,N′)

• ∑i∈I1, j∈J2 ω(Mi,N j) · γi, j(Dead) · d(Dead,Dead)+∑i∈I2, j∈J1 ω(Mi,N j) · γ ′i, j(N′) · d(Dead,Dead)+

∑i∈I2, j∈J2 ω(Mi,N j) ·d(Dead,Dead).
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By the definition of ωi, j the first item is ∑i∈I1, j∈J1 ω(Mi,N j) ·K(d)(γi, j,γ
′
i, j). If d(Mi,N j) < 1, we cho-

sen γ ′i, j such that K(d)(γi, j,γ
′
i, j) ≤ d(Mi,N j). If d(Mi,N j) = 1, then K(d)(γi, j,γ

′
i, j) ≤ d(Mi,N j) is im-

mediate. Henceforth we are sure that in all cases the first item is less or equal ∑i∈I1, j∈J1 ω(Mi,N j) ·
d(Mi,N j). The second item is clearly less or equal than ∑i∈I1, j∈J2 ω(Mi,N j). The third item is clearly
less or equal than ∑i∈I2, j∈J1 ω(Mi,N j). Finally, the last item is 0 since d(Dead,Dead) = 0. Summaris-
ing, we have ∑M′,N′∈pCCPSω ′(M′,N′) ·d(M′,N′)≤∑i∈I1, j∈J1 ω(Mi,N j) ·d(Mi,N j)+∑i∈I1, j∈J2 ω(Mi,N j)+

∑i∈I2, j∈J1 ω(Mi,N j). Since K(d)(ρM,ρN) is the summation of the following values:

• ∑i∈I1, j∈J1 ω(Mi,N j) ·d(Mi,N j)

• ∑i∈I1, j∈J2 ω(Mi,N j) ·d(Mi,N j) = ∑i∈I1, j∈J2 ω(Mi,N j) (Mi
β2−−→ and N j 6

β̂2
=⇒ give d(Mi,N j) = 1)

• ∑i∈I2, j∈J1 ω(Mi,N j) ·d(Mi,N j) = ∑i∈I2, j∈J1 ω(Mi,N j) (N j
β2−−→ and Mi 6

β̂2
=⇒ give d(Mi,N j) = 1)

• ∑i∈I2, j∈J2 ω(Mi,N j) ·d(Mi,N j).

it follows ∑i∈I1, j∈J1 ω(Mi,N j) · d(Mi,N j) + ∑i∈I1, j∈J2 ω(Mi,N j) + ∑i∈I2, j∈J1 ω(Mi,N j) ≤ K(d)(ρM,ρN).
Since we had K(d)(ρM,ρN)≤ d(M,N) we can conclude ∑M′,N′∈pCCPSω ′(M′,N′) ·d(M′,N′)≤ d(M,N),
as required.

We are now ready to prove that all dn are pseudometrics.

Proof of Proposition 7 We have to prove that dn(M,M) = 0, dn(M,N) = dn(N,M) and dn(M,N) ≤
dn(M,O)+dn(O,N) for all M,N,O ∈ pCCPS. We reason by induction over n. The base case n = 0 is
immediate since d0(M,N) = 0 for all M,N ∈ pCCPS. We consider the inductive step n+1.

Let us start with proving dn+1(M,M) = 0. We have to show that for each transition M α−→ γ there is a

transition M α̂
=⇒ ρ with K(dn)(γ,ρ +(1− |ρ|)Dead) = 0. We choose ρ = γ and the transition M α−→ γ . We

obtain K(dn)(γ,ρ +(1− |ρ|)Dead) = K(dn)(γ,γ) = 0, with the last equality by the inductive hypothesis
and Proposition 12.

The symmetry dn+1(M,N) = dn+1(N,M) follows by dn+1(M,N) = B(dn)(M,N) = B(dn)(N,M) =
dn+1(N,M), where the second equality follows immediately by the definition of B.

Finally we prove the triangular property dn+1(M,N)≤ dn+1(M,O)+dn+1(O,N). This result is im-
mediate if dn+1(M,O) = 1 or dn+1(O,N) = 1. Otherwise, it is enough to prove that any M α−→ γM is

mimicked by some transition N α̂
=⇒ γN with K(dn)(γM,γN +(1− |γN |)Dead)≤ dn+1(M,O)+dn+1(O,N).

From M α−→ γM and dn+1(M,O) < 1 we immediately infer that there is a transition O α̂
=⇒ γO with

K(dn)(γM,γO +(1− |γO|)Dead) ≤ dn+1(M,O). By Lemma 3, from O α̂
=⇒ γO and dn+1(O,N) < 1 there

is a transition N α̂
=⇒ γN such that K(dn)(γO +(1− |γO|)Dead,γN +(1− |γN |)Dead)≤ dn+1(O,N). By the

inductive hypothesis and Proposition 12 we get that K(dn) is a pseudometric, hence it satisfies the trian-
gle inequality, namely K(dn)(γM,γN +(1− |γN |)Dead)≤K(dn)(γM,γO +(1− |γO|)Dead)+K(dn)(γO +
(1− |γO |)Dead,γN +(1− |γN |)Dead). Therefore we can conclude the proof by K(dn)(γM,γN +(1− |
γN |)Dead) ≤ K(dn)(γM,γO + (1− |γO |)Dead) + K(dn)(γO + (1− |γO |)Dead,γN + (1− |γN |)Dead) ≤
dn+1(M,O)+dn+1(O,N).

In order to prove the compositionality or our weak bisimilarity metrics, i.e. Theorem 3, we divide its
statement in six different propositions. To prove that ≈p preserves the compositionality we need a number
of technical lemmas.
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Given a distribution γ over CPSs and a CPS O, we denote with γ ]O the distribution defined by
(γ ]O)(M]O) = γ(M) for all CPSs M.

Lemma 4 serves to propagate untimed actions on parallel CPSs.

Lemma 4. Assume two physically disjoint CPSs M1 and M2 such that M2 = E2;S2onP2 and E2 =

〈evol2,meas2, inv2〉. If M1
α−−→ γ , with α 6= tick, and S2 ∈ inv2 then M1]M2

α−−→ γ ]M2.

Proof. If M1 is the CPS Dead then also M1]M2 is Dead and the thesis is immediate. Consider the case
M1 6= Dead. Let us assume that M1 = E1;S1onP1 with E1 = 〈evol1,meas1, inv1〉 and S1 = 〈ξ 1

x ,ξ
1
s ,ξ

1
a 〉.

Moreover, assume that S2 = 〈ξ 2
x ,ξ

2
s ,ξ

2
a 〉. We consider the case in which M1

α−−→ γ is derived by rule
(SensRead). The other cases where the transition is derived by the other rules in Table 2 can be proved in a
similar manner. In this case, we have α = τ and there are a sensor s, probability values pi and real values
vi with i ∈ I and a distribution π such that the rule (SensRead) instances as

P1
s?(z)
−−−−→ π ξ 1

s (s) = ∑i∈I pi · vi ξ 1
x ∈ inv1

〈ξ 1
x ,ξ

1
s ,ξ

1
a 〉onP1

τ−−→ 〈ξ 1
x ,ξ

1
s ,ξ

1
a 〉on ∑i∈I pi ·π{vi/z}

and γ = E1;〈ξ 1
x ,ξ

1
s ,ξ

1
a 〉on ∑i∈I pi ·π{vi/z}.

Now we argue that we can apply rule (SensRead) to infer a transition by M1]M2. Recall that M1]M2 is

the CPS (E1]E2);〈ξ 1
x ]ξ 2

x ,ξ
1
s ]ξ 2

s ,ξ
1
a ]ξ 2

a 〉onP1 ‖ P2. Let E1]E2 = 〈evol,meas, inv〉. From P1
s?(z)
−−−−→ π ,

by rule (Par) in Table 1 we can derive the transition P1 ‖ P2
s?(z)
−−−−→ π ‖ P2, which is one of the premises of

rule (SensRead) necessary to infer a transition by 〈ξ 1
x ]ξ 2

x ,ξ
1
s ]ξ 2

s ,ξ
1
a ]ξ 2

a 〉onP1 ‖ P2. Then, the premise
ξ 1

x ]ξ 2
x ∈ inv of (SensRead) follows by ξ 1

x ∈ inv1, the hypothesis ξ 2
x ∈ inv2 and the property ξ 1

x ]ξ 2
x ∈ inv

iff ξ 1
x ∈ inv1 and ξ 2

x ∈ inv2. Finally, the premise (ξ 1
s ]ξ 2

s )(s) = ∑i∈I pi ·vi follows by (ξ 1
s ]ξ 2

s )(s) = ξ 1
s (s)

and ξ 1
s (s) = ∑i∈I pi · vi. Therefore we have

P1 ‖ P2
s?(z)
−−−−→ π ‖ P2 (ξ 1

s ]ξ 2
s )(s) = ∑i∈I pi · vi ξ 1

x ]ξ 2
x ∈ inv

〈ξ 1
x ]ξ 2

x ,ξ
1
s ]ξ 2

s ,ξ
1
a ]ξ 2

a 〉onP1 ‖ P2
τ−−→ 〈ξ 1

x ]ξ 2
x ,ξ

1
s ]ξ 2

s ,ξ
1
a ]ξ 2

a 〉on ∑i∈I pi · (π ‖ P2){vi/z}

with (E1]E2);〈ξ 1
x ]ξ 2

x ,ξ
1
s ]ξ 2

s ,ξ
1
a ]ξ 2

a 〉on ∑i∈I pi · (π ‖ P2){vi/z}= γ ]M2.

Lemma 4 can be generalised to weak transitions.

Lemma 5. Assume two physically disjoint CPSs M1 and M2 such that M2 = E2;S2onP2 and E2 =

〈evol2,meas2, inv2〉. If M1
α̂
==⇒ γ , with α 6= tick, and S2 ∈ inv2 then M1]M2

α̂
==⇒ γ ]M2.

Proof. By induction over the length n of α̂
=⇒. The base case n = 1 is given by Lemma 4. Consider the

inductive step n+ 1. We have M1
α̂1=⇒ γ ′

α̂2−→ γ with either α1 = α and α2 = τ , or α1 = τ and α2 = α .

Since the length of α̂1=⇒ is n, we can apply the inductive hypothesis and infer M1]M2
α̂1=⇒ γ ′]M2. Assume

γ ′ = ∑i∈I pi ·Mi, for suitable probability values pi and CPS Mi. By definition, γ ′
α̂2−→ γ implies that there

exists a subset J ⊆ I with M j
α̂2−→ γ j for all j ∈ J, Mi

α2−→6 for i ∈ I \ J and γ = ∑ j∈J p j ·M j. We can prove

now that for any j ∈ J we have M j]M2
α̂2−→ γ j ]M2. We distinguish two cases. The first case is M j

α2−→ γ j.

By Lemma 4 we get M j]M2
α2−→ γ j ]M2, and, therefore, M j]M2

α̂2−→ γ j ]M2. The second case is α2 = τ

and γ j = M j. We immediately have M j ]M2
τ̂−→ γ j ]M2. Hence ∑ j∈J M j ]M2

α̂2−→ ∑ j∈J γ j ]M2, namely
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γ ′]M2
α̂2−→ γ ]M2. Then, from M]M2

α̂1=⇒ γ ′]M2 and γ ′]M2
α̂2−→ γ ]M2 we get M]M2

α̂
=⇒ γ ]M2,

which completes the proof.

Next lemma says that the invariants of CPSs in distance < 1 must agree.
Lemma 6. Assume two CPSs M1 and M2 such that Mi = Ei;SionPi and Ei = 〈evoli,measi, invi〉, for
i = 1,2. If d(M1,M2)< 1 then S1 ∈ inv1 iff S2 ∈ inv2.

Proof. The proof is by contradiction. Assume that d(M1,M2) < 1, S1 ∈ inv1 and S2 6∈ inv2. We show

that M1
t̂ick
==⇒ and M2

t̂ick
==⇒6 , which contradicts d(M1,M2)< 1. By the well timedness property for CPSs

(Theorem 1, last item), there exists a natural n such that all derivations M1
τ−−→ N1

τ−−→ ·· · τ−−→ Nk are such
that k ≤ n, then we have Nk

τ−−→6 . Since Nk
τ−−→6 , by the maximal progress property for CPSs (Theorem 1,

second item) it follows that Nk
tick−−−→ γ , for some γ . We conclude M1

t̂ick
==⇒. Since S2 6∈ inv2, the CPS M2

can perform only the step M2
τ−−→ Dead and Dead can not perform any action, and hence, M2

t̂ick
==⇒6 .

Here comes one of the main technical result: the bisimilarity metric is preserved by the parallel
composition of physically disjoint CPSs.
Proposition 13. d(M]O,N]O)≤ d(M,N), for any physically disjoint CPS O.

Proof. The case d(M,N) = 1 is immediate, therefore we assume d(M,N)< 1. Let us define the function
d : pCCPS×pCCPS→ [0,1] by d(M]O,N]O) = d(M,N) for all M,N,O ∈ pCCPS. To prove the thesis
it is enough to show that d is a weak bisimulation metric. In fact, since d is the minimal weak bisimulation
metric, we infer d v d, thus giving d(M]O,N ]O) ≤ d(M]O,N ]O) = d(M,N). To prove that d is
a weak bisimulation metric, we show that any transition M]O

α−−→ γ is simulated by some transition

N]O α̂
=⇒ γ ′ with K(d)(γ,γ ′+(1− |γ ′|)Dead)≤ d(M]O,N]O). The cases where one of the CPSs M,

N and O are Dead is immediate. Hence, assume that M, N and O are not Dead. Let us assume that M1 =
E1;S1onP1 with E1 = 〈evol1,meas1, inv1〉 and S1 = 〈ξ 1

x ,ξ
1
s ,ξ

1
a 〉. Moreover, assume that O = E2;S2onP2

with E2 = 〈evol2,meas2, inv2〉 and S2 = 〈ξ 2
x ,ξ

2
s ,ξ

2
a 〉. Finally E1]E2 = 〈evol,meas, inv〉.

We proceed by case analysis on how M]O
α−−→ γ is derived. The cases are the following:

• The transition M]O
τ−−→ γ is derived by rule (SensRead) in Table 2, instantiated as

P1 ‖ P2
s?(z)
−−−−→ π (ξ 1

s ]ξ 2
s )(s) = ∑i∈I pi · vi ξ 1

x ]ξ 2
x ∈ inv

S1]S2onP1 ‖ P2
τ−−→ S1]S2on ∑i∈I pi ·π{vi/z}

with γ = (E1]E2);S1]S2on ∑i∈I pi ·π{vi/z}.

• The transition M]O
τ−−→ γ is derived by rule (ActWrite) in Table 2 instantiated as

P1 ‖ P2
a!v−−−→ π ξ 1

x ]ξ 2
x ∈ inv

〈ξ 1
x ]ξ 2

x ,ξ
1
s ]ξ 2

s ,ξ
1
a ]ξ 2

a 〉onP1 ‖ P2
τ−−→ 〈ξ 1

x ]ξ 1
x ,ξ

1
s ]ξ 2

s ,ξ
1
a ]ξ 1

a [a 7→ v]〉onπ

• The transition M]O
τ−−→ γ is derived by rule (Tau) in Table 2, instantiated as

P1 ‖ P2
τ−−→ π (S1]S2) ∈ inv

S1]S2onP1 ‖ P2
τ−−→ S1]S2onπ

with γ = (E1]E2);S1]S2onπ .
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• The transition M]O
tick−−−→ γ is derived by rule (Time) in Table 2, instantiated as

P1 ‖ P2
tick−−−→ π S1]S2onP1 ‖ P2

τ−−→6 (S1]S2) ∈ inv

S1]S2onP1 ‖ P2
tick−−−→ next(E1]E2)(S1]S2)onπ

with γ = (E1]E2) : next(E1]E2)(S1]S2)onπ .

• The transition M]O
cv−−→ γ is derived by rule (Inp) in Table 2, instantiated as

P1 ‖ P2
cv−−→ π (S1]S2) ∈ inv

S1]S2onP1 ‖ P2
cv−−→ S1]S2onπ

with γ = (E1]E2);S1]S2onπ .

• The transition M]O
cv−−→ γ is derived by rule (Out) in Table 2 instantiated as

P1 ‖ P2
cv−−→ π S1]S2 ∈ inv

S1]S2onP1 ‖ P2
cv−−→ S1]S2onπ

.

We show only the first case, the other are analogous. We recall that, by definition of operator ], the
physical environments E1 and E2 have different physical devices. Thus, there are two cases:

• s is a sensor of E1. In this case, the transition P1 ‖ P2
s?(z)
−−−−→ π derives by rule (Par) in Table 1 from

P1
s?(z)
−−−−→ π ′, where π ′ is a process distribution such that π = π ′ ‖ P2.

First we argue that rule (SensRead) can be used to derive a transition by M. From (S1]S2) ∈ inv,
by definition of E1 ]E2, we get both S1 ∈ inv1 and S2 ∈ inv2. From (ξ 1

s ] ξ 2
s )(s) = ∑i∈I pi · vi,

since s is a sensor of ξ 1
s , we derive ξ 1

s (s) = ∑i∈I pi · vi. Summarising, we have P1
s?(z)
−−−−→ π ′,

S1 ∈ inv1, and ξ 1
s (s) = ∑i∈I pi · vi, which allows us to apply rule (SensRead) and derive S1onP1

τ−−→
S1on ∑i∈I pi · (π ′){vi/z}, namely M

τ−−→ γ ′′ = E1;S1on ∑i∈I pi · (π ′){vi/z}.

Then, from M
τ−−→ γ ′′ and d(M,N) < 1, there is a distribution γ ′′′ such that N τ̂

==⇒ γ ′′′ with

K(d)(γ ′′,γ ′′′+(1− |γ ′′′|)Dead)≤ d(M,N). Since S2 ∈ inv2, by Lemma 5 it follows that N]O τ̂
=⇒

γ ′′′]O. Finally, we conclude that γ ′′′]O is the distribution γ ′ we were looking for by K(d)(γ,γ ′′′]
O+(1− |γ ′′′]O|)Dead) = K(d)(γ ′′ ]O,γ ′′′ ]O+(1− |γ ′′′]O|)Dead) = K(d)(γ ′′,γ ′′′(1− |γ ′′′|
)Dead)≤ d(M,N) = d(M]O,N]O).

• s is a sensor of E2. In this case, the transition P1 ‖ P2
s?(z)
−−−−→ π derives by rule (Par) in Table 1 from

P2
s?(z)
−−−−→ π ′, where π ′ is a process distribution such that π = P1 ‖ π ′.

Assume N = E3;S3onP3 with E3 = 〈evol3,meas3, inv3〉 and S3 = 〈ξ 3
x ,ξ

3
s ,ξ

3
a 〉. We show that rule

(SensRead) allow us to infer N]O
τ−−→ N] γ ′′ for some γ ′′.

By the rule (Par) we get P3 ‖ P2
s?(z)
−−−−→ P3 ‖ π ′. From (S1]S2)∈ inv, by definition of E1]E2. we get

both S1 ∈ inv1 and S2 ∈ inv2. Let E1]E3 = 〈evol′,meas′, inv′〉. From d(M,N) < 1 and S1 ∈ inv1,
by Lemma 6 it follows that S3 ∈ inv3 and so (S3 ] S2) ∈ inv′. From (ξ 1

s ] ξ 2
s )(s) = ∑i∈I pi · vi,

since s is a sensor of ξ 2
s , we derive ξ 2

s (s) = ∑i∈I pi · vi. Hence we derive (ξ 3
s ]ξ 2

s )(s) = ∑i∈I pi · vi.
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Summarising we have P3 ‖ P2
s?(z)
−−−−→ P3 ‖ π ′, (S3]S2) ∈ inv′ and (ξ 3

s ]ξ 2
s )(s) = ∑i∈I pi · vi. Hence,

we can apply rule (SensRead) to infer N]O
τ−−→ (E3]E2);S3]S2on ∑i∈I pi ·(P3 ‖ π ′){vi/z}=N]γ ′′

with γ ′′ = E2;S2on ∑i∈I pi · (π ′){vi/z}. Finally, we can conclude that γ ′ = N] γ ′′ is the distribution
we were looking for by K(d)(M] γ ′′,N] γ ′′) = K(d)(M,N) = d(M,N) = d(M]O,N]O).

Also the n-weak bisimilarity metric is preserved by the parallel composition of physically disjoint
CPSs.

Proposition 14. dn(M]O,N]O)≤ dn(M,N), for any physically disjoint CPS O and n≥ 0.

Proof. We proceed by induction over n. The base case n = 0 is immediate since dn(M,N) = 0(M,N) = 0
for all M,N ∈ pCCPS. We consider the inductive step n+ 1. The case dn+1(M,N) = 1 is immediate,
therefore we assume dn+1(M,N)< 1. We have to show that any transition M]O

α−−→ γ is simulated by

some transition N]O α̂
=⇒ γ ′ with K(dn)(γ,γ ′+(1− |γ ′|)Dead)≤ dn+1(M]O,N]O). This can be shown

precisely as in the proof of Proposition 13. Essentially, we have to replace all occurrences of d(M,N) by
dn+1(M,N) and all occurrences of K(d)(γ,γ ′) and K(d)(γ,γ ′) by K(dn)(γ,γ ′).

Now we prove that our weak bisimilarity metrics are preserved by parallel composition of pure-logical
processes. These are special cases of Proposition 13 and Proposition 14.

Proposition 15. d(M ‖ P,N ‖ P)≤ d(M,N), for any pure-logical process P.

Proof. Let E /0 be the physical environment with an empty set of state variables, sensors and actuators. Let
S /0 be the unique (empty) physical state of E /0. We have d(M ‖ P,N ‖ P)≤ d(M ‖ P,M] (E /0;S /0onP))+
d(M] (E /0;S /0onP),N ‖ P) = d(M] (E /0;S /0onP),N ‖ P)≤ d(M] (E /0;S /0onP),N] (E /0;S /0onP))+d(N]
(E /0;S /0onP),N ‖ P) = d(M ] (E /0;S /0onP),N ] (E /0;S /0onP)) ≤ d(M,N) where the first two inequalities
follow by the triangular properties of d, the last inequality follows by Proposition 13 and the two equalities
are immediate.

Proposition 16. dn(M ‖ P,N ‖ P)≤ dn(M,N), for any pure-logical process P and n≥ 0.

Proof. The same arguments used in the proof of Proposition 15 apply. Essentially, we simply exploits
Proposition 14 instead of Proposition 13.

Finally, we prove that weak bisimilarity metrics are preserved by channel restriction.

Proposition 17. d(M\c,N\c)≤ d(M,N), for any channel c.

Proof. We reason as in Proposition 13. The case d(M,N) = 1 is immediate, therefore we assume
d(M,N) < 1. Let us define the function d : pCCPS×pCCPS→ [0,1] by d(M\c,N\c) = d(M,N) for all
M,N,O ∈ pCCPS. To prove the thesis it is enough to show that d is a weak bisimulation metric. In
fact, since d is the minimal weak bisimulation metric, this implies d v d, thus giving d(M\c,N\c) ≤
d(M\c,N\c) = d(M,N). To prove that d is a weak bisimulation metric, we show that any transition

M\c α−−→ γ is simulated by some transition N\c α̂
=⇒ γ ′ with K(d)(γ,γ ′+(1− |γ ′|)Dead)≤ d(M \c,N \c).

The proof proceeds by case analysis on why M \ c
α−−→ γ .

Proposition 18. dn(M\c,N\c)≤ dn(M,N), for any channel c and n≥ 0.
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Proof. We reason as in Proposition 14. Hence, we proceed by induction over n, where the base case
n = 0 is immediate and we consider the inductive step n+ 1. The case dn+1(M,N) = 1 is immediate,
therefore we assume dn+1(M,N) < 1. We have to show that any transition M\c α−−→ γ is simulated by

some transition N\c α̂
=⇒ γ ′ with K(dn)(γ,γ ′+(1− |γ ′|)Dead)≤ dn+1(M \ c,N \ c). The proof proceeds

by case analysis on why M \ c
α−−→ γ .

Proof of Theorem 3 By Propositions 13–18.

Finally, as the bisimilarity ≈ coincides with the bisimulation metric ≈0 it follows that Theorem 2 is a
special case of Theorem 3. As consequence, the proof of Theorem 2 follows fromTheorem 3.

Proof of Theorem 2 Consider Theorem 2.1. We have that

M ≈ N =⇒ d(M,N) = 0 =⇒ d(M]O,N]O) = 0 =⇒ M]O≈ N]O

by applying, respectively, Proposition 6, Theorem 3.1, and Proposition 6 again. The proofs of Theorem 2.2
and Theorem 2.3 are analogous.

A.4 Proofs of Section 6

Proof of Proposition 9 The proof is analogous to that of Proposition 10 and Proposition 11(1).

As the bisimilarity ≈ coincides with the bisimulation metric ≈0 it follows that Proposition 3 is a
special case of Proposition 9.

Proof of Proposition 3 Directly by Proposition 9(1) and Proposition 6.

Proof of Proposition 10 Define the CPS NIL as NIL = E /0;S /0onnil, where E /0 is the empty physical

environment and S /0 the unique (empty) physical state of E /0. The only transition by NIL is NIL
tick−−−→ NIL.

By Proposition 1 and Theorem 1(d) we infer that dn(Engg,NIL) = 0. Therefore, by the triangular
property of dn, to show the thesis dn(Engg, Êngg) ≤ 1−

(
1−qg(pg)

5
)n we can show dn(NIL, Êngg) ≤

1−
(
1−qg(pg)

5
)n.

The proof obligation dn(NIL, Êngg) ≤ 1−
(
1− (pg)

5
)n follows from the following nine proper-

ties, by observing that the system Êngg satisfies the first one. In the following we denote the process
recY.tick5.readst(x).[x > 10]{sndwarning〈ID〉.Y},{writecool〈off〉.tick.Ctrl} with RecY .

1. dn(NIL,Envg;SonP) ≤ 1−
(
1−qg(pg)

5
)n whenever the physical state S satisfies cool = off and

temp ∈ [0,10.1], and the process P is Ctrl, or tick.Ctrl.

2. dn(NIL,Envg;SonP) ≤ 1−
(
1−qg(pg)

5
)n whenever the physical state S satisfies cool = off and

temp ∈ (10.1,11.4], and the process P is Ctrl, or Cooling.

3. dn(NIL,Envg;SonP)≤ 1−
(
1− (pg)

5
)(

1−qg(pg)
5
)n whenever the physical state S satisfies cool=

off and temp ∈ (10.4,11.5], and the process P is Ctrl, or Cooling.

4. dn(NIL,Envg;SonP) ≤ 1−
(
1−qg(pg)

5
)n whenever the physical state S satisfies cool = on and

temp ∈ (9.9,11.4], and the process P is RecY .

5. dn(NIL,Envg;SonP)≤ 1−
(
1− (pg)

5
)(

1−qg(pg)
5
)n whenever the physical state S satisfies cool=

on and temp ∈ (10.4,11.5], and the process P is RecY .
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6. dn(NIL,Envg;SonP)≤ 1−
(
1− (pg)

5−k
)(

1−qg(pg)
5
)n, for all n ∈ [1,4], whenever the physical

state S satisfies cool = on and temp ∈ (11.4− k(0.3),11.5− k(0.3)], and the process P is

P = tick5−k.readst(x)[x > 10]{sndwarning〈ID〉.RecY},{writecool〈off〉.tick.Ctrl}.

7. dn(NIL,Envg;SonP) ≤ 1−
(
1−qg(pg)

5
)n whenever the physical state S satisfies cool = on and

temp≤ 11.4− k(0.3), and the process P is

P = tick5−k.readst(x)[x > 10]{sndwarning〈ID〉.RecY},{writecool〈off〉.tick.Ctrl}

for any k ∈ [1,4].

8. dn(NIL,Envg;SonP) ≤ 1−
(
1−qg(pg)

5
)n whenever the physical state S satisfies cool = on and

temp≤ 9.9, and the process P is

P = readst(x)[x > 10]{sndwarning〈ID〉.RecY},{writecool〈off〉.tick.Ctrl}.

9. dn(NIL,Envg;SonP) ≤ 1−
(
1−qg(pg)

5
)n whenever the physical state S satisfies cool = on and

temp≤ 9.9, and the process P is P = writecool〈off〉.tick.Ctrl.

We prove these nine properties in parallel, by induction over n. The base case n = 0 is immediate
since d0 is the constant zero function 0. We consider the inductive step n > 0. First we observe that, given
any distribution ∑i∈I pi ·Mi over CPSs, the only matching ω ∈Ω(∑i∈I pi ·Mi,NIL) is ω(Mi,NIL) = pi. It
follows that K(dn−1)(∑i∈I pi ·Mi,NIL) = ∑i∈I pidn−1(Mi,NIL). We show only the first property, the other
are analogous.

We distinguish the cases P = Ctrl and P = tick.Ctrl.

• Case P = Ctrl.
The only transition by Envg;SonP is Envg;SonP

τ−−→ ∑i∈I pi ·Mi, where Mi = Envg;SonPi, with
either Pi = tick.Ctrl or Pi = Cooling. The only transition by NIL is NIL

τ−−→ NIL. Therefore we
infer dn(Envg;SonP,NIL)≤K(dn−1)(∑i∈I pi ·Mi,NIL). By the inductive hypothesis on item 1 we
infer dn−1(Mi,NIL)≤ 1−

(
1−qg(pg)

5
)n−1 in both cases, thus implying

K(dn−1)(∑
i∈I

pi ·Mi,NIL) = ∑
i∈I

pidn−1(Mi,NIL)≤ 1−
(
1−qg(pg)

5)n−1 ≤ 1−
(
1−qg(pg)

5)n
.

which completes the proof.

• Case P = tick.Ctrl.
The only transition by Envg;SonP is Envg;SonP

tick−−−→ nextEnvg;(S)onCtrl. Again, the only transition

by NIL is NIL
tick−−−→ NIL. Therefore dn(Envg;SonP,NIL)≤K(dn−1)(nextEnvg(S)onCtrl,NIL). By

definition, nextEnvg(S) = ∑v∈[0.3,1.1]g
1

|[0.3,1.1]g|S[temp 7→ ξx(temp)− v]. Hence in all physical states
S′ in the support of nextEnvg(S) we have cool = off and the temperature temp lies in the interval
[0+0.3,10.1+1.4].
We have two cases: temp ∈ [0+0.3,10.1], and temp ∈ (10.1,10.5]. If temp ∈ [0+0.3,10.1], then
by the inductive hypothesis on item 1 we infer dn−1(Envg;S′onCtrl,NIL)≤ 1−

(
1−qg(pg)

5
)n−1,

for all S′ ∈ supp(nextEnvg(S)), thus implying

K(dn−1)(Envg;nextE(S)onCtrl,NIL)≤ 1−
(
1−qg(pg)

5)n−1 ≤ 1−
(
1−qg(pg)

5)n
.
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If temp ∈ (10.1,10.5], then temp ∈ (10.4,10.5] with a probability bounded by qg, whereas temp ∈
(10.1,10.4] with a probability not less that 1−qg. If temp ∈ (10.4,10.5] we can apply the inductive
hypothesis on item 3 to get dn−1(Envg;S′onCtrl,NIL)≤ 1−

(
1− (pg)

5
)(

1−qg(pg)
5
)n−1, for all

S′ ∈ supp(nextEnvg(S)). If temp ∈ (10.4,10.5] we can apply the inductive hypothesis on item 2 to

get dn−1(Envg;S′onCtrl,NIL)≤ 1−
(
1−qg(pg)

5
)n−1, for all S′ ∈ supp(nextEnvg(S)). Therefore for

some q≤ qg we have

K(dn−1)(Envg;nextE(S)onCtrl,NIL)

= (1−q)
(

1−
(
1−qg(pg)

5
)n−1

)
+q
(
1− (pg)

5
)(

1−qg(pg)
5
)n−1

=
(

1−
(
1−qg(pg)

5
)n−1

)
−q
(

1−
(
1−qg(pg)

5
)n−1

)
+q
(
1− (pg)

5
)(

1−qg(pg)
5
)n−1

= 1−
(
1−qg(pg)

5
)n−1−q+q

(
1−qg(pg)

5
)n−1

+q−
(
q−q(pg)

5
)(

1−qg(pg)
5
)n−1

= 1−q+q−
(
1−q+q−q(pg)

5
)(

1−qg(pg)
5
)n−1

= 1−
(
1−q(pg)

5
)(

1−qg(pg)
5
)n−1

≤ 1−
(
1−qg(pg)

5
)(

1−qg(pg)
5
)n−1

= 1−
(
1−qg(pg)

5
)n

which completes the proof.

Proof of Proposition 11 By Proposition 10 we derive dn(Engg, Êngg) ≤ 1−
(
1−qg(pg)

5
)n

= p. By

simple α-conversion it follows that dn(EngL
g , ÊngL

g ) = p and dn(EngR
g , ÊngR

g ) = p, respectively. By

Theorem 3(4) (and the triangular property of dn) it follows that dn(EngL
g ]EngR

g , ÊngL
g ] ÊngR

g )≤ 2p. By
Theorem 3(5) it follows that

dn
((

EngL
g ] (EngR

g
)
‖ Check,

(
ÊngL

g ] (ÊngR
g

)
‖ Check

)
≤ 2p.

By Theorem 3(6) we obtain
dn
(

Airplaneg, ̂Airplaneg

)
≤ 2p (2)

thus confirming that Proposition 11(1) holds.
Finally, by Equation 2 and Equation 1, we derive

lim
g→+∞

dn(Airplaneg, ̂Airplaneg)≤ 2
(

1−
(

1− 1
86

)n)
.

namely Proposition 11(2).
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