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Abstract14

We consider Pareto analysis of reachable states of multi-priced timed automata (MPTA): timed15

automata equipped with multiple observers that keep track of costs (to be minimised) and rewards16

(to be maximised) along a computation. Each observer has a constant non-negative derivative17

which may depend on the location of the MPTA.18

We study the Pareto Domination Problem, which asks whether it is possible to reach a target19

location via a run in which the accumulated costs and rewards Pareto dominate a given objective20

vector. We show that this problem is undecidable in general, but decidable for MPTA with at21

most three observers. For MPTA whose observers are all costs or all rewards, we show that the22

Pareto Domination Problem is PSPACE-complete. We also consider an ε-approximate Pareto23

Domination Problem that is decidable without restricting the number and types of observers.24

We develop connections between MPTA and Diophantine equations. Undecidability of the25

Pareto Domination Problem is shown by reduction from Hilbert’s 10th Problem, while decidability26

for three observers is shown by a translation to a fragment of arithmetic involving quadratic forms.27
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1 Introduction33

Multi Priced Timed Automata (MPTA) [5, 7, 8, 10, 17, 18, 19] extend priced timed automata [2,34

3, 4, 6, 16] with multiple observers that capture the accumulation of costs and rewards along35

a computation. This extension allows to model multi-objective optimization problems beyond36

the scope of timed automata [1]. MPTA lie at the frontier between timed automata (for37

which reachability is decidable [1]) and linear hybrid automata (for which reachability is38

undecidable [13]). The observers exhibit richer dynamics than the clocks of timed automata39

by not being confined to unit slope in locations, but may neither be queried nor reset while40
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248:2 Costs and Rewards in MPTA

taking edges. This observability restriction has been exploited in [17] (under a cost-divergence41

assumption) for carrying out a Pareto analysis of reachable values of the observers.42

In this paper we distinguish between observers that represent costs (to be minimised)43

and those that represent rewards (to be maximised). Formally, we partition the set Y of44

observers into cost and reward variables and say that γ P RY
¥0 Pareto dominates γ1 P RY

¥045

if γpyq ¤ γ1pyq for each cost variable y and γpyq ¥ γ1pyq for each reward variable y. Then46

the Pareto curve corresponding to an MPTA consists of all undominated vectors γ that are47

reachable in an accepting location. While cost and reward variables are syntactically identical48

in the underlying automaton model, distinguishing between them changes the notion of49

Pareto domination and the associated decision problems.50

We introduce in Section 3 a decision version of the problem of computing Pareto curves for51

MPTA, called the Pareto Domination Problem. Here, given a target vector γ P RY
¥0, one asks52

to reach an accepting location with a valuation γ1 P RY
¥0 that Pareto dominates γ. This has53

not been addressed in prior work on Pareto analysis of MPTA [17], which considers only costs54

or only rewards. Other works on MPTA either do not address Pareto analysis [5, 8, 10, 18, 19],55

or have only discrete costs updated on edges [22], or are confined to a single clock [7].56

Our first main result is that the Pareto Domination Problem is undecidable in general. The57

undecidability proof in Section 4 is by reduction from Hilbert’s 10th problem. Owing to the58

existence of so-called “universal Diophantine equations” (of degree 4 with 58 variables [14]),59

our proof shows undecidabililty of the Pareto Domination Problem for some fixed but large60

number of observers. Undecidability of the Pareto Domination Problem entails that one61

cannot compute an exact Pareto curve for an arbitrary MPTA.62

We consider three different approaches to recover decidability of the Pareto Domination63

Problem, which all have a common foundation, namely a monotone VASS described in64

Sections 2 and 5, which simulates integer runs of a given MPTA. By analysing the semi-linear65

reachability set of this VASS we can reduce the Pareto Domination Problem to satisfiability66

of a class of bilinear mixed integer-real constraints. We then consider restrictions on MPTA67

and variants of the Pareto Domination Problem that allow us to solve this class of constraints.68

We first show in Section 6 that restricting to MPTA with only costs or only rewards yields69

PSPACE-completeness of the Pareto Domination Problem. Here we are able to eliminate70

integer variables from our bilinear constraints, resulting in a formula of linear real arithmetic.71

This strengthens [17, Theorem 1 and Corollary 1], whose decision procedures (that exploit72

well-quasi-orders for termination) do not yield complexity bounds.73

Next we confine the MPTA in Section 7 to at most three observers, but allow a mix of74

costs and rewards. Decidability is now achieved by eliminating real variables from the bilinear75

constraint system, thus reducing the Pareto Domination Problem to deciding the existence76

of positive integer zeros of a quadratic form, which is known to be decidable from [11].77

We consider in Section 8 another method to restore decidability for general MPTA78

with arbitrarily many costs and rewards, by studying an approximate version of the Pareto79

Domination Problem, called the Gap Domination Problem. Similar to the setting of [9],80

the Gap Domination Problem represents the decision version of the problem of computing81

ε-Pareto curves. This problem, whose input includes a tolerance ε ¡ 0 and a vector γ P RY
¥0,82

permits inconclusive answers if all solutions dominating γ do so with a slack of less than ε.83

We solve the Gap Domination Problem by relaxation and rounding applied to our bilinear84

system of constraints.85

In this paper we consider only MPTA with non-negative rates. Our approach can be86

generalised to obtain decidability results also in the case of negative rates by extending our87

foundation in Sections 2 and 5 from monotone VASS to Z-VASS [12].88
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2 Background89

Quadratic Diophantine Equations. For later use we recall a decidable class of non-linear90

Diophantine problems. Consider the quadratic equation91

ņ

i,j�1
aijXiXj �

ņ

j�1
bjXj � c � 0 (1)92

93

whose coefficients aij , bj , and c are rational numbers. Consider also the family of constraints94

f1pX1, . . . , Xnq � c1 ^ . . . ^ fkpX1, . . . , Xnq � ck , (2)95

where f1, . . . , fk are linear forms with rational coefficients, c1, . . . , ck P Q, and � P t ,¤u.96

� Theorem 1 ([11]). There is an algorithm that decides whether a given quadratic equation (1)97

and a family of linear inequalities (2) have a solution in Zn.98

Let us emphasize that in Theorem 1 at most one quadratic constraint is permitted. It99

is clear (e.g., by introducing a slack variable) that the theorem remains true if the equality100

symbol in (1) is replaced by any comparison operator in t ,¤,¡,¥u.101

Monotone VASS. A monotone vector addition system with states (monotone VASS) is a102

tuple Z � xn,Q, q0, Qf ,Σ,∆y, where n P N is the dimension, Q is a set of states, q0 P Q is103

the initial state, Qf � Q is a set of final states, Σ is the set of labels, and ∆ � Q�Nn�Σ�Q104

is the set of transitions.105

Given such a monotone VASS Z as above, the family of sets ReachZ,q � Nn, for q P Q,106

is the minimal family (w.r.t. to set inclusion) of integer vectors such that 0 P ReachZ,q0107

and for all q P Q, if u P ReachZ,q and pq,v, `, pq P ∆ for some ` P L, then u� v P ReachZ,p.108

Finally we define the reachability set of Z to be ReachZ :�
�
qPQf

ReachZ,q.109

For every vector v P Nn and every finite set P � tu1, . . . ,umu of vectors in Nn, we define110

the N-linear set Spv, P q :� tv �
°m
i�1 aiui : a1, . . . , am P Nu. We call v the base vector111

and u1, . . . ,um P P the period vectors of the set.112

The following proposition follows from [20, Proposition 4.3],[15] (see Appendix B.1).113

� Proposition 2. Let Z � xn,Q, q0, Qf ,Σ,∆y be a monotone VASS. Then the set ReachZ can114

be written as a finite union of N-linear sets Spv1, P1q, . . . , Spvk, Pkq, where for i � 1, . . . , k115

the components of vi and of each vector in Pi are bounded by polypn, |Q|,Mqn in absolute116

value, where M is maximum absolute value of the entries of vectors in Nn occurring in ∆.117

3 Multi-Priced Timed Automata and Pareto Domination118

Let R¥0 denote the set of non-negative real numbers. Given a set X � tx1, . . . , xnu of119

clocks, the set ΦpX q of clock constraints is generated by the grammar ϕ ::� true | x ¤120

k | x ¥ k | ϕ ^ ϕ , where k P N is a natural number and x P X . A clock valuation is a121

mapping ν : X Ñ R¥0 that assigns to each clock a non-negative real number. We denote122

by 0 the valuation such that 0pxq � 0 for all clocks x P X . We write ν |ù ϕ to denote123

that ν satisfies the constraint ϕ. Given t P R¥0, we let ν � t be the clock valuation such124

that pν � tqpxq � νpxq � t for all clocks x P X . Given λ � X , let νrλ Ð 0s be the clock125

valuation such that νrλÐ 0spxq � 0 if x P λ, and νrλÐ 0spxq � νpxq otherwise.126

A multi-priced timed automaton (MPTA) is a tuple A � xL, `0, Lf ,X ,Y, E,Ry, where L127

is a finite set of locations, `0 P L is an initial location, Lf � L is a set of accepting locations,128

ICALP 2018



248:4 Costs and Rewards in MPTA

tc1 � 0, c2 � 0u 9ci � 0 9ci � 1 tc1 ¤ 1, 1 ¤ c2u
r Ð 0

x � 1
xÐ 0

r � 1
r Ð 0

r � 1

Figure 1 Predicates in curly brackets denote observer values enforced by initialisation, ci � 0
with i P t1, 2u, and the Pareto constraint upon exit tc1 ¤ 1, 1 ¤ c2u. Denoting the initial value of
clock x by x�, the value of both c1 and c2 after n full traversals of the central cycle is nx�. Meeting
the final Pareto constraint from initial values thus requires that x� be 1

n
for some positive integer n.

X is a finite set of clock variables, Y is a finite set of observers, E � L� ΦpX q � 2X � L is129

the set of edges, R : LÑ NY is a rate function. Intuitively Rp`q is a vector that gives the130

rates of each observer in location `.131

A state of A is a triple p`, ν, tq where ` is a location, ν a clock valuation, and t P R¥0 is a132

time stamp. A run of A is an alternating sequence of states and edges ρ � p`0, ν0, t0q
e1ÝÑ133

p`1, ν1, t1q
e2ÝÑ . . .

emÝÑ p`m, νm, tmq , where t0 � 0, ν0 � 0, ti�1 ¤ ti for all i P t1, . . . ,mu, and134

ei � x`i�1, ϕ, λ, `iy P E is such that νi�1�pti�ti�1q |ù ϕ and νi � pνi�1�pti�ti�1qqrλÐ 0s135

for i � 1, . . . ,m. The run is accepting if `m P Lf and said to have granularity 1
g for a fixed136

g P N if all ti P Q are positive integer multiples of 1
g . The cost of such a run is a vector137

costpρq P RY , defined by costpρq �
°m�1
j�0 pti�1 � tiqRp`iq .138

Henceforth we will assume that the set Y of observers of a given MPTA is partitioned139

into a set Yc of cost variables and a set Yr of reward variables. With respect to this partition140

we define a domination ordering ¤ on the set of valuations RY , where γ ¤ γ1 if γpyq ¤ γ1pyq141

for all y P Yr and γ1pyq ¤ γpyq for all y P Yc. Intuitively γ ¤ γ1 (read γ1 dominates γ) if γ1142

is at least as good as γ in all respects.143

Given ε ¡ 0 we define an ε-domination ordering ¤ε, where γ ¤ε γ
1 (read γ1 ε-dominates γ)144

if γpyq � ε ¤ γ1pyq for all y P Yr and γ1pyq � ε ¤ γpyq for all y P Yc. We can think of γ ¤ε γ
1

145

as denoting that γ1 is better than γ by an additive factor of ε in all dimensions. In particular146

we clearly have that γ ¤ε γ
1 implies γ ¤ γ1.147

The Pareto Domination Problem is as follows. Given an MPTA A with a set Y of148

observers and a partition of Y into sets Yc and Yr of cost and reward variables, with a149

target γ P RY , decide whether there is an accepting run ρ of A such that γ ¤ costpρq.150

The Gap Domination Problem is a variant of the above problem in which the input151

additionally includes an accuracy parameter ε ¡ 0. If there is some run ρ such that γ ¤ε152

costpρq then the output should be “dominated” and if there is no run ρ such that γ ¤ costpρq153

then the output should be “not dominated”. In case neither of these alternatives hold (i.e., γ154

is dominated but not ε-dominated) then there is no requirement on the output.155

In the (Pareto) Domination Problem the objective is to reach an accepting location while156

satisfying a family of upper-bound constraints on cost variables and lower-bound constraints157

on reward variables. We say that an instance of the problem is pure if all observers are158

cost variables or all are reward variables (and hence all constraints are upper bounds or159

all are lower bounds); otherwise we call the instance mixed. Our problem formulation160

involves only simple constraints on observers, i.e., those of the form y ¤ c or y ¥ c for161

y P Y . However such constraints can be used to encode more general linear constraints of the162

form a1y1 � � � � � akyk � c, where y1, . . . , yk P Y , a1, . . . , ak, c P N and � P t¤,¥,�u. To do163

this one introduces a fresh observer to denote each linear term a1y1 � � � � � akyk (two fresh164

observers are needed for an equality constraint).165

Note that we consider timed automata without difference constraints on clocks, i.e.,166

without clock guards of the form xi � xj � k, for k P N. As discussed in Appendix A all our167

decidability and complexity results hold also in case of such constraints.168
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Integer test 1
x�

i

?
P N:

tc � 0u
9c � 0 9c � 1 tc � 1u

r � 1
r Ð 0

xi � 1

xi Ð 0

r � 1
r Ð 0

wrap

Inv

wrap

Decrement cÐ c� 1� x�i :

9c � 1 9c � 0
r � 1
r Ð 0

xi � 1

xi Ð 0

wrap

Inv

wrap

Quotient cÐ c�
x�

i

x�
j

:

te � 0u
9e � 0 9e � 1

9c � 09c � 1te � 1u

r � 1
r Ð 0

xj � 1

xj Ð 0

wrap

r Ð 0r � 1

wrap

xi � 1

xi Ð 0

wrap

r Ð 0r � 1

wrap

Inv

Figure 2 The wrap self-loop denotes a family of m wrapping edges, as in [13, Fig. 14], where
the j-th edge has guard xj � 1 and resets xj . In the quotient gadget, e is a fresh observer, as is c
in the integer test. The integer test and quotient gadgets are annotated with predicates in curly
brackets indicating the initial values of observers on entering and their target values on exiting the
gadget. Enforcing these target values through a corresponding Pareto constraint guarantees the
desired behaviour of the gadget.

4 Undecidability of the Pareto Domination Problem169

In this section we prove undecidability of the Pareto Domination Problem. To give some170

insight we first give in Figure 1 an MPTA, in which the Pareto constraint c1 ¤ 1, c2 ¥ 1171

is used to enforce that when control enters the MPTA the value of clock x is 1
n for some172

positive integer n.173

We prove undecidability of the Pareto Domination Problem by reduction from the174

satisfiability problem for a fragment of arithmetic given by a language L that is defined as175

follows. There is an infinite family of variables X1, X2, X3, . . . and formulas are given by the176

grammar ϕ ::� X � Y �Z | X � Y Z | ϕ^ϕ , where X,Y, Z range over the set of variables.177

The satisfiability problem for L asks, given a formula ϕ, whether there is an assignment178

of positive integers to the variables that satisfies ϕ. In Appendix B.2 we show that the179

satisfiability problem for L is undecidable by reduction from Hilbert’s Tenth Problem.180

� Theorem 3. The Pareto Domination Problem is undecidable.181

Proof. Consider the following problem of reaching a single valuation in RY
¥0: given an182

MPTA A � xL, `0, Lf ,X ,Y, E,Ry, and target valuation γ P RY
¥0, decide whether there is an183

accepting run ρ of A such that costpρq � γ.184

One can reduce the problem of reaching a given valuation to the Pareto Domination185

Problem as follows. Transform the MPTA A to an MPTA A1 that has the same locations and186

edges as A but with two copies of each observer y P Y , with each copy having the same rate187

as y in each location. Formally A1 has set of observers Y 1 � ty1, y2 : y P Yu, where y1 is a188

cost variable and y2 is a reward variable. Then, defining γ1 P RY 1

¥0 by γ1py1q � γ1py2q � γpyq,189

we have that A1 has an accepting run ρ1 such that costpρ1q dominates γ1 just in case A has190

an accepting run ρ such that costpρq � γ.191

Now we give a reduction from the satisfiability problem for L to the problem of reaching192

a single valuation. Consider an L-formula ϕ over variables X1, . . . , Xm. We define an193

MPTA A over the set of clocks X � tx1, � � � , xm, ru. Clock xi corresponds to the variable Xi,194

for i � 1, . . . ,m, while r is a reference clock. The reference clock is reset whenever it195

reaches 1 and is not otherwise reset—thus it keeps track of global time modulo one. After196

an initialisation phase the remaining clocks x1, . . . , xm are likewise reset in a cyclic fashion,197

whenever they reach 1 and not otherwise. We denote by x�i the value of clock xi whenever r198

ICALP 2018



248:6 Costs and Rewards in MPTA

is 1. During the initialisation phase the values x�i are established non-deterministically such199

that 0   x�i ¤ 1. The idea is that 1
x�

i

represents the value of variable Xi in ϕ; in particular, x�i200

is the reciprocal of a positive integer. For each atomic sub-formula in ϕ the automaton A201

contains a gadget that checks that the guessed valuation satisfies the sub-formula.202

To present the reduction we first define three primitive gadgets. The first “integer test”203

gadget checks that the initial value x�i of clock xi is a reciprocal of a positive integer, by204

adding wrapping edges on all clocks xj other than xi to the MPTA from Figure 1. The205

construction of each gadget is such that the precondition r � 0 holds when control enters206

the gadget and the postcondition r � 1^
�m
j�1 xj ¤ 1 holds on exiting the gadget. This last207

postcondition is abbreviated to Inv in the figures. For an observer c and 1 ¤ i, j ¤ m, we208

define these three gadgets as in Figure 2.209

In the following we show how to compose the three primitive operations in an MPTA to210

enforce the atomic constraints in the language L. The initialisation automaton below is such211

that for i � 1, . . . ,m the value x�i of clock xi is such that 1
x�

i

P N. Herein the Guess self-loop212

denotes a family of m edges, where the j-th edge non-deterministically resets clock xj . Note213

that the incoming edge of the integer test gadget enforces r � 1 such that the initial guesses214

for the clocks xi satisfy x�i P r0, 1s. Of these, only reciprocals 1
x�

i

P N pass the subsequent215

series of integer tests.216

Initialisation X1, . . . , Xn P N :217

t
�m
i�1 ci � 0u 1

x�1

?
P N � � � 1

x�m

?
P N t

�m
i�1 ci � 1u

Guess

Sum Xi � Xj �Xk: According to the encoding of integer value Xn as clock value xn � 1
Xn

,218

we have to enforce 1
x�

i

� 1
x�

j

� 1
x�

k

, which is achieved by the following sequential combination219

of two quotient gadgets.220

tci � cj � ck � 0u ci Ð ci �
x�

i

x�
j

ci Ð ci �
x�

i

x�
k

tci � cj � ck � 1u

Product Xi � XjXk: The following gadget enforces 1
x�

i

� 1
x�

j

� 1
x�

k

:221

tci � cj � ck � 0u ci Ð ci �
x�

i

x�
j

ci Ð ci �
x�

i

x�
k

ci Ð ci � 1� x�j ci Ð ci � 1� x�k tci � 2^ cj � ck � 1u

The satisfiability problem for a given L formula ϕ can now directly be reduced to the222

problem of reaching a single valuation γ P RY
¥0 by translating each of the conjuncts of ϕ into223

the corresponding above MPTA gadget. The valuation γ encodes the target costs of the224

respective gadgets. �225

Let us remark that the proof of Theorem 3 shows that undecidability of the Pareto226

Domination Problem already holds in case all observers have rates in t0, 1u. Separately we227

observe that undecidability also holds in the special case that exactly one observer is a cost228

variable and the others are reward variables, and likewise when exactly one observer is a229

reward variable and the others are cost variables, when allowing multiple rates beyond t0, 1u.230

The idea is to reduce the problem of reaching a particular valuation γ P RY
¥0 in an MPTA231

A to that of dominating a valuation γ1 P RY 1

¥0 in a derived MPTA A1 with set of observers232

Y 1 � YYtysumu, where ysum is a fresh variable. In A1 we designate all y P Y as cost variables233
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and ysum as a reward variable, or vice versa. Valuation γ1 is specified by γ1pyq � γpyq for234

all y P Y and γ1pysumq �
°
yPY γpyq. Automaton A1 has the same locations, edges, and rate235

function as those of A except that R1pysumq �
°
yPY Rpyq.236

5 The Simplex Automaton237

This section introduces the basic construction from which we derive our positive decidability238

results and complexity upper bounds.239

Let A � xL, `0, Lf ,X ,Y, E,Ry be an MPTA. For a sequence of edges e1, . . . , em P E,240

define Runspe1, . . . , emq � Rm¥0 to be the collection of sequences of timestamps pt1, . . . , tmq P241

Rm¥0 such that A has a run ρ � p`0, ν0, t0q
e1ÝÑ p`1, ν1, t1q

e2ÝÑ . . .
emÝÑ p`m, νm, tmq. Recalling242

that by convention t0 � 0 and ν0 � 0, once the edges e1, . . . , em have been fixed then the run ρ243

is determined solely by the timestamps t1, . . . , tm. When the sequence of edges e1, . . . , em is244

understood, we call such a sequence of timestamps a run.245

� Proposition 4. Runspe1, . . . , emq � Rm¥0 is defined by a conjunction of difference constraints.246

247

The proof of Proposition 4 is in Appendix B.3.248

� Proposition 5. Runspe1, . . . , emq is equal to the convex hull of the set of its integer points.249

Proof. Fix a positive integer M . From Proposition 4 it immediately follows that the250

set Runspe1, . . . , emq X r0,M sm can be written as a conjunction of closed difference con-251

straints At ¤ b, where A is an integer matrix, t the vector of time-stamps t1 . . . tm, and b an252

integer vector. Given this, it follows that Runspe1, . . . , emq X r0,M sm, being a closed and253

bounded polygon, is the convex hull of its vertices. Moreover each vertex is an integer point254

since the matrix A here, being by Proposition 4 the incidence matrix of a balanced signed255

graph with half edges, is totally unimodular [21, Proposition 8A.5]. �256

Proposition 6 shows that for Pareto reachability on an MPTA A with |Y| � d observers,257

it suffices to look at d� 1-simplices of integer runs.258

� Proposition 6. For any run ρ of A there exists a set of at most d� 1 integer-time runs S,259

all over the same sequence of edges as ρ, such that costpρq lies in the convex hull of costpSq.260

Proof. Let ρ be a run of A over an edge-sequence e1, . . . , em with time stamps t0, . . . , tm, given261

by ρ � p`0, ν0, t0q
e1ÝÑ p`1, ν1, t1q

e2ÝÑ . . .
emÝÑ p`m, νm, tmq. By Proposition 5, pt1, . . . , tmq lies262

in the convex hull of the set I of integer points in Runspe1, . . . , emq.263

Since the map cost : Runspe1, . . . , emq Ñ Rd is linear we have that costpρq lies in the264

convex hull of costpIq. Moreover by Carathéodory’s Theorem there exists a subset S � I of265

cardinality at most d� 1 such that costpρq lies in the convex hull of costpSq. �266

We now exploit Proposition 6 by introducing the so-called simplex automaton SpAq, which267

is a monotone VASS obtained from a given MPTA A. The automaton SpAq generates pd�1q-268

tuples of integer-time runs of A, such that each run in the tuple executes the same sequence269

of edges in A and the runs differ only in the times at which the edges are taken. The basic270

component underlying the definition of the simplex automaton is the integer-time automaton271

ZpAq. This automaton is a monotone VASS that generates the integer-time runs of A, using272

its counters to keep track of the running cost for each observer.273

The definition of ZpAq is as follows. Let A � xL, `0, Lf ,X ,Y, E,Ry be an MPTA. Let274

alsoMX P N be a positive constant greater than the maximum clock constant in A. We define275

a monotone VASS ZpAq � xd,Q, q0, Qf , E,∆y, in which the dimension d � |Y|, the set of276
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248:8 Costs and Rewards in MPTA

states is Q � L� t0, 1, . . . ,MX u
X , the initial state is q0 � p`0,0q, the set of accepting states277

is Qf � Lf �t0, 1, . . . ,MX u
X , the set of labels is E (i.e., the set of edges of the MPTA), and278

the transition relation ∆ � Q�Nd�E�Q includes a transition pp`, νq, t �Rp`q, e, p`1, ν1qq for279

every t P t0, 1, . . . ,MX u and edge e � p`, ϕ, λ, `1q in A s.t. ν` t |ù ϕ and ν1 � pν` tqrλÐ 0s.280

Here pν ` tqpxq � minpνpxq � t,MX q for all x P X . We then have:281

� Proposition 7. Given a valuation γ P RY
¥0, there exists an integer-time accepting run ρ of A282

with costpρq � γ if and only if γ P ReachZpAq.283

The simplex automaton SpAq is built by taking d�1 copies of ZpAq � xd,Q, q0, Qf , E,∆y284

that synchronize on transition labels. Formally, SpAq � xdpd� 1q, Qd�1, q0, Q
dpd�1q
f , E,∆y,285

where q0 � pq0, . . . , q0q and ∆ � Qd�1 � Zdpd�1q � E � Qd�1 comprises those tuples286

ppq1, . . . , qd�1q, pv1, . . . ,vd�1q, e, pq
1
1, . . . , q

1
d�1qq s.t. pqi,vi, e, q1iq P ∆ for all i P t1, . . . , d� 1u.287

From Propositions 6 and 7 we have:288

� Proposition 8. Given γ P RY
¥0, there exists an accepting run ρ of A with costpρq � γ if and289

only if there exists pγ1, . . . , γd�1q P ReachSpAq with γ in the convex hull of tγ1, . . . , γd�1u.290

We now introduce the following “master system” of bilinear inequalities that expresses291

whether γ ¤ costpρq for some accepting run ρ of A.292

γ ¤ λ1γ1 � � � � � λd�1γd�1 1 � λ1 � � � � � λd�1
pγ1, . . . , γd�1q P ReachSpAq 0 ¤ λ1, . . . , λd�1

(3)293

The system has real variables λ1, . . . , λd�1 P RY
¥0 and integer variables γ1, . . . , γd�1 P NY .294

The key property of the master system is stated in the following Proposition 9, which follows295

immediately from Proposition 8.296

� Proposition 9. Given a valuation γ P RY
¥0 there is an accepting run ρ of A such that γ ¤297

costpρq if and only if the system of inequalities (3) has a solution.298

Given Proposition 9, the results of Section 4 imply that satisfiability of the master299

system (3) is not decidable in general. In the rest of the paper we pursue different approaches300

to showing decidability of restrictions and variants of the Pareto Domination Problem by301

solving appropriately restricted versions of (3).302

6 Pareto Domination Problem with Pure Constraints303

In this section we show that the Pareto Domination Problem is decidable in polynomial304

space for the class of MPTA in which the observers are all costs. We prove this complexity305

upper bound by exhibiting for such an MPTA A and target γ P RY
¥0 a positive integer M ,306

whose bit-length is polynomial in the size of A and γ, such that there exists a run ρ of A307

reaching the target location with γ ¤ costpρq iff there exists such a run of granularity 1
M1

308

for some M1 ¤M . To show this we rewrite the bilinear system of inequalities (3) into an309

equisatisfiable disjunction of linear systems of inequalities. We thus obtain a bound on the310

bit-length of any satisfying assignment of (3) from which we obtain the above granularity311

bound. A similar bound in case of all reward variables is obtained in C.312

Consider an MPTA A � xL, `0, Lf ,X ,Y, E,Ry. Recall that the reachability set ReachSpAq313

can be written as a union of linear sets Spvi, Piq, i P I. More precisely, let MY be the314

maximum rate occurring in the rate function R of the given MPTA A. We then have the315

following, see Appendix B.4 for the proof.316

� Proposition 10. The set ReachSpAq can be written as a finite union of linear sets
�
iPI Spvi, Piq317

such that for each i P I the base vectors vi and period vectors in Pi have entries of magnitude318

bounded by polypd, |L|,MY ,MX q
dpd�1q|X |.319
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Figure 3 The target T is the green rectangular region and the blue region is S. The pink region
is πpT q and the light blue region πpSq. The grey region F is described in equation (5).

Suppose that the set of observers Y with |Y| � d is comprised exclusively of cost variables.320

We will apply Proposition 10 to analyse the Pareto Domination Problem. The key observation321

is that in this case we can equivalently rewrite the bilinear system (3) as a disjunction of322

linear systems of inequalities.323

As a first step we can rewrite the constraint pγ1, . . . , γd�1q P ReachSpAq in (3) as a324

disjunction of constraints pγ1, . . . , γd�1q P Spvi, Piq, for i P I. But since the period vectors325

in Pi are non-negative we can further observe that in order to satisfy the upper bound326

constraints on cost variables, the optimal choice of pγ1, . . . , γd�1q P Spvi, Piq is the base327

vector vi. Thus we can treat γ1, . . . , γd�1 as a constant in (3).328

Thus we rewrite (3) as a finite disjunction of systems of linear inequalities—one such329

system for each i P I. For a given i P I let vi � pγ
piq
1 , . . . , γ

piq
d�1q be the base vector of the330

linear set Spvi, Piq. The corresponding system of inequalities specialising (3) is331

γ ¤ λ1γ
piq
1 � . . .� λd�1γ

piq
d�1, 1 � λ1 � � � � � λd�1, 0 ¤ λ1, . . . , λd�1 (4)332

Recall that if a set of linear inequalities Ax ¥ a, Bx ¡ b is feasible then it is satisfied by333

some x P Qn of bit-length polypn, bq, where b is the total bit-length of the entries of A, B, a,334

and b. Applying this bound and Proposition 10 we see that a solution of (4) can be written335

in the form λ1 � p1
g , . . . , λd�1 �

pd�1
g for integers p1, . . . , pd�1, g of bit-length at most336

polypd, |X |, |L|, logpMYq, logpMX qq. This entails that the cost vector λ1γ
piq
1 � . . .� λd�1γ

piq
d�1337

arises from a run of A with granularity 1
g , thus indirectly addressing the open problem stated338

in [17, Section 8] on the granularity of optimal runs in MPTA.339

Together with Proposition 10, this yields PSPACE-membership for the Pareto Domination340

Problem. As reachability in timed automata is already PSPACE-hard [1] we have:341

� Theorem 11. The Pareto Domination Problem with pure constraints is PSPACE-complete.342

7 Pareto Domination Problem with Three Mixed Observers343

In this section we consider the Pareto Domination Problem for MPTA with three observers.344

In the case of three cost variables or three reward variables the results of Section 6 apply.345

Below we show decidability for two cost variables and one reward variable. The similar case346

of two reward variables and one cost variable is handled in Appendix E.347

Consider an instance of the Pareto Domination Problem given by an MPTA A with |Y| � 3348

observers, and a target vector γ P RY
¥0. Our starting point is again Proposition 9. To apply349

this proposition the idea is to eliminate the quantifiers over the real variables (the λi) in the350

system of equations (3) and thereby obtain a formula that lies in a decidable fragment of351

arithmetic (namely disjunctions of constraints of the form considered in Theorem 1).352

To explain this quantifier-elimination step in more detail, let us identify RY
¥0 with R3

¥0.353

Denote by T � R3
¥0 the set of valuations that dominate a given fixed valuation γ P R3

¥0. We354
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can write T � tpx, y, zq P R3
¥0 : x ¤ a^ y ¤ b^ z ¥ cu , where a, b, c are non-negative integer355

constants (see the left-hand side of Figure 3). We seek a quantifier-free formula of arithmetic356

that expresses that T meets a 4-simplex S � R3
¥0 given by the convex hull of tγ1, . . . , γ4u,357

where pγ1, . . . , γ4q P ReachSpAq. However, since T is unbounded, it is clear that T meets358

a given 4-simplex S just in case it meets a face of S (which is a 3-simplex). Thus it will359

suffice to write a quantifier-free formula of arithmetic ϕT expressing that a 3-simplex in R3
¥0360

meets T . Such a formula has nine free variables—one for each of the coordinates of the three361

vertices of S. We describe ϕT in the remainder of this section.362

It is geometrically clear that S intersects T iff either S lies inside T , the boundary of S363

meets T , or the boundary of T meets S. More specifically we have the following proposition,364

whose proof is given in Appendix B.5.365

� Proposition 12. Let S � R3
¥0 be a 3-simplex. Then T X S is nonempty if and only if at366

least one of the following holds: (a) Some vertex of S lies in T ; (b) Some bounding edge of S367

intersects either the face of T supported by the plane x � a or the face of T supported by the368

plane y � b; (c) The bounding edge of T supported by the line x � aX y � b intersects S.369

The following definition and proposition are key to expressing intersections of the form370

identified in Case (c) of Proposition 12 in terms of quadratic constraints. The idea is to371

identify a bounded region F � R3
¥0 such that in Case (c) one of the vertices of S lies in F .372

The proof of Proposition 13 can be found in Appendix B.6.373

Define a region F � R3
¥0 (depicted as the grey-shaded region on the right of Figure 3) by:374

F � tpx, y, zq P R3
¥0 | z   c^ px� ay ¤ apb� 1q _ y � bx ¤ bpa� 1qqu. (5)375

376

Then we have:377

� Proposition 13. Let S � R3
¥0 be a 3-simplex such that S X T is non-empty but none of the378

bounding edges of S meets T . Then some vertex of S lies in F .379

Denote by π : R3 Ñ R2 the projection of R3 onto the xy-plane, where πpx, y, zq � px, yq380

for all x, y, z P R. Write πpT q and πpSq for the respective images of T and S under π.381

We write separate formulas ϕp1qT , ϕ
p2q
T , ϕ

p3q
T , respectively expressing the three necessary382

and sufficient conditions for T XS to be nonempty, as identified in Proposition 12. These are383

formulas of arithmetic whose free variables denote the coordinates of the three vertices of S.384

Some vertex of S lies in T . Denote the vertices of S by p, q, r. Formula ϕp1qT expresses385

that p P T or q P T or r P T . This is clearly a formula of linear arithmetic.386

Some bounding edge of S meets a face of T . It is straightforward to obtain ϕp2qT387

given a formula ψ expressing that an arbitrary line segment xy in R3
¥0 meets a given fixed388

face of T . We outline such a formula in the rest of this sub-section. For concreteness we389

consider the face of T supported by the plane x � a, which maps under π to the line390

segment L � tpa, yq : 0 ¤ y ¤ bu. Formula ψ has six free variables, respectively denoting the391

coordinates of x � px1, x2, x3q and y � py1, y2, y3q.392

Formula ψ is a conjunction of two parts. The first part expresses that πpxqπpyq meets L.393

Since the complement of πpF q is a convex region in R2
¥0 that excludes πpT q we have that394

either πpxq P πpF q or πpyq P πpF q. Moreover since πpF q contains finitely many integer395

points, we can write separate sub-formulas expressing that πpxqπpyq meets L for each fixed396

value of πpxq P πpF q and each fixed value of πpyq P πpF q. Each of these sub-formulas can397

then be written in linear arithmetic, see Appendix D.398

Suppose now that πpxqπpyq meets L. Then the line xy meets the face of T supported by399

the plane x � a iff the line in xz-plane connecting px1, x3q and py1, y3q passes above pa, cq.400

This requirement is expressed by the quadratic constraint (8) in Appendix D.401
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Figure 4 Two cases for expressing that c P πpSq. The grey region is πpF q.

A bounding edge of T meets S. We proceed to describe the formula ϕp3qT expressing402

that the bounding edge E of T , supported by the line x � aX y � b, meets S. Note that403

image of E under the projection π is the single point c � pa, bq. Thus E meets S just in404

case c P πpSq and the point pa, b, cq lies below the plane affinely spanned by S. We describe405

two formulas that respectively express these requirements.406

Denote the vertices of S by p, q, and r. We first give a formula of linear arithmetic407

expressing that c P πpSq. Notice that if c P πpSq then at least one vertex of πpSq must408

lie in πpF q. We now consider two cases. The first case is that exactly one vertex of πpSq409

(say πppq) lies in πpF q. The second case is that at least two vertices of of πpSq (say πppq410

and πpqq) lie in πpF q. The two cases are respectively denoted in Figure 4, that we refer to411

in the following.412

In the first case we can express that c P πpSq by requiring that the line segment πppqπpqq413

crosses the edge f2c and πppqπprq crosses the edge f1c. By writing a separate constraint for414

each fixed value of πppq P πpF q the above requirements can be expressed in linear arithmetic.415

In the second case we can express that c P πpSq by requiring that c lies on the left of416

each of the directed line segments πppqπpqq, πpqqπprq, and πprqπppq. By writing such a417

constraint for each fixed value of πppq and πpqq in πpF q we obtain, again, a formula of linear418

arithmetic, see Appendix D.419

It remains to give a formula expressing that pa, b, cq lies below the plane affinely spanned420

by p, q, and r under the assumption that c P πpSq. Note here that the above-described421

formula expressing that πpcq P πpSq specifies inter alia that πppq, πpqq, and πprq are oriented422

counter-clockwise. Thus pa, b, cq lies below the plane affinely spanned by p, q, and r iff423 ∣∣∣∣∣∣
q1 � p1 r1 � p1 a� p1
q2 � p2 r2 � p2 b� p2
q3 � p3 r3 � p3 c� p3

∣∣∣∣∣∣   0424

The above expession is cubic, but by Proposition 13 we may assume that p lies in the set F ,425

which has finitely many integer points. Thus by a case analysis we may regard p as being426

fixed and so write the desired formula as a disjunction of atoms, each with a single quadratic427

term, whose satisfiability is known to be decidable from Theorem 1. This leads us to:428

� Theorem 14. The Pareto Domination Problem is decidable for at most three observers.429

Theorem 14 was proven by reduction to satisfiability of a system of arithmetic constraints430

with a single quadratic term. For the case of four observers this technique does not appear431

to yield arithmetic constraints in a known decidable class. Note that satisfiability of systems432

of constraints featuring two distinct quadratic terms is not known to be decidable in general.433

In Appendix F we consider (a generalisation of) the Pareto Domination Problem for434

MPTA with at most two observers. In contrast to the case of three observers, we are able to435

show decidability for two observers by reduction to satisfiability in linear arithmetic.436
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8 Gap Domination Problem437

In this section we give a decision procedure for the Gap Domination Problem. Given an438

MPTA A, valuation γ P RY
¥0, and a rational tolerance ε ¡ 0, our procedure is such that439

if there is an accepting run ρ of A such that γ ¤ε costpρq then we output “dominated”;440

if there is no accepting run ρ of A such that γ ¤ costpρq then we output “not dominated”.441

To do this, our approach is to find approximate solutions of the bilinear system (3) by442

relaxation and rounding.443

Recall from Proposition 9 that (3) is satisfiable iff A has an accepting run ρ such444

that γ ¤ costpρq. Now we use the semi-linear decomposition of ReachSpAq to eliminate the445

constraints on integer variables from (3). In more detail, fix a decomposition of ReachSpAq446

as a union of linear sets and let S :� Spv, P q be one such linear set, where P � tu1, . . . ,uku.447

Then we replace the constraint pγ1, . . . , γd�1q P ReachSpAq in (3) with448

pγ1, . . . , γd�1q � v � n1u1 � � � � � nkuk ,449

where n1, . . . , nk are variables ranging over N. We thus obtain for each choice of S a bilinear450

system of inequalities ϕS of the form (6), where I and J are finite sets and for each i P I451

and j P J , it holds that fi, gj are linear forms (i.e., polynomials of degree one with no452

constant terms) with non-negative integer coefficients and ci and dj are rational constants.453

fipn1λ1, n1λ2, . . . , nkλd�1q ¤ ci pi P Iq λ1, . . . , λd�1 ¥ 0
gjpn1λ1, n1λ2, . . . , nkλd�1q ¥ dj pj P Jq λ1 � � � � � λd�1 � 1

n1, . . . , nk P N
(6)454

Fix a particular system ϕS , as depicted in (6). Let µ be the maximum coefficient of455

the fi, i P I. Given T � t1, . . . , d� 1u, we define the following constraint ψT on λ1, . . . , λd�1:456

ψT :�
©
iPT

λi ¤
ε

pd�1qkµ ^
©
iRT

λi ¥
ε

pd�1qkµ .457

Intuitively, ψT expresses that λi is “small” for i P T and “large” for i R T . Given any satisfying458

assignment of ϕS it is clear that λ1, . . . , λd�1 must satisfy ϕT for some T � t1, . . . , d� 1u.459

Now fix a set T � t1, . . . , d � 1u and consider the satisfiability of ϕS ^ ψT . If i R T460

then for any term λinj that appears in an upper-bound constraint with right-hand side c461

in ϕS , we must have nj ¤ r cpd�1qµ
ε s in order for the constraint to be satisfied. Thus by462

enumerating all values of nj we can eliminate this variable. By doing this we may assume463

that in ϕS ^ ψT , for any term λinj that appears on the left-hand side of an upper-bound464

constraint we have i P T and hence that λi must be “small” in any satisfying assignment.465

The next step is relaxation—try to solve ϕS ^ ψT (after the above described elimination466

step), letting the variables n1, . . . , nk range over the non-negative reals. Recall here that467

the existential theory of real closed fields is decidable in polynomial space. If there is468

no real solution of ϕS ^ ψT for any S and T then there is certainly no solution over the469

naturals. and we can output “not dominated”. On the other hand, if there is a run ρ470

with γ ¤ε costpρq then for some S and T , the system ϕS ^ ψT will have a real solution471

in which moreover the inequalities fipn1λ1, . . . , nkλd�1q ¤ ci for i P I all hold with slack472

at least ε. Given such a solution, replace nj with rnjs for j � 1, . . . , k. Consider the left-473

hand side fipn1λ1, . . . , nkλd�1q of an upper bound constraint in ϕS . Since the variables λi474

mentioned in such a linear form are small, the effect of rounding is to increase this term by475

at most ε. Hence the rounded valuation still satisfies ϕS thanks to the slack in the original476

solution. This then leads to Theorem 15 below:477

� Theorem 15. The Gap Domination Problem is decidable.478
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A Difference Constraints529

As summarized in [4, Section 5.3] for the setting of a single observer, given an MPTA A with530

difference clock constraints, we can find an MPTA A1 without difference clock constraints531

such that A and A1 are strongly time-bisimilar. The Domination Problems for A can thus532

be reduced to those for A1. Although eliminating difference clock constraints from MPTA533

results in an exponential blow-up in the number of locations and edges [4, Section 5.3], the534

PSPACE complexity for the Pareto Domination Problem in the case of all cost variables and535

all reward variables (see Section 6 and Appendix C) remains true. Indeed the granularity536

bounds that were used to establish PSPACE complexity, while exponential in the number of537

observers, are only polynomial in the number of locations of the MPTA and hence remain538

singly exponential in magnitude even after an exponential blow-up in the number of locations.539

B Missing Proofs540

B.1 Proof of Proposition 2541

Proof. Given Z and q, we can construct an NFA B over alphabet Σ1 � tσ1, . . . , σnu with at542

most |Q|2nM states such that ReachZ is the Parikh image of the language of B. The idea is543

that each transition pp,v, p1q in A is simulated in B by a gadget consisting of a sequence of544

transitions whose Parikh image is v.545

Having obtained B, the proposition follows from the bound in [20, Proposition 4.3],[15] on546

the size of the semilinear decomposition of the Parikh image of the language of an NFA. �547

B.2 Proof that Satisfiability for Language L is Undecidable (Section 4)548

� Proposition 16. The satisfiability problem for L is undecidable.549

Proof. The proof is by reduction from Hilbert’s Tenth Problem: given a polynomial P P550

ZrX1, . . . , Xks, does P have a zero over the set of positive integers? Given such a polynomial P ,551

we write an L-formula ϕP whose variables include X1, . . . , Xk, such that the satisfying552

assignments of ϕP are in one-to-one correspondence with the positive integer roots of P .553

The idea is simple: write P � P1 � P2, where all monomials in P1 and P2 appear with554

positive coefficients. We then introduce an L-variable for each subterm of P1 and P2 and555

write constraints to ensure that the variable takes the same value as the corresponding term.556

Finally we assert that P1 is equal to P2 through the constraint P1 � P2X ^X � XX. �557

B.3 Proof of Proposition 4558

Proof. Given a sequence pt1, . . . , tmq P Rm¥0, we define a corresponding sequence of clock559

valuations ν1, . . . , νm P RX
¥0 by νipxq � ti if none of the edges e1, . . . , ei�1 reset clock x560

and otherwise νipxq :� ti � tj , where j   i is the maximum index such that x is reset by561

edge ej . In order for a sequence pt1, . . . , tmq to be an element of Runspe1, . . . , emq we require562

that the ti be non-negative and non-decreasing and that for every index i P t1, . . . ,mu, the563

guard ϕi of edge ei be satisfied by the clock valaution νi defined above. Clearly the above564

requirements can be expressed by difference constraints on t1, . . . , tm. �565

B.4 Proof of Proposition 10566

Proof. The number of control states of ZpAq is at most pMX q
|X ||L| and the number of states567

of SpAq is at most ppMX q
|X ||L|qd�1. Moreover the vectors occurring in the transitions of568
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SpAq have entries of magnitude at most MYMX . We now apply Proposition 2 to SpAq. We569

get that the the base vectors vi and period vectors in Pi have entries of magnitude at most570

polypd, |L|,MY ,MX q
dpd�1q|X |. �571

B.5 Proof of Proposition 12572

Proof. Observe that T X S is nonempty just in case there exists a point x � px1, x2, x3q P S573

such that πpxq P πpT qXπpSq and x3 ¥ c. But πpT qXπpSq, being a bounded convex polygon,574

is the convex hull of its vertices. It follows that T X S is non-empty just in case there exists575

a point x P S such that πpxq is a vertex of πpT q X πpSq and x3 ¥ c.576

Now the vertices of πpT qXπpSq come in three types: piq vertices of πpSq, piiq intersections577

of bounding line segments of πpT q and πpSq, and piiiq vertices of πpT q.578

Let x P S be such that πpxq is a vertex of πpT q X πpSq and x3 ¥ c. Assume moreover579

that for all y P S such that πpxq � πpyq we have x3 ¥ y3. If πpxq is a vertex of πpT q X πpSq580

of the first type then x is a vertex of S. If πpxq is a vertex of the second type, but not of the581

first type, then x is the intersection of a bounding edge of S with one of the two faces of F582

identified in Item 2 in the statement of the proposition. Finally, if πpxq is a vertex of the583

third type, but not of the first or second types, then x is the intersection of S with the edge584

of F supported by the line x � aX y � b. �585

B.6 Proof of Proposition 13586

Proof. Since S X T � H, we have πpSq X πpT q � H. Hence there are vertices x,y of S587

such that the edge πpxqπpyq meets πpT q. By Proposition 17 we have either that one of πpxq588

and πpyq lies in πpT q or that both πpxq and πpyq lie in πpF q.589

Suppose πpxq P πpT q. Since the edge xy is assumed not to meet T we must have590

that x3   c and hence x P F . Likewise the assumption that πpyq P πpT q yields y P F .591

Finally, if both πpxq and πpyq lie in πpF q then the assumption that xy does not meet T592

implies that either x3   c or y3   c. Hence x P F or y P F . �593

C Pareto Domination with All Reward Variables594

Now we suppose that the set of observers Y is comprised exclusively of reward variables.595

We will again apply Proposition 10 to rewrite (3) as a finite disjunction of systems of linear596

inequalities.597

Fix an index i P I. Let the base vector of the linear set Spvi, Piq be vi � pγ1, . . . , γd�1q.598

We write a linear constraint to express that there exists a vector pγ11, . . . , γ1d�1q P Spvi, Piq and599

a convex combination
°d�1
j�1 λjγ

1
j that dominates a given γ P RY

¥0. We write this constraint600

as a disjunction of finitely many systems of linear inequalities—one system for each possible601

choice of the support S1 � t1, . . . , d � 1u of the the convex sum. Fix such a set S1 and602

let YS1 � Y be the set of variables y such that there is some period vector pγ11, . . . , γ1d�1q P Pi603

and j P S1 with γ1jpyq ¡ 0. Then the system of inequalities is as follows:604

γpyq ¤ λ1γ1pyq � . . .� λd�1γd�1pyq py R YS1q
1 � λ1 � � � � � λd�1
0   λj pj P S1q

0 � λj pj R S1q

(7)605

To see why this works, note that for y P YS1 there exists some period vector pγ11, . . . , γ1d�1q P Pi606

and j P S1 with γ1jpyq ¡ 0. By adding suitable multiples of to the solution of the above607

ICALP 2018



248:16 Costs and Rewards in MPTA

system we can make value of the variable y arbitrarily large.608

Recall that if a set of linear inequalities Ax ¥ a, Bx ¡ b is feasible then it is satisfied by609

some x P Qn of bit-length polypn, bq, where b is the total bit-length of the entries of A, B, a,610

and b. Applying this bound and Proposition 10 we see that a solution of (7) can be written611

in the form λ1 � p1
g , . . . , λd�1 �

pd�1
g for integers p1, . . . , pd�1, g of bit-length at most612

polypd, |L|, logpMYq, logpMX qq. This entails that the cost vector λ1γ1 � . . .�λd�1γd�1 arises613

from a run of A with granularity 1
g .614

D Geometry Background615

We will need the following elementary geometric facts.616

Let vi � pxi, yiq with i P t1, 2, 3, 4u be four distinct points in R2. Consider the determinant617

∆pv1,v2,v3q �

∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣618

involving three points v1,v2 and v3. Then ∆pv1,v2,v3q � 0 if and only if the three619

points v1,v2 and v3 are colinear, and ∆pv1,v2,v3q ¡ 0 if and only if v3 lies on the right of620

the directed line passing through v1 and v2.621

We say that two line segments properly intersect if they meet at a single point that is622

not an end point of either line segment. The line segment v1v2 properly intersects the line623

segment v3v4 if and only if the following two conditions hold:624

1. v3 and v4 are on the opposite sides of the line passing through v1 and v2:625

p∆pv1,v2,v3q ¡ 0^∆pv1,v2,v4q   0q _ p∆pv1,v2,v3q   0^∆pv1,v2,v4q ¡ 0q,626

2. v1 and v2 are on the opposite sides of the line passing through v3 and v4:627

p∆pv3,v4,v1q ¡ 0^∆pv3,v4,v2q   0q _ p∆pv3,v4,v1q   0^∆pv3,v4,v2q ¡ 0q.628

For use in Section 7 and Appendices E and F we note that if v1,v2 and v3 are fixed, then629

the constraint expressing that v1v2 and v3v4 properly meet is a formula of linear arithmetic630

in variables x4 and y4.631

Let us also note that line segment v1,v2 properly intersects the half-line parallel to632

the x-axis with lower endpoint having coordinates pa, cq if and only if the following constraint633

holds:634 �
�

∣∣∣∣∣∣
x1 y1 1
a c 1
x2 y2 1

∣∣∣∣∣∣ ¡ 0 and x1   x3   x2

�

 or

�
�

∣∣∣∣∣∣
x1 y1 1
a c 1
x2 y2 1

∣∣∣∣∣∣   0 and x2   x3   x1

�

 (8)635

636

Let vi � pxi, yi, ziq with i P t1, 2, 3, 4u be four distinct points in R3. Assume that the637

list of vertices v1,v2,v3 describes a triangle with anti-clockwise orientation. Consider the638

determinant639

∆ �

∣∣∣∣∣∣
x2 � x1 x3 � x1 x4 � x1
y2 � y1 y3 � y1 y4 � y1
z2 � z1 z3 � z1 z4 � z1

∣∣∣∣∣∣ .640

Then ∆ � 0 if and only if the point v4 lies in the plane affinely spanned by the three641

points v1,v2 and v3, and ∆ ¡ 0 if and only if v4 lies above that plane. For use in Section 7642

and Appendix E we note that if v1 and v4 are fixed, then the constraint expressing that643

v4 lies above the plane affinely spanned by v1,v2 and v3 is a quadratic formula in the644

variables x2, y2, x3 and y3.645
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E Pareto Domination with Three Mixed Observers: Two Reward646

Variables and One Cost Variable647

Recall the set F , defined in Equation (5) and consider its projection πpF q in the xy-plane.648

Moreover write R :� tpx, yq P R2
¥0 : x ¤ a^ y ¤ bu (see Figure 5).649

x

y

z

πpxq

πpyq

Case 1

x

y

z

πpxq
e

c

πpyq

Case 2

Figure 5 Two cases in the proof of Proposition 17, where the grey region is F and the pink region
is R.

� Proposition 17. Let L be an edge in R2
¥0 that intersects R. Then L has either one endpoint650

in R or has both endpoints in πpF q.651

Proof. Let L have endpoints x,y P R2
¥0. Since the complement of πpF q is a convex region652

in R2
¥0 that excludes R, at least one of x or y lies in πpF q. Without loss of generality,653

assume that x P πpF q. To prove the proposition it suffices to show that if x R R then654

both x,y P πpF q.655

Suppose x R R. Now πpF qzR � F0 Y F1, where F0 � tpx, yq P R2
¥0 | y � bx ¤656

bpa � 1q and x ¥ au and F1 � tpx, yq P R2
¥0 | x � ay ¤ apb � 1q and y ¥ bu. Thus x lies657

in either F0 or F1. We show that x P Fi only if y P F1�i for i P t0, 1u and conclude that658

both x,y P F .659

Assume that x P F0. Since the edge xy meets R, clearly y R F0. Draw a line through x660

and c, shown as the dashed red line in the diagram. The point y is below this line for661

otherwise edge xy fails to meet R. Consider the point e � p0, b � 1q. Then the edges ec662

and xc meet at c. Since edge xc intersects the x-axis above e, it intersects the y-axis below663

the edge ec, i.e. in πpF q. We conclude that y P F1.664

The argument for the case x P F1 is symmetric. Thus we have shown that xq,y P πpF q. �665

Consider a reachability objective T � R3
¥0 given by two upper-bound constraints and666

one lower-bound constraint, see Figure 6. Write667

T � tpx, y, zq P R3
¥0 : x ¥ a^ y ¥ b^ z ¤ cu ,668

where a, b, c are non-negative integer constants. We write a quantifier-free first-order for-669

mula ϕT of arithmetic expressing that a 3-simplex S � R3
¥0 meets T . This formula has nine670

free variables: one for each of the coordinates of the three vertices of S.671
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x

y

z

Figure 6 The target T is the green rectangular region, the grey region is F , and the pink region
is πpT q.

Write πpT q for the projections of T in the xy-plane, see Figure 6.672

The following two propositions are syntactically identical to Proposition 12 and Proposi-673

tion 13, although now referring to a different form of the target set T . While the proof of674

Proposition 12 carries over verbatim to the new setting of Proposition 18, we need to slightly675

modify the proof of Proposition 13 in order to prove Proposition 19.676

� Proposition 18. Let S � R3
¥0 be a 3-simplex. Then T X S is nonempty if and only if at677

least one of the following holds:678

1. Some vertex of S lies in T .679

2. Some bounding edge of S intersects either the face of T supported by the plane x � a or680

the face of T supported by the plane y � b.681

3. The bounding edge of T supported by the line x � aX y � b intersects S.682

The following Proposition refers to the set F as defined in (5).683

� Proposition 19. Let S � R3
¥0 be a 3-simplex such that SXT is non-empty, but no bounding684

edge of S meets T . Then some vertex of S lies in F .685

Proof. Under the assumptions of this proposition, Items 1 and 2 of Proposition 18 do not686

hold. Hence the bounding edge of T that is supported by the line segment x � a X y � b687

meets S at some point not on a bounding edge of S. In particular, considering the projection688

in the xy-plane, we have that the point pa, bq lies in the interior of πpSq.689

Now consider the plane in R3
¥0 affinely spanned by S. Write the equation of this plane690

in the form z � fpx, yq for some affine function f . From the assumption that no bounding691

edge of S meets T , we deduce that pa, bq is the only vertex of the convex set πpSq X πpT q692

at which f is bounded above by c. It follows that f has positive derivative in the direction693

of the positive x-axis and positive y-axis. Hence f is bounded above by c on the entire694

region R :� tpx, yq P R2
¥0 : x ¤ a, y ¤ bu.695

Now since pa, bq lies in the interior of πpSq, there is a bounding edge xy of S such696

that πpxqπpyq meets the region R. By Proposition 17, πpxqπpyq either has some endpoint697

in R (say πpxq) or has both endpoints in πpF q. Since f is bounded above by c on R, in the698

first case we have that x3 ¤ c and hence x P F . In the second case we have that either x3 ¤ c699

or y3 ¤ c and hence either x P F or y P F . �700

We write separate formulas ϕp1qT , ϕ
p2q
T , ϕ

p3q
T , respectively expressing the three necessary701

and sufficient conditions for T X S to be nonempty as identified in Proposition 18. These702

are formulas of arithmetic whose free variables denote the coordinates of the three vertices703
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of S. The definitions of the formulas ϕp1qT and ϕ
p3q
T are almost identical to those of the704

corresponding formulas in Section 7. The only difference is that for ϕp3qT we ask to express705

that the point pa, b, cq lies above the plane affinely spanned by p, q, and r (rather than below706

the plane, as in Section 7).707

There are more substantial differences in the definition of the formula ϕp2qT . Recall that708

this formula expresses that some bounding edge of S meets a face of T . As in Section 7,709

it is straightforward to obtain ϕ
p2q
T given a formula ψ expressing that an arbitrary line710

segment xy in R3
¥0 meets a given fixed face of T . We outline such a formula below. For711

concreteness we consider the face of T supported by the plane x � a, which maps under π to712

the line segment L given by x � aX y ¥ b (see Figure 7). Formula ψ has six free variables,713

respectively denoting the coordinates of x and y.714

x

y

c

πpxq

πpyq

L

Figure 7 To express that πpxqπpyq meets line segment L. The grey region is πpF q.

Formula ψ is a conjunction of two parts. The first part expresses that πpxqπpyq meets L.715

The key is to express this requirement via a formula of linear arithmetic. For each fixed716

value of πpxq P F we can write a linear constraint expressing that πpxqπpyq meets L, and717

likewise for each fixed value of πpyq P F . Thus we may assume that both πpxq and πpyq lie718

in the complement of πpF q. But then πpxqπpyq meets L just in case πpxq and πpyq lie on719

opposite sides of the line x � a, which is also a linear constraint.720

Suppose now that πpxqπpyq meets L, say at a point πpzq where z lies on line segment xy.721

The second part of ψ expresses that z lies below the plane z � c. Such a formula is a722

disjunction of atoms, each with a single quadratic term, whose satisfiability is known to be723

decidable from Theorem 1.724

F Reachability for Two Observers725

In this section we consider MPTA with two observers and reachability of sets of valuations726

T � RY
¥0 described by arbitrary conjunctions of constraints of the form γpyq � c for y P Y,727

� P t¤,¥u, and c P Z. Since the set of valuations in RY
¥0 dominating a given valuation can728

be written in the above form, this reachability problem subsumes the Pareto Domination729

Problem. In contrast to the situation with three observers, in the case at hand we will be730

able to translate the reachability problem into satisfiability in linear arithmetic.731

F.1 Bounded Cost Objective732

We show how to construct a quantifier-free formula ϕObj of linear arithmetic that is satisfiable733

if and only if the bounded rectangular cost objective can be achieved.734
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x

y

Recall that for a MPTA featuring two non-negative cost variables, a configuration of the735

simplex automaton SpAq determines a triangle in the plane whose vertices are non-negative736

integers. We denote the vertices p, q, and r.737

Draw a line with slope 45 degrees, intersecting the two positive coordinate axes and738

passing through the top right corner x of the target rectangle T . This line divides the upper739

right quadrant of the plane into two regions—a bounded region below the line (shaded blue)740

and an unbounded region above the line (shaded grey). Clearly the number of vertices741

of 4pqr that lie in the blue region is either one, two, or three. Since the blue region contains742

finitely many integer points, the case in which 4pqr lies completely in the blue region is743

trivial. The two remaining cases are as follows:744

x

x

y

ñ

q

p

x

y

Case 1

p
x

y

Case 2

Case 1: the blue region contains two vertices of 4pqr—say p and q. We proceed by a745

case analysis on the coordinates of p and q (for which there are finitely many possibilities).746

Fix values for p and q in the blue region. Then the condition that 4pqr intersects747

the target can be written as a linear constraint on the coordinates of the remaining748

vertex r—specifically that one of the vertices of 4pqr lies in the target T or that one of749

the bounding line segments of 4pqr intersects one of the bounding line segments of the750

target T .751

Case 2: the blue region contains a single vertex of 4pqr—say p. Fix a value of p and752

assume that p is not in the target T . Now consider the “shadow” of the target rectangle T753

created by a light source at point p (the pink region in the diagram). This shadow is754

is a region in the plane that is bounded by two lines that respectively pass through p755

and vertices of the target T (shown as pink dashed lines in the diagram). Then in case756

vertices q and r lie in the grey region, 4pqr fails to meet the target rectangle if and757

only q and r both lie on the same side of both of the pink dashed lines. Again this758

condition can be expressed as a Boolean combination of linear constraints on q and r759

since the pink dashed lines are fixed.760
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p

q

x

y

q in the pink region

p

q

r

x

y

q, r in separate grey regions

F.2 Unbounded Cost Objective761

We show how to construct a quantifier-free formula ϕObj of linear arithmetic that is satisfiable762

if and only if the unbounded rectangular cost objective, as shown in the diagram below, can763

be achieved. We consider an objective where the observer x is unbounded above while y764

is bounded. The case when x is bounded with y unbounded above is symmetric. The last765

case for an unbounded cost objective is when both observers x, y are unbounded above. The766

following argument can be used in this last case with a slight modification.767

x

y

Draw a line with slope 45 degrees, intersecting the two positive coordinate axes and768

passing through the top left corner P of the target rectangle T . This line divides the upper769

right quadrant of the plane into two regions—a bounded region below the line (shaded blue)770

and an unbounded region above the line. We further divide the region above the line into771

three horizontal bands with boundaries given by the horizontal sides of the target (the upper772

bound is shaded pink and lower band is shaded grey in the diagram).773

We now consider two cases according to whether 4pqr has a vertex in the blue region.774

x

x

y

ñ

p

q

x

y

Case 1

p

x

y

Case 2

Case 1. No vertex of 4pqr lies in the blue region. Then 4pqr meets the target iff it is775

not the case that all vertices lie in the grey region or all vertices lie in the pink region.776
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Case 2. Some vertex of 4pqr lies in the blue region—say p. Fix p. Then 4pqr meets T777

if one of the line segments pq or pr intersects the boundary of the target T . Given that p778

is fixed this condition can be expressed as a Boolean combination of linear constraints779

on q and r.780
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